Knowledge

Graphite oxide

Source 📝

724:
sites for chemical modification and immobilization of active species. This approach allows for the creation of hybrid architectures for electrode materials. Recent examples of this have been implemented in lithium-ion batteries, which are known for being rechargeable at the cost of low capacity limits. Graphene oxide-based composites functionalized with metal oxides and sulfides have been shown in recent research to induce enhanced battery performance. This has similarly been adapted into applications in supercapacitors, since the electronic properties of graphene oxide allow it to bypass some of the more prevalent restrictions of typical transition metal oxide electrodes. Research in this field is developing, with additional exploration into methods involving nitrogen doping and pH adjustment to improve capacitance. Additionally, research into reduced graphene oxide sheets, which display superior electronic properties akin to pure graphene, is currently being explored. Reduced graphene oxide greatly increases the conductivity and efficiency, while sacrificing some flexibility and structural integrity.
837:
The superior electron mobility and high surface area of graphene oxide sheets suggest it may be implemented as a catalyst that meets the requirements for this process. Specifically, graphene oxide's compositional functional groups of epoxide (-O-) and hydroxide (-OH) allow for more flexible control in the water splitting process. This flexibility can be used to tailor the band gap and band positions that are targeted in photocatalytic water splitting. Recent research experiments have demonstrated that the photocatalytic activity of graphene oxide containing a band gap within the required limits has produced effective splitting results, particularly when used with 40-50% coverage at a 2:1 hydroxide:epoxide ratio. When used in composite materials with
808:(DLW) method. As a result, the overall lens thickness can be potentially reduced by more than ten times. Also, the linear optical absorption of GO is found to increase as the reduction of GO deepens, which results in transmission contrast between GO and rGO and therefore provides an amplitude modulation mechanism. Moreover, both the refractive index and the optical absorption are found to be dispersionless over a broad wavelength range from visible to near infrared. Finally, GO film offers flexible patterning capability by using the maskless DLW method, which reduces the manufacturing complexity and requirements. 828:
500 nm to as far as 2 μm have been realized with the same planar lens, which is still a major challenge of focusing in infrared range due to limited availability of suitable materials and fabrication technology. Most importantly, the synthesized high quality GO thin films can be flexibly integrated on various substrates and easily manufactured by using the one-step DLW method over a large area at a comparable low cost and power (~nJ/pulse), which eventually makes the GO flat lenses promising for various practical applications.
344: 405: 670:, while the top layer contains cellulose and graphene oxide, which absorbs sunlight and produces heat. The system draws water from below into the material. The water diffuses into the higher layer, where it evaporates and leaves behind any contaminants. The evaporate condenses on top, where it can be captured. The film is produced by repeatedly adding a fluid coating that hardens. Bacteria produce nanocellulose fibers with interspersed graphene oxide flakes. The film is light and easily manufactured at scale. 4751: 797:
applications such as communications, sensors, data storage and a wide range of other technology-driven and consumer-driven industries. Specifically, ever smaller sizes, as well as thinner thicknesses of micro lenses, are highly needed for subwavelength optics or nano-optics with extremely small structures, particularly for visible and near-IR applications. Also, as the distance scale for optical communications shrinks, the required feature sizes of micro lenses are rapidly pushed down.
715:
sensors could result in very inexpensive rapid DNA analysis. Recently a group of researchers, from university of L'Aquila (Italy), discovered new wetting properties of graphene oxide thermally reduced in ultra-high vacuum up to 900 °C. They found a correlation between the surface chemical composition, the surface free energy and its polar and dispersive components, giving a rationale for the wetting properties of graphene oxide and reduced graphene oxide.
122:, the single-layer form of graphite. Graphene oxide sheets have been used to prepare strong paper-like materials, membranes, thin films, and composite materials. Initially, graphene oxide attracted substantial interest as a possible intermediate for the manufacture of graphene. The graphene obtained by reduction of graphene oxide still has many chemical and structural defects which is a problem for some applications but an advantage for some others. 824:(NA) objective during DLW process, 300 nm fabrication feature size on GO film has been realized, and therefore the minimum lens size has been shrunk down to 4.6 μm in diameter, which is the smallest planar micro lens and can only be realized with metasurface by FIB. Thereafter, the focal length can be reduced to as small as 0.8 μm, which would potentially increase the numerical aperture (NA) and the focusing resolution. 744: 31: 288: 545:. Due to the oxidation protocol, manifold defects already present in graphene oxide hamper the effectiveness of the reduction. Thus, the graphene quality obtained after reduction is limited by the precursor quality (graphene oxide) and the efficiency of the reducing agent. However, the conductivity of the graphene obtained by this route is below 10 S/cm, and the 966:
have toxic side effects in many biological applications, but more in-depth study of toxicity mechanisms is needed. According to the USA FDA, graphene, graphene oxide, and reduced graphene oxide elicit toxic effects both in vitro and in vivo. Graphene-family nanomaterials (GFN) are not approved by the
561:
Large amounts of graphene sheets may also be produced through thermal methods. For example, in 2006 a method was discovered that simultaneously exfoliates and reduces graphite oxide by rapid heating (>2000 °C/min) to 1050 °C. At this temperature, carbon dioxide is released as the oxygen
395:
It is also possible to modify the surface of graphene oxide to change its properties. Graphene oxide has unique surface properties which make it a very good surfactant material stabilizing various emulsion systems. Graphene oxide remains at the interface of the emulsions systems due to the difference
295:
Similar to water, graphite oxide easily incorporates other polar solvents, e.g. alcohols. However, intercalation of polar solvents occurs significantly different in Brodie and Hummers graphite oxides. Brodie graphite oxide is intercalated at ambient conditions by one monolayer of alcohols and several
208:
Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) in which the sole source is glucose, the process is safer, simpler, and more environmentally friendly compared to traditionally "top-down" method, in which strong oxidizers are involved. Another
836:
Photocatalytic water splitting is an artificial photosynthesis process in which water is dissociated into hydrogen (H2) and oxygen (O2), using artificial or natural light. Methods such as photocatalytic water splitting are currently being investigated to produce hydrogen as a clean source of energy.
723:
Graphene oxide has been demonstrated as a flexible free-standing battery anode material for room temperature lithium-ion and sodium-ion batteries. It is also being studied as a high surface area conducting agent in lithium-sulfur battery cathodes. The functional groups on graphene oxide can serve as
691:
creates "reduced graphene oxide" (r-GO) films that are completely impermeable to gases, liquids or strong chemicals greater than 100 nanometers thick. Glassware or copper plates covered with such a graphene "paint" can be used as containers for corrosive acids. Graphene-coated plastic films could be
651:
small ferrimagnetic nanoparticles and partially reduced graphene oxide functionalized with nitrogen atoms was successfully used to remove Cr(III) ion from water. The advantage of this nanocomposite is that it can be separated from water magnetically. One project layered carbon atoms in a honeycomb
606:
graphene filter. Lockheed claims the filter reduces the energy costs of reverse osmosis desalination by 99%. Lockheed claimed that the filter was 500 times thinner than the best filter then on the market, one thousand times stronger and requires 1% of the pressure. The product was not expected to be
582:
bacteria. Coupling of graphene oxide with biomolecules such as peptide, proteins and enzymes enhances its biomedical applications. Currently, researchers are focussed on reducing graphene oxide using non-toxic substances; tea and coffee powder, lemon extract and various plants based antioxidants are
278:
when exposed to water vapor or immersed in liquid water, resulting in a distinct increase of the inter-planar distance (up to 1.2 nm in saturated state). Additional water is also incorporated into the interlayer space due to high pressure induced effects. The maximal hydration state of graphite
815:
on a GO thin film has been realized recently using the DLW method. The distinct advantage of the GO flat lens is that phase modulation and amplitude modulation can be achieved simultaneously, which are attributed to the giant refractive index modulation and the variable linear optical absorption of
473:
One of the most intriguing and unique properties of GO is that its electrical and optical properties can be tuned dynamically by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods. The tuning of the optical nonlinearities has been demonstrated
386:
etc. are some common techniques used to characterize GO samples. Experimental results of graphite/graphene oxide have been analyzed by calculation in detail. Since the distribution of oxygen functionalities on GO sheets is polydisperse, fractionation methods can be used to characterize and separate
283:
O samples results in "pseudo-negative thermal expansion" and cooling below the freezing point of water results in de-insertion of one water monolayer and lattice contraction. Complete removal of water from the structure seems difficult since heating at 60–80 °C results in partial decomposition
265:
peaks, their number and relative intensity depending on the particular oxidation method used. Assignment of these peaks to certain carbon functionalization types is somewhat uncertain and still under debate. For example, one interpretation goes as follows: non-oxygenated ring contexts (284.8 eV),
853:
Graphene oxide is also being explored for its applications in hydrogen storage. Hydrogen molecules can be stored among the oxygen-based functional groups found throughout the sheet. This hydrogen storage capability can be further manipulated by modulating the interlayer distance between sheets, as
827:
The full-width at half-maximum (FWHM) of 320 nm at the minimum focal spot using a 650 nm input beam has been demonstrated experimentally, which corresponding to the effective NA of 1.24 (n=1.5), the largest NA of current micro lenses. Furthermore, ultra-broadband focusing capability from
714:
Graphene oxide has been used in DNA analysis applications. The large planar surface of graphene oxide allows simultaneous quenching of multiple DNA probes labeled with different dyes, providing the detection of multiple DNA targets in the same solution. Further advances in graphene oxide based DNA
461:
Nonlinear optical materials are of great importance for ultrafast photonics and optoelectronics. Recently, the giant optical nonlinearities of graphene oxide (GO) has proven useful for a number of applications. For example, the optical limiting of GO is indispensable in the protection of sensitive
217:
The structure and properties of graphite oxide depend on the particular synthesis method and degree of oxidation. It typically preserves the layer structure of the parent graphite, but the layers are buckled and the interlayer spacing is about two times larger (~0.7 nm) than that of graphite.
796:
The optical lens has been playing a critical role in almost all areas of science and technology since its invention about 3000 years ago. With the advances in micro- and nanofabrication techniques, continued miniaturization of the conventional optical lenses has always been requested for various
181:
Graphite oxides demonstrate considerable variation of properties depending on the degree of oxidation and the synthesis method. For example, the temperature point of explosive exfoliation is generally higher for graphite oxide prepared by the Brodie method compared to Hummers graphite oxide, the
549:
is between 0.1 and 10 cm/Vs. These values are much greater than the oxide's, but still a few orders of magnitude lower than those of pristine graphene. Recently, the synthetic protocol for graphite oxide was optimized and almost intact graphene oxide with a preserved carbon framework was
419:
Membranes prepared from graphite oxides (recently more often called "graphene oxide" membranes) are vacuum tight and impermeable to nitrogen and oxygen, but are permeable to water vapors. The membranes are also impermeable to "substances of lower molecular weight". Permeation of graphite and
627:
ions, which disrupt carbon bonds. Etching the result with an oxidizing solution produces a hole at each spot struck by a gallium ion. The length of time spent in the oxidizing solution determined average pore size. Pore density reached 5 trillion pores per square centimeter, while retaining
323:
Hummers graphite oxide is intercalated with two methanol or ethanol monolayers at ambient temperature. The interlayer distance of Hummers graphite oxide in an excess of liquid alcohols increases gradually upon temperature decrease, reaching 19.4 and 20.6 Å at 140 K for methanol and ethanol,
270:
calculation, goes as follows: C=C with defects such as functional groups and pentagons (283.6 eV), C=C (non-oxygenated ring contexts) (284.3 eV), spC-H in the basal plane and C=C with functional groups (285.0 eV), C=O and C=C with functional groups, C-O (286.5 eV), and O-C=O (288.3 eV).
234:
and for graphite oxides prepared using sulphuric acid (e.g. Hummers method) some impurity of sulphur is often found, for example in a form of organosulfate groups. The detailed structure is still not understood due to the strong disorder and irregular packing of the layers.
474:
during the laser-induced reduction process through the continuous increase of the laser irradiance, and four stages of different nonlinear activities have been discovered, which may serve as promising solid state materials for novel nonlinear functional devices. And metal
4111:
Francesco Perrozzi; Stefano Prezioso; Maurizio Donarelli; Federico Bisti; Patrizia De Marco; Sandro Santucci; Michele Nardone; Emanuele Treossi; Vincenzo Palermo; Luca Ottaviano (2013). "Use of Optical Contrast To Estimate the Degree of Reduction of Graphene Oxide".
