Knowledge

Ginzburg–Landau theory

Source 📝

7855: 3887: 3577: 1349: 636: 3882:{\displaystyle {\begin{aligned}F=D\circ D=dA+A\wedge A=\left({\frac {\partial A_{\nu }}{\partial x^{\mu }}}+A_{\mu }A_{\nu }\right)dx^{\mu }\wedge dx^{\nu }={\frac {1}{2}}\left({\frac {\partial A_{\nu }}{\partial x^{\mu }}}-{\frac {\partial A_{\mu }}{\partial x^{\nu }}}+\right)dx^{\mu }\wedge dx^{\nu }\\\end{aligned}}} 1185: 399: 6146: 6313:
argued that Landau–Ginzburg theories and sigma models on Calabi–Yau manifolds are different phases of the same theory. A construction of such a duality was given by relating the Gromov–Witten theory of Calabi–Yau orbifolds to FJRW theory an analogous Landau–Ginzburg "FJRW" theory. Witten's sigma
5566: 1179: 4506:
converge uniformly to zero, and the curvature becomes a sum over delta-function distributions at the vortices. The sum over vortices, with multiplicity, just equals the degree of the line bundle; as a result, one may write a line bundle on a Riemann surface as a flat bundle, with
2245: 5220: 2319:
from the normal state is of second order for Type II superconductors, taking into account fluctuations, as demonstrated by Dasgupta and Halperin, while for Type I superconductors it is of first order, as demonstrated by Halperin, Lubensky and Ma.
2398:
in 1957. He used Ginzburg–Landau theory to explain experiments on superconducting alloys and thin films. He found that in a type-II superconductor in a high magnetic field, the field penetrates in a triangular lattice of quantized tubes of flux
2751: 2343:. Depending on the geometry of the sample, one may obtain an intermediate state consisting of a baroque pattern of regions of normal material carrying a magnetic field mixed with regions of superconducting material containing no field. In 4140: 1044: 6028: 6199: 5895: 1344:{\displaystyle \nabla \times \mathbf {B} ={\frac {4\pi }{c}}\mathbf {J} \;\;;\;\;\mathbf {J} ={\frac {e^{*}}{m^{*}}}\operatorname {Re} \left\{\psi ^{*}\left(-i\hbar \nabla -{\frac {e^{*}}{c}}\mathbf {A} \right)\psi \right\},} 631:{\displaystyle f_{s}=f_{n}+\alpha (T)|\psi |^{2}+{\frac {1}{2}}\beta (T)|\psi |^{4}+{\frac {1}{2m^{*}}}\left|\left(-i\hbar \nabla -{\frac {e^{*}}{c}}\mathbf {A} \right)\psi \right|^{2}+{\frac {\mathbf {B} ^{2}}{8\pi }},} 91:, thus showing that it also appears in some limit of microscopic theory and giving microscopic interpretation of all its parameters. The theory can also be given a general geometric setting, placing it in the context of 2257:
is the equilibrium value of the order parameter in the absence of an electromagnetic field. The penetration depth sets the exponential law according to which an external magnetic field decays inside the superconductor.
5069: 5340: 4206: 4042: 2422:. This is the same functional as given above, transposed to the notation commonly used in Riemannian geometry. In multiple interesting cases, it can be shown to exhibit the same phenomena as the above, including 1860: 3035: 2080: 1993: 2869: 5697: 4723: 1670: 5639: 2106: 4951: 1590: 919: 1481: 6033: 5987: 4631: 3582: 235: 5003: 2328:
In the original paper Ginzburg and Landau observed the existence of two types of superconductors depending on the energy of the interface between the normal and superconducting states. The
3474: 2818: 6447:
Ginzburg VL (July 2004). "On superconductivity and superfluidity (what I have and have not managed to do), as well as on the 'physical minimum' at the beginning of the 21 st century".
5132: 2945: 1711: 5770: 6239: 3530: 3430: 4405: 972: 4898: 4455: 2783: 2496: 6151:
Note that these are both first-order differential equations, manifestly self-dual. Integrating the second of these, one quickly finds that a non-trivial solution must obey
5275: 4803: 6282: 3949:
for additional articulation of this specific notation.) To emphasize this, note that the first term of the Ginzburg–Landau functional, involving the field-strength only, is
281: 4840: 4756: 4296: 5332: 5120: 1034: 877: 4658: 2552: 1534: 699: 6205:
Roughly speaking, this can be interpreted as an upper limit to the density of the Abrikosov vortecies. One can also show that the solutions are bounded; one must have
4585: 3943: 728: 3917: 350: 317: 6020: 5810: 5720: 2889: 2361:
penetrates the material, but there remains no resistance to the flow of electric current as long as the current is not too large. At a second critical field strength
748: 380: 4481: 3292: 2909: 768: 4425: 4236: 3324: 3163: 2516: 1411: 1012: 830: 797: 668: 352:
is nonzero below a phase transition into a superconducting state, no direct interpretation of this parameter was given in the original paper. Assuming smallness of
152: 5098: 4362: 3108: 4504: 853: 5790: 5740: 5295: 4776: 4556: 4332: 4260: 3553: 3494: 3384: 3364: 3344: 3258: 3231: 3211: 3187: 3128: 3078: 3058: 2540: 2467: 2447: 1371: 992: 4064: 6141:{\displaystyle {\begin{aligned}{\overline {\partial }}_{A}\psi &=0\\*(iF)&={\frac {1}{2}}\left(\sigma -\vert \psi \vert ^{2}\right)\\\end{aligned}}} 1778: 6157: 5818: 2332:
breaks down when the applied magnetic field is too large. Superconductors can be divided into two classes according to how this breakdown occurs. In
1600:(remember that the magnitude of a complex number can be positive or zero). This can be achieved by assuming the following temperature dependence of 7285: 8219: 6360: 5008: 5561:{\displaystyle {\mathcal {L}}\left(\psi ,A\right)=2\pi \sigma \operatorname {deg} L+\int _{\Sigma }{\frac {i}{2}}dz\wedge d{\overline {z}}\left} 1746:
is positive and the right hand side of the equation above is negative. The magnitude of a complex number must be a non-negative number, so only
7708: 7518: 4151: 1539: 1174:{\displaystyle \alpha \psi +\beta |\psi |^{2}\psi +{\frac {1}{2m^{*}}}\left(-i\hbar \nabla -{\frac {e^{*}}{c}}\mathbf {A} \right)^{2}\psi =0} 17: 3955: 1428: 2085:
It sets the exponential law according to which small perturbations of density of superconducting electrons recover their equilibrium value
6314:
models were later used to describe the low energy dynamics of 4-dimensional gauge theories with monopoles as well as brane constructions.
7889: 7600: 7559: 4522:, which may be analyzed in a similar fashion, and which possesses many similar properties, including self-duality. When such systems are 2956: 2015: 1928: 7952: 6598: 2823: 1903:
The Ginzburg–Landau equations predicted two new characteristic lengths in a superconductor. The first characteristic length was termed
6425: 5651: 2240:{\displaystyle \lambda ={\sqrt {\frac {m^{*}}{\mu _{0}e^{*2}\psi _{0}^{2}}}}={\sqrt {\frac {m^{*}\beta }{\mu _{0}e^{*2}|\alpha |}}},} 7338: 4663: 1603: 5580: 4903: 2371:, superconductivity is destroyed. The mixed state is actually caused by vortices in the electronic superfluid, sometimes called 7363: 1492:. This corresponds to the normal conducting state, that is for temperatures above the superconducting transition temperature, 7698: 7467: 6659: 6541: 6405: 888: 8311: 8049: 7927: 7590: 7278: 800: 7328: 5903: 4597: 1510:
Below the superconducting transition temperature, the above equation is expected to have a non-trivial solution (that is
8159: 7446: 4299: 164: 8247: 7858: 6631: 4956: 84: 4239: 2092:. Thus this theory characterized all superconductors by two length scales. The second one is the penetration depth, 7968: 7788: 7595: 7538: 7358: 7248: 4660:
of one-forms over a Riemann surface decomposes into a space that is holomorphic, and one that is anti-holomorphic:
3447: 2791: 1904: 7258: 8164: 7882: 7748: 7651: 7631: 7391: 7271: 7254: 5215:{\displaystyle F=-\left(\partial _{A}{\overline {\partial }}_{A}+{\overline {\partial }}_{A}\partial _{A}\right)} 7209:, 1064 (1950). English translation in: L. D. Landau, Collected papers (Oxford: Pergamon Press, 1965) p. 546 6912:
García-Prada, Oscar (1994). "A Direct Existence Proof for the Vortex Equations Over a Compact Riemann Surface".
7947: 7917: 7554: 7313: 7308: 7147: 6995:
Greene, B.R.; Vafa, C.; Warner, N.P. (September 1989). "Calabi-Yau manifolds and renormalization group flows".
3556: 2336:, superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value 8347: 8288: 8140: 8084: 8059: 6960:
Vafa, Cumrun; Warner, Nicholas (February 1989). "Catastrophes and the classification of conformal theories".
6533: 6329: 2922: 2916: 1675: 4587:, the functional can be re-written so as to explicitly show self-duality. One achieves this by writing the 8190: 8119: 7827: 7703: 7353: 6382: 5749: 2395: 38: 8135: 8054: 7822: 7616: 6208: 4055: 3499: 3389: 4375: 4263: 928: 8342: 8242: 8237: 7875: 6339: 6294: 4845: 4434: 6557:
David J. E. Callaway (1990). "On the remarkable structure of the superconducting intermediate state".
2759: 2472: 8195: 7942: 7564: 6266: 5228: 4781: 4519: 2543: 1885:
In Ginzburg–Landau theory the electrons that contribute to superconductivity were proposed to form a
1421:
Consider a homogeneous superconductor where there is no superconducting current and the equation for
880: 387: 124: 6594: 2746:{\displaystyle {\mathcal {L}}(\psi ,A)=\int _{M}{\sqrt {|g|}}dx^{1}\wedge \dotsm \wedge dx^{m}\left} 240: 7978: 7800: 6623: 6483: 4812: 4728: 4268: 3265: 1378: 5307: 5103: 1017: 860: 8321: 8180: 8112: 8029: 7672: 7528: 7497: 7472: 7411: 6302: 4636: 2786: 1513: 1769:, the right hand side of the equation above is positive and there is a non-trivial solution for 1390: 675: 8232: 8205: 8185: 8107: 7839: 7763: 7758: 7693: 7621: 7523: 7426: 7416: 7401: 7318: 7227: 6344: 4564: 3922: 2519: 2344: 2293: 704: 391: 3895: 326: 286: 8102: 7812: 7807: 7646: 7641: 7574: 7477: 7441: 7431: 7386: 7244: 5999: 5795: 5705: 4427:
vanishes, including multiplicity. The proof generalizes to arbitrary Riemann surfaces and to
4048: 3237: 2912: 2874: 2412: 2333: 2278: 733: 355: 69: 6615: 4463: 3271: 2894: 753: 8306: 8262: 7753: 7487: 7323: 7294: 7166: 7049: 7004: 6969: 6870: 6774: 6719: 6568: 6495: 6254: 4410: 4214: 3297: 3136: 2501: 1396: 997: 808: 775: 646: 130: 96: 68:. In its initial form, it was postulated as a phenomenological model which could describe 2391:, are Type I, while almost all impure and compound superconductors are Type II. 2277:
is presently known as the Ginzburg–Landau parameter. It has been proposed by Landau that
72:
without examining their microscopic properties. One GL-type superconductor is the famous
8: 8352: 7817: 7783: 7718: 7636: 7626: 7421: 6616: 5077: 4588: 4457: 4341: 4135:{\displaystyle D^{*}D\psi ={\frac {1}{2}}\left(\sigma -\vert \psi \vert ^{2}\right)\psi } 3294:, and is normalized differently. In physics, one conventionally writes the connection as 3083: 2419: 2357:
leads to a mixed state (also known as the vortex state) in which an increasing amount of
1393:, but is principally different due to a nonlinear term — determines the order parameter, 95:, where in many cases exact solutions can be given. This general setting then extends to 92: 7170: 7053: 7008: 6973: 6946:
M.C. Hong, J, Jost, M Struwe, "Asymptotic limits of a Ginzberg-Landau type functional",
6874: 6778: 6723: 6572: 6499: 4486: 835: 8293: 8044: 8004: 7451: 7182: 7156: 7116: 7096: 7065: 7039: 6894: 6798: 6743: 5775: 5725: 5280: 4761: 4592: 4541: 4369: 4317: 4245: 3538: 3479: 3369: 3349: 3329: 3243: 3216: 3196: 3172: 3113: 3063: 3043: 2525: 2452: 2432: 2423: 2400: 1594:
When the right hand side of this equation is positive, there is a nonzero solution for
1356: 977: 154:
of a superconductor near the superconducting transition can be expressed in terms of a
4428: 8069: 7898: 7502: 7186: 7120: 7061: 7016: 6981: 6929: 6898: 6886: 6839: 6790: 6747: 6735: 6688: 6655: 6627: 6580: 6559: 6537: 6464: 6401: 4523: 3946: 3564: 3166: 65: 7069: 6802: 103:, again owing to its solvability, and its close relation to other, similar systems. 8278: 8252: 8024: 7999: 7932: 7773: 7174: 7106: 7057: 7012: 6977: 6921: 6878: 6829: 6782: 6727: 6680: 6576: 6503: 6456: 6393: 6262: 6250: 3261: 3190: 2380: 2316: 116: 6194:{\displaystyle 4\pi \operatorname {deg} L\leq \sigma \operatorname {Area} \Sigma } 5890:{\displaystyle \operatorname {deg} L=c_{1}(L)={\frac {1}{2\pi }}\int _{\Sigma }iF} 8301: 8034: 7795: 7533: 7482: 6858: 6762: 6707: 6397: 4559: 4335: 3234: 2388: 158: 120: 57: 7178: 7111: 7084: 6484:"First-Order Phase Transitions in Superconductors and Smectic-A Liquid Crystals" 730:
are phenomenological parameters that are functions of T (and often written just
8039: 7983: 7973: 7937: 7738: 7713: 7492: 7142: 7134: 7030:
Witten, Edward (16 August 1993). "Phases of N = 2 theories in two dimensions".
