Knowledge

Gromov–Hausdorff convergence

Source 📝

52: 370:
The Gromov–Hausdorff distance metric has been applied in the field of computer graphics and computational geometry to find correspondences between different shapes. It also has been applied in the problem of
183:
The Gromov–Hausdorff distance turns the set of all isometry classes of compact metric spaces into a metric space, called Gromov–Hausdorff space, and it therefore defines a notion of convergence for
187:
of compact metric spaces, called Gromov–Hausdorff convergence. A metric space to which such a sequence converges is called the Gromov–Hausdorff limit of the sequence.
215:. In the global sense, the Gromov–Hausdorff space is totally heterogeneous, i.e., its isometry group is trivial, but locally there are many nontrivial isometries. 223:
The pointed Gromov–Hausdorff convergence is an analog of Gromov–Hausdorff convergence appropriate for non-compact spaces. A pointed metric space is a pair (
757:
Sukkar, Fouad; Wakulicz, Jennifer; Lee, Ki Myung Brian; Fitch, Robert (2022-09-11). "Motion planning in task space with Gromov-Hausdorff approximations".
321: 541:
Ivanov, A. O.; Nikolaeva, N. K.; Tuzhilin, A. A. (2016). "The Gromov–Hausdorff metric on the space of compact metric spaces is strictly intrinsic".
382:
to prove the stability of the Friedmann model in Cosmology. This model of cosmology is not stable with respect to smooth variations of the metric.
423: 629:
Ivanov, Alexander O.; Tuzhilin, Alexey A. (2016). "Local Structure of Gromov-Hausdorff Space near Finite Metric Spaces in General Position".
336: 208: 359:
in the Gromov–Hausdorff metric. The limit spaces are metric spaces. Additional properties on the length spaces have been proven by
172:
is understood in the global sense, i.e. it must preserve all distances, not only infinitesimally small ones; for example no compact
667: 650:
Bellaïche, André (1996). "The tangent space in sub-Riemannian geometry". In André Bellaïche; Jean-Jacques Risler (eds.).
59:
The Gromov–Hausdorff distance was introduced by David Edwards in 1975, and it was later rediscovered and generalized by
890: 864: 823:
Kotani, Motoko; Sunada, Toshikazu (2006). "Large deviation and the tangent cone at infinity of a crystal lattice".
733: 60: 28: 324:. (Also see D. Edwards for an earlier work.) The key ingredient in the proof was the observation that for the 328:
of a group with polynomial growth a sequence of rescalings converges in the pointed Gromov–Hausdorff sense.
885: 309: 420: 880: 419:
David A. Edwards, "The Structure of Superspace", in "Studies in Topology", Academic Press, 1975,
401: 386: 200: 718:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing - SGP '04
459:
M. Gromov. "Structures métriques pour les variétés riemanniennes", edited by Lafontaine and
498: 204: 587:
Chowdhury, Samir; Mémoli, Facundo (2016). "Explicit Geodesics in Gromov-Hausdorff Space".
514: 8: 608:
Ivanov, Alexander; Tuzhilin, Alexey (2018). "Isometry Group of Gromov--Hausdorff Space".
332: 317: 173: 840: 805: 787: 758: 739: 630: 609: 588: 568: 550: 502: 474: 440: 356: 161: 40: 860: 844: 743: 729: 663: 506: 379: 809: 572: 832: 797: 721: 696: 655: 560: 510: 486: 475:"Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits)" 494: 427: 372: 340: 313: 177: 32: 659: 385:
In a special case, the concept of Gromov–Hausdorff limits is closely related to
304:
The notion of Gromov–Hausdorff convergence was used by Gromov to prove that any
364: 305: 196: 836: 801: 564: 874: 701: 684: 64: 725: 654:. Progress in Mathematics. Vol. 44. Basel: Birkhauser. pp. 1–78 . 51: 460: 439:
Tuzhilin, Alexey A. (2016). "Who Invented the Gromov-Hausdorff Distance?".
360: 325: 36: 55:
How far and how near are some figures under the Gromov–Hausdorff distance.