619:
cannot pass through the membranes in humidity free conditions, but penetrates easily when exposed to humidity, whereas water vapor passes with no resistance. Dry laminates are vacuum-tight, but immersed in water, they act as molecular sieves, blocking some solutes.
387:
GO sheets on the basis of oxidation. Different synthesis methods give rise to different types of graphene oxide. Even different batches from similar oxidation methods can have differences in their properties due to variations in purification or quenching processes.
320:(DSC) is reversible; de-insertion of solvent monolayer is observed when sample is heated back from low temperatures. An additional methanol and ethanol monolayer is reversibly inserted into the structure of Brodie graphite oxide under high pressure conditions. 1858:
Szabó,†,‡, Tamás; Berkesi,§, Ottó; Forgó,‖, Péter; Josepovits,⊥, Katalin; Sanakis,✗, Yiannis; and, Dimitris Petridis,✗; Dékány*,†,○, Imre (2006-05-04). "Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides".
949:
Several typical mechanisms underlying graphene (oxide) nanomaterial's toxicity have been revealed, for instance, physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these mechanisms,
2245:
Kazemi, E (2016-01-15). "Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination".
178:, which is still widely used, often with some modifications. Largest monolayer GO with highly intact carbon framework and minimal residual impurity concentrations can be synthesized in inert containers using highly pure reactants and solvents. 1260:
Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.J.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D. (January 1999). "Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Size Graphite Oxide Sheets and Polycations".
1964:
Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. (2006). "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)".
562:
functionalities are removed and it explosively separates the sheets as it comes out. The temperature of reduction is important for the oxygen content of the final product, with higher degree of reduction for higher reduction temperatures.
427:
The interlayer distance of dried graphite oxides was reported as ~6–7 Å but in liquid water it increases up to 11–13 Å at room temperature. The lattice expansion becomes stronger at lower temperatures. The inter-layer distance in diluted
1659:
Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'Homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. (2006). "Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide".
610:
Another study showed that graphite oxide could be engineered to allow water to pass, but retain some larger ions. Narrow capillaries allow rapid permeation by mono- or bilayer water. Multilayer laminates have a structure similar to
3231:
Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; Lytken, O.; Steinrück, H. P.; Müller, P.; Hirsch, A. (2013). "Wet Chemical Synthesis of Graphene".
804:(as large as 10^-1), which is one order of magnitude larger than the current materials, between graphene oxide (GO) and reduced graphene oxide (rGO) have been demonstrated by dynamically manipulating its oxygen content using the 4507:
Di Santo, Riccardo; Digiacomo, Luca; Quagliarini, Erica; Capriotti, Anna Laura; Laganà, Aldo; Zenezini Chiozzi, Riccardo; Caputo, Damiano; Cascone, Chiara; Coppola, Roberto; Pozzi, Daniela; Caracciolo, Giulio (2020-05-25).
3837: 2388:
Marcano, Daniela C.; Kosynkin, Dmitry V.; Berlin, Jacob M.; Sinitskii, Alexander; Sun, Zhengzong; Slesarev, Alexander; Alemany, Lawrence B.; Lu, Wei; Tour, James M. (2010-08-24). "Improved Synthesis of Graphene Oxide".
412:
Graphite oxides absorb moisture in proportion to humidity and swell in liquid water. The amount of water absorbed by graphite oxides depends on the particular synthesis method and shows a strong temperature dependence.
291:
Exfoliation of graphite oxide at high temperature, screenshots from a video. Exfoliation results in tenfold increase of sample volume and formation of carbon powder with grains of few graphene layers thickness.
1333:
Butz, Benjamin; Dolle, Christian; Halbig, Christian E.; Spiecker, Erdmann; Eigler, Siegfried (2016-12-19). "Highly Intact and Pure Oxo-Functionalized Graphene: Synthesis and Electron-Beam-Induced Reduction".
2038:
Talyzin, A. V.; Solozhenko, V. L.; Kurakevych, O. O.; Szabó, T. S.; Dékány, I.; Kurnosov, A.; Dmitriev, V. (2008). "Colossal Pressure-Induced Lattice Expansion of Graphite Oxide in the Presence of Water".
652:
structure, forming a hexagon-shaped crystal that measured about 0.1 millimeters in width and length, with subnanometer holes. Later work increased the membrane size to on the order of several millimeters.
816:
GO during its reduction process, respectively. Due to the enhanced wavefront shaping capability, the lens thickness is pushed down to subwavelength scale (~200 nm), which is thinner than all current
682:
are impermeable under dry conditions. Exposed to water (or water vapor), they allow passage of molecules below a certain size. The films consist of millions of randomly stacked flakes, leaving nano-sized
3666:
Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. (2014). "Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes".
550:
obtained. Reduction of this almost intact graphene oxide performs much better and the mobility values of charge carriers exceeds 1000 cm/Vs for the best quality of flakes. Inspection with the
2485:
Kudin, Konstantin N.; Ozbas, Bulent; Schniepp, Hannes C.; Prud'homme, Robert K.; Aksay, Ilhan A.; Car, Roberto (2008-01-01). "Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets".
655:
Graphene attached to a polycarbonate support structure was initially effective at removing salt. However, defects formed in the graphene. Filling larger defects with nylon and small defects with
2978:
Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. (2007). "Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets".
304:) when liquid solvent is available in excess. Separation of graphite oxide layers is proportional to the size of alcohol molecule. Cooling of Brodie graphite oxide immersed in excess of liquid 4076:
Francesco Perrozzi; Salvatore Croce; Emanuele Treossi; Vincenzo Palermo; Sandro Santucci; Giulia Fioravanti; Luca Ottaviano (2014). "Reduction dependent wetting properties of graphene oxide".
3283:
Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Aksay, I. A. (2006). "Functionalized single graphene sheets derived from splitting graphite oxide".
436:, resulting in dispersion of graphite oxide into single-layered graphene oxide sheets in solution. Graphite oxide can be used as a cation exchange membrane for materials such as KCl, HCl, CaCl 2777:
Liu, Zhibo; Wang, Yan; Zhang, Xiaoliang; Xu, Yanfei; Chen, Yongsheng; Tian, Jianguo (January 12, 2009). "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes".
2098:
Talyzin, A. V.; Szabó, T. S.; DéKáNy, I.; Langenhorst, F.; Sokolov, P. S.; Solozhenko, V. L. (2009). "Nanocarbons by High-Temperature Decomposition of Graphite Oxide at Various Pressures".
1553:
Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. (2009). "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons".
801: 3614:
Gao, W.; Majumder, M.; Alemany, L. B.; Narayanan, T. N.; Ibarra, M. A.; Pradhan, B. K.; Ajayan, P. M. (2011). "Engineered Graphite Oxide Materials for Application in Water Purification".
962:(TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role in these pathways. Many experiments have shown that graphene (oxide) 1780:
Feicht, Patrick; Kunz, Daniel A.; Lerf, Anton; Breu, Josef (December 2014). "Facile and scalable one-step production of organically modified graphene oxide by a two-phase extraction".
820:(~ μm scale). The focusing intensities and the focal length can be controlled effectively by varying the laser powers and the lens sizes, respectively. By using an oil immersion high 3196:
Eda, G.; Ball, J.; Mattevi, C.; Acik, M.; Artiglia, L.; Granozzi, G.; Chabal, Y.; Anthopoulos, T. D.; Chhowalla, M. (2011). "Partially oxidized graphene as a precursor to graphene".
4452:
Maleki, Masomeh; Zarezadeh, Reza; Nouri, Mohammad; Sadigh, Aydin Raei; Pouremamali, Farhad; Asemi, Zatollah; Kafil, Hossein Samadi; Alemi, Forough; Yousefi, Bahman (2020-12-31).
554:
shows that the oxygen bonds distort the carbon layer, creating a pronounced intrinsic roughness in the oxide layers which persists after reduction. These defects also show up in
1438:
Feicht, Patrick; Siegel, Renée; Thurn, Herbert; Neubauer, Jens W.; Seuss, Maximilian; Szabó, Tamás; Talyzin, Alexandr V.; Halbig, Christian E.; Eigler, Siegfried (April 2017).
2816:; Chen, Xi; Gu, Min (May 7, 2014). "In Situ Third-Order Non-linear Responses During Laser Reduction of Graphene Oxide Thin Films Towards On-Chip Non-linear Photonic Devices". 1900:
Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. (2009). "Atomic and Electronic Structure of Graphene-Oxide".
1198:
Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation, Vacuum, Volume 182, December 2020, 109700, DOI:
800:
Recently, the excellent properties of newly discovered graphene oxide provide novel solutions to overcome the challenges of current planar focusing devices. Specifically,
1288:
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. (2010). "Improved Synthesis of Graphene Oxide".
5217: 420:
graphene oxide membranes by polar solvents is possible due to swelling of the graphite oxide structure. The membranes in swelled state are also permeable by gases, e.g.
5234: 182:
difference is up to 100 degrees with the same heating rates. Hydration and solvation properties of Brodie and Hummers graphite oxides are also remarkably different.
146:. He reported synthesis of "paper-like foils" with 0.05 mm thickness. In 1957 Hummers and Offeman developed a safer, quicker, and more efficient process called 854:
well as making changes to the pore sizes. Research in transition metal decoration on carbon sorbents to enhance hydrogen binding energy has led to experiments with
662:
In 2016 engineers developed graphene-based films powered by the sun that can filter dirty/salty water. Bacteria were used to produce a material consisting of two
4069: 2442:
Yamada, Y.; Yasuda, H.; Murota, K.; Nakamura, M.; Sodesawa, T.; Sato, S. (2013). "Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy".
1995:
Yamada, Y.; Yasuda, H.; Murota, K.; Nakamura, M.; Sodesawa, T.; Sato, S. (2013). "Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy".
933:. In September 2020, researchers at the Shanghai National Engineering Research Center for Nanotechnology in China filed a patent for use of graphene oxide in a 324:
respectively. The gradual expansion of the Hummers graphite oxide lattice upon cooling corresponds to insertion of at least two additional solvent monolayers.
3960: 526:
in 1962. In this early work the existence of monolayer reduced graphene oxide flakes was demonstrated. The contribution of Boehm was recently acknowledged by
347:(A) Image of fractionated GO, (B) XRD, (C) Raman, and (D) FTIR spectra of GO (black), more oxidized GOw fraction (blue), and less oxidized GOe fraction (red). 103:
bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.
2128:
Talyzin, A. V.; Sundqvist, B.; Szabó, T. S.; DéKáNy, I.; Dmitriev, V. (2009). "Pressure-Induced Insertion of Liquid Alcohols into Graphite Oxide Structure".
312:, acetone and dimethylformamide results in step-like insertion of an additional solvent monolayer and lattice expansion. The phase transition detected by 3424:
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. (2012). "Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors".
1062:"Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique" 643:
In 2015 a team created a graphene oxide tea that over the course of a day removed 95% of heavy metals in a water solution. A composite consisting of NiFe
2536:
Wu, Cheng-Ken; Wang, Guo-Jian; Dai, Jin-Feng (2013-05-01). "Controlled functionalization of graphene oxide through surface modification with acetone".
4164:
David, Lamuel; Singh, Gurpreet (2014-12-11). "Reduced Graphene Oxide Paper Electrode: Opposing Effect of Thermal Annealing on Li and Na Cyclability".
1617:
Tang, L.; Li, X.; Ji, R.; Teng, K. S.; Tai, G.; Ye, J.; Wei, C.; Lau, S. P. (2012). "Bottom-up synthesis of large-scale graphene oxide nanosheets".
3527:"Synthetic peptide (DP1) functionalized graphene oxide: A biocompatible nanoformulation with broad-spectrum antibacterial and antibiofilm activity" 2763: 1886: 327:
Graphite oxide exfoliates and decomposes when rapidly heated at moderately high temperatures (~280–300 °C) with formation of finely dispersed
4336:
Pei, Songfeng (December 2010). "Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids".
4677: 3022: 2339:"Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters" 3822: 2587:
Kim, Jaemyung; Cote, Laura J.; Kim, Franklin; Yuan, Wa; Shull, Kenneth R.; Huang, Jiaxing (2010-06-16). "Graphene Oxide Sheets at Interfaces".