6507: 6350: 6286: 4527: 4515: 3560: 3440:
corresponding to the symmetry group of the fiber. Here, the symmetry group is
2329: 155: 88: 6684: 6647: 6611: 4314:, it is conventional to study the Ginzburg–Landau functional for the manifold 8336: 7834: 7768: 7743: 7343: 6933: 6890: 6843: 6834: 6817: 6794: 6739: 6692: 6334: 6310: 6274: 4311: 3568: 2416: 2411:
The Ginzburg–Landau functional can be formulated in the general setting of a
2358: 2097: 1895:| indicates the fraction of electrons that have condensed into a superfluid. 1389:. The first equation — which bears some similarities to the time-independent 320: 100: 31: 6818:"Special metrics and stability for holomorphic bundles with global sections" 8074: 8064: 8019: 8014: 7778: 7688: 7406: 7348: 7333: 7138: 6925: 6708:"Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations" 6468: 6460: 6355: 6324: 6290: 6258: 5064:{\displaystyle {\overline {\partial }}_{A}={\overline {\partial }}+A^{0,1}} 1881:
from below. Such a behavior is typical for a second order phase transition.
6675:
Hitchin, N. J. (1987). "The Self-Duality Equations on a Riemann Surface".
8200: 8009: 7436: 7263: 6298: 6278: 5990: 5572: 5123: 4365: 3437: 2948: 1374: 6948:
Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt
7912: 7044: 6882: 6786: 6731: 5743: 4201:{\displaystyle D^{*}F=-\operatorname {Re} \langle D\psi ,\psi \rangle } 1886: 112: 61: 7085:"The Witten equation, mirror symmetry, and quantum singularity theory" 4037:{\displaystyle {\mathcal {L}}(A)=YM(A)=\int _{M}*(1)\vert F\vert ^{2}} 2100:. Expressed in terms of the parameters of Ginzburg–Landau model it is 7569: 7867: 6289:
possess a degenerate critical point. The same month, together with
1855:{\displaystyle |\psi |^{2}=-{\frac {\alpha _{0}(T-T_{c})}{\beta }},} 1536:). Under this assumption the equation above can be rearranged into: 8227: 7667: 6763:"Vortices in holomorphic line bundles over closed Kähler manifolds" 5334:
so derivatives are purely imaginary). The functional then becomes
3433: 3030:{\displaystyle *(1)={\sqrt {|g|}}dx^{1}\wedge \dotsm \wedge dx^{m}} 2394:
The most important finding from Ginzburg–Landau theory was made by
2075:{\displaystyle \xi ={\sqrt {\frac {\hbar ^{2}}{4m^{*}|\alpha |}}}.} 2009:(superconducting phase), where it is more relevant, it is given by 1988:{\displaystyle \xi ={\sqrt {\frac {\hbar ^{2}}{2m^{*}|\alpha |}}}.} 383: 7226:
1174 (1957)].) Abrikosov's original paper on vortex structure of
7161: 7101: 2911:
have been absorbed so that the potential energy term is a quartic
4058:
for the Ginzburg–Landau functional are the Yang–Mills equations
2864:{\displaystyle \vert \psi \vert ^{2}=\langle \psi ,\psi \rangle } 2384: 2376: 1413:. The second equation then provides the superconducting current. 83:
Later, a version of Ginzburg–Landau theory was derived from the
77: 45: 6527: 5692:{\displaystyle \operatorname {Area} \Sigma =\int _{\Sigma }*(1)} 2372: 2096:. It was previously introduced by the London brothers in their 283:
is a measure of the local density of superconducting electrons
6285:
in November 1988; in this generalization one imposes that the
8283: 8257: 4718:{\displaystyle \Omega ^{1}=\Omega ^{1,0}\oplus \Omega ^{0,1}} 3441: 1665:{\displaystyle \alpha :\alpha (T)=\alpha _{0}(T-T_{\rm {c}})} 5634:{\displaystyle *(1)={\frac {i}{2}}dz\wedge d{\overline {z}}} 3366:; in Riemannian geometry, it is more convenient to drop the 8316: 6269:
is called a Landau–Ginzburg theory. The generalization to
5301: 4946:{\displaystyle D=\partial _{A}+{\overline {\partial }}_{A}} 73: 7083:
Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin (1 July 2013).
1898: 6869:(3). Springer Science and Business Media LLC: 527–546. 6718:(3). Springer Science and Business Media LLC: 277–292. 5225:
Note that in the sign-convention being used here, both
4407:, where one can specify any finite set of points where 1585:{\displaystyle |\psi |^{2}=-{\frac {\alpha }{\beta }}.} 914:{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} } 7230:
derived as a solution of G–L equations for κ > 1/√2
6390:
Springer Handbook of Electronic and Photonic Materials
4431:. In the limit of weak coupling, it can be shown that 1476:{\displaystyle \alpha \psi +\beta |\psi |^{2}\psi =0.} 6654:(Fifth ed.). Springer-Verlag. pp. 521–522. 6211: 6160: 6031: 6002: 5906: 5821: 5798: 5778: 5752: 5728: 5708: 5654: 5583: 5343: 5310: 5283: 5231: 5135: 5106: 5080: 5011: 4959: 4906: 4848: 4815: 4784: 4764: 4731: 4666: 4639: 4600: 4567: 4544: 4489: 4466: 4437: 4413: 4378: 4344: 4320: 4271: 4248: 4217: 4154: 4067: 3958: 3925: 3898: 3580: 3541: 3502: 3482: 3450: 3392: 3372: 3352: 3332: 3300: 3274: 3246: 3219: 3199: 3175: 3139: 3116: 3086: 3066: 3046: 2959: 2925: 2897: 2877: 2826: 2794: 2762: 2555: 2528: 2504: 2475: 2455: 2435: 2109: 2018: 1931: 1781: 1678: 1606: 1542: 1516: 1431: 1399: 1359: 1188: 1047: 1020: 1000: 980: 931: 891: 863: 838: 811: 778: 756: 736: 707: 678: 649: 402: 358: 329: 289: 243: 167: 133: 64:, is a mathematical physical theory used to describe 6773:(1). Springer Science and Business Media LLC: 1–17. 6556: 6482:
Halperin, B; Lubensky, T; Ma, S (11 February 1974).
6433:. IBM Thomas J. Watson Research Center. p. 970. 4842:. This allows the vector potential to be written as 4518:, then one may write a very similar functional, the 4514:
When the manifold is four-dimensional, possessing a
4511:
singular points and a covariantly constant section.
2323: 7133: 5982:{\displaystyle c_{1}(L)=c_{1}(L)\in H^{2}(\Sigma )} 4626:{\displaystyle d=\partial +{\overline {\partial }}} 6481: 6233: 6193: 6140: 6014: 5981: 5889: 5804: 5784: 5764: 5734: 5714: 5691: 5633: 5560: 5326: 5289: 5269: 5214: 5114: 5092: 5063: 4997: 4945: 4892: 4834: 4797: 4770: 4750: 4717: 4652: 4625: 4579: 4550: 4498: 4475: 4449: 4419: 4399: 4356: 4326: 4290: 4254: 4230: 4200: 4134: 4036: 3937: 3911: 3881: 3547: 3524: 3488: 3468: 3424: 3378: 3358: 3338: 3318: 3286: 3252: 3225: 3205: 3181: 3157: 3122: 3102: 3072: 3052: 3029: 2939: 2903: 2883: 2863: 2812: 2777: 2745: 2534: 2510: 2490: 2461: 2441: 2347:, raising the applied field past a critical value 2239: 2074: 1987: 1854: 1756:Below the superconducting transition temperature, 1717:Above the superconducting transition temperature, 1705: 1664: 1584: 1528: 1475: 1405: 1365: 1343: 1173: 1028: 1006: 994:with respect to variations in the order parameter 986: 966: 913: 871: 847: 824: 791: 762: 742: 722: 693: 662: 630: 374: 344: 311: 275: 229: 146: 6595:The magnetic properties of superconducting alloys 6293:they argued that these theories are related by a 5126:, the field strength can similarly be written as 2756:The notation used here is as follows. The fibers 115:'s previously established theory of second-order 8334: 6994: 3945:skew-symmetric matrix. (See the article on the 230:{\displaystyle \psi (r)=|\psi (r)|e^{i\phi (r)}} 6950:(1996) International press (Boston) pp. 99-123. 4998:{\displaystyle \partial _{A}=\partial +A^{1,0}} 670:is the free energy density of the normal phase, 6677:Proceedings of the London Mathematical Society 6536:. Vol. 8. Oxford: Butterworth-Heinemann. 6442: 6440: 5996:The Lagrangian is minimized (stationary) when 4298:. Note that these are closely related to the 2375:because the flux carried by these vortices is 7883: 7279: 7082: 6828:(1). International Press of Boston: 169–213. 3469:{\displaystyle \langle \cdot ,\cdot \rangle } 2820:so that the square of the norm is written as 2813:{\displaystyle \langle \cdot ,\cdot \rangle } 6911: 6856: 6622:(Third ed.). Springer-Verlag. pp.  6309: = 2 theories in two-dimensions", 6120: 6113: 5533: 5526: 5468: 5444: 4444: 4438: 4195: 4180: 4115: 4108: 4025: 4018: 3463: 3451: 2858: 2846: 2834: 2827: 2807: 2795: 2718: 2711: 2677: 2667: 2655: 2648: 6914:Bulletin of the London Mathematical Society 6528:Lev D. Landau; Evgeny M. Lifschitz (1984). 6446: 6437: 6427:Pairing symmetry in cuprate superconductors 4372:persists in these general cases, including 2542:. The Ginzburg–Landau functional is then a 7890: 7876: 7293: 7286: 7272: 7145:(2013), "Surface Defects and Resolvents", 6959: 6652:Riemannian Geometry and Geometric Analysis 6650:(2008). "The Ginzburg–Landau Functional". 6618:Riemannian Geometry and Geometric Analysis 6614:(2002). "The Ginzburg–Landau Functional". 6599:Journal of Physics and Chemistry of Solids 6277:in 2 spacetime dimensions was proposed by 5571:The integral is understood to be over the 1229: 1228: 1224: 1223: 7160: 7110: 7100: 7043: 6833: 5108: 4387: 3193:(this is not the same as the free energy 2933: 2765: 2478: 6423: 3386:(and all other physical units) and take 2406: 1416: 855:, where e is the charge of an electron), 6815: 6760: 6674: 3496:is a form taking values in the algebra 2940:{\displaystyle \sigma \in \mathbb {R} } 1706:{\displaystyle \alpha _{0}/\beta >0} 1485:This equation has a trivial solution: 14: 8335: 7364:Two-dimensional conformal field theory 7029: 6863:Communications in Mathematical Physics 6767:Communications in Mathematical Physics 6712:Communications in Mathematical Physics 6705: 6380: 2947:. The integral is explicitly over the 1899:Coherence length and penetration depth 7897: 7871: 7267: 7243:A.A. Abrikosov's 2003 Nobel lecture: 5765:{\displaystyle \operatorname {deg} L} 7253:V.L. Ginzburg's 2003 Nobel Lecture: 7219:, 1442 (1957) (English translation: 6859:"Invariant connections and vortices" 6646: 6610: 6419: 6417: 6392:. Springer Handbooks. p. 1233. 