20: 490: 778:
Sormani, Christina (2004). "Friedmann cosmology and almost isotropy".
792: 716:
Mémoli, Facundo; Sapiro, Guillermo (2004). "Comparing point clouds".
763: 635: 614: 593: 555: 445: 348: 212: 184: 68: 685:"On the structure of spaces with Ricci curvature bounded below. I" 95: 254:) of pointed metric spaces converges to a pointed metric space ( 211:, i.e., any two of its points are the endpoints of a minimizing 190: 857:
Metric structures for Riemannian and non-Riemannian spaces
339:, which states that the set of Riemannian manifolds with 540: 218: 756: 872: 585:For explicit construction of the geodesics, see 586: 378:The Gromov–Hausdorff distance has been used by 322:Gromov's theorem on groups of polynomial growth 682: 628: 607: 822: 715: 63:in 1981. This distance measures how far two 46: 312:is virtually nilpotent (i.e. it contains a 683:Cheeger, Jeff; Colding, Tobias H. (1997). 266: > 0, the sequence of closed 791: 762: 700: 649: 634: 613: 592: 554: 444: 331:Another simple and very useful result in 191:Some properties of Gromov–Hausdorff space 438: 50: 777: 16:Notion for convergence of metric spaces 873: 867:(translation with additional content). 771: 472: 296:in the usual Gromov–Hausdorff sense. 676: 479:Publications Mathématiques de l'IHÉS 219:Pointed Gromov–Hausdorff convergence 79:are two compact metric spaces, then 123:)) for all (compact) metric spaces 13: 527:D. Burago, Yu. Burago, S. Ivanov, 14: 902: 780:Geometric and Functional Analysis 35:, is a notion for convergence of 689:Journal of Differential Geometry 816: 750: 709: 643: 299: 231:) consisting of a metric space 622: 601: 579: 534: 521: 466: 453: 432: 413: 195:The Gromov–Hausdorff space is 176:admits such an embedding into 1: 407: 127:and all isometric embeddings 67:metric spaces are from being 39:which is a generalization of 337:Gromov's compactness theorem 25:Gromov–Hausdorff convergence 7: 660:10.1007/978-3-0348-9210-0_1 529:A Course in Metric Geometry 395: 10: 907: 891:Convergence (mathematics) 837:10.1007/s00209-006-0951-9 825:Mathematische Zeitschrift 802:10.1007/s00039-004-0477-4 565:10.1134/S0001434616110298 47:Gromov–Hausdorff distance 473:Gromov, Michael (1981). 284:converges to the closed 726:10.1145/1057432.1057436 652:Sub-Riemannian Geometry 402:Intrinsic flat distance 387:large-deviations theory 180:of the same dimension. 94:) is defined to be the 702:10.4310/jdg/1214459974 56: 859:, Birkhäuser (1999). 54: 886:Riemannian geometry 531:, AMS GSM 33, 2001. 333:Riemannian geometry 174:Riemannian manifold 170:isometric embedding 164:between subsets in 543:Mathematical Notes 491:10.1007/BF02698687 426:2016-03-04 at the 357:relatively compact 314:nilpotent subgroup 162:Hausdorff distance 57: 41:Hausdorff distance 669:978-3-0348-9946-8 310:polynomial growth 898: 849: 848: 820: 814: 813: 795: 775: 769: 768: 766: 754: 748: 747: 713: 707: 706: 704: 680: 674: 673: 647: 641: 640: 638: 626: 620: 619: 617: 605: 599: 598: 596: 583: 577: 576: 558: 549:(5–6): 883–885. 538: 532: 525: 519: 518: 470: 464: 457: 451: 450: 448: 436: 430: 417: 906: 905: 901: 900: 899: 897: 896: 895: 881:Metric geometry 871: 870: 852: 821: 817: 776: 772: 755: 751: 736: 714: 710: 681: 677: 670: 648: 644: 627: 623: 606: 602: 584: 580: 539: 535: 526: 522: 471: 467: 458: 454: 437: 433: 428:Wayback Machine 418: 414: 410: 398: 392: 373:motion planning 341:Ricci curvature 302: 282: 275: 262:) if, for each 252: 248: 243:. A sequence ( 221: 193: 178:Euclidean space 159: 106: 98:of all numbers 84: 49: 33:Felix Hausdorff 17: 12: 11: 5: 904: 894: 893: 888: 883: 869: 868: 851: 850: 831:(4): 837–870. 815: 770: 749: 734: 720:. p. 32. 