209:
important advantage of the Tang-Lau method is the control of thickness, ranging from monolayer to multilayers, by adjusting growth parameters.
4009: 3729: 812: 3752: 1518:
You, S.; Luzan, S. M.; Szabó, T. S.; Talyzin, A. V. (2013). "Effect of synthesis method on solvation and exfoliation of graphite oxide".
3652: 5103: 4810: 4293:
Jung, Inhwa (November 1, 2008). "Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at "Low" Temperatures".
3556:
Khan, Junaid; Jaafar, Mariatti (November 2021). "Reduction efficiencies of natural substances for reduced graphene oxide synthesis".
5145: 5131: 565:
Exposing a film of graphite oxide to the laser of a LightScribe DVD has also revealed to produce quality graphene at a low cost.
355: 841:(a typical catalyst used in photocatalytic water splitting), graphene oxide nanocomposites have been shown to exhibit increased 3751:
Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. (2014).
416:
Brodie graphite oxide selectively absorbs methanol from water/methanol mixtures in a certain range of methanol concentrations.
3905: 3069:
Cote, L. J.; Cruz-Silva, R.; Huang, J. (2009). "Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite".
2877:
Fakhri, P (2016). "Nonlocal nonlinear optical response of graphene oxide- Au nanoparticles dispersed in different solvents".
379: 1710:
Pandey, D.; Reifenberger, R.; Piner, R. (2008). "Scanning probe microscopy study of exfoliated oxidized graphene sheets".
448:
solutions. The membranes were permeable by large alkali ions as they are able to penetrate between graphene oxide layers.
5097: 4769: 4213: 3925:"Removal of Cr (III) Ions from Water Using Magnetically Separable Graphene-Oxide-Decorated Nickel Ferrite Nanoparticles" 623:
A third project produced graphene sheets with subnanoscale (0.40 ± 0.24 nm) pores. The graphene was bombarded with
783: 470:) is crucial for applications including all-optical switching, signal regeneration, and fast optical communications. 317: 4372:"Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing" 5273: 5117: 4698:
Ou, Lingling; Song, Bin; Liang, Huimin; Liu, Jia; Feng, Xiaoli; Deng, Bin; Sun, Ting; Shao, Longquan (2016-10-31).
4569:"Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity" 1823:
Lerf, Anton; He, Heyong; Forster, Michael; Klinowski, Jacek (June 1998). "Structure of Graphite Oxide Revisited‖".
371: 363: 255: 4199: 3369:
Sengupta, Iman; Chakraborty, Samarshi; Talukdar, Monikangkana; Pal, Surjya K.; Chakraborty, Sudipto (2018-12-14).
490:
Graphite oxide has attracted much interest as a possible route for the large-scale production and manipulation of
424:. Graphene oxide sheets are chemically reactive in liquid water, leading them to acquire a small negative charge. 2922:"Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum" 910:. Due to its unique behaviour in biological environments, GO has also been proposed as a novel material in early 761: 3836:
O'Hern, S. C.; Boutilier, M. S. H.; Idrobo, J. C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. (2014).
955: 5187: 4803: 1440:"Systematic evaluation of different types of graphene oxide in respect to variations in their in-plane modulus" 1439: 765: 640:
at pore edges. After longer oxidation periods, sheets were permeable to salt but not larger organic molecules.
17: 239: 1142:
Wei, X.-D.; Mao, L.; Soler-Crespo, R. A.; Paci, J. T.; Huang, J.-X.; Nguyen, S. T.; Espinoza, H. D. (2015).
4371: 1144:"Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism" 375: 2708:
You, S.; Yu, J.; Sundqvist, B.; Belyaeva, L. A.; Avramenko, N. V.; Korobov, M. V.; Talyzin, A. V. (2013).
510:, graphite oxide disperses readily in water, breaking up into macroscopic flakes, mostly one layer thick. 1396:"Fractionation and Characterization of Graphene Oxide by Oxidation Extent Through Emulsion Stabilization" 959: 4567:
Xu, Ligeng; Xiang, Jian; Liu, Ye; Xu, Jun; Luo, Yinchan; Feng, Liangzhu; Liu, Zhuang; Peng, Rui (2016).
5159: 3155:
GóMez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. (2009).
494:, a material with extraordinary electronic properties. Graphite oxide itself is an insulator, almost a 383: 4669: 3030: 4796: 3328:
Lavin-Lopez, M.P.; Paton-Carrero, A.; Sanchez-Silva, L.; Valverde, J.L.; Romero, A. (December 2017).
267: 4453: 3985: 3297: 3083: 2403: 1922: 1674: 1302: 1061: 279:
oxide in liquid water corresponds to insertion of 2-3 water monolayers. Cooling the graphite oxide/H
1745:
Eigler, S.; Dotzer, C.; Hof, F.; Bauer, W.; Hirsch, A. (2013). "Sulfur Species in Graphene Oxide".
1099:
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. (2010). "The chemistry of graphene oxide".
4110: 4035:
He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. (2010).
995:
He, H.; Klinowski, J.; Forster, M.; Lerf, A. (1998). "A new structural model for graphite oxide".
242:
shows the presence of local regions where oxygen atoms are arranged in a rectangular pattern with
4623: 4075: 3838:"Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes" 3526: 3329: 754: 633: 551: 499: 466:
can be used for pulse compression, mode-locking and Q-switching. Also, the nonlinear refraction (
367: 3292: 3078: 2398: 1917: 1669: 1297: 700: 515: 171: 4510:"Personalized Graphene Oxide-Protein Corona in the Human Plasma of Pancreatic Cancer Patients" 2337:
Farivar, Farzaneh; Lay Yap, Pei; Karunagaran, Ramesh Udayashankar; Losic, Dusan (2021-04-27).
4140: 3481: 3044: 2757: 1880: 4998: 4700:"Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms" 4622:
Cao, Wanjun; He, Lin; Cao, Weidong; Huang, Xiaobing; Jia, Kun; Dai, Jingying (2020-07-11).
4580: 4345: 4302: 4240: 4085: 3852: 3774: 3686: 3565: 3433: 3382: 3241: 3168: 2987: 2933: 2886: 2825: 2786: 2656: 2545: 2494: 2451: 2301: 2004: 1909: 1789: 1719: 1562: 1527: 1454: 1407: 1224: 1155: 1004: 930: 926: 805: 708: 463: 205:, a few atoms wide, with the edges "capped" by oxygen atoms (=O) or hydroxyl groups (-OH). 202: 4755: 4750: 3599:
E.S.Bober (1970). "Final report on reverse osmosis membranes containing graphitic oxide".
8: 5308: 5068: 5054: 5040: 5012: 4269: 2945: 2288:
Kumar, Harish V.; Huang, Kevin Y. -S.; Ward, Shawn P.; Adamson, Douglas H. (2017-05-01).
934: 842: 4584: 4349: 4306: 4244: 4089: 3856: 3778: 3690: 3569: 3525:
Joshi, Shubhi; Chadha, Jatin; Harjai, Kusum; Verma, Gaurav; Saini, Avneet (March 2024).
3437: 3386: 3245: 3172: 3157:"Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets" 2991: 2937: 2921: 2898: 2890: 2829: 2790: 2660: 2549: 2498: 2455: 2305: 2008: 1913: 1793: 1723: 1566: 1531: 1458: 1411: 1228: 1159: 1008: 5173: 5026: 4984: 4959: 4953: 4949: 4734: 4699: 4651: 4544: 4509: 4489: 4454:"Graphene Oxide: A Promising Material for Regenerative Medicine and Tissue Engineering" 4429: 4398: 4058: 3886: 3798: 3764: 3710: 3676: 3581: 3502: 3476: 3457: 3406: 3265: 3213: 2949: 2902: 2859: 2685: 2646: 2634: 2569: 2467: 2020: 1943: 1596: 1242: 1176: 1143: 1124: 1081: 951: 875: 821: 555: 511: 359: 275: 147: 139: 135: 3753:"New multilayer graphene structure allows 'ultraprecise,' 'ultrafast' water filtering" 2744:
H.P.Boehm, A.Clauss, U Hoffmann (1960). "Graphite oxide and its membrane properties".
2206:"Enormous Lattice Expansion of Hummers Graphite Oxide in Alcohols at Low Temperatures" 1016: 862:
anchored to hydroxyl groups, allowing for the binding of multiple hydrogen molecules.
5313: 5287: 5093: 4899: 4739: 4721: 4655: 4643: 4604: 4596: 4549: 4531: 4493: 4481: 4473: 4434: 4416: 4318: 4200:"Research aims to improve rechargeable batteries by focusing on graphene oxide paper" 4181: 4062: 3878: 3790: 3702: 3631: 3585: 3507: 3449: 3410: 3398: 3310: 3257: 3137: 3096: 3003: 2953: 2906: 2863: 2851: 2690: 2672: 2612: 2604: 2561: 2518: 2510: 2424: 2416: 2370: 2319: 2263: 2227: 2186: 2145: 2056: 1935: 1840: 1805: 1762: 1687: 1588: 1470: 1359: 1351: 1315: 1181: 1116: 546: 523: 351: 313: 297: 218:
Strictly speaking "oxide" is an incorrect but historically established name. Besides
4229:"Graphene oxide: A promising nanomaterial for energy and environmental applications" 4037:"A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis" 3823:"Selective nanopores in graphene dramatically improve desalination and purification" 3802: 3714: 3461: 3269: 3217: 2573: 2471: 2024: 1128: 1085: 266:
C-O (286.2 eV), C=O (287.8 eV) and O-C=O (289.0 eV). Another interpretation, using
4924: 4879: 4869: 4729: 4711: 4670:"CN112220919 Nano coronavirus recombinant vaccine taking graphene oxide as carrier" 4635: 4588: 4539: 4521: 4465: 4424: 4406: 4353: 4310: 4248: 4173: 4121: 4093: 4048: 4010:"A new impermeable form of graphene oxide could be the ultimate protective coating" 3936: 3890: 3868: 3860: 3782: 3694: 3623: 3573: 3538: 3497: 3489: 3441: 3390: 3349: 3341: 3302: 3249: 3205: 3176: 3127: 3088: 2995: 2941: 2894: 2841: 2833: 2794: 2721: 2680: 2664: 2596: 2553: 2502: 2459: 2408: 2360: 2350: 2309: 2255: 2217: 2176: 2137: 2107: 2048: 2012: 1974: 1947: 1927: 1868: 1832: 1797: 1754: 1727: 1679: 1634: 1626: 1600: 1578: 1570: 1535: 1497: 1462: 1415: 1343: 1307: 1270: 1232: 1171: 1163: 1108: 1073: 1042: 1012: 911: 890:. Its physiochemical properties allow for a structure to regulate the behaviour of 879: 637: 538: 429: 332: 328: 243: 198: 107: 3475:
Lehner, Benjamin A. E.; Schmieden, Dominik T.; Meyer, Anne S. (22 February 2017).
2710:"Selective Intercalation of Graphite Oxide by Methanol in Water/Methanol Mixtures" 2259: 1077: 222:
groups (bridging oxygen atoms), other functional groups found experimentally are:
4970: 4889: 4859: 4833: 4639: 4357: 4253: 4228: 4097: 2635:"Structure and chemistry of graphene oxide in liquid water from first principles" 1801: 1539: 1466: 1420: 1395: 883: 838: 817: 688: 596: 404: 4214:"Flexible paper electrodes with ultra-high loading for lithium-sulfur batteries" 3542: 3370: 3330:"Influence of the reduction strategy in the synthesis of reduced graphene oxide" 1212: 541:
for a few seconds, or by exposure to a strong pulse of light, such as that of a
533:
Partial reduction can be achieved by treating the suspended graphene oxide with
5253: 4910: 4838: 4624:"Recent progress of graphene oxide as a potential vaccine carrier and adjuvant" 3923:
Ortiz- Quiñonez, Jose Luis; Cancino- Gordillo, Francisco; Pal, Umapada (2023).
3577: 2668: 2314: 2289: 1731: 1199: 163: 53: 45: 4716: 3493: 3345: 2557: 2463: 2074: 2016: 5302: 5258: 4725: 4600: 4535: 4526: 4477: 4420: 4185: 3402: 3327: 2676: 2608: 2565: 2514: 2420: 2374: 1844: 1809: 1501: 1488:
Boehm, H. -P.; Scholz, W. (1965). "Der "Verpuffungspunkt" des Graphitoxids".