6361:Bogomol'nyi–Prasad–Sommerfield bound 6022:solve the Ginzberg–Landau equations 2919:, with a minimum at some real value 1753:solves the Ginzburg–Landau equation. 6530:Electrodynamics of Continuous Media 6244: 6234:{\displaystyle |\psi |\leq \sigma } 4305: 3559:to the non-Abelian setting, as the 3525:{\displaystyle {\mathfrak {su}}(n)} 3508: 3505: 3444:, as that leaves the inner product 3425:{\displaystyle A=A_{\mu }dx^{\mu }} 2261:The original idea on the parameter 37:For the nonlinear instability, see 24: 6383:"High-Temperature Superconductors" 6188: 6039: 5973: 5951: 5876: 5799: 5709: 5672: 5661: 5450: 5399: 5346: 5198: 5183: 5163: 5151: 5034: 5015: 4973: 4961: 4929: 4914: 4817: 4733: 4700: 4681: 4668: 4641: 4615: 4607: 4574: 4400:{\displaystyle M=\mathbb {R} ^{2}} 4051:on a compact Riemannian manifold. 3961: 3793: 3778: 3756: 3741: 3647: 3632: 3571:. It is conventionally written as 2871:. The phenomenological parameters 2785:are assumed to be equipped with a 2558: 1653: 1297: 1189: 1123: 967:{\displaystyle F=\int f_{s}d^{3}r} 925:The total free energy is given by 900: 551: 394:and exhibits U(1) gauge symmetry: 319:analogous to a quantum mechanical 25: 8364: 7859:Template:Quantum mechanics topics 6414: 5702:is the total area of the surface 4893:{\displaystyle A=A^{1,0}+A^{0,1}} 4450:{\displaystyle \vert \psi \vert } 2324:Classification of superconductors 1294: 1120: 548: 7854: 7853: 6822:Journal of Differential Geometry 6305:. In his 1993 paper "Phases of 2778:{\displaystyle \mathbb {C} ^{n}} 2491:{\displaystyle \mathbb {C} ^{n}} 1321: 1231: 1219: 1196: 1147: 1022: 907: 893: 865: 832:is an effective charge (usually 605: 575: 7202:V.L. Ginzburg and L.D. Landau, 7127: 7076: 7023: 6988: 6953: 6940: 6905: 6850: 6809: 6754: 6706:Taubes, Clifford Henry (1980). 6699: 6668: 5270:{\displaystyle A^{1,0},A^{0,1}} 4798:{\displaystyle {\overline {z}}} 4533: 2310: 1922:(normal phase), it is given by 106: 7148:Journal of High Energy Physics 6640: 6604: 6587: 6550: 6521: 6475: 6374: 6221: 6213: 6082: 6073: 5976: 5970: 5954: 5948: 5945: 5939: 5923: 5917: 5850: 5844: 5686: 5680: 5593: 5587: 5517: 5501: 5489: 4015: 4009: 3990: 3984: 3972: 3966: 3838: 3812: 3557:electromagnetic field strength 3519: 3513: 3096: 3088: 2986: 2978: 2969: 2963: 2602: 2594: 2575: 2563: 2226: 2218: 2061: 2053: 1974: 1966: 1840: 1821: 1792: 1783: 1659: 1638: 1622: 1616: 1553: 1544: 1454: 1445: 1070: 1061: 717: 711: 688: 682: 496: 487: 483: 477: 451: 442: 438: 432: 368: 360: 339: 333: 306: 300: 276:{\displaystyle |\psi (r)|^{2}} 263: 258: 252: 245: 222: 216: 201: 197: 191: 184: 177: 171: 13: 1: 6534:Course of Theoretical Physics 6424:Tsuei, C. C.; Kirtley, J. R. 6367: 4835:{\displaystyle \Omega ^{0,1}} 4751:{\displaystyle \Omega ^{1,0}} 4291:{\displaystyle \delta =d^{*}} 2917:spontaneous symmetry breaking 2265:belongs to Landau. The ratio 7062:10.1016/0550-3213(93)90033-L 7017:10.1016/0550-3213(89)90471-9 6982:10.1016/0370-2693(89)90473-5 6857:García-Prada, Oscar (1993). 6581:10.1016/0550-3213(90)90672-Z 6398:10.1007/978-3-319-48933-9_50 6042: 5626: 5453: 5431: 5327:{\displaystyle e^{i\theta }} 5186: 5166: 5115:{\displaystyle \mathbb {C} } 5037: 5018: 4932: 4790: 4618: 2429:For a complex vector bundle 1029:{\displaystyle \mathbf {A} } 872:{\displaystyle \mathbf {A} } 7: 7823:Quantum information science 7112:10.4007/annals.2013.178.1.1 6816:Bradlow, Steven B. (1991). 6761:Bradlow, Steven B. (1990). 6317: 4653:{\displaystyle \Omega ^{1}} 2449:over a Riemannian manifold 1889:. In this interpretation, | 1529:{\displaystyle \psi \neq 0} 123:and Landau argued that the 10: 8369: 8220:Technological applications 6508:10.1103/PhysRevLett.32.292 6295:renormalization group flow 4778:and have no dependence on 4300:Yang–Mills–Higgs equations 694:{\displaystyle \alpha (T)} 390:density has the form of a 36: 29: 8271: 8218: 8173: 8149: 8128: 8092: 8083: 7992: 7962:Characteristic parameters 7961: 7905: 7848: 7731: 7681: 7660: 7609: 7583: 7547: 7511: 7460: 7379: 7372: 7301: 7196: 6593:Abrikosov, A. A. (1957). 6330:Gross–Pitaevskii equation 6267:degenerate critical point 5746:, as before. The degree 4580:{\displaystyle M=\Sigma } 4520:Seiberg–Witten functional 3938:{\displaystyle n\times n} 1038:Ginzburg–Landau equations 1014:and the vector potential 881:magnetic vector potential 723:{\displaystyle \beta (T)} 85:Bardeen–Cooper–Schrieffer 18:Ginzburg–Landau parameter 7979:London penetration depth 6257:with a unique classical 5122:so that the bundle is a 4056:Euler–Lagrange equations 3912:{\displaystyle A_{\mu }} 3326:for the electric charge 2426:(see discussion below). 2383:superconductors, except 1379:electric current density 345:{\displaystyle \psi (r)} 312:{\displaystyle n_{s}(r)} 39:Ginzburg–Landau equation 30:Not to be confused with 27:Superconductivity theory 8272:List of superconductors 8150:By critical temperature 7519:2D free massless scalar 7412:Quantum electrodynamics 7339:QFT in curved spacetime 7228:Type-II superconductors 7179:10.1007/JHEP09(2013)070 6685:10.1112/plms/s3-55.1.59 6488:Physical Review Letters 6381:Wesche, Rainer (2017). 6275:supersymmetric theories 6015:{\displaystyle \psi ,A} 5805:{\displaystyle \Sigma } 5715:{\displaystyle \Sigma } 2884:{\displaystyle \alpha } 2787:Hermitian inner product 2345:Type II superconductors 2294:Type II superconductors 743:{\displaystyle \alpha } 375:{\displaystyle |\psi |} 7840:Quantum thermodynamics 7764:On shell and off shell 7759:Loop quantum cosmology 7601:N = 4 super Yang–Mills 7560:N = 1 super Yang–Mills 7427:Scalar electrodynamics 7417:Quantum chromodynamics 7319:Conformal field theory 7295:Quantum field theories 6835:10.4310/jdg/1214446034 6461:10.1002/cphc.200400182 6340:Stuart–Landau equation 6235: 6195: 6142: 6016: 5983: 5891: 5806: 5786: 5766: 5736: 5716: 5693: 5635: 5562: 5328: 5297:are purely imaginary ( 5291: 5271: 5216: 5116: 5094: 5065: 4999: 4947: 4894: 4836: 4799: 4772: 4752: 4719: 4654: 4633:. Likewise, the space 4627: 4581: 4552: 4526:, they are studied as 4500: 4477: 4476:{\displaystyle D\psi } 4451: 4421: 4401: 4358: 4328: 4292: 4256: 4232: 4202: 4136: 4038: 3939: 3913: 3883: 3549: 3526: 3490: 3470: 3426: 3380: 3360: 3340: 3320: 3288: 3287:{\displaystyle n>1} 3254: 3227: 3207: 3183: 3159: 3124: 3104: 3074: 3060:-dimensional manifold 3054: 3031: 2941: 2905: 2904:{\displaystyle \beta } 2885: 2865: 2814: 2779: 2747: 2536: 2512: 2498:, the order parameter 2492: 2463: 2443: 2334:Type I superconductors 2281:are those with 0 < 2279:Type I superconductors 2241: 2076: 1989: 1856: 1707: 1666: 1586: 1530: 1477: 1407: 1367: 1345: 1175: 1030: 1008: 988: 968: 921:is the magnetic field. 915: 873: 849: 826: 793: 764: 763:{\displaystyle \beta } 744: 724: 695: 664: 632: 376: 346: 313: 277: 231: 148: 87:microscopic theory by 70:type-I superconductors 54:Landau–Ginzburg theory 50:Ginzburg–Landau theory 7918:Bean's critical state 7813:Quantum hydrodynamics 7808:Quantum hadrodynamics 7432:Scalar chromodynamics 7089:Annals of Mathematics 6679:. s3-55 (1): 59–126. 6236: 6196: 6143: 6017: 5984: 5892: 5807: 5787: 5767: 5737: 5717: 5694: 5636: 5563: 5329: 5292: 5272: 5217: 5117: 5100:, where the fiber is 5095: 5066: 5000: 4948: 4895: 4837: 4800: 4773: 4753: 4720: 4655: 4628: 4582: 4553: 4501: 4478: 4452: 4422: 4420:{\displaystyle \psi } 4402: 4359: 4329: 4293: 4257: 4233: 4231:{\displaystyle D^{*}} 4203: 4137: 4039: 3940: 3914: 3884: 3550: 3527: 3491: 3471: 3436:taking values in the 3427: 3381: 3361: 3346:and vector potential 3341: 3321: 3319:{\displaystyle d-ieA} 3289: 3255: 3238:field strength tensor 3228: 3208: 3189:is the corresponding 3184: 3160: 3158:{\displaystyle D=d+A} 3125: 3110:of the metric tensor 3105: 3075: 3055: 3032: 2942: 2913:mexican hat potential 2906: 2886: 2866: 2815: 2780: 2748: 2537: 2522:of the vector bundle 2513: 2511:{\displaystyle \psi } 2493: 2464: 2444: 2413:complex vector bundle 2407:Geometric formulation 2242: 2077: 1990: 1857: 1708: 1667: 1587: 1531: 1478: 1417:Simple interpretation 1408: 1406:{\displaystyle \psi } 1368: 1346: 1176: 1036:, one arrives at the 1031: 1009: 1007:{\displaystyle \psi } 989: 969: 916: 874: 850: 827: 825:{\displaystyle e^{*}} 794: 792:{\displaystyle m^{*}} 765: 745: 725: 696: 665: 663:{\displaystyle f_{n}} 633: 382:and smallness of its 377: 347: 314: 278: 237:, where the quantity 232: 149: 147:{\displaystyle f_{s}} 8348:Quantum field theory 8093:By magnetic response 7784:Quantum fluctuations 7754:Loop quantum gravity 7324:Lattice field theory 7214:Zh. Eksp. Teor. Fiz. 7204:Zh. Eksp. Teor. Fiz. 6926:10.1112/blms/26.1.88 6303:Calabi–Yau manifolds 6255:quantum field theory 6209: 6158: 6029: 6000: 5904: 5819: 5796: 5776: 5750: 5726: 5706: 5652: 5581: 5341: 5308: 5281: 5229: 5133: 5104: 5078: 5009: 4957: 4904: 4846: 4813: 4782: 4762: 4729: 4664: 4637: 4598: 4565: 4542: 4487: 4464: 4435: 4411: 4376: 4368:. The phenomenon of 4342: 4318: 4269: 4246: 4215: 4152: 4065: 3956: 3923: 3896: 3578: 3539: 3500: 3480: 3476:invariant; so here, 3448: 3390: 3370: 3350: 3330: 3298: 3272: 3264:, but is in general 3244: 3217: 3213:given up top; here, 3197: 3173: 3137: 3114: 3084: 3064: 3044: 2957: 2923: 2895: 2875: 2824: 2792: 2760: 2553: 2526: 2502: 2473: 2453: 2433: 2107: 2016: 1929: 1779: 1676: 1604: 1540: 1514: 1429: 1397: 1391:Schrödinger equation 1357: 1186: 1045: 1018: 998: 978: 929: 889: 861: 836: 809: 776: 754: 734: 705: 676: 647: 400: 356: 327: 287: 241: 165: 131: 97:quantum field theory 76:, and generally all 8045:persistent currents 8030:Little–Parks effect 7818:Quantum information 7422:Quartic interaction 7171:2013JHEP...09..070G 7054:1993NuPhB.403..159W 7009:1989NuPhB.324..371G 6974:1989PhLB..218...51V 6920:(1). Wiley: 88–96. 