708: 675: 668: 642: 621: 600: 578: 533: 520: 465: 452: 431: 411: 409: 406: 405: 404: 397: 394: 306:discrete group 301: 298: 280: 273: 270:-balls around 250: 246: 220: 217: 207:. It is also 197:path-connected 192: 189: 155: 102: 82: 61:Mikhail Gromov 48: 45: 29:Mikhail Gromov 27:, named after 15: 9: 6: 4: 3: 2: 903: 892: 889: 887: 884: 882: 879: 878: 876: 866: 865:0-8176-3898-9 862: 858: 854: 853: 846: 842: 838: 834: 830: 826: 819: 811: 807: 803: 799: 794: 789: 785: 781: 774: 765: 760: 753: 745: 741: 737: 731: 727: 723: 719: 712: 703: 698: 694: 690: 686: 679: 671: 665: 661: 657: 653: 646: 637: 632: 625: 616: 611: 604: 595: 590: 582: 574: 570: 566: 562: 557: 552: 548: 544: 537: 530: 524: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 469: 462: 456: 447: 442: 435: 429: 425: 422: 416: 412: 403: 400: 399: 393: 390: 388: 383: 381: 376: 375:in robotics. 374: 368: 366: 362: 358: 354: 351: ≤  350: 346: 343: ≥  342: 338: 334: 329: 327: 323: 319: 315: 311: 307: 297: 295: 291: 288:-ball around 287: 283: 276: 269: 265: 261: 257: 253: 242: 238: 234: 230: 226: 216: 214: 210: 206: 202: 198: 188: 186: 181: 179: 175: 171: 167: 163: 158: 154: 150: 147: →  146: 143: :  142: 138: 135: →  134: 131: :  130: 126: 122: 118: 114: 110: 105: 101: 97: 93: 89: 85: 78: 74: 70: 66: 62: 53: 44: 42: 38: 37:metric spaces 34: 30: 26: 22: 856: 828: 824: 818: 793:math/0302244 783: 779: 773: 752: 717: 711: 692: 688: 678: 651: 645: 624: 603: 581: 546: 542: 536: 528: 523: 482: 478: 468: 461:Pierre Pansu 455: 434: 415: 391: 384: 377: 369: 352: 344: 330: 326:Cayley graph 303: 300:Applications 293: 289: 285: 278: 271: 267: 263: 259: 255: 244: 240: 236: 232: 228: 224: 222: 194: 182: 169: 165: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 103: 99: 91: 87: 80: 76: 72: 58: 24: 18: 855:M. Gromov. 21:mathematics 875:Categories 764:2209.04800 735:3905673134 636:1611.04484 615:1806.02100 594:1603.02385 556:1504.03830 515:0474.20018 446:1612.00728 408:References 316:of finite 235:and point 845:122531716 744:207156533 507:121512559 485:: 53–78. 205:separable 185:sequences 69:isometric 810:53312009 573:39754495 424:Archived 396:See also 349:diameter 213:geodesic 209:geodesic 201:complete 168:and the 160:denotes 499:0623534 463:, 1981. 380:Sormani 365:Colding 361:Cheeger 320:). See 258:,  151:. Here 96:infimum 65:compact 863:  843:  808:  742:  732:  666:  571:  513:  505:  497:  203:, and 841:S2CID 806:S2CID 788:arXiv 786:(4). 759:arXiv 740:S2CID 695:(3). 631:arXiv 610:arXiv 589:arXiv 569:S2CID 551:arXiv 503:S2CID 441:arXiv 318:index 308:with 71:. If 861:ISBN 730:ISBN 664:ISBN 363:and 347:and 139:and 75:and 31:and 833:doi 829:254 798:doi 722:doi 697:doi 656:doi 561:doi 547:100 511:Zbl 487:doi 421:pdf 355:is 335:is 292:in 277:in 249:, p 239:in 115:), 19:In 877:: 839:. 827:. 804:. 796:. 784:14 782:. 738:. 728:. 693:46 691:. 687:. 662:. 567:. 559:. 545:. 509:. 501:. 495:MR 493:. 483:53 481:. 477:. 389:. 367:. 199:, 90:, 83:GH 43:. 23:, 847:. 835:: 812:. 800:: 790:: 767:. 761:: 746:. 724:: 705:. 699:: 672:. 658:: 639:. 633:: 618:. 612:: 597:. 591:: 575:. 563:: 553:: 517:. 489:: 449:. 443:: 353:D 345:c 294:Y 290:p 286:R 281:n 279:X 274:n 272:p 268:R 264:R 260:p 256:Y 251:n 247:n 245:X 241:X 237:p 233:X 229:p 227:, 225:X 166:M 157:H 153:d 149:M 145:Y 141:g 137:M 133:X 129:f 125:M 121:Y 119:( 117:g 113:X 111:( 109:f 107:( 104:H 100:d 92:Y 88:X 86:( 81:d 77:Y 73:X

Index

mathematics
Mikhail Gromov
Felix Hausdorff
metric spaces
Hausdorff distance

Mikhail Gromov
compact
isometric
infimum
Hausdorff distance
Riemannian manifold
Euclidean space
sequences
path-connected
complete
separable
geodesic
geodesic
discrete group
polynomial growth
nilpotent subgroup
index
Gromov's theorem on groups of polynomial growth
Cayley graph
Riemannian geometry
Gromov's compactness theorem
Ricci curvature
diameter
relatively compact

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.