1474: 1355: 963: 922: 907: 899: 887: 733: 663: 537:
hydrate at 100 °C for 24 hours, by exposing graphene oxide to hydrogen
518:
of graphene flakes. It was argued that the first experimental observation of
495: 151: 3786: 3698: 3445: 3114:
Eigler, S.; Grimm, S.; Enzelberger-Heim, M.; Müller, P.; Hirsch, A. (2013).
2633:
Mouhat, Félix; Coudert, François-Xavier; Bocquet, Marie-Laure (2020-03-26).
870:
Graphene oxide has been studied for its promising uses in a wide variety of
5281: 5229: 4743: 4647: 4608: 4553: 4485: 4438: 4322: 4053: 4036: 3941: 3924: 3882: 3794: 3706: 3635: 3511: 3453: 3314: 3261: 3253: 3141: 3100: 3007: 2855: 2837: 2694: 2616: 2522: 2428: 2323: 2267: 2231: 2190: 2165:"Phase Transitions in Graphite Oxide Solvates at Temperatures Near Ambient" 2149: 2060: 2052: 1939: 1766: 1758: 1691: 1592: 1394:
Kumar, Harish V.; Woltornist, Steven J.; Adamson, Douglas H. (March 2016).
1363: 1347: 1319: 1237: 1185: 1120: 871: 592: 479: 475: 343: 4469: 1583: 687:
between them. Closing these nanocapillaries using chemical reduction with
5277: 5263: 3394: 2846: 1033:
Hummers, W. S.; Offeman, R. E. (1958). "Preparation of Graphitic Oxide".
704: 684: 542: 467: 246:
0.27 nm × 0.41 nm. The edges of each layer are terminated with
143: 3873: 3371:"Thermal reduction of graphene oxide: How temperature influences purity" 2290:"Altering and investigating the surfactant properties of graphene oxide" 1574: 1046: 4592: 4568: 4411: 3354: 3209: 3132: 3115: 2813: 2365: 1639: 1630: 1167: 938: 768: in this section. Unsourced material may be challenged and removed. 527: 507: 111: 4314: 4177: 4125: 3864: 3627: 3306: 3181: 3156: 3092: 2999: 2798: 2726: 2709: 2600: 2506: 2412: 2222: 2205: 2181: 2164: 2141: 2111: 1931: 1836: 1683: 1311: 1274: 1246: 703:
graphene oxide flakes can also be sifted out of the dispersion (as in
5268: 4819: 4506: 4141:"Graphene paper anodes pave way for faster charging Li-ion batteries" 3986:"Graphene-based sheets make dirty water drinkable simply and cheaply" 2355: 2338: 1978: 1872: 1857: 1112: 976: 891: 859: 667: 603: 534: 100: 3730:"Lockheed testing nanotech filters for U.S. oil industry wastewater" 743: 3922: 3653:"Can Graphene Oxide Filters Unlock Our Most Abundant Water Source?" 2651: 1552: 855: 659:
metal followed by a layer of oxide restored the filtration effect.
573: 519: 491: 433: 305: 251: 247: 227: 223: 119: 88: 84: 80: 3769: 3681: 3230: 2163:
You, S.; Luzan, S.; Yu, J.; Sundqvist, B.; Talyzin, A. V. (2012).
599:
beginning in the 1960s. In 2011 additional research was released.
3113: 918: 903: 656: 629: 624: 578: 503: 309: 301: 287: 231: 219: 38: 30: 3154: 2977: 2484: 2037: 1259: 894:, with the potential to assist in the intracellular delivery of 396:
in surface energy of the two phases separated by the interface.
2743: 616: 615:, which provides mechanical strength in water free conditions. 421: 131: 76: 72: 3368: 2387: 2336: 1287: 4788: 3835: 2097: 2075:"Graphite oxide exfoliation by heating: exlplosion with fire" 1899: 612: 96: 3613: 2127: 92: 4451: 2441: 1994: 718: 114:
in polar solvents to yield monomolecular sheets, known as
4754: This article incorporates text available under the 4270:"Reduced Graphene Oxide - What Is It? How Is It Created?" 1437: 1217:
Philosophical Transactions of the Royal Society of London
895: 632:
transport after short oxidation periods, consistent with
238:
Graphene oxide layers are about 1.1 ± 0.2 nm thick.
4399:"Current applications of graphene oxide in nanomedicine" 1098: 3750: 3665: 3423: 3282: 1709: 1658: 1332: 4397:
An, Seong Soo; Wu, Si-Ying; Hulme, John (2015-08-26).
3524: 3477:"A Straightforward Approach for 3D Bacterial Printing" 2707: 1822: 1393: 1141: 994: 2287: 1963: 3474: 2632: 1744: 1517: 906:
that could allow for the repair and regeneration of
3068: 2203: 2162: 34:Structure proposed in 1998 with functional groups. 3195: 2093: 2091: 1779: 1490:Zeitschrift für Anorganische und Allgemeine Chemie 678:Optically transparent, multilayer films made from 1433: 1431: 692:used in medical packaging to improve shelf life. 568:Graphene oxide has also been reduced to graphene 478:can greatly enhance the optical nonlinearity and 5300: 530:, the Nobel Prize winner for graphene research. 3148: 3116:"Graphene oxide: Efficiency of reducing agents" 2204:You, S.; Sundqvist, B.; Talyzin, A. V. (2013). 2088: 462:instruments from laser-induced damage. And the 138:in 1859 by treating graphite with a mixture of 4697: 3906:"Chá de grafeno extrai metais pesados da água" 2811: 2776: 2586: 2197: 1428: 1032: 4804: 4621: 4514:Frontiers in Bioengineering and Biotechnology 1959: 1957: 106:The bulk material spontaneously disperses in 4566: 4267: 2762:: CS1 maint: multiple names: authors list ( 2739: 2737: 1885:: CS1 maint: multiple names: authors list ( 1616: 1200:https://doi.org/10.1016/j.vacuum.2020.109700 1066:Journal of Dispersion Science and Technology 707:) and pressed to make an exceedingly strong 4034: 3647: 3645: 3592: 3107: 2123: 2121: 1654: 1652: 1650: 1513: 1511: 1487: 4811: 4797: 4163: 3555: 3224: 1954: 917:It has also been explored for its uses in 666:layers. The lower layer contains pristine 628:structural integrity. The pores permitted 201:lengthwise, resulting in microscopic flat 125: 4733: 4715: 4543: 4525: 4428: 4410: 4396: 4252: 4052: 3940: 3872: 3768: 3727: 3680: 3598: 3501: 3353: 3296: 3180: 3131: 3082: 2845: 2734: 2725: 2684: 2650: 2535: 2402: 2364: 2354: 2313: 2221: 2180: 2169:The Journal of Physical Chemistry Letters 1990: 1988: 1921: 1705: 1703: 1701: 1673: 1638: 1582: 1419: 1301: 1236: 1175: 784:Learn how and when to remove this message 274:Graphite oxide is hydrophilic and easily 83:in variable ratios, obtained by treating 4674:World Intellectual Property Organization 4138: 3744: 3642: 3071:Journal of the American Chemical Society 3064: 3062: 3020: 3014: 2973: 2971: 2969: 2967: 2965: 2963: 2589:Journal of the American Chemical Society 2294:Journal of Colloid and Interface Science 2156: 2130:Journal of the American Chemical Society 2118: 1738: 1647: 1546: 1508: 1389: 1387: 1385: 1383: 1381: 1379: 1377: 1375: 1373: 1035:Journal of the American Chemical Society 602:In 2013 Lockheed Martin announced their 403: 342: 286: 29: 27:Compound of carbon, oxygen, and hydrogen 3983: 3958: 3903: 3189: 2919: 2435: 2041:Angewandte Chemie International Edition 2031: 1893: 1336:Angewandte Chemie International Edition 719:Flexible rechargeable battery electrode 485: 456: 14: 5301: 4770:"Scientific Publications by FDA Staff" 4268:De La Fuente, Jesus (September 2018). 3728:Alexander, David (February 20, 2015). 3616:ACS Applied Materials & Interfaces 2876: 2244: 1985: 1698: 1210: 1204: 1135: 1028: 1026: 727: 4792: 4403:International Journal of Nanomedicine 3954: 3952: 3059: 2960: 2628: 2626: 2283: 2281: 2279: 2277: 1612: 1610: 1481: 1370: 1092: 1059: 865: 586: 390: 130:Graphite oxide was first prepared by 4292: 3023:"Boehm's 1961 isolation of graphene" 831: 766:adding citations to reliable sources 737: 695: 399: 5098:Ethylenetetracarboxylic dianhydride 4335: 4166:The Journal of Physical Chemistry C 4114:The Journal of Physical Chemistry C 4104: 3285:The Journal of Physical Chemistry B 2714:The Journal of Physical Chemistry C 2100:The Journal of Physical Chemistry C 1825:The Journal of Physical Chemistry B 1662:The Journal of Physical Chemistry B 1281: 1023: 848: 802:giant refractive index modification 338: 24: 4226: 4028: 3959:Majcher, Kristin (June 18, 2015). 3949: 2746:J. Chim. Phys. Rev. Gén. Colloïdes 2623: 2274: 1607: 1213:"On the Atomic Weight of Graphite" 110:solutions or can be dispersed by 25: 5325: 4139:Coxworth, Ben (August 27, 2012). 591:Graphite oxides were studied for 318:differential scanning calorimetry 284:and degradation of the material. 4749: 4405:. 10 Spec Iss (Spec Iss): 9–24. 3984:Jeffrey, Colin (July 27, 2016). 742: 256:X-ray photoelectron spectroscopy 4762: 4691: 4680:from the original on 2022-05-09 4662: 4615: 4560: 4500: 4445: 4390: 4364: 4329: 4286: 4261: 4220: 4206: 4192: 4157: 4132: 4002: 3977: 3916: 3897: 3815: 3721: 3607: 3549: 3518: 3468: 3417: 3362: 3321: 3276: 3037: 2913: 2870: 2805: 2770: 2701: 2580: 2529: 2478: 2381: 2330: 2238: 2067: 1851: 1816: 1773: 1326: 967:USA FDA for human consumption. 956:transforming growth factor-beta 811:As a result, a novel ultrathin 753:needs additional citations for 451: 408:Graphene oxide in liquid water. 258:shows the presence of several C 4818: 3961:"Graphene Desalination Update" 3198:Journal of Materials Chemistry 2946:10.1088/1674-1056/25/11/118102 1967:Journal of Materials Chemistry 1619:Journal of Materials Chemistry 1253: 1192: 1053: 988: 514:of these flakes would yield a 13: 1: 5247:Compounds derived from oxides 4704:Particle and Fibre Toxicology 4041:Advanced Functional Materials 3655:. Singularity Hub. 2014-03-11 3375:Journal of Materials Research 3021:Sprinkle, Mike (2009-12-07). 