6875:1993CMaPh.156..527G 6779:1990CMaPh.135....1B 6724:1980CMaPh..72..277T 6573:1990NuPhB.344..627C 6500:1974PhRvL..32..292H 6273: = (2,2) 5772:of the line bundle 5093:{\displaystyle n=1} 4758:are holomorphic in 4725:, so that forms in 4593:Dolbeault operators 4589:exterior derivative 4458:converges uniformly 4357:{\displaystyle n=1} 4262:, analogous to the 3260:corresponds to the 3233:corresponds to the 3167:connection one-form 3103:{\displaystyle |g|} 2915:; i.e., exhibiting 2518:is understood as a 2420:Riemannian manifold 2167: 1868:approaches zero as 93:Riemannian geometry 8005:Andreev reflection 8000:Abrikosov vortices 7704:Nambu–Jona-Lasinio 7632:Higher dimensional 7539:Wess–Zumino–Witten 7329:Noncommutative QFT 6883:10.1007/bf02096862 6787:10.1007/bf02097654 6732:10.1007/bf01197552 6345:Reaction–diffusion 6231: 6191: 6138: 6136: 6012: 5979: 5887: 5802: 5782: 5762: 5732: 5712: 5689: 5631: 5558: 5324: 5287: 5267: 5212: 5112: 5090: 5061: 4995: 4943: 4890: 4832: 4795: 4768: 4748: 4715: 4650: 4623: 4577: 4548: 4538:When the manifold 4499:{\displaystyle dA} 4496: 4473: 4447: 4417: 4397: 4370:Abrikosov vortices 4354: 4324: 4288: 4252: 4228: 4198: 4132: 4047:which is just the 4034: 3935: 3909: 3879: 3877: 3545: 3522: 3486: 3466: 3422: 3376: 3356: 3336: 3316: 3284: 3250: 3223: 3203: 3179: 3155: 3120: 3100: 3070: 3050: 3027: 2937: 2901: 2881: 2861: 2810: 2775: 2743: 2546:for that section: 2532: 2508: 2488: 2459: 2439: 2424:Abrikosov vortices 2237: 2153: 2072: 1985: 1852: 1703: 1662: 1582: 1526: 1473: 1403: 1363: 1341: 1171: 1026: 1004: 984: 964: 911: 869: 848:{\displaystyle 2e} 845: 822: 789: 760: 740: 720: 691: 660: 628: 372: 342: 309: 273: 227: 144: 8343:Superconductivity 8330: 8329: 8248:quantum computing 8214: 8213: 8070:superdiamagnetism 7899:Superconductivity 7865: 7864: 7727: 7726: 7032:Nuclear Physics B 6997:Nuclear Physics B 6962:Physics Letters B 6661:978-3-540-77340-5 6560:Nuclear Physics B 6543:978-0-7506-2634-7 6407:978-3-319-48931-5 6100: 6045: 5869: 5792:over the surface 5785:{\displaystyle L} 5735:{\displaystyle *} 5629: 5607: 5515: 5456: 5434: 5412: 5290:{\displaystyle F} 5189: 5169: 5040: 5021: 4935: 4793: 4771:{\displaystyle z} 4621: 4551:{\displaystyle M} 4327:{\displaystyle M} 4255:{\displaystyle D} 4095: 4049:Yang–Mills action 3947:metric connection 3807: 3770: 3731: 3661: 3565:affine connection 3548:{\displaystyle F} 3489:{\displaystyle A} 3379:{\displaystyle e} 3359:{\displaystyle A} 3339:{\displaystyle e} 3253:{\displaystyle A} 3226:{\displaystyle F} 3206:{\displaystyle F} 3182:{\displaystyle F} 3123:{\displaystyle g} 3080:with determinant 3073:{\displaystyle M} 3053:{\displaystyle m} 2990: 2697: 2606: 2535:{\displaystyle E} 2462:{\displaystyle M} 2442:{\displaystyle E} 2232: 2231: 2170: 2169: 2067: 2066: 1980: 1979: 1847: 1730:, the expression 1577: 1366:{\displaystyle J} 1318: 1260: 1216: 1144: 1106: 987:{\displaystyle F} 623: 572: 529: 472: 117:phase transitions 66:superconductivity 16:(Redirected from 8360: 8279:bilayer graphene 8253:Rutherford cable 8165:room temperature 8160:high temperature 8090: 8089: 8050:proximity effect 8025:Josephson effect 7969:coherence length 7892: 7885: 7878: 7869: 7868: 7857: 7856: 7774:Quantum dynamics 7447:Yang–Mills–Higgs 7402:Non-linear sigma 7392:Euler–Heisenberg 7377: 7376: 7288: 7281: 7274: 7265: 7264: 7212:A.A. Abrikosov, 7190: 7189: 7164: 7131: 7125: 7124: 7114: 7104: 7080: 7074: 7073: 7047: 7027: 7021: 7020: 6992: 6986: 6985: 6957: 6951: 6944: 6938: 6937: 6909: 6903: 6902: 6854: 6848: 6847: 6837: 6813: 6807: 6806: 6758: 6752: 6751: 6703: 6697: 6696: 6672: 6666: 6665: 6644: 6638: 6637: 6621: 6608: 6602: 6601:, 2(3), 199–208. 6591: 6585: 6584: 6554: 6548: 6547: 6525: 6519: 6518: 6516: 6514: 6479: 6473: 6472: 6444: 6435: 6434: 6432: 6421: 6412: 6411: 6387: 6378: 6263:potential energy 6251:particle physics 6245:In string theory 6240: 6238: 6237: 6232: 6224: 6216: 6200: 6198: 6197: 6192: 6147: 6145: 6144: 6139: 6137: 6133: 6129: 6128: 6127: 6101: 6093: 6052: 6051: 6046: 6038: 6021: 6019: 6018: 6013: 5988: 5986: 5985: 5980: 5969: 5968: 5938: 5937: 5916: 5915: 5896: 5894: 5893: 5888: 5880: 5879: 5870: 5868: 5857: 5843: 5842: 5811: 5809: 5808: 5803: 5791: 5789: 5788: 5783: 5771: 5769: 5768: 5763: 5741: 5739: 5738: 5733: 5721: 5719: 5718: 5713: 5698: 5696: 5695: 5690: 5676: 5675: 5640: 5638: 5637: 5632: 5630: 5622: 5608: 5600: 5567: 5565: 5564: 5559: 5557: 5553: 5552: 5551: 5546: 5542: 5541: 5540: 5516: 5508: 5476: 5475: 5463: 5462: 5457: 5449: 5435: 5427: 5413: 5405: 5403: 5402: 5369: 5365: 5350: 5349: 5333: 5331: 5330: 5325: 5323: 5322: 5304:is generated by 5296: 5294: 5293: 5288: 5276: 5274: 5273: 5268: 5266: 5265: 5247: 5246: 5221: 5219: 5218: 5213: 5211: 5207: 5206: 5205: 5196: 5195: 5190: 5182: 5176: 5175: 5170: 5162: 5159: 5158: 5121: 5119: 5118: 5113: 5111: 5099: 5097: 5096: 5091: 5074:For the case of 5070: 5068: 5067: 5062: 5060: 5059: 5041: 5033: 5028: 5027: 5022: 5014: 5004: 5002: 5001: 4996: 4994: 4993: 4969: 4968: 4952: 4950: 4949: 4944: 4942: 4941: 4936: 4928: 4922: 4921: 4899: 4897: 4896: 4891: 4889: 4888: 4870: 4869: 4841: 4839: 4838: 4833: 4831: 4830: 4804: 4802: 4801: 4796: 4794: 4786: 4777: 4775: 4774: 4769: 4757: 4755: 4754: 4749: 4747: 4746: 4724: 4722: 4721: 4716: 4714: 4713: 4695: 4694: 4676: 4675: 4659: 4657: 4656: 4651: 4649: 4648: 4632: 4630: 4629: 4624: 4622: 4614: 4586: 4584: 4583: 4578: 4557: 4555: 4554: 4549: 4505: 4503: 4502: 4497: 4482: 4480: 4479: 4474: 4456: 4454: 4453: 4448: 4429:Kähler manifolds 4426: 4424: 4423: 4418: 4406: 4404: 4403: 4398: 4396: 4395: 4390: 4363: 4361: 4360: 4355: 4333: 4331: 4330: 4325: 4306:Specific results 4297: 4295: 4294: 4289: 4287: 4286: 4261: 4259: 4258: 4253: 4237: 4235: 4234: 4229: 4227: 4226: 4207: 4205: 4204: 4199: 4164: 4163: 4141: 4139: 4138: 4133: 4128: 4124: 4123: 4122: 4096: 4088: 4077: 4076: 4043: 4041: 4040: 4035: 4033: 4032: 4005: 4004: 3965: 3964: 3944: 3942: 3941: 3936: 3918: 3916: 3915: 3910: 3908: 3907: 3888: 3886: 3885: 3880: 3878: 3874: 3873: 3858: 3857: 3845: 3841: 3837: 3836: 3824: 3823: 3808: 3806: 3805: 3804: 3791: 3790: 3789: 3776: 3771: 3769: 3768: 3767: 3754: 3753: 3752: 3739: 3732: 3724: 3719: 3718: 3703: 3702: 3690: 3686: 3685: 3684: 3675: 3674: 3662: 3660: 3659: 3658: 3645: 3644: 3643: 3630: 3555:generalizes the 3554: 3552: 3551: 3546: 3531: 3529: 3528: 3523: 3512: 3511: 3495: 3493: 3492: 3487: 3475: 3473: 3472: 3467: 3431: 3429: 3428: 3423: 3421: 3420: 3408: 3407: 3385: 3383: 3382: 3377: 3365: 3363: 3362: 3357: 3345: 3343: 3342: 3337: 3325: 3323: 3322: 3317: 3293: 3291: 3290: 3285: 3262:vector potential 3259: 3257: 3256: 3251: 3232: 3230: 3229: 3224: 3212: 3210: 3209: 3204: 3191:curvature 2-form 3188: 3186: 3185: 3180: 3164: 3162: 3161: 3156: 3129: 3127: 3126: 3121: 3109: 3107: 3106: 3101: 3099: 3091: 3079: 3077: 3076: 3071: 3059: 3057: 3056: 3051: 3036: 3034: 3033: 3028: 3026: 3025: 3004: 3003: 2991: 2989: 2981: 2976: 2946: 2944: 2943: 2938: 2936: 2910: 2908: 2907: 2902: 2890: 2888: 2887: 2882: 2870: 2868: 2867: 2862: 2842: 2841: 2819: 2817: 2816: 2811: 2784: 2782: 2781: 2776: 2774: 2773: 2768: 2752: 2750: 2749: 2744: 2742: 2738: 2737: 2736: 2731: 2727: 2726: 2725: 2698: 2690: 2685: 2684: 2663: 2662: 2642: 2641: 2620: 2619: 2607: 2605: 2597: 2592: 2590: 2589: 2562: 2561: 2541: 2539: 2538: 2533: 2517: 2515: 2514: 2509: 2497: 2495: 2494: 2489: 2487: 2486: 2481: 2468: 2466: 2465: 2460: 2448: 2446: 2445: 2440: 2396:Alexei Abrikosov 2389:carbon nanotubes 2317:phase transition 2306: 2305: 2291: 2290: 2246: 2244: 2243: 2238: 2233: 2230: 2229: 2221: 2216: 2215: 2203: 2202: 2192: 2188: 2187: 2177: 2176: 2171: 2168: 2166: 2161: 2152: 2151: 2139: 2138: 2128: 2127: 2118: 2117: 2081: 2079: 2078: 2073: 2068: 2065: 2064: 2056: 2051: 2050: 2037: 2036: 2027: 2026: 1994: 1992: 1991: 1986: 1981: 1978: 1977: 1969: 1964: 1963: 1950: 1949: 1940: 1939: 1905:coherence length 1894: 1867: 1861: 1859: 1858: 1853: 1848: 1843: 1839: 1838: 1820: 1819: 1809: 1801: 1800: 1795: 1786: 1774: 1752: 1745: 1735: 1712: 1710: 1709: 1704: 1693: 1688: 1687: 1671: 1669: 1668: 1663: 1658: 1657: 1656: 1637: 1636: 1599: 1591: 1589: 1588: 1583: 1578: 1570: 1562: 1561: 1556: 1547: 1535: 1533: 1532: 1527: 1506: 1491: 1482: 1480: 1479: 1474: 1463: 1462: 1457: 1448: 1412: 1410: 1409: 1404: 1372: 1370: 1369: 1364: 1350: 1348: 1347: 1342: 1337: 1333: 1329: 1325: 1324: 1319: 1314: 1313: 1304: 1282: 1281: 1261: 1259: 1258: 1249: 1248: 1239: 1234: 1222: 1217: 1212: 1204: 1199: 1180: 1178: 1177: 1172: 1161: 1160: 1155: 1151: 1150: 1145: 1140: 1139: 1130: 1107: 1105: 1104: 1103: 1087: 1079: 1078: 1073: 1064: 1035: 1033: 1032: 1027: 1025: 1013: 1011: 1010: 1005: 993: 991: 990: 985: 974:. By minimizing 973: 971: 970: 965: 960: 959: 950: 949: 920: 918: 917: 912: 910: 896: 878: 876: 875: 870: 868: 854: 852: 851: 846: 831: 829: 828: 823: 821: 820: 798: 796: 795: 790: 788: 787: 769: 767: 766: 761: 749: 747: 746: 741: 729: 727: 726: 721: 700: 698: 697: 692: 669: 667: 666: 661: 659: 658: 637: 635: 634: 629: 624: 622: 614: 613: 608: 602: 597: 596: 591: 587: 583: 579: 578: 573: 568: 567: 558: 530: 528: 527: 526: 510: 505: 504: 499: 490: 473: 465: 460: 459: 454: 445: 425: 424: 412: 411: 381: 379: 378: 373: 371: 363: 351: 349: 348: 343: 318: 316: 315: 310: 299: 298: 282: 280: 279: 274: 272: 271: 266: 248: 236: 234: 233: 228: 226: 225: 204: 187: 153: 151: 150: 145: 143: 142: 21: 8368: 8367: 8363: 8362: 8361: 8359: 8358: 8357: 8333: 8332: 8331: 8326: 8297: 8267: 8210: 8169: 8156:low temperature 8145: 8124: 8079: 8035:Meissner effect 7988: 7984:Silsbee current 7957: 7923:Ginzburg–Landau 7901: 7896: 7866: 7861: 7844: 7796:Quantum gravity 7723: 7682:Particle theory 7677: 7656: 7605: 7579: 7543: 7507: 7461:Low dimensional 7456: 7397:Ginzburg–Landau 7368: 7359:Topological QFT 7297: 7292: 7235:Sov. Phys. JETP 7221:Sov. Phys. JETP 7199: 7194: 7193: 7143:Seiberg, Nathan 7135:Gaiotto, Davide 7132: 7128: 7081: 7077: 7028: 7024: 6993: 6989: 6958: 6954: 6945: 6941: 6910: 6906: 6855: 6851: 6814: 6810: 6759: 6755: 6704: 6700: 6673: 6669: 6662: 6645: 6641: 6634: 6609: 6605: 6592: 6588: 6555: 6551: 6544: 6526: 6522: 6512: 6510: 6480: 6476: 6445: 6438: 6430: 6422: 6415: 6408: 6385: 6379: 6375: 6370: 6365: 6320: 6283:Nicholas Warner 6247: 6220: 6212: 6210: 6207: 6206: 6159: 6156: 6155: 6135: 6134: 6123: 6119: 6106: 6102: 6092: 6085: 6067: 6066: 6056: 6047: 6037: 6036: 6032: 6030: 6027: 6026: 6001: 5998: 5997: 5964: 5960: 5933: 5929: 5911: 5907: 5905: 5902: 5901: 5875: 5871: 5861: 5856: 5838: 5834: 5820: 5817: 5816: 5797: 5794: 5793: 5777: 5774: 5773: 5751: 5748: 5747: 5727: 5724: 5723: 5707: 5704: 5703: 5671: 5667: 5653: 5650: 5649: 5621: 5599: 5582: 5579: 5578: 5547: 5536: 5532: 5507: 5485: 5481: 5480: 5471: 5467: 5458: 5448: 5447: 5440: 5436: 5426: 5404: 5398: 5394: 5355: 5351: 5345: 5344: 5342: 5339: 5338: 5315: 5311: 5309: 5306: 5305: 5282: 5279: 5278: 5255: 5251: 5236: 5232: 5230: 5227: 5226: 5201: 5197: 5191: 5181: 5180: 5171: 5161: 5160: 5154: 5150: 5149: 5145: 5134: 5131: 5130: 5107: 5105: 5102: 5101: 5079: 5076: 5075: 5049: 5045: 5032: 5023: 5013: 5012: 5010: 5007: 5006: 4983: 4979: 4964: 4960: 4958: 4955: 4954: 4937: 4927: 4926: 4917: 4913: 4905: 4902: 4901: 4878: 4874: 4859: 4855: 4847: 4844: 4843: 4820: 4816: 4814: 4811: 4810: 4785: 4783: 4780: 4779: 4763: 4760: 4759: 4736: 4732: 4730: 4727: 4726: 4703: 4699: 4684: 4680: 4671: 4667: 4665: 4662: 4661: 4644: 4640: 4638: 4635: 4634: 4613: 4599: 4596: 4595: 4566: 4563: 4562: 4560:Riemann surface 4543: 4540: 4539: 4536: 4528:Hitchin systems 4488: 4485: 4484: 4465: 4462: 4461: 4436: 4433: 4432: 4412: 4409: 4408: 4391: 4386: 4385: 4377: 4374: 4373: 4343: 4340: 4339: 4336:Riemann surface 4319: 4316: 4315: 4308: 4282: 4278: 4270: 4267: 4266: 4247: 4244: 4243: 4222: 4218: 4216: 4213: 4212: 4159: 4155: 4153: 4150: 4149: 4118: 4114: 4101: 4097: 4087: 4072: 4068: 4066: 4063: 4062: 4028: 4024: 4000: 3996: 3960: 3959: 3957: 3954: 3953: 3924: 3921: 3920: 3903: 3899: 3897: 3894: 3893: 3876: 3875: 3869: 3865: 3853: 3849: 3832: 3828: 3819: 3815: 3800: 3796: 3792: 3785: 3781: 3777: 3775: 3763: 3759: 3755: 3748: 3744: 3740: 3738: 3737: 3733: 3723: 3714: 3710: 3698: 3694: 3680: 3676: 3670: 3666: 3654: 3650: 3646: 3639: 3635: 3631: 3629: 3628: 3624: 3581: 3579: 3576: 3575: 3540: 3537: 3536: 3504: 3503: 3501: 3498: 3497: 3481: 3478: 3477: 3449: 3446: 3445: 3416: 3412: 3403: 3399: 3391: 3388: 3387: 3371: 3368: 3367: 3351: 3348: 3347: 3331: 3328: 3327: 3299: 3296: 3295: 3273: 3270: 3269: 3245: 3242: 3241: 3235:electromagnetic 3218: 3215: 3214: 3198: 3195: 3194: 3174: 3171: 3170: 3138: 3135: 3134: 3115: 3112: 3111: 3095: 3087: 3085: 3082: 3081: 3065: 3062: 3061: 3045: 3042: 3041: 3021: 3017: 2999: 2995: 2985: 2977: 2975: 2958: 2955: 2954: 2932: 2924: 2921: 2920: 2896: 2893: 2892: 2876: 2873: 2872: 2837: 2833: 2825: 2822: 2821: 2793: 2790: 2789: 2769: 2764: 2763: 2761: 2758: 2757: 2732: 2721: 2717: 2704: 2700: 2699: 2689: 2680: 2676: 2658: 2654: 2647: 2643: 2637: 2633: 2615: 2611: 2601: 2593: 2591: 2585: 2581: 2557: 2556: 2554: 2551: 2550: 2527: 2524: 2523: 2503: 2500: 2499: 2482: 2477: 2476: 2474: 2471: 2470: 2454: 2451: 2450: 2434: 2431: 2430: 2409: 2370: 2356: 2341: 2326: 2313: 2303: 2301: 2288: 2286: 2256: 2225: 2217: 2208: 2204: 2198: 2194: 2193: 2183: 2179: 2178: 2175: 2162: 2157: 2144: 2140: 2134: 2130: 2129: 2123: 2119: 2116: 2108: 2105: 2104: 2091: 2060: 2052: 2046: 2042: 2038: 2032: 2028: 2025: 2017: 2014: 2013: 2007: 1973: 1965: 1959: 1955: 1951: 1945: 1941: 1938: 1930: 1927: 1926: 1920: 1901: 1890: 1880: 1872:gets closer to 1863: 1834: 1830: 1815: 1811: 1810: 1808: 1796: 1791: 1790: 1782: 1780: 1777: 1776: 1775:. Furthermore, 1770: 1768: 1747: 1741: 1731: 1729: 1689: 1683: 1679: 1677: 1674: 1673: 1652: 1651: 1647: 1632: 1628: 1605: 1602: 1601: 1595: 1569: 1557: 1552: 1551: 1543: 1541: 1538: 1537: 1515: 1512: 1511: 1505: 1493: 1486: 1458: 1453: 1452: 1444: 1430: 1427: 1426: 1425:simplifies to: 1419: 1398: 1395: 1394: 1358: 1355: 1354: 1320: 1309: 1305: 1303: 1287: 1283: 1277: 1273: 1272: 1268: 1254: 1250: 1244: 1240: 1238: 1230: 1218: 1205: 1203: 1195: 1187: 1184: 1183: 1156: 1146: 1135: 1131: 1129: 1113: 1109: 1108: 1099: 1095: 1091: 1086: 1074: 1069: 1068: 1060: 1046: 1043: 1042: 1021: 1019: 1016: 1015: 999: 996: 995: 979: 976: 975: 955: 951: 945: 941: 930: 927: 926: 906: 892: 890: 887: 886: 864: 862: 859: 858: 837: 834: 833: 816: 812: 810: 807: 806: 783: 779: 777: 774: 773: 755: 752: 751: 735: 732: 731: 706: 703: 702: 677: 674: 673: 654: 650: 648: 645: 644: 615: 609: 604: 603: 601: 592: 574: 563: 559: 557: 541: 537: 536: 532: 531: 522: 518: 514: 509: 500: 495: 494: 486: 464: 455: 450: 449: 441: 420: 416: 407: 403: 401: 398: 397: 367: 359: 357: 354: 353: 328: 325: 324: 294: 290: 288: 285: 284: 267: 262: 261: 244: 242: 239: 238: 209: 205: 200: 183: 166: 163: 162: 159:order parameter 138: 134: 132: 129: 128: 109: 58:Vitaly Ginzburg 52:, often called 42: 35: 28: 23: 22: 15: 12: 11: 5: 8366: 8356: 8355: 8350: 8345: 8328: 8327: 8325: 8324: 8319: 8314: 8309: 8304: 8299: 8295: 8291: 8286: 8281: 8275: 8273: 8269: 8268: 8266: 8265: 8260: 8255: 8250: 8245: 8240: 8235: 8233:electromagnets 8230: 8224: 8222: 8216: 8215: 8212: 8211: 8209: 8208: 8203: 8198: 8193: 8188: 8183: 8177: 8175: 8174:By composition 8171: 8170: 8168: 8167: 8162: 8157: 8153: 8151: 8147: 8146: 8144: 8143: 8141:unconventional 8138: 8132: 8130: 8129:By explanation 8126: 8125: 8123: 8122: 8117: 8116: 8115: 8110: 8105: 8096: 8094: 8087: 8085:Classification 8081: 8080: 8078: 8077: 8072: 8067: 8062: 8057: 8052: 8047: 8042: 8037: 8032: 8027: 8022: 8017: 8012: 8007: 8002: 7996: 7994: 7990: 7989: 7987: 7986: 7981: 7976: 7974:critical field 7971: 7965: 7963: 7959: 7958: 7956: 7955: 7950: 7945: 7943:Mattis–Bardeen 7940: 7935: 7930: 7928:Kohn–Luttinger 7925: 7920: 7915: 7909: 7907: 7903: 7902: 7895: 7894: 7887: 7880: 7872: 7863: 7862: 7849: 7846: 7845: 7843: 7842: 7837: 7832: 7831: 7830: 7820: 7815: 7810: 7805: 7804: 7803: 7793: 7792: 7791: 7781: 7776: 7771: 7766: 7761: 7756: 7751: 7746: 7741: 7739:Casimir effect 7735: 7733: 7729: 7728: 7725: 7724: 7722: 7721: 7716: 7714:Standard Model 7711: 7706: 7701: 7696: 7691: 7685: 7683: 7679: 7678: 7676: 7675: 7670: 7664: 7662: 7658: 7657: 7655: 7654: 7649: 7644: 7639: 7634: 7629: 7624: 7619: 7613: 7611: 7607: 7606: 7604: 7603: 7598: 7593: 7587: 7585: 7584:Superconformal 7581: 7580: 7578: 7577: 7572: 7567: 7565:Seiberg–Witten 7562: 7557: 7551: 7549: 7548:Supersymmetric 7545: 7544: 7542: 7541: 7536: 7531: 7526: 7521: 7515: 7513: 7509: 7508: 7506: 7505: 7500: 7495: 7490: 7485: 7480: 7475: 7470: 7464: 7462: 7458: 7457: 7455: 7454: 7449: 7444: 7439: 7434: 7429: 7424: 7419: 7414: 7409: 7404: 7399: 7394: 7389: 7383: 7381: 7374: 7370: 7369: 7367: 7366: 7361: 7356: 7351: 7346: 7341: 7336: 7331: 7326: 7321: 7316: 7311: 7305: 7303: 7299: 7298: 7291: 7290: 7283: 7276: 7268: 7262: 7261: 7251: 7241: 7233:L.P. Gor'kov, 7231: 7210: 7198: 7195: 7192: 7191: 7126: 7075: 7045:hep-th/9301042 7038:(1): 159–222. 7022: 7003:(2): 371–390. 6987: 6952: 6939: 6904: 6849: 6808: 6753: 6698: 6667: 6660: 6639: 6632: 6603: 6586: 6567:(3): 627–645. 6549: 6542: 6520: 6494:(6): 292–295. 6474: 6455:(7): 930–945. 