2899:10.1088/2040-8978/18/1/015502 2260:10.1016/j.talanta.2015.10.033 1747:Chemistry: A European Journal 1078:10.1080/01932691.2016.1234387 1017:10.1016/S0009-2614(98)00144-4 982: 506:of 10 V. However, being 502:between 1 and 5×10 S/cm at a 240:Scanning tunneling microscopy 4640:10.1016/j.actbio.2020.06.009 4358:10.1016/j.carbon.2010.08.006 4254:10.1016/j.nanoen.2015.07.014 4098:10.1016/j.carbon.2014.05.052 3558:Journal of Materials Science 2538:Journal of Materials Science 2444:Journal of Materials Science 1997:Journal of Materials Science 1802:10.1016/j.carbon.2014.08.061 1540:10.1016/j.carbon.2012.09.018 1467:10.1016/j.carbon.2016.12.065 1421:10.1016/j.carbon.2015.10.083 212: 7: 3543:10.1016/j.flatc.2024.100626 970: 960:tumor necrosis factor-alpha 944: 10: 5330: 4227:Li, Fen (September 2015). 3601:U.S. Dept. of the Interior 3578:10.1007/s10853-021-06492-y 3334:Advanced Powder Technology 2669:10.1038/s41467-020-15381-y 2315:10.1016/j.jcis.2017.01.043 1732:10.1016/j.susc.2008.02.025 937:under development against 925:, including as a dual-use 731: 673: 384:Thermogravimetric analysis 197:has been used to cut open 5246: 5205: 4852: 4826: 4717:10.1186/s12989-016-0168-y 3929:ACS Applied Nanomaterials 3494:10.1021/acssynbio.6b00395 3346:10.1016/j.apt.2017.09.032 2558:10.1007/s10853-012-7131-6 2464:10.1007/s10853-013-7630-0 2017:10.1007/s10853-013-7630-0 268:density functional theory 4527:10.3389/fbioe.2020.00491 3904:PÚBLICO (15 July 2015). 1502:10.1002/zaac.19653350107 1101:Chemical Society Reviews 997:Chemical Physics Letters 845:and quantum efficiency. 636:from negatively charged 3787:10.1126/science.1245711 3699:10.1126/science.1245711 3446:10.1126/science.1216744 3120:Chemical Communications 3045:"Letters to the Editor" 2779:Applied Physics Letters 874:applications including 634:electrostatic repulsion 552:atomic force microscope 185:Recently a mixture of H 126:History and preparation 95:for resolving of extra 4774:www.accessdata.fda.gov 4054:10.1002/adfm.200901639 3942:10.1021/acsanm.3c03618 3254:10.1002/adma.201300155 2838:10.1002/adma.201304681 2053:10.1002/anie.200802860 1861:Chemistry of Materials 1759:10.1002/chem.201300387 1348:10.1002/anie.201608377 1263:Chemistry of Materials 1238:10.1098/rstl.1859.0013 1211:Brodie, B. C. (1859). 576:pattern of engineered 409: 348: 331:, somewhat similar to 292: 172:potassium permanganate 63:(GO), formerly called 57: 4470:10.1515/bmc-2020-0017 4458:Biomolecular Concepts 2639:Nature Communications 2077:. YouTube. 2011-02-03 1148:Nature Communications 607:released until 2020. 407: 346: 296:other solvents (e.g. 290: 150:, using a mixture of 33: 4378:. September 22, 2015 4016:. September 19, 2014 3395:10.1557/jmr.2018.338 931:biomedical materials 806:direct laser writing 762:improve this article 709:graphene oxide paper 498:, with differential 486:Graphene manufacture 464:saturable absorption 457:Optical nonlinearity 4585:2016Nanos...8.3785X 4350:2010Carbo..48.4466P 4307:2008NanoL...8.4283J 4245:2015NEne...16..488L 4216:. October 20, 2014. 4172:(49): 28401–28408. 4090:2014Carbo..77..473P 3857:2014NanoL..14.1234O 3779:2014Sci...343..752J 3691:2014Sci...343..752J 3570:2021JMatS..5618477K 3564:(33): 18477–18492. 3438:2012Sci...335.1326E 3432:(6074): 1326–1330. 3387:2018JMatR..33.4113S 3246:2013AdM....25.3583E 3173:2009NanoL...9.2206G 3077:(31): 11027–11032. 2992:2007NanoL...7.3499G 2938:2016ChPhB..25k8102O 2920:Omidvar, A (2016). 2891:2016JOpt...18a5502F 2830:2014AdM....26.2699Z 2791:2009ApPhL..94b1902L 2661:2020NatCo..11.1566M 2550:2013JMatS..48.3436W 2499:2008NanoL...8...36K 2456:2013JMatS..48.8171Y 2306:2017JCIS..493..365K 2136:(51): 18445–18449. 2009:2013JMatS..48.8171Y 1914:2009NanoL...9.1058M 1794:2014Carbo..80..229F 1724:2008SurSc.602.1607P 1575:10.1038/nature07872 1567:2009Natur.458..872K 1532:2013Carbo..52..171Y 1459:2017Carbo.114..700F 1412:2016Carbo..98..491K 1342:(51): 15771–15774. 1229:1859RSPT..149..249B 1160:2015NatCo...6.8029W 1060:Sadri, Rad (2017). 1047:10.1021/ja01539a017 1009:1998CPL...287...53H 952:toll-like receptors 935:recombinant vaccine 843:hydrogen production 728:Graphene oxide lens 558:of graphene oxide. 482:of graphene oxide. 203:ribbons of graphene 71:, is a compound of 5288:Peroxydicarbonates 4954:1,3-Dioxetanedione 4950:1,2-Dioxetanedione 4628:Acta Biomaterialia 4593:10.1039/C5NR09208F 4412:10.2147/IJN.S88285 3234:Advanced Materials 3210:10.1039/C1JM11266J 3133:10.1039/C3CC43612H 3055:(1). January 2010. 2818:Advanced Materials 1631:10.1039/C2JM15944A 1168:10.1038/ncomms9029 876:tissue engineering 866:Precision medicine 822:numerical aperture 587:Water purification 512:Chemical reduction 410: 391:Surface properties 349: 293: 140:potassium chlorate 136:Benjamin C. Brodie 58: 5296: 5295: 5094:Cyclohexanehexone 4344:(15): 4466–4474. 4315:10.1021/nl8019938 4301:(12): 4283–4287. 4274:www.graphenea.com 4178:10.1021/jp5080847 4126:10.1021/jp3069738 3965:Technology Review 3865:10.1021/nl404118f 3763:(6172): 752–754. 3628:10.1021/am200300u 3381:(23): 4113–4122. 3340:(12): 3195–3203. 3307:10.1021/jp060936f 3240:(26): 3583–3587. 3182:10.1021/nl901209z 3126:(67): 7391–7393. 3093:10.1021/ja902348k 3000:10.1021/nl072090c 2986:(11): 3499–3503. 2926:Chinese Physics B 2879:Journal of Optics 2824:(17): 2699–2703. 2799:10.1063/1.3068498 2727:10.1021/jp312756w 2601:10.1021/ja102777p 2595:(23): 8180–8186. 2507:10.1021/nl071822y 2413:10.1021/nn1006368 2223:10.1021/nn3051105 2182:10.1021/jz300162u 2142:10.1021/ja907492s 2112:10.1021/jp9016272 1932:10.1021/nl8034256 1867:(11): 2740–2749. 1837:10.1021/jp9731821 1831:(23): 4477–4482. 1684:10.1021/jp060936f 1668:(17): 8535–8539. 1561:(7240): 872–876. 1312:10.1021/nn1006368 1275:10.1021/cm981085u 832:Energy conversion 818:dielectric lenses 794: 793: 786: 705:paper manufacture 696:Related materials 638:functional groups 524:Hanns-Peter Boehm 400:Relation to water 314:X-ray diffraction 298:dimethylformamide 16:(Redirected from 5321: 5197: 5183: 5169: 5155: 5141: 5127: 5113: 5091: 5078: 5064: 5050: 5036: 5022: 5008: 4994: 4980: 4966: 4947: 4934: 4920: 4906: 4895: 4885: 4875: 4865: 4844: 4813: 4806: 4799: 4790: 4789: 4784: 4783: 4781: 4780: 4766: 4760: 4753: 4747: 4737: 4719: 4695: 4689: 4688: 4686: 4685: 4666: 4660: 4659: 4619: 4613: 4612: 4579:(6): 3785–3795. 4564: 4558: 4557: 4547: 4529: 4504: 4498: 4497: 4449: 4443: 4442: 4432: 4414: 4394: 4388: 4387: 4385: 4383: 4368: 4362: 4361: 4333: 4327: 4326: 4290: 4284: 4283: 4281: 4280: 4265: 4259: 4258: 4256: 4224: 4218: 4217: 4210: 4204: 4203: 4196: 4190: 4189: 4161: 4155: 4154: 4152: 4151: 4136: 4130: 4129: 4108: 4102: 4101: 4073: 4067: 4066: 4056: 4032: 4026: 4025: 4023: 4021: 4006: 4000: 3999: 3997: 3996: 3981: 3975: 3974: 3972: 3971: 3956: 3947: 3946: 3944: 3920: 3914: 3913: 3901: 3895: 3894: 3876: 3842: 3833: 3831: 3830: 3819: 3813: 3812: 3810: 3809: 3772: 3748: 3742: 3741: 3739: 3737: 3725: 3719: 3718: 3684: 3663: 3661: 3660: 3649: 3640: 3639: 3611: 3605: 3604: 3596: 3590: 3589: 3553: 3547: 3546: 3522: 3516: 3515: 3505: 3488:(7): 1124–1130. 3482:ACS Synth. Biol. 3472: 3466: 3465: 3421: 3415: 3414: 3366: 3360: 3359: 3357: 3325: 3319: 3318: 3300: 3280: 3274: 3273: 3228: 3222: 3221: 3193: 3187: 3186: 3184: 3152: 3146: 3145: 3135: 3111: 3105: 3104: 3086: 3066: 3057: 3056: 3041: 3035: 3034: 3029:. Archived from 3018: 3012: 3011: 2975: 2958: 2957: 2917: 2911: 2910: 2874: 2868: 2867: 2849: 2812:Zheng, Xiaorui; 2809: 2803: 2802: 2774: 2768: 2767: 2761: 2753: 2741: 2732: 2731: 2729: 2705: 2699: 2698: 2688: 2654: 2630: 2621: 2620: 2584: 2578: 2577: 2544:(9): 3436–3442. 2533: 2527: 2526: 2482: 2476: 2475: 2439: 2433: 2432: 2406: 2397:(8): 4806–4814. 2385: 2379: 2378: 2368: 2358: 2356:10.3390/c7020041 2334: 2328: 2327: 2317: 2285: 2272: 2271: 2242: 2236: 2235: 2225: 2216:(2): 1395–1399. 2201: 2195: 2194: 2184: 2160: 2154: 2153: 2125: 2116: 2115: 2095: 2086: 2085: 2083: 2082: 2071: 2065: 2064: 2035: 2029: 2028: 1992: 1983: 1982: 1979:10.1039/b512799h 1961: 1952: 1951: 1925: 1908:(3): 1058–1063. 1897: 1891: 1890: 1884: 1876: 1873:10.1021/cm060258 1855: 1849: 1848: 1820: 1814: 1813: 1777: 1771: 1770: 1742: 1736: 1735: 1707: 1696: 1695: 1677: 1656: 1645: 1644: 1642: 1614: 1605: 1604: 1586: 1550: 1544: 1543: 1515: 1506: 1505: 1485: 1479: 1478: 1444: 1435: 1426: 1425: 1423: 1391: 1368: 1367: 1330: 1324: 1323: 1305: 1296:(8): 4806–4814. 