6436: 6413: 6406: 6372: 6371: 6369: 6366: 6364: 6363: 6358: 6353: 6351:Quantum vortex 6348: 6342: 6337: 6332: 6327: 6321: 6319: 6316: 6287:superpotential 6246: 6243: 6230: 6227: 6223: 6219: 6215: 6203: 6202: 6190: 6187: 6184: 6181: 6178: 6175: 6172: 6169: 6166: 6163: 6149: 6148: 6132: 6126: 6122: 6118: 6115: 6112: 6109: 6105: 6099: 6096: 6091: 6088: 6086: 6084: 6081: 6078: 6075: 6072: 6069: 6068: 6065: 6062: 6059: 6057: 6055: 6050: 6044: 6041: 6035: 6034: 6011: 6008: 6005: 5978: 5975: 5972: 5967: 5963: 5959: 5956: 5953: 5950: 5947: 5944: 5941: 5936: 5932: 5928: 5925: 5922: 5919: 5914: 5910: 5898: 5897: 5886: 5883: 5878: 5874: 5867: 5864: 5860: 5855: 5852: 5849: 5846: 5841: 5837: 5833: 5830: 5827: 5824: 5801: 5781: 5761: 5758: 5755: 5731: 5711: 5700: 5699: 5688: 5685: 5682: 5679: 5674: 5670: 5666: 5663: 5660: 5657: 5643: 5642: 5628: 5625: 5620: 5617: 5614: 5611: 5606: 5603: 5598: 5595: 5592: 5589: 5586: 5569: 5568: 5556: 5550: 5545: 5539: 5535: 5531: 5528: 5525: 5522: 5519: 5514: 5511: 5506: 5503: 5500: 5497: 5494: 5491: 5488: 5484: 5479: 5474: 5470: 5466: 5461: 5455: 5452: 5446: 5443: 5439: 5433: 5430: 5425: 5422: 5419: 5416: 5411: 5408: 5401: 5397: 5393: 5390: 5387: 5384: 5381: 5378: 5375: 5372: 5368: 5364: 5361: 5358: 5354: 5348: 5321: 5318: 5314: 5286: 5264: 5261: 5258: 5254: 5250: 5245: 5242: 5239: 5235: 5223: 5222: 5210: 5204: 5200: 5194: 5188: 5185: 5179: 5174: 5168: 5165: 5157: 5153: 5148: 5144: 5141: 5138: 5110: 5089: 5086: 5083: 5058: 5055: 5052: 5048: 5044: 5039: 5036: 5031: 5026: 5020: 5017: 4992: 4989: 4986: 4982: 4978: 4975: 4972: 4967: 4963: 4940: 4934: 4931: 4925: 4920: 4916: 4912: 4909: 4887: 4884: 4881: 4877: 4873: 4868: 4865: 4862: 4858: 4854: 4851: 4829: 4826: 4823: 4819: 4792: 4789: 4767: 4745: 4742: 4739: 4735: 4712: 4709: 4706: 4702: 4698: 4693: 4690: 4687: 4683: 4679: 4674: 4670: 4647: 4643: 4620: 4617: 4612: 4609: 4606: 4603: 4576: 4573: 4570: 4547: 4535: 4532: 4516:spin structure 4495: 4492: 4472: 4469: 4446: 4443: 4440: 4416: 4394: 4389: 4384: 4381: 4353: 4350: 4347: 4323: 4307: 4304: 4285: 4281: 4277: 4274: 4264:codifferential 4251: 4225: 4221: 4209: 4208: 4197: 4194: 4191: 4188: 4185: 4182: 4179: 4176: 4173: 4170: 4167: 4162: 4158: 4143: 4142: 4131: 4127: 4121: 4117: 4113: 4110: 4107: 4104: 4100: 4094: 4091: 4086: 4083: 4080: 4075: 4071: 4045: 4044: 4031: 4027: 4023: 4020: 4017: 4014: 4011: 4008: 4003: 3999: 3995: 3992: 3989: 3986: 3983: 3980: 3977: 3974: 3971: 3968: 3963: 3934: 3931: 3928: 3906: 3902: 3892:That is, each 3890: 3889: 3872: 3868: 3864: 3861: 3856: 3852: 3848: 3844: 3840: 3835: 3831: 3827: 3822: 3818: 3814: 3811: 3803: 3799: 3795: 3788: 3784: 3780: 3774: 3766: 3762: 3758: 3751: 3747: 3743: 3736: 3730: 3727: 3722: 3717: 3713: 3709: 3706: 3701: 3697: 3693: 3689: 3683: 3679: 3673: 3669: 3665: 3657: 3653: 3649: 3642: 3638: 3634: 3627: 3623: 3620: 3617: 3614: 3611: 3608: 3605: 3602: 3599: 3596: 3593: 3590: 3587: 3584: 3583: 3561:curvature form 3544: 3535:The curvature 3521: 3518: 3515: 3510: 3507: 3485: 3465: 3462: 3459: 3456: 3453: 3419: 3415: 3411: 3406: 3402: 3398: 3395: 3375: 3355: 3335: 3315: 3312: 3309: 3306: 3303: 3283: 3280: 3277: 3249: 3222: 3202: 3178: 3154: 3151: 3148: 3145: 3142: 3119: 3098: 3094: 3090: 3069: 3049: 3038: 3037: 3024: 3020: 3016: 3013: 3010: 3007: 3002: 2998: 2994: 2988: 2984: 2980: 2974: 2971: 2968: 2965: 2962: 2935: 2931: 2928: 2900: 2880: 2860: 2857: 2854: 2851: 2848: 2845: 2840: 2836: 2832: 2829: 2809: 2806: 2803: 2800: 2797: 2772: 2767: 2754: 2753: 2741: 2735: 2730: 2724: 2720: 2716: 2713: 2710: 2707: 2703: 2696: 2693: 2688: 2683: 2679: 2675: 2672: 2669: 2666: 2661: 2657: 2653: 2650: 2646: 2640: 2636: 2632: 2629: 2626: 2623: 2618: 2614: 2610: 2604: 2600: 2596: 2588: 2584: 2580: 2577: 2574: 2571: 2568: 2565: 2560: 2531: 2507: 2485: 2480: 2458: 2438: 2408: 2405: 2365: 2351: 2339: 2330:Meissner state 2325: 2322: 2312: 2309: 2254: 2248: 2247: 2236: 2228: 2224: 2220: 2214: 2211: 2207: 2201: 2197: 2191: 2186: 2182: 2174: 2165: 2160: 2156: 2150: 2147: 2143: 2137: 2133: 2126: 2122: 2115: 2112: 2089: 2083: 2082: 2071: 2063: 2059: 2055: 2049: 2045: 2041: 2035: 2031: 2024: 2021: 2005: 1996: 1995: 1984: 1976: 1972: 1968: 1962: 1958: 1954: 1948: 1944: 1937: 1934: 1918: 1900: 1897: 1883: 1882: 1876: 1851: 1846: 1842: 1837: 1833: 1829: 1826: 1823: 1818: 1814: 1807: 1804: 1799: 1794: 1789: 1785: 1764: 1754: 1725: 1702: 1699: 1696: 1692: 1686: 1682: 1661: 1655: 1650: 1646: 1643: 1640: 1635: 1631: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1581: 1576: 1573: 1568: 1565: 1560: 1555: 1550: 1546: 1525: 1522: 1519: 1501: 1472: 1469: 1466: 1461: 1456: 1451: 1447: 1443: 1440: 1437: 1434: 1418: 1415: 1402: 1362: 1340: 1336: 1332: 1328: 1323: 1317: 1312: 1308: 1302: 1299: 1296: 1293: 1290: 1286: 1280: 1276: 1271: 1267: 1264: 1257: 1253: 1247: 1243: 1237: 1233: 1227: 1221: 1215: 1211: 1208: 1202: 1198: 1194: 1191: 1170: 1167: 1164: 1159: 1154: 1149: 1143: 1138: 1134: 1128: 1125: 1122: 1119: 1116: 1112: 1102: 1098: 1094: 1090: 1085: 1082: 1077: 1072: 1067: 1063: 1059: 1056: 1053: 1050: 1024: 1003: 983: 963: 958: 954: 948: 944: 940: 937: 934: 923: 922: 909: 905: 902: 899: 895: 884: 867: 856: 844: 841: 819: 815: 804: 801:effective mass 786: 782: 771: 759: 739: 719: 716: 713: 710: 690: 687: 684: 681: 671: 657: 653: 627: 621: 618: 612: 607: 600: 595: 590: 586: 582: 577: 571: 566: 562: 556: 553: 550: 547: 544: 540: 535: 525: 521: 517: 513: 508: 503: 498: 493: 489: 485: 482: 479: 476: 471: 468: 463: 458: 453: 448: 444: 440: 437: 434: 431: 428: 423: 419: 415: 410: 406: 370: 366: 362: 341: 338: 335: 332: 308: 305: 302: 297: 293: 270: 265: 260: 257: 254: 251: 247: 224: 221: 218: 215: 212: 208: 203: 199: 196: 193: 190: 186: 182: 179: 176: 173: 170: 141: 137: 108: 105: 56:, named after 26: 9: 6: 4: 3: 2: 8365: 8354: 8351: 8349: 8346: 8344: 8341: 8340: 8338: 8323: 8320: 8318: 8315: 8313: 8310: 8308: 8305: 8303: 8300: 8298: 8292: 8290: 8287: 8285: 8282: 8280: 8277: 8276: 8274: 8270: 8264: 8261: 8259: 8256: 8254: 8251: 8249: 8246: 8244: 8241: 8239: 8236: 8234: 8231: 8229: 8226: 8225: 8223: 8221: 8217: 8207: 8204: 8202: 8199: 8197: 8194: 8192: 8191:heavy fermion 8189: 8187: 8184: 8182: 8179: 8178: 8176: 8172: 8166: 8163: 8161: 8158: 8155: 8154: 8152: 8148: 8142: 8139: 8137: 8134: 8133: 8131: 8127: 8121: 8120:ferromagnetic 8118: 8114: 8111: 8109: 8106: 8104: 8101: 8100: 8098: 8097: 8095: 8091: 8088: 8086: 8082: 8076: 8073: 8071: 8068: 8066: 8065:supercurrents 8063: 8061: 8058: 8056: 8053: 8051: 8048: 8046: 8043: 8041: 8038: 8036: 8033: 8031: 8028: 8026: 8023: 8021: 8018: 8016: 8013: 8011: 8008: 8006: 8003: 8001: 7998: 7997: 7995: 7991: 7985: 7982: 7980: 7977: 7975: 7972: 7970: 7967: 7966: 7964: 7960: 7954: 7951: 7949: 7946: 7944: 7941: 7939: 7936: 7934: 7931: 7929: 7926: 7924: 7921: 7919: 7916: 7914: 7911: 7910: 7908: 7904: 7900: 7893: 7888: 7886: 7881: 7879: 7874: 7873: 7870: 7860: 7852: 7847: 7841: 7838: 7836: 7835:Quantum logic 7833: 7829: 7826: 7825: 7824: 7821: 7819: 7816: 7814: 7811: 7809: 7806: 7802: 7799: 7798: 7797: 7794: 7790: 7787: 7786: 7785: 7782: 7780: 7777: 7775: 7772: 7770: 7769:Quantum chaos 7767: 7765: 7762: 7760: 7757: 7755: 7752: 7750: 7747: 7745: 7744:Cosmic string 7742: 7740: 7737: 7736: 7734: 7730: 7720: 7717: 7715: 7712: 7710: 7707: 7705: 7702: 7700: 7697: 7695: 7692: 7690: 7687: 7686: 7684: 7680: 7674: 7671: 7669: 7666: 7665: 7663: 7659: 7653: 7650: 7648: 7645: 7643: 7640: 7638: 7635: 7633: 7630: 7628: 7625: 7623: 7620: 7618: 7617:Pure 4D N = 1 7615: 7614: 7612: 7608: 7602: 7599: 7597: 7594: 7592: 7589: 7588: 7586: 7582: 7576: 7573: 7571: 7568: 7566: 7563: 7561: 7558: 7556: 7553: 7552: 7550: 7546: 7540: 7537: 7535: 7532: 7530: 7527: 7525: 7522: 7520: 7517: 7516: 7514: 7510: 7504: 7501: 7499: 7498:Thirring–Wess 7496: 7494: 7491: 7489: 7486: 7484: 7481: 7479: 7476: 7474: 7473:Bullough–Dodd 7471: 7469: 7468:2D Yang–Mills 7466: 7465: 7463: 7459: 7453: 7450: 7448: 7445: 7443: 7440: 7438: 7435: 7433: 7430: 7428: 7425: 7423: 7420: 7418: 7415: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7393: 7390: 7388: 7385: 7384: 7382: 7378: 7375: 7371: 7365: 7362: 7360: 7357: 7355: 7352: 7350: 7347: 7345: 7344:String theory 7342: 7340: 7337: 7335: 7332: 7330: 7327: 7325: 7322: 7320: 7317: 7315: 7314:Axiomatic QFT 7312: 7310: 7309:Algebraic QFT 7307: 7306: 7304: 7300: 7296: 7289: 7284: 7282: 7277: 7275: 7270: 7269: 7266: 7260: 7256: 7252: 7250: 7246: 7242: 7240:, 1364 (1959) 7239: 7236: 7232: 7229: 7225: 7222: 7218: 7215: 7211: 7208: 7205: 7201: 7200: 7188: 7184: 7180: 7176: 7172: 7168: 7163: 7158: 7154: 7150: 7149: 7144: 7140: 7139:Gukov, Sergei 7136: 7130: 7122: 7118: 7113: 7108: 7103: 7098: 7094: 7090: 7086: 7079: 7071: 7067: 7063: 7059: 7055: 7051: 7046: 7041: 7037: 7033: 7026: 7018: 7014: 7010: 7006: 7002: 6998: 6991: 6983: 6979: 6975: 6971: 6967: 6963: 6956: 6949: 6943: 6935: 6931: 6927: 6923: 6919: 6915: 6908: 6900: 6896: 6892: 6888: 6884: 6880: 6876: 6872: 6868: 6864: 6860: 6853: 6845: 6841: 6836: 6831: 6827: 6823: 6819: 6812: 6804: 6800: 6796: 6792: 6788: 6784: 6780: 6776: 6772: 6768: 6764: 6757: 6749: 6745: 6741: 6737: 6733: 6729: 6725: 6721: 6717: 6713: 6709: 6702: 6694: 6690: 6686: 6682: 6678: 6671: 6663: 6657: 6653: 6649: 6643: 6635: 6633:3-540-42627-2 6629: 6625: 6620: 6619: 6613: 6607: 6600: 6596: 6590: 6582: 6578: 6574: 6570: 6566: 6562: 6561: 6553: 6545: 6539: 6535: 6531: 6524: 6509: 6505: 6501: 6497: 6493: 6489: 6485: 6478: 6470: 6466: 6462: 6458: 6454: 6450: 6443: 6441: 6429: 6428: 6420: 6418: 6409: 6403: 6399: 6395: 6391: 6384: 6377: 6373: 6362: 6359: 6357: 6354: 6352: 6349: 6346: 6343: 6341: 6338: 6336: 6335:Landau theory 6333: 6331: 6328: 6326: 6323: 6322: 6315: 6312: 6311:Edward Witten 6308: 6304: 6300: 6296: 6292: 6288: 6284: 6280: 6276: 6272: 6268: 6264: 6260: 6256: 6252: 6242: 6228: 6225: 6217: 6185: 6182: 6179: 6176: 6173: 6170: 6167: 6164: 6161: 6154: 6153: 6152: 6130: 6124: 6116: 6110: 6107: 6103: 6097: 6094: 6089: 6087: 6079: 6076: 6070: 6063: 6060: 6058: 6053: 6048: 6025: 6024: 6023: 6009: 6006: 6003: 5994: 5992: 5989:is the first 5965: 5961: 5957: 5942: 5934: 5930: 5926: 5920: 5912: 5908: 5884: 5881: 5872: 5865: 5862: 5858: 5853: 5847: 5839: 5835: 5831: 5828: 5825: 5822: 5815: 5814: 5813: 5779: 5759: 5756: 5753: 5745: 5729: 5683: 5677: 5668: 5664: 5658: 5655: 5648: 5647: 5646: 5623: 5618: 5615: 5612: 5609: 5604: 5601: 5596: 5590: 5584: 5577: 5576: 5575: 5574: 5554: 5548: 5543: 5537: 5529: 5523: 5520: 5512: 5509: 5504: 5498: 5495: 5492: 5486: 5482: 5477: 5472: 5464: 5459: 5441: 5437: 5428: 5423: 5420: 5417: 5414: 5409: 5406: 5395: 5391: 5388: 5385: 5382: 5379: 5376: 5373: 5370: 5366: 5362: 5359: 5356: 5352: 5337: 5336: 5335: 5319: 5316: 5312: 5303: 5300: 5284: 5262: 5259: 5256: 5252: 5248: 5243: 5240: 5237: 5233: 5208: 5202: 5192: 5177: 5172: 5155: 5146: 5142: 5139: 5136: 5129: 5128: 5127: 5125: 5087: 5084: 5081: 5072: 5056: 5053: 5050: 5046: 5042: 5029: 5024: 4990: 4987: 4984: 4980: 4976: 4970: 4965: 4938: 4923: 4918: 4910: 4907: 4900:and likewise 4885: 4882: 4879: 4875: 4871: 4866: 4863: 4860: 4856: 4852: 4849: 4827: 4824: 4821: 4808: 4787: 4765: 4743: 4740: 4737: 4710: 4707: 4704: 4696: 4691: 4688: 4685: 4677: 4672: 4645: 4610: 4604: 4601: 4594: 4590: 4571: 4568: 4561: 4545: 4531: 4529: 4525: 4521: 4517: 4512: 4510: 4493: 4490: 4470: 4467: 4459: 4441: 4430: 4414: 4392: 4382: 4379: 4371: 4367: 4351: 4348: 4345: 4338:, and taking 4337: 4321: 4313: 4312:string theory 4303: 4301: 4283: 4279: 4275: 4272: 4265: 4249: 4241: 4223: 4219: 4192: 4189: 4186: 4183: 4177: 4174: 4171: 4168: 4165: 4160: 4156: 4148: 4147: 4146: 4129: 4125: 4119: 4111: 4105: 4102: 4098: 4092: 4089: 4084: 4081: 4078: 4073: 4069: 4061: 4060: 4059: 4057: 4052: 4050: 4029: 4021: 4012: 4006: 4001: 3997: 3993: 3987: 3981: 3978: 3975: 3969: 3952: 3951: 3950: 3948: 3932: 3929: 3926: 3904: 3900: 3870: 3866: 3862: 3859: 3854: 3850: 3846: 3842: 3833: 3829: 3825: 3820: 3816: 3809: 3801: 3797: 3786: 3782: 3772: 3764: 3760: 3749: 3745: 3734: 3728: 3725: 3720: 3715: 3711: 3707: 3704: 3699: 3695: 3691: 3687: 3681: 3677: 3671: 3667: 3663: 3655: 3651: 3640: 3636: 3625: 3621: 3618: 3615: 3612: 3609: 3606: 3603: 3600: 3597: 3594: 3591: 3588: 3585: 3574: 3573: 3572: 3570: 3569:vector bundle 3566: 3562: 3558: 3542: 3533: 3516: 3483: 3460: 3457: 3454: 3443: 3439: 3435: 3417: 3413: 3409: 3404: 3400: 3396: 3393: 3373: 3353: 3333: 3313: 3310: 3307: 3304: 3301: 3281: 3278: 3275: 3267: 3263: 3247: 3239: 3236: 3220: 3200: 3192: 3176: 3168: 3152: 3149: 3146: 3143: 3140: 3131: 3117: 3092: 3067: 3047: 3022: 3018: 3014: 3011: 3008: 3005: 3000: 2996: 2992: 2982: 2972: 2966: 2960: 2953: 2952: 2951: 2950: 2929: 2926: 2918: 2914: 2898: 2878: 2855: 2852: 2849: 2843: 2838: 2830: 2804: 2801: 2798: 2788: 2770: 2739: 2733: 2728: 2722: 2714: 2708: 2705: 2701: 2694: 2691: 2686: 2681: 2673: 2670: 2664: 2659: 2651: 2644: 2638: 2634: 2630: 2627: 2624: 2621: 2616: 2612: 2608: 2598: 2586: 2582: 2578: 2572: 2569: 2566: 2549: 2548: 2547: 2545: 2529: 2521: 2505: 2483: 2456: 2436: 2427: 2425: 2421: 2418: 2414: 2404: 2402: 2397: 2392: 2390: 2386: 2382: 2378: 2374: 2368: 2364: 2360: 2359:magnetic flux 2354: 2350: 2346: 2342: 2335: 2331: 2321: 2318: 2308: 2299: 2295: 2284: 2280: 2276: 2272: 2268: 2264: 2259: 2253: 2234: 2222: 2212: 2209: 2205: 2199: 2195: 2189: 2184: 2180: 2172: 2163: 2158: 2154: 2148: 2145: 2141: 2135: 2131: 2124: 2120: 2113: 2110: 2103: 2102: 2101: 2099: 2098:London theory 2095: 2088: 2069: 2057: 2047: 2043: 2039: 2033: 2029: 2022: 2019: 2012: 2011: 2010: 2008: 2001: 1982: 1970: 1960: 1956: 1952: 1946: 1942: 1935: 1932: 1925: 1924: 1923: 1921: 1914: 1910: 1906: 1896: 1893: 1888: 1879: 1875: 1871: 1866: 1849: 1844: 1835: 1831: 1827: 1824: 1816: 1812: 1805: 1802: 1797: 1787: 1773: 1767: 1763: 1759: 1755: 1750: 1744: 1739: 1734: 1728: 1724: 1720: 1716: 1715: 1714: 1700: 1697: 1694: 1690: 1684: 1680: 1648: 1644: 1641: 1633: 1629: 1625: 1619: 1613: 1610: 1607: 1598: 1592: 1579: 1574: 1571: 1566: 1563: 1558: 1548: 1523: 1520: 1517: 1508: 1504: 1500: 1496: 1489: 1483: 1470: 1467: 1464: 1459: 1449: 1441: 1438: 1435: 1432: 1424: 1414: 1400: 1392: 1388: 1384: 1380: 1376: 1360: 1351: 1338: 1334: 1330: 1326: 1315: 1310: 1306: 1300: 1291: 1288: 1284: 1278: 1274: 1269: 1265: 1262: 1255: 1251: 1245: 1241: 1235: 1225: 1213: 1209: 1206: 1200: 1192: 1181: 1168: 1165: 1162: 1157: 1152: 1141: 1136: 1132: 1126: 1117: 1114: 1110: 1100: 1096: 1092: 1088: 1083: 1080: 1075: 1065: 1057: 1054: 1051: 1048: 1040: 1039: 1001: 981: 961: 956: 952: 946: 942: 938: 935: 932: 903: 897: 885: 882: 857: 842: 839: 817: 813: 805: 802: 784: 780: 772: 757: 737: 714: 708: 685: 679: 672: 655: 651: 643: 642: 641: 638: 625: 619: 616: 610: 598: 593: 588: 584: 580: 569: 564: 560: 554: 545: 542: 538: 533: 523: 519: 515: 511: 506: 501: 491: 480: 474: 469: 466: 461: 456: 446: 435: 429: 426: 421: 417: 413: 408: 404: 395: 393: 389: 385: 364: 336: 330: 322: 321:wave function 303: 295: 291: 268: 255: 249: 219: 213: 210: 206: 194: 188: 180: 174: 168: 160: 157: 139: 135: 126: 122: 118: 114: 104: 102: 101:string theory 98: 94: 90: 86: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 40: 33: 32:Landau theory 19: 8201:oxypnictides 8136:conventional 8075:superstripes 8020:flux pumping 8015:flux pinning 8010:Cooper pairs 7922: 7850: 7779:Quantum foam 7719:Stueckelberg 7673:Chern–Simons 7610:Supergravity 7396: 7349:Supergravity 7334:Gauge theory 7237: 7234: 7223: 7220: 7216: 7213: 7206: 7203: 7152: 7146: 7129: 7095:(1): 1–106. 7092: 7088: 7078: 7035: 7031: 7025: 7000: 6996: 6990: 6968:(1): 51–58. 6965: 6961: 6955: 6947: 6942: 6917: 6913: 6907: 6866: 6862: 6852: 6825: 6821: 6811: 6770: 6766: 6756: 6715: 6711: 6701: 6676: 6670: 6651: 6648:Jost, Jürgen 6642: 6617: 6612:Jost, Jürgen 6606: 6589: 6564: 6558: 6552: 6529: 6523: 6511:. Retrieved 6491: 6487: 6477: 6452: 6449:ChemPhysChem 6448: 6426: 6389: 6376: 6356:Higgs bundle 6325:Flux pinning 6306: 6299:sigma models 6291:Brian Greene 6270: 6259:vacuum state 6248: 6204: 6150: 5995: 5899: 5701: 5644: 5570: 5298: 5224: 5073: 4806: 4591:as a sum of 4537: 4534:Self-duality 4513: 4508: 4460:to 1, while 4309: 4210: 4144: 4053: 4046: 3891: 3534: 3132: 3039: 2755: 2428: 2410: 2393: 2379:. Most pure 2366: 2362: 2352: 2348: 2337: 2327: 2314: 2311:Fluctuations 2297: 2282: 2274: 2270: 2266: 2262: 2260: 2251: 2249: 2093: 2086: 2084: 2003: 1999: 1997: 1916: 1912: 1908: 1902: 1891: 1884: 1877: 1873: 1869: 1864: 1771: 1765: 1761: 1757: 1748: 1742: 1737: 1732: 1726: 1722: 1718: 1596: 1593: 1509: 1502: 1498: 1494: 1487: 1484: 1422: 1420: 1386: 1382: 1373:denotes the 1352: 1182: 1041: 1037: 924: 639: 396: 392:field theory 110: 107:Introduction 82: 53: 49: 43: 8060:SU(2) color 8040:Homes's law 7661:Topological 7575:Wess–Zumino 7488:Sine-Gordon 7478:Gross–Neveu 7387:Born–Infeld 7354:Thermal QFT 6279:Cumrun Vafa 5991:Chern class 5573:volume form 5124:line bundle 4366:line bundle 3438:Lie algebra 3266:non-Abelian 2949:volume form 2469:with fiber 2296:those with 1375:dissipation 388:free energy 125:free energy 89:Lev Gor'kov 8353:Lev Landau 8337:Categories 8196:iron-based 8055:reentrance 7442:Yang–Mills 6368:References 5744:Hodge star 4807:vice-versa 4524:integrable 4364:; i.e., a 2544:Lagrangian 1998:while for 1887:superfluid 62:Lev Landau 7993:Phenomena 7851:See also: 7570:Super QCD 7524:Liouville 7512:Conformal 7483:Schwinger 7187:118498045 7162:1307.2578 7155:(9): 70, 7121:115154206 7102:0712.4021 6934:0024-6093 6899:122906366 6891:0010-3616 6844:0022-040X 6795:0010-3616 6748:122086974 6740:0010-3616 6693:0024-6115 6229:σ 6226:≤ 6218:ψ 6189:Σ 6186:⁡ 6180:σ 6177:≤ 6171:⁡ 6165:π 6117:ψ 6111:− 6108:σ 6071:∗ 6054:ψ 6043:¯ 6040:∂ 6004:ψ 5974:Σ 5958:∈ 5952:Σ 5877:Σ 5873:∫ 5866:π 5826:⁡ 5800:Σ 5757:⁡ 5730:∗ 5710:Σ 5678:∗ 5673:Σ 5669:∫ 5662:Σ 5659:⁡ 5627:¯ 5616:∧ 5585:∗ 5530:ψ 5524:− 5521:σ 5505:− 5493:− 5487:∗ 5465:ψ 5454:¯ 5451:∂ 5432:¯ 5421:∧ 5400:Σ 5396:∫ 5386:⁡ 5380:σ 5377:π 5357:ψ 5320:θ 5199:∂ 5187:¯ 5184:∂ 5167:¯ 5164:∂ 5152:∂ 5143:− 5038:¯ 5035:∂ 5019:¯ 5016:∂ 4974:∂ 4962:∂ 4933:¯ 4930:∂ 4915:∂ 4818:Ω 4791:¯ 4734:Ω 4701:Ω 4697:⊕ 4682:Ω 4669:Ω 4642:Ω 4619:¯ 4616:∂ 4608:∂ 4575:Σ 4471:ψ 4442:ψ 4415:ψ 4284:∗ 4273:δ 4224:∗ 4196:⟩ 4193:ψ 4187:ψ 4181:⟨ 4178:⁡ 4172:− 4161:∗ 4130:ψ 4112:ψ 4106:− 4103:σ 4082:ψ 4074:∗ 4007:∗ 3998:∫ 3930:× 3905:μ 3871:ν 3860:∧ 3855:μ 3834:ν 3821:μ 3802:ν 3794:∂ 3787:μ 3779:∂ 3773:− 3765:μ 3757:∂ 3750:ν 3742:∂ 3716:ν 3705:∧ 3700:μ 3682:ν 3672:μ 3656:μ 3648:∂ 3641:ν 3633:∂ 3616:∧ 3595:∘ 3464:⟩ 3461:⋅ 3455:⋅ 3452:⟨ 3418:μ 3405:μ 3305:− 3012:∧ 3009:⋯ 3006:∧ 2961:∗ 2930:∈ 2927:σ 2899:β 2879:α 2859:⟩ 2856:ψ 2850:ψ 