1285: 1279: 1278: 1257: 1251: 1250: 1240: 1208: 1202: 1196: 1190: 1189: 1179: 1139: 1133: 1132: 1113:10.1039/b917103g 1096: 1090: 1089: 1072:(9): 1302–1310. 1057: 1051: 1050: 1030: 1021: 1020: 992: 912:cancer diagnosis 902:, and synthetic 880:cancer treatment 849:Hydrogen storage 789: 782: 778: 775: 769: 746: 738: 522:was reported by 339:Characterization 333:activated carbon 329:amorphous carbon 244:lattice constant 199:carbon nanotubes 99:. The maximally 21: 5329: 5328: 5324: 5323: 5322: 5320: 5319: 5318: 5299: 5298: 5297: 5292: 5254:Metal carbonyls 5242: 5238: 5225: 5221: 5201: 5196: 5192: 5188: 5182: 5178: 5174: 5168: 5164: 5160: 5154: 5150: 5146: 5140: 5136: 5132: 5126: 5122: 5118: 5112: 5108: 5104: 5090: 5086: 5082: 5077: 5073: 5069: 5063: 5059: 5055: 5049: 5045: 5041: 5035: 5031: 5027: 5021: 5017: 5013: 5007: 5003: 4999: 4993: 4989: 4985: 4979: 4975: 4971: 4964: 4960: 4946: 4942: 4938: 4933: 4929: 4925: 4919: 4915: 4911: 4904: 4900: 4894: 4890: 4884: 4880: 4874: 4870: 4864: 4860: 4848: 4843: 4839: 4822: 4817: 4787: 4778: 4776: 4768: 4767: 4763: 4696: 4692: 4683: 4681: 4668: 4667: 4663: 4620: 4616: 4565: 4561: 4505: 4501: 4450: 4446: 4395: 4391: 4381: 4379: 4370: 4369: 4365: 4334: 4330: 4291: 4287: 4278: 4276: 4266: 4262: 4225: 4221: 4212: 4211: 4207: 4198: 4197: 4193: 4162: 4158: 4149: 4147: 4137: 4133: 4109: 4105: 4074: 4070: 4033: 4029: 4019: 4017: 4008: 4007: 4003: 3994: 3992: 3982: 3978: 3969: 3967: 3957: 3950: 3921: 3917: 3902: 3898: 3840: 3834: 3828: 3826: 3821: 3820: 3816: 3807: 3805: 3749: 3745: 3735: 3733: 3726: 3722: 3675:(6172): 752–4. 3664: 3658: 3656: 3651: 3650: 3643: 3612: 3608: 3597: 3593: 3554: 3550: 3523: 3519: 3473: 3469: 3422: 3418: 3367: 3363: 3326: 3322: 3298:10.1.1.504.4994 3281: 3277: 3229: 3225: 3194: 3190: 3153: 3149: 3112: 3108: 3084:10.1.1.621.9038 3067: 3060: 3043: 3042: 3038: 3019: 3015: 2976: 2961: 2918: 2914: 2875: 2871: 2810: 2806: 2775: 2771: 2755: 2754: 2742: 2735: 2706: 2702: 2631: 2624: 2585: 2581: 2534: 2530: 2483: 2479: 2440: 2436: 2404:10.1.1.456.3422 2386: 2382: 2335: 2331: 2286: 2275: 2243: 2239: 2202: 2198: 2161: 2157: 2126: 2119: 2096: 2089: 2080: 2078: 2073: 2072: 2068: 2047:(43): 8268–71. 2036: 2032: 1993: 1986: 1962: 1955: 1923:10.1.1.455.5865 1898: 1894: 1878: 1877: 1856: 1852: 1821: 1817: 1778: 1774: 1743: 1739: 1712:Surface Science 1708: 1699: 1675:10.1.1.504.4994 1657: 1648: 1615: 1608: 1551: 1547: 1516: 1509: 1486: 1482: 1442: 1436: 1429: 1392: 1371: 1331: 1327: 1303:10.1.1.456.3422 1286: 1282: 1258: 1254: 1209: 1205: 1197: 1193: 1140: 1136: 1097: 1093: 1058: 1054: 1031: 1024: 993: 989: 985: 973: 947: 929:and carrier of 884:medical imaging 868: 851: 834: 790: 779: 773: 770: 759: 747: 736: 730: 721: 698: 689:hydroiodic acid 680:graphene oxide 676: 650: 646: 597:reverse osmosis 595:of water using 589: 547:charge mobility 488: 459: 454: 447: 443: 439: 402: 393: 341: 282: 264: 215: 196: 192: 188: 177: 169: 161: 157: 148:Hummers' method 128: 65:graphitic oxide 54:carboxyl groups 46:Hydroxyl groups 28: 23: 22: 15: 12: 11: 5: 5327: 5317: 5316: 5311: 5294: 5293: 5291: 5290: 5285: 5274:Polycarbonates 5271: 5266: 5261: 5256: 5250: 5248: 5244: 5243: 5241: 5240: 5236: 5232: 5227: 5223: 5219: 5215: 5213:Graphite oxide 5209: 5207: 5203: 5202: 5200: 5199: 5194: 5190: 5185: 5180: 5176: 5171: 5166: 5162: 5157: 5152: 5148: 5143: 5138: 5134: 5129: 5124: 5120: 5115: 5110: 5106: 5101: 5088: 5084: 5080: 5075: 5071: 5066: 5061: 5057: 5052: 5047: 5043: 5038: 5033: 5029: 5024: 5019: 5015: 5010: 5005: 5001: 4996: 4991: 4987: 4982: 4977: 4973: 4968: 4962: 4957: 4944: 4940: 4936: 4931: 4927: 4922: 4917: 4913: 4908: 4902: 4897: 4892: 4887: 4882: 4877: 4872: 4867: 4862: 4856: 4854: 4850: 4849: 4847: 4846: 4841: 4836: 4830: 4828: 4824: 4823: 4816: 4815: 4808: 4801: 4793: 4786: 4785: 4761: 4690: 4676:. 2021-01-15. 4661: 4614: 4559: 4499: 4464:(1): 182–200. 4444: 4389: 4363: 4328: 4285: 4260: 4219: 4205: 4191: 4156: 4145:www.gizmag.com 4131: 4120:(1): 620–625. 4103: 4068: 4027: 4001: 3976: 3948: 3915: 3896: 3851:(3): 1234–41. 3814: 3743: 3720: 3641: 3606: 3591: 3548: 3517: 3467: 3416: 3361: 3320: 3291:(17): 8535–9. 3275: 3223: 3188: 3147: 3106: 3058: 3036: 3033:on 2010-10-08. 3027:Graphene Times 3013: 2959: 2932:(11): 118102. 2912: 2869: 2804: 2769: 2752:(12): 110–117. 2733: 2700: 2622: 2579: 2528: 2477: 2434: 2380: 2329: 2273: 2237: 2196: 2155: 2117: 2087: 2066: 2030: 1984: 1953: 1892: 1850: 1815: 1772: 1753:(29): 9490–6. 1737: 1697: 1646: 1606: 1545: 1507: 1496:(1–2): 74–79. 1480: 1427: 1369: 1325: 1280: 1269:(3): 771–778. 1252: 1203: 1191: 1134: 1107:(1): 228–240. 1091: 1052: 1022: 986: 984: 981: 980: 979: 972: 969: 946: 943: 900:growth factors 867: 864: 850: 847: 833: 830: 792: 791: 750: 748: 741: 732:Main article: 729: 726: 720: 717: 697: 694: 675: 672: 648: 644: 588: 585: 487: 484: 458: 455: 453: 450: 445: 441: 437: 401: 398: 392: 389: 340: 337: 280: 259: 214: 211: 194: 190: 186: 175: 167: 164:sodium nitrate 159: 155: 127: 124: 118:by analogy to 116:graphene oxide 69:graphitic acid 61:Graphite oxide 26: 18:Graphene oxide 9: 6: 4: 3: 2: 5326: 5315: 5312: 5310: 5307: 5306: 5304: 5289: 5286: 5283: 5282:Tricarbonates 5279: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5259:Carbonic acid 5257: 5255: 5252: 5251: 5249: 5245: 5239: 5233: 5231: 5228: 5226: 5216: 5214: 5211: 5210: 5208: 5204: 5198: 5186: 5184: 5172: 5170: 5158: 5156: 5144: 5142: 5130: 5128: 5116: 5114: 5102: 5099: 5095: 5081: 5079: 5067: 5065: 5053: 5051: 5039: 5037: 5025: 5023: 5011: 5009: 4997: 4995: 4983: 4981: 4969: 4967: 4958: 4955: 4951: 4937: 4935: 4923: 4921: 4909: 4907: 4898: 4896: 4888: 4886: 4878: 4876: 4868: 4866: 4858: 4857: 4855: 4853:Exotic oxides 4851: 4845: 4837: 4835: 4832: 4831: 4829: 4827:Common oxides 4825: 4821: 4814: 4809: 4807: 4802: 4800: 4795: 4794: 4791: 4775: 4771: 4765: 4759: 4757: 4752: 4745: 4741: 4736: 4731: 4727: 4723: 4718: 4713: 4709: 4705: 4701: 4694: 4679: 4675: 4671: 4665: 4657: 4653: 4649: 4645: 4641: 4637: 4633: 4629: 4625: 4618: 4610: 4606: 4602: 4598: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4563: 4555: 4551: 4546: 4541: 4537: 4533: 4528: 4523: 4519: 4515: 4511: 4503: 4495: 4491: 4487: 4483: 4479: 4475: 4471: 4467: 4463: 4459: 4455: 4448: 4440: 4436: 4431: 4426: 4422: 4418: 4413: 4408: 4404: 4400: 4393: 4377: 4376:Xiaorui Zheng 4373: 4367: 4359: 4355: 4351: 4347: 4343: 4339: 4332: 4324: 4320: 4316: 4312: 4308: 4304: 4300: 4296: 4289: 4275: 4271: 4264: 4255: 4250: 4246: 4242: 4238: 4234: 4230: 4223: 4215: 4209: 4201: 4195: 4187: 4183: 4179: 4175: 4171: 4167: 4160: 4146: 4142: 4135: 4127: 4123: 4119: 4115: 4107: 4099: 4095: 4091: 4087: 4083: 4079: 4072: 4064: 4060: 4055: 4050: 4046: 4042: 4038: 4031: 4015: 4011: 4005: 3991: 3987: 3980: 3966: 3962: 3955: 3953: 3943: 3938: 3935:(19): 18491. 3934: 3930: 3926: 3919: 3911: 3907: 3900: 3892: 3888: 3884: 3880: 3875: 3870: 3866: 3862: 3858: 3854: 3850: 3846: 3839: 3824: 3818: 3804: 3800: 3796: 3792: 3788: 3784: 3780: 3776: 3771: 3766: 3762: 3758: 3754: 3747: 3731: 3724: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3688: 3683: 3678: 3674: 3670: 3654: 3648: 3646: 3637: 3633: 3629: 3625: 3622:(6): 1821–6. 3621: 3617: 3610: 3602: 3595: 3587: 3583: 3579: 3575: 3571: 3567: 3563: 3559: 3552: 3544: 3540: 3536: 3532: 3528: 3521: 3513: 3509: 3504: 3499: 3495: 3491: 3487: 3484: 3483: 3478: 3471: 3463: 3459: 3455: 3451: 3447: 3443: 3439: 3435: 3431: 3427: 3420: 3412: 3408: 3404: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3372: 3365: 3356: 3351: 3347: 3343: 3339: 3335: 3331: 3324: 3316: 3312: 3308: 3304: 3299: 3294: 3290: 3286: 3279: 3271: 3267: 3263: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3227: 3219: 3215: 3211: 3207: 3204:(30): 11217. 3203: 3199: 3192: 3183: 3178: 3174: 3170: 3166: 3162: 3158: 3151: 3143: 3139: 3134: 3129: 3125: 3121: 3117: 3110: 3102: 3098: 3094: 3090: 3085: 3080: 3076: 3072: 3065: 3063: 3054: 3050: 3046: 3040: 3032: 3028: 3024: 3017: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2974: 2972: 2970: 2968: 2966: 2964: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2923: 2916: 2908: 2904: 2900: 2896: 2892: 2888: 2885:(1): 015502. 2884: 2880: 2873: 2865: 2861: 2857: 2853: 2848: 2847:1959.3/375725 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2815: 2808: 2800: 2796: 2792: 2788: 2785:(2): 021902. 