2847:⟨ 2831:ψ 2808:⟩ 2805:⋅ 2799:⋅ 2796:⟨ 2715:ψ 2709:− 2706:σ 2674:ψ 2628:∧ 2625:⋯ 2622:∧ 2583:∫ 2567:ψ 2506:ψ 2381:elemental 2377:quantized 2223:α 2210:∗ 2196:μ 2190:β 2185:∗ 2155:ψ 2146:∗ 2132:μ 2125:∗ 2111:λ 2058:α 2048:∗ 2030:ℏ 2020:ξ 1971:α 1961:∗ 1943:ℏ 1933:ξ 1845:β 1828:− 1813:α 1806:− 1788:ψ 1695:β 1681:α 1645:− 1630:α 1614:α 1608:α 1575:β 1572:α 1567:− 1549:ψ 1521:≠ 1518:ψ 1465:ψ 1450:ψ 1442:β 1436:ψ 1433:α 1401:ψ 1387:real part 1331:ψ 1311:∗ 1301:− 1298:∇ 1295:ℏ 1289:− 1279:∗ 1275:ψ 1266:⁡ 1256:∗ 1246:∗ 1210:π 1193:× 1190:∇ 1163:ψ 1137:∗ 1127:− 1124:∇ 1121:ℏ 1115:− 1101:∗ 1081:ψ 1066:ψ 1058:β 1052:ψ 1049:α 1002:ψ 939:∫ 904:× 901:∇ 818:∗ 785:∗ 758:β 738:α 709:β 680:α 620:π 585:ψ 565:∗ 555:− 552:∇ 549:ℏ 543:− 524:∗ 492:ψ 475:β 447:ψ 430:α 384:gradients 365:ψ 331:ψ 250:ψ 214:ϕ 189:ψ 169:ψ 111:Based on 8228:cryotron 8186:cuprates 8181:covalent 7938:Matthias 7906:Theories 7647:Type IIB 7642:Type IIA 7627:4D N = 8 7622:4D N = 1 7591:6D (2,0) 7555:4D N = 1 7534:Polyakov 7493:Thirring 7302:Theories 7255:pdf file 7245:pdf file 7070:16122549 6803:59456762 6513:April 7, 6469:15298379 6318:See also 5645:so that 4334:being a 3434:one-form 3432:to be a 2401:vortices 1862:that is 323:. While 127:density 121:Ginzburg 78:cuprates 8322:more... 8206:organic 7749:History 7732:Related 7529:Minimal 7380:Regular 7167:Bibcode 7050:Bibcode 7005:Bibcode 6970:Bibcode 6871:Bibcode 6775:Bibcode 6720:Bibcode 6569:Bibcode 6496:Bibcode 6347:systems 6265:with a 5742:is the 4240:adjoint 4238:is the 3240:). The 3165:is the 3040:for an 2520:section 2417:compact 2415:over a 2385:niobium 2373:fluxons 2302:√ 2300:> 1/ 2287:√ 2285:< 1/ 879:is the 156:complex 46:physics 8099:Types 7933:London 7689:Chiral 7637:Type I 7452:Yukawa 7373:Models 7197:Papers 7185:  7119:  7068:  6932:  6897:  6889:  6842:  6801:  6793:  6746:  6738:  6691:  6658:  6630:  6626:–381. 6540:  6467:  6404:  6261:and a 6253:, any 5900:where 5722:. The 4805:; and 4211:where 3919:is an 3563:of an 2292:, and 2250:where 1911:. For 1377:-free 1353:where 799:is an 640:where 386:, the 161:field 113:Landau 8312:TBCCO 8284:BSCCO 8263:wires 8258:SQUID 7828:links 7801:links 7789:links 7709:NMSSM 7694:Fermi 7437:Soler 7407:Proca 7259:video 7249:video 7183:S2CID 7157:arXiv 7117:S2CID 7097:arXiv 7066:S2CID 7040:arXiv 6895:S2CID 6799:S2CID 6744:S2CID 6431:(PDF) 6386:(PDF) 4953:with 4558:is a 3567:on a 3442:SU(n) 3268:when 2002:< 1915:> 1760:< 1721:> 1672:with 1497:> 883:, and 8317:YBCO 8307:NbTi 8302:NbSn 8289:LBCO 7699:MSSM 7596:ABJM 7503:Toda 7153:2013 6930:ISSN 6887:ISSN 6840:ISSN 6791:ISSN 6736:ISSN 6689:ISSN 6656:ISBN 6628:ISBN 6538:ISBN 6515:2022 6465:PMID 6402:ISBN 6281:and 6183:Area 5812:is 5656:Area 5302:U(1) 5277:and 5005:and 4809:for 4483:and 4145:and 4054:The 3279:> 3169:and 3133:The 2891:and 2387:and 2315:The 1740:) / 1698:> 1385:the 1381:and 750:and 701:and 99:and 74:YBCO 60:and 8294:MgB 8243:NMR 8238:MRI 8113:1.5 7953:WHH 7948:RVB 7913:BCS 7652:11D 7257:or 7247:or 7175:doi 7107:doi 7093:178 7058:doi 7036:403 7013:doi 7001:324 6978:doi 6966:218 6922:doi 6879:doi 6867:156 6830:doi 6783:doi 6771:135 6728:doi 6681:doi 6624:373 6577:doi 6565:344 6504:doi 6457:doi 6394:doi 6301:on 6297:to 6249:In 6168:deg 5823:deg 5754:deg 5383:deg 5299:viz 4310:In 4242:of 1751:= 0 1490:= 0 44:In 8339:: 8108:II 7668:BF 7238:36 7217:32 7207:20 7181:, 7173:, 7165:, 7151:, 7141:; 7137:; 7115:. 7105:. 7091:. 7087:. 7064:. 7056:. 7048:. 7034:. 7011:. 6999:. 6976:. 6964:. 6928:. 6918:26 6916:. 6893:. 6885:. 6877:. 6865:. 6861:. 6838:. 6826:33 6824:. 6820:. 6797:. 6789:. 6781:. 6769:. 6765:. 6742:. 6734:. 6726:. 6716:72 6714:. 6710:. 6687:. 6597:. 6575:. 6563:. 6532:. 6502:. 6492:32 6490:. 6486:. 6463:. 6451:. 6439:^ 6416:^ 6400:. 6388:. 6241:. 5993:. 5071:. 4530:. 4302:. 4175:Re 3532:. 3130:. 2403:. 2307:. 2269:= 1907:, 1713:: 1507:. 1471:0. 1383:Re 1263:Re 770:). 119:, 80:. 48:, 8296:2 8103:I 7891:e 7884:t 7877:v 7287:e 7280:t 7273:v 7224:5 7177:: 7169:: 7159:: 7123:. 7109:: 7099:: 7072:. 7060:: 7052:: 7042:: 7019:. 7015:: 7007:: 6984:. 6980:: 6972:: 6936:. 6924:: 6901:. 6881:: 6873:: 6846:. 6832:: 6805:. 6785:: 6777:: 6750:. 6730:: 6722:: 6695:. 6683:: 6664:. 6636:. 6583:. 6579:: 6571:: 6546:. 6517:. 6506:: 6498:: 6471:. 6459:: 6453:5 6410:. 6396:: 6307:N 6271:N 6222:| 6214:| 6201:. 6174:L 6162:4 6131:) 6125:2 6121:| 6114:| 6104:( 6098:2 6095:1 6090:= 6083:) 6080:F 6077:i 6074:( 6064:0 6061:= 6049:A 6010:A 6007:, 5977:) 5971:( 5966:2 5962:H 5955:] 5949:[ 5946:) 5943:L 5940:( 5935:1 5931:c 5927:= 5924:) 5921:L 5918:( 5913:1 5909:c 5885:F 5882:i 5863:2 5859:1 5854:= 5851:) 5848:L 5845:( 5840:1 5836:c 5832:= 5829:L 5780:L 5760:L 5687:) 5684:1 5681:( 5665:= 5641:, 5624:z 5619:d 5613:z 5610:d 5605:2 5602:i 5597:= 5594:) 5591:1 5588:( 5555:] 5549:2 5544:) 5538:2 5534:| 5527:| 5518:( 5513:2 5510:1 5502:) 5499:F 5496:i 5490:( 5483:( 5478:+ 5473:2 5469:| 5460:A 5445:| 5442:2 5438:[ 5429:z 5424:d 5418:z 5415:d 5410:2 5407:i 5392:+ 5389:L 5374:2 5371:= 5367:) 5363:A 5360:, 5353:( 5347:L 5317:i 5313:e 5285:F 5263:1 5260:, 5257:0 5253:A 5249:, 5244:0 5241:, 5238:1 5234:A 5209:) 5203:A 5193:A 5178:+ 5173:A 5156:A 5147:( 5140:= 5137:F 5109:C 5088:1 5085:= 5082:n 5057:1 5054:, 5051:0 5047:A 5043:+ 5030:= 5025:A 4991:0 4988:, 4985:1 4981:A 4977:+ 4971:= 4966:A 4939:A 4924:+ 4919:A 4911:= 4908:D 4886:1 4883:, 4880:0 4876:A 4872:+ 4867:0 4864:, 4861:1 4857:A 4853:= 4850:A 4828:1 4825:, 4822:0 4788:z 4766:z 4744:0 4741:, 4738:1 4711:1 4708:, 4705:0 4692:0 4689:, 4686:1 4678:= 4673:1 4646:1 4611:+ 4605:= 4602:d 4572:= 4569:M 4546:M 4509:N 4494:A 4491:d 4468:D 4445:| 4439:| 4393:2 4388:R 4383:= 4380:M 4352:1 4349:= 4346:n 4322:M 4280:d 4276:= 4250:D 4220:D 4190:, 4184:D 4169:= 4166:F 4157:D 4126:) 4120:2 4116:| 4109:| 4099:( 4093:2 4090:1 4085:= 4079:D 4070:D 4030:2 4026:| 4022:F 4019:| 4016:) 4013:1 4010:( 4002:M 3994:= 3991:) 3988:A 3985:( 3982:M 3979:Y 3976:= 3973:) 3970:A 3967:( 3962:L 3933:n 3927:n 3901:A 3867:x 3863:d 3851:x 3847:d 3843:) 3839:] 3830:A 3826:, 3817:A 3813:[ 3810:+ 3798:x 3783:A 3761:x 3746:A 3735:( 3729:2 3726:1 3721:= 3712:x 3708:d 3696:x 3692:d 3688:) 3678:A 3668:A 3664:+ 3652:x 3637:A 3626:( 3622:= 3619:A 3613:A 3610:+ 3607:A 3604:d 3601:= 3598:D 3592:D 3589:= 3586:F 3543:F 3520:) 3517:n 3514:( 3509:u 3506:s 3484:A 3458:, 3414:x 3410:d 3401:A 3397:= 3394:A 3374:e 3354:A 3334:e 3314:A 3311:e 3308:i 3302:d 3282:1 3276:n 3248:A 3221:F 3201:F 3177:F 3153:A 3150:+ 3147:d 3144:= 3141:D 3118:g 3097:| 3093:g 3089:| 3068:M 3048:m 3023:m 3019:x 3015:d 3001:1 2997:x 2993:d 2987:| 2983:g 2979:| 2973:= 2970:) 2967:1 2964:( 2934:R 2853:, 2844:= 2839:2 2835:| 2828:| 2802:, 2771:n 2766:C 2740:] 2734:2 2729:) 2723:2 2719:| 2712:| 2702:( 2695:4 2692:1 2687:+ 2682:2 2678:| 2671:D 2668:| 2665:+ 2660:2 2656:| 2652:F 2649:| 2645:[ 2639:m 2635:x 2631:d 2617:1 2613:x 2609:d 2603:| 2599:g 2595:| 2587:M 2579:= 2576:) 2573:A 2570:, 2564:( 2559:L 2530:E 2484:n 2479:C 2457:M 2437:E 2369:2 2367:c 2363:H 2355:1 2353:c 2349:H 2340:c 2338:H 2304:2 2298:κ 2289:2 2283:κ 2275:ξ 2273:/ 2271:λ 2267:κ 2263:κ 2255:0 2252:ψ 2235:, 2227:| 2219:| 2213:2 2206:e 2200:0 2181:m 2173:= 2164:2 2159:0 2149:2 2142:e 2136:0 2121:m 2114:= 2094:λ 2090:0 2087:ψ 2070:. 2062:| 2054:| 2044:m 2040:4 2034:2 2023:= 2006:c 2004:T 2000:T 1983:. 1975:| 1967:| 1957:m 1953:2 1947:2 1936:= 1919:c 1917:T 1913:T 1909:ξ 1892:ψ 1878:c 1874:T 1870:T 1865:ψ 1850:, 1841:) 1836:c 1832:T 1825:T 1822:( 1817:0 1803:= 1798:2 1793:| 1784:| 1772:ψ 1766:c 1762:T 1758:T 1749:ψ 1743:β 1738:T 1736:( 1733:α 1727:c 1723:T 1719:T 1701:0 1691:/ 1685:0 1660:) 1654:c 1649:T 1642:T 1639:( 1634:0 1626:= 1623:) 1620:T 1617:( 1611:: 1597:ψ 1580:. 1564:= 1559:2 1554:| 1545:| 1524:0 1503:c 1499:T 1495:T 1488:ψ 1468:= 1460:2 1455:| 1446:| 1439:+ 1423:ψ 1361:J 1339:, 1335:} 1327:) 1322:A 1316:c 1307:e 1292:i 1285:( 1270:{ 1252:m 1242:e 1236:= 1232:J 1226:; 1220:J 1214:c 1207:4 1201:= 1197:B 1169:0 1166:= 1158:2 1153:) 1148:A 1142:c 1133:e 1118:i 1111:( 1097:m 1093:2 1089:1 1084:+ 1076:2 1071:| 1062:| 1055:+ 1023:A 982:F 962:r 957:3 953:d 947:s 943:f 936:= 933:F 908:A 898:= 894:B 866:A 843:e 840:2 814:e 803:, 781:m 718:) 715:T 712:( 689:) 686:T 683:( 656:n 652:f 626:, 617:8 611:2 606:B 599:+ 594:2 589:| 581:) 576:A 570:c 561:e 546:i 539:( 534:| 520:m 516:2 512:1 507:+ 502:4 497:| 488:| 484:) 481:T 478:( 470:2 467:1 462:+ 457:2 452:| 443:| 439:) 436:T 433:( 427:+ 422:n 418:f 414:= 409:s 405:f 369:| 361:| 340:) 337:r 334:( 307:) 304:r 301:( 296:s 292:n 269:2 264:| 259:) 256:r 253:( 246:| 223:) 220:r 217:( 211:i 207:e 202:| 198:) 195:r 192:( 185:| 181:= 178:) 175:r 172:( 140:s 136:f 41:. 34:. 20:)

Index

Ginzburg–Landau parameter
Landau theory
Ginzburg–Landau equation
physics
Vitaly Ginzburg
Lev Landau
superconductivity
type-I superconductors
YBCO
cuprates
Bardeen–Cooper–Schrieffer
Lev Gor'kov
Riemannian geometry
quantum field theory
string theory
Landau
phase transitions
Ginzburg
free energy
complex
order parameter
wave function
gradients
free energy
field theory
effective mass
magnetic vector potential
dissipation
electric current density
Schrödinger equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.