2784: 2780: 2773: 2765: 2759: 2751: 2747: 2740: 2738: 2728: 2723: 2719: 2715: 2711: 2704: 2696: 2692: 2687: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2653: 2648: 2644: 2640: 2636: 2629: 2627: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2575: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2532: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2492: 2488: 2481: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2438: 2430: 2426: 2422: 2418: 2414: 2410: 2405: 2400: 2396: 2392: 2384: 2376: 2372: 2367: 2362: 2357: 2352: 2348: 2344: 2340: 2333: 2325: 2321: 2316: 2311: 2307: 2303: 2299: 2295: 2291: 2284: 2282: 2280: 2278: 2269: 2265: 2261: 2257: 2253: 2249: 2241: 2233: 2229: 2224: 2219: 2215: 2211: 2207: 2200: 2192: 2188: 2183: 2178: 2174: 2170: 2166: 2159: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2122: 2113: 2109: 2106:(26): 11279. 2105: 2101: 2094: 2092: 2076: 2070: 2062: 2058: 2054: 2050: 2046: 2042: 2034: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1991: 1989: 1980: 1976: 1972: 1968: 1960: 1958: 1949: 1945: 1941: 1937: 1933: 1929: 1924: 1919: 1915: 1911: 1907: 1903: 1896: 1888: 1882: 1874: 1870: 1866: 1862: 1854: 1846: 1842: 1838: 1834: 1830: 1826: 1819: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1776: 1768: 1764: 1760: 1756: 1752: 1748: 1741: 1733: 1729: 1725: 1721: 1717: 1713: 1706: 1704: 1702: 1693: 1689: 1685: 1681: 1676: 1671: 1667: 1663: 1655: 1653: 1651: 1641: 1636: 1632: 1628: 1624: 1620: 1613: 1611: 1602: 1598: 1594: 1590: 1585: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1549: 1541: 1537: 1533: 1529: 1525: 1521: 1514: 1512: 1503: 1499: 1495: 1491: 1484: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1434: 1432: 1422: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1388: 1386: 1384: 1382: 1380: 1378: 1376: 1374: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1329: 1321: 1317: 1313: 1309: 1304: 1299: 1295: 1291: 1284: 1276: 1272: 1268: 1264: 1256: 1248: 1244: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1207: 1201: 1195: 1187: 1183: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1095: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1048: 1044: 1040: 1036: 1029: 1027: 1018: 1014: 1010: 1006: 1002: 998: 991: 987: 978: 975: 974: 968: 965: 964:nanomaterials 961: 957: 953: 942: 940: 936: 932: 928: 924: 923:immunotherapy 920: 915: 913: 909: 908:muscle tissue 905: 901: 897: 893: 889: 888:drug delivery 885: 881: 877: 873: 863: 861: 857: 846: 844: 840: 829: 825: 823: 819: 814: 809: 807: 803: 798: 788: 785: 777: 767: 763: 757: 756: 751:This section 749: 745: 740: 739: 735: 734:Graphene lens 725: 716: 712: 710: 706: 702: 693: 690: 686: 681: 671: 669: 665: 664:nanocellulose 660: 658: 653: 641: 639: 635: 631: 626: 621: 618: 614: 608: 605: 600: 598: 594: 584: 583:widely used. 581: 580: 575: 571: 566: 563: 559: 557: 556:Raman spectra 553: 548: 544: 540: 536: 531: 529: 525: 521: 517: 513: 509: 505: 501: 497: 496:semiconductor 493: 483: 481: 477: 476:nanoparticles 471: 469: 465: 449: 435: 431: 425: 423: 417: 414: 406: 397: 388: 385: 381: 377: 373: 369: 365: 361: 357: 353: 345: 336: 334: 330: 325: 321: 319: 315: 311: 307: 303: 299: 289: 285: 277: 272: 269: 263: 257: 253: 249: 245: 241: 236: 233: 229: 225: 221: 210: 206: 204: 200: 183: 179: 173: 165: 153: 152:sulfuric acid 149: 145: 141: 137: 133: 123: 121: 117: 113: 109: 104: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 55: 51: 47: 44: 40: 39:Epoxy bridges 37: 32: 19: 5278:Dicarbonates 5264:Bicarbonates 5212: 4777:. Retrieved 4773: 4764: 4748: 4707: 4703: 4693: 4682:. Retrieved 4673: 4664: 4631: 4627: 4617: 4576: 4572: 4562: 4517: 4513: 4502: 4461: 4457: 4447: 4402: 4392: 4380:. Retrieved 4375: 4366: 4341: 4337: 4331: 4298: 4295:Nano Letters 4294: 4288: 4277:. Retrieved 4273: 4263: 4236: 4232: 4222: 4208: 4194: 4169: 4165: 4159: 4148:. Retrieved 4144: 4134: 4117: 4113: 4106: 4081: 4077: 4071: 4044: 4040: 4030: 4018:. Retrieved 4013: 4004: 3993:. Retrieved 3990:newatlas.com 3989: 3979: 3968:. Retrieved 3964: 3932: 3928: 3918: 3909: 3899: 3874:1721.1/99472 3848: 3845:Nano Letters 3844: 3827:. Retrieved 3825:. KurzweilAI 3817: 3806:. Retrieved 3760: 3756: 3746: 3734:. Retrieved 3723: 3672: 3668: 3657:. Retrieved 3619: 3615: 3609: 3603:: 116 pages. 3600: 3594: 3561: 3557: 3551: 3534: 3530: 3520: 3485: 3480: 3470: 3429: 3425: 3419: 3378: 3374: 3364: 3337: 3333: 3323: 3288: 3284: 3278: 3237: 3233: 3226: 3201: 3197: 3191: 3164: 3161:Nano Letters 3160: 3150: 3123: 3119: 3109: 3074: 3070: 3052: 3048: 3039: 3031:the original 3026: 3016: 2983: 2980:Nano Letters 2979: 2929: 2925: 2915: 2882: 2878: 2872: 2821: 2817: 2807: 2782: 2778: 2772: 2758:cite journal 2749: 2745: 2717: 2713: 2703: 2642: 2638: 2592: 2588: 2582: 2541: 2537: 2531: 2493:(1): 36–41. 2490: 2487:Nano Letters 2486: 2480: 2450:(23): 8171. 2447: 2443: 2437: 2394: 2390: 2383: 2346: 2342: 2332: 2297: 2293: 2251: 2247: 2240: 2213: 2209: 2199: 2175:(7): 812–7. 2172: 2168: 2158: 2133: 2129: 2103: 2099: 2079:. Retrieved 2069: 2044: 2040: 2033: 2003:(23): 8171. 2000: 1996: 1970: 1966: 1905: 1902:Nano Letters 1901: 1895: 1881:cite journal 1864: 1860: 1853: 1828: 1824: 1818: 1785: 1781: 1775: 1750: 1746: 1740: 1715: 1711: 1665: 1661: 1625:(12): 5676. 1622: 1618: 1584:10044/1/4321 1558: 1554: 1548: 1523: 1519: 1493: 1489: 1483: 1450: 1446: 1403: 1399: 1339: 1335: 1328: 1293: 1289: 1283: 1266: 1262: 1255: 1220: 1216: 1206: 1194: 1151: 1147: 1137: 1104: 1100: 1094: 1069: 1065: 1055: 1038: 1034: 1000: 996: 990: 958:(TGF-β) and 948: 916: 869: 852: 835: 826: 810: 799: 795: 780: 774:January 2017 771: 760:Please help 755:verification 752: 722: 713: 699: 679: 677: 661: 654: 642: 622: 609: 601: 593:desalination 590: 577: 569: 567: 564: 560: 532: 504:bias voltage 500:conductivity 489: 480:fluorescence 472: 460: 452:Applications 426: 418: 415: 411: 394: 350: 326: 322: 294: 273: 261: 237: 216: 207: 184: 180: 129: 115: 105: 87:with strong 68: 64: 60: 59: 49: 42: 35: 4239:: 488–515. 4233:Nano Energy 4084:: 473–480. 3355:10578/18152 3167:(5): 2206. 2814:Jia, Baohua 2720:(4): 1963. 2645:(1): 1566. 2366:2440/140040 2300:: 365–370. 2254:: 561–568. 1788:: 229–234. 1718:(9): 1607. 1640:10397/15682 1526:: 171–180. 1453:: 700–705. 1406:: 491–495. 1223:: 249–259. 1041:(6): 1339. 872:nanomedical 813:planar lens 685:capillaries 543:xenon flash 508:hydrophilic 468:Kerr effect 144:nitric acid 142:and fuming 5309:Oxocarbons 5303:Categories 5269:Carbonates 4820:Oxocarbons 4779:2021-07-07 4684:2022-05-09 4382:August 20, 4279:2018-11-16 4150:2015-09-26 4047:(3): 453. 4020:October 4, 3995:2017-04-30 3970:2015-09-26 3829:2014-04-05 3808:2014-03-13 3659:2014-03-13 3537:: 100626. 2652:1911.04987 2081:2013-03-18 1973:(2): 155. 983:References 939:SARS-CoV-2 892:stem cells 574:3D printed 572:, using a 528:Andre Geim 516:suspension 112:sonication 4756:CC BY 4.0 4726:1743-8977 4710:(1): 57. 4656:219621172 4634:: 14–28. 4601:2040-3364 4573:Nanoscale 4536:2296-4185 4494:231628779 4478:1868-503X 4421:1178-2013 4186:1932-7447 4063:136840660 3770:1401.3134 3732:. Reuters 3682:1401.3134 3586:237496714 3411:139182770 3403:0884-2914 3293:CiteSeerX 3079:CiteSeerX 2954:125102995 2907:124734692 2864:205252959 2677:2041-1723 2609:0002-7863 2566:0022-2461 2515:1530-6984 2421:1936-0851 2399:CiteSeerX 2375:2311-5629 2349:(2): 41. 1918:CiteSeerX 1845:1520-6106 1810:0008-6223 1670:CiteSeerX 1475:0008-6223 1356:1521-3773 1298:CiteSeerX 1003:(1): 53. 977:Oxocarbon 860:magnesium 701:Dispersed 668:cellulose 604:Perforene 535:hydrazine 213:Structure 89:oxidizers 52:Pairwise 5314:Graphene 5206:Polymers 4758:license. 4744:27799056 4678:Archived 4648:32531395 4609:26814441 4554:32523944 4486:34233430 4439:26345988 4323:19367929 4014:Kurzweil 3883:24490698 3803:13154836 3795:24531966 3736:April 3, 3715:13154836 3707:24531966 3636:21568266 3531:FlatChem 3512:28225616 3462:18958488 3454:22422977 3315:16640401 3270:26172029 3262:23703794 3218:15486130 3142:23860424 3101:19601624 3049:APS News 3008:17944526 2856:24639376 2695:32218448 2617:20527938 2574:95458738 2523:18154315 2472:96586004 2429:20731455 2391:ACS Nano 2324:28126609 2268:26592647 2232:23297717 2210:ACS Nano 2191:26286402 2150:19947629 2061:18814163 2025:96586004 1940:19199476 1767:23780799 1692:16640401 1593:19370030 1364:27865029 1320:20731455 1290:ACS Nano 1186:26289729 1154:: 8029. 1129:18364219 1121:20023850 1086:53349683 971:See also 945:Toxicity 927:adjuvant 919:vaccines 904:proteins 856:titanium 520:graphene 492:graphene 434:infinity 432:reached 306:methanol 276:hydrated 254:groups. 252:carbonyl 248:carboxyl 228:hydroxyl 224:carbonyl 193:and KMnO 134:chemist 120:graphene 101:oxidized 85:graphite 81:hydrogen 4735:5088662 4581:Bibcode 4545:7261887 4520:: 491. 4430:4554423 4346:Bibcode 4303:Bibcode 4241:Bibcode 4086:Bibcode 3910:PÚBLICO 3891:6268833 3853:Bibcode 3775:Bibcode 3757:Science 3687:Bibcode 3669:Science 3566:Bibcode 3503:5525104 3434:Bibcode 3426:Science 3383:Bibcode 3242:Bibcode 3169:Bibcode 2988:Bibcode 2934:Bibcode 2887:Bibcode 2826:Bibcode 2787:Bibcode 2686:7099009 2657:Bibcode 2546:Bibcode 2495:Bibcode 2452:Bibcode 2302:Bibcode 2248:Talanta 2005:Bibcode 1948:2974943 1910:Bibcode 1790:Bibcode 1720:Bibcode 1601:2920478 1563:Bibcode 1528:Bibcode 1455:Bibcode 1408:Bibcode 1225:Bibcode 1177:4560785 1156:Bibcode 1005:Bibcode 954:(TLR), 674:Coating 657:hafnium 625:gallium 579:E. coli 570:in situ 310:ethanol 302:acetone 230:(-OH), 226:(C=O), 220:epoxide 4742:  4732:  4724:  4654:  4646:  4607:  4599:  4552:  4542:  4534:  4492:  4484:  4476:  4437:  4427:  4419:  4338:Carbon 4321:  4184:  4078:Carbon 4061:  3889:  3881:  3801:  3793:  3713:  3705:  3634:  3584:  3510:  3500:  3460:  3452:  3409:  3401:  3313:  3295:  3268:  3260:  3216:  3140:  3099:  3081:  3006:  2952:  2905:  2862:  2854:  2693:  2683:  2675:  2615:  2607:  2572:  2564:  2521:  2513:  2470:  2427:  2419:  2401:  2373:  2322:  2266:  2230:  2189:  2148:  2059:  2023:  1946:  1938:  1920:  1843:  1808:  1782:Carbon 1765:  1690:  1672:  1599:  1591:  1555:Nature 1520:Carbon 1473:  1447:Carbon 1400:Carbon 1362:  1354:  1318:  1300:  1247:108699 1245:  1184:  1174:  1127:  1119:  1084:  886:, and 630:cation 617:Helium 539:plasma 444:, BaCl 440:, MgCl 422:helium 232:phenol 170:, and 132:Oxford 97:metals 79:, and 77:oxygen 73:carbon 4652:S2CID 4490:S2CID 4059:S2CID 3887:S2CID 3841:(PDF) 3799:S2CID 3765:arXiv 3711:S2CID 3677:arXiv 3582:S2CID 3458:S2CID 3407:S2CID 3266:S2CID 3214:S2CID 2950:S2CID 2903:S2CID 2860:S2CID 2647:arXiv 2570:S2CID 2468:S2CID 2021:S2CID 1944:S2CID 1597:S2CID 1443:(PDF) 1243:JSTOR 1125:S2CID 1082:S2CID 613:nacre 360:Raman 108:basic 93:acids 5280:and 5096:and 4952:and 4740:PMID 4722:ISSN 4644:PMID 4605:PMID 4597:ISSN 4550:PMID 4532:ISSN 4482:PMID 4474:ISSN 4435:PMID 4417:ISSN 4384:2015 4319:PMID 4182:ISSN 4022:2014 3879:PMID 3791:PMID 3738:2015 3703:PMID 3632:PMID 3508:PMID 3450:PMID 3399:ISSN 3311:PMID 3258:PMID 3138:PMID 3097:PMID 3004:PMID 2852:PMID 2764:link 2691:PMID 2673:ISSN 2613:PMID 2605:ISSN 2562:ISSN 2519:PMID 2511:ISSN 2425:PMID 2417:ISSN 2371:ISSN 2320:PMID 2264:PMID 2228:PMID 2187:PMID 2146:PMID 2057:PMID 1936:PMID 1887:link 1841:ISSN 1806:ISSN 1763:PMID 1688:PMID 1589:PMID 1471:ISSN 1360:PMID 1352:ISSN 1316:PMID 1182:PMID 1117:PMID 921:and 858:and 430:NaOH 356:FTIR 316:and 300:and 250:and 174:KMnO 166:NaNO 91:and 4730:PMC 4712:doi 4636:doi 4632:112 4589:doi 4540:PMC 4522:doi 4466:doi 4425:PMC 4407:doi 4354:doi 4311:doi 4249:doi 4174:doi 4170:118 4122:doi 4118:117 4094:doi 4049:doi 3937:doi 3869:hdl 3861:doi 3783:doi 3761:343 3695:doi 3673:343 3624:doi 3574:doi 3539:doi 3498:PMC 3490:doi 3442:doi 3430:335 3391:doi 3350:hdl 3342:doi 3303:doi 3289:110 3250:doi 3206:doi 3177:doi 3128:doi 3089:doi 3075:131 2996:doi 2942:doi 2895:doi 2842:hdl 2834:doi 2795:doi 2722:doi 2718:117 2681:PMC 2665:doi 2597:doi 2593:132 2554:doi 2503:doi 2460:doi 2409:doi 2361:hdl 2351:doi 2310:doi 2298:493 2256:doi 2252:147 2218:doi 2177:doi 2138:doi 2134:131 2108:doi 2104:113 2049:doi 2013:doi 1975:doi 1928:doi 1869:doi 1833:doi 1829:102 1798:doi 1755:doi 1728:doi 1716:602 1680:doi 1666:110 1635:hdl 1627:doi 1579:hdl 1571:doi 1559:458 1536:doi 1498:doi 1494:335 1463:doi 1451:114 1416:doi 1344:doi 1308:doi 1271:doi 1233:doi 1221:149 1172:PMC 1164:doi 1109:doi 1074:doi 1043:doi 1013:doi 1001:287 896:DNA 839:CdS 764:by 380:EDX 376:SEM 372:TEM 368:AFM 364:XPS 352:XRD 67:or 5305:: 5235:CO 5230:CO 5195:12 5191:12 5177:12 5163:12 5153:10 5149:10 5135:10 4891:CO 4881:CO 4871:CO 4861:CO 4840:CO 4834:CO 4772:. 4738:. 4728:. 4720:. 4708:13 4706:. 4702:. 4672:. 4650:. 4642:. 4630:. 4626:. 4603:. 4595:. 4587:. 4575:. 4571:. 4548:. 4538:. 4530:. 4516:. 4512:. 4488:. 4480:. 4472:. 4462:11 4460:. 4456:. 4433:. 4423:. 4415:. 4401:. 4374:. 4352:. 4342:48 4340:. 4317:. 4309:. 4297:. 4272:. 4247:. 4237:16 4235:. 4231:. 4180:. 4168:. 4143:. 4116:. 4092:. 4082:77 4080:. 4057:. 4045:20 4043:. 4039:. 4012:. 3988:. 3963:. 3951:^ 3931:. 3927:. 3908:. 3885:. 3877:. 3867:. 3859:. 3849:14 3847:. 3843:. 3797:. 3789:. 3781:. 3773:. 3759:. 3755:. 3709:. 3701:. 3693:. 3685:. 3671:. 3644:^ 3630:. 3618:. 3580:. 3572:. 3562:56 3560:. 3535:44 3533:. 3529:. 3506:. 3496:. 3479:. 3456:. 3448:. 3440:. 3428:. 3405:. 3397:. 3389:. 3379:33 3377:. 3373:. 3348:. 3338:28 3336:. 3332:. 3309:. 3301:. 3287:. 3264:. 3256:. 3248:. 3238:25 3236:. 3212:. 3202:21 3200:. 3175:. 3163:. 3159:. 3136:. 3124:49 3122:. 3118:. 3095:. 3087:. 3073:. 3061:^ 3053:19 3051:. 3047:. 3025:. 3002:. 2994:. 2982:. 2962:^ 2948:. 2940:. 2930:25 2928:. 2924:. 2901:. 2893:. 2883:18 2881:. 2858:. 2850:. 2840:. 2832:. 2822:26 2820:. 2793:. 2783:94 2781:. 2760:}} 2756:{{ 2750:58 2748:. 2736:^ 2716:. 2712:. 2689:. 2679:. 2671:. 2663:. 2655:. 2643:11 2641:. 2637:. 2625:^ 2611:. 2603:. 2591:. 2568:. 2560:. 2552:. 2542:48 2540:. 2517:. 2509:. 2501:. 2489:. 2466:. 2458:. 2448:48 2446:. 2423:. 2415:. 2407:. 2393:. 2369:. 2359:. 2345:. 2341:. 2318:. 2308:. 2296:. 2292:. 2276:^ 2262:. 2250:. 2226:. 2212:. 2208:. 2185:. 2171:. 2167:. 2144:. 2132:. 2120:^ 2102:. 2090:^ 2055:. 2045:47 2043:. 2019:. 2011:. 2001:48 1999:. 1987:^ 1971:16 1969:. 1956:^ 1942:. 1934:. 1926:. 1916:. 1904:. 1883:}} 1879:{{ 1865:18 1863:. 1839:. 1827:. 1804:. 1796:. 1786:80 1784:. 1761:. 1751:19 1749:. 1726:. 1714:. 1700:^ 1686:. 1678:. 1664:. 1649:^ 1633:. 1623:22 1621:. 1609:^ 1595:. 1587:. 1577:. 1569:. 1557:. 1534:. 1524:52 1522:. 1510:^ 1492:. 1469:. 1461:. 1449:. 1445:. 1430:^ 1414:. 1404:98 1402:. 1398:. 1372:^ 1358:. 1350:. 1340:55 1338:. 1314:. 1306:. 1292:. 1267:11 1265:. 1241:. 1231:. 1219:. 1215:. 1180:. 1170:. 1162:. 1150:. 1146:. 1123:. 1115:. 1105:39 1103:. 1080:. 1070:38 1068:. 1064:. 1039:80 1037:. 1025:^ 1011:. 999:. 941:. 914:. 898:, 882:, 878:, 711:. 382:, 374:, 370:, 366:, 362:, 358:, 354:, 335:. 308:, 189:SO 162:, 158:SO 75:, 50:C: 48:, 43:B: 41:, 36:A: 5284:) 5276:( 5237:2 5224:2 5222:O 5220:3 5218:C 5193:O 5189:C 5181:9 5179:O 5175:C 5167:6 5165:O 5161:C 5151:O 5147:C 5139:8 5137:O 5133:C 5125:9 5123:O 5121:9 5119:C 5111:8 5109:O 5107:8 5105:C 5100:) 5092:( 5089:6 5087:O 5085:6 5083:C 5076:5 5074:O 5072:5 5070:C 5062:2 5060:O 5058:5 5056:C 5048:6 5046:O 5044:4 5042:C 5034:4 5032:O 5030:4 5028:C 5020:2 5018:O 5016:4 5014:C 5006:6 5004:O 5002:3 5000:C 4992:3 4990:O 4988:3 4986:C 4978:2 4976:O 4974:3 4972:C 4965:O 4963:3 4961:C 4956:) 4948:( 4945:4 4943:O 4941:2 4939:C 4932:3 4930:O 4928:2 4926:C 4918:2 4916:O 4914:2 4912:C 4905:O 4903:2 4901:C 4893:6 4883:5 4873:4 4863:3 4842:2 4812:e 4805:t 4798:v 4782:. 4746:. 4714:: 4687:. 4658:. 4638:: 4611:. 4591:: 4583:: 4577:8 4556:. 4524:: 4518:8 4496:. 4468:: 4441:. 4409:: 4386:. 4360:. 4356:: 4348:: 4325:. 4313:: 4305:: 4299:8 4282:. 4257:. 4251:: 4243:: 4202:. 4188:. 4176:: 4153:. 4128:. 4124:: 4100:. 4096:: 4088:: 4065:. 4051:: 4024:. 3998:. 3973:. 3945:. 3939:: 3933:6 3912:. 3893:. 3871:: 3863:: 3855:: 3832:. 3811:. 3785:: 3777:: 3767:: 3740:. 3717:. 3697:: 3689:: 3679:: 3662:. 3638:. 3626:: 3620:3 3588:. 3576:: 3568:: 3545:. 3541:: 3514:. 3492:: 3486:6 3464:. 3444:: 3436:: 3413:. 3393:: 3385:: 3358:. 3352:: 3344:: 3317:. 3305:: 3272:. 3252:: 3244:: 3220:. 3208:: 3185:. 3179:: 3171:: 3165:9 3144:. 3130:: 3103:. 3091:: 3010:. 2998:: 2990:: 2984:7 2956:. 2944:: 2936:: 2909:. 2897:: 2889:: 2866:. 2844:: 2836:: 2828:: 2801:. 2797:: 2789:: 2766:) 2730:. 2724:: 2697:. 2667:: 2659:: 2649:: 2619:. 2599:: 2576:. 2556:: 2548:: 2525:. 2505:: 2497:: 2491:8 2474:. 2462:: 2454:: 2431:. 2411:: 2395:4 2377:. 2363:: 2353:: 2347:7 2343:C 2326:. 2312:: 2304:: 2270:. 2258:: 2234:. 2220:: 2214:7 2193:. 2179:: 2173:3 2152:. 2140:: 2114:. 2110:: 2084:. 2063:. 2051:: 2027:. 2015:: 2007:: 1981:. 1977:: 1950:. 1930:: 1912:: 1906:9 1889:) 1875:. 1871:: 1847:. 1835:: 1812:. 1800:: 1792:: 1769:. 1757:: 1734:. 1730:: 1722:: 1694:. 1682:: 1643:. 1637:: 1629:: 1603:. 1581:: 1573:: 1565:: 1542:. 1538:: 1530:: 1504:. 1500:: 1477:. 1465:: 1457:: 1424:. 1418:: 1410:: 1366:. 1346:: 1322:. 1310:: 1294:4 1277:. 1273:: 1249:. 1235:: 1227:: 1188:. 1166:: 1158:: 1152:6 1131:. 1111:: 1088:. 1076:: 1049:. 1045:: 1019:. 1015:: 1007:: 787:) 781:( 776:) 772:( 758:. 649:4 647:O 645:2 446:2 442:2 438:2 378:/ 281:2 262:s 260:1 195:4 191:4 187:2 176:4 168:3 160:4 156:2 154:H 56:. 20:)

Index

Graphene oxide

Epoxy bridges
Hydroxyl groups
carboxyl groups
carbon
oxygen
hydrogen
graphite
oxidizers
acids
metals
oxidized
basic
sonication
graphene
Oxford
Benjamin C. Brodie
potassium chlorate
nitric acid
Hummers' method
sulfuric acid
sodium nitrate
potassium permanganate
carbon nanotubes
ribbons of graphene
epoxide
carbonyl
hydroxyl
phenol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.