Knowledge

Hydrophobicity scales

Source 📝

210:
secondary structures formation is avoided by using short sequence peptides. Derivatization of amino acids is necessary to ease its partition into a C18 bonded phase. Another scale had been developed in 1971 and used peptide retention on hydrophilic gel. 1-butanol and pyridine were used as the mobile phase in this particular scale and glycine was used as the reference value. Pliska and his coworkers used thin layer chromatography to relate mobility values of free amino acids to their hydrophobicities. About a decade ago, another hydrophilicity scale was published, this scale used normal phase liquid chromatography and showed the retention of 121 peptides on an amide-80 column. The absolute values and relative rankings of hydrophobicity determined by chromatographic methods can be affected by a number of parameters. These parameters include the silica surface area and pore diameter, the choice and pH of aqueous buffer, temperature and the bonding density of stationary phase chains.
674:
of various dielectric medium generated by arrangement of different amino acids. Hence, different parts of the protein structure most likely would behave as solvents with different dielectric values. For simplicity, each protein structure was considered as an immiscible mixture of two solvents, protein interior and protein exterior. The local environment around individual amino acid (termed as "micro-environment") was computed for both protein interior and protein exterior. The ratio gives the relative hydrophobicity scale for individual amino acids. Computation was trained on high resolution protein crystal structures. This quantitative descriptor for microenvironment was derived from the
699: 687: 240:
tension values for the naturally occurring 20 amino acids in NaCl solution. The main drawbacks of surface tension measurements is that the broken hydrogen bonds and the neutralized charged groups remain at the solution air interface. Another physical property method involve measuring the solvation free energy. The solvation free energy is estimated as a product of an accessibility of an atom to the solvent and an atomic solvation parameter. Results indicate the solvation free energy lowers by an average of 1 Kcal/residue upon folding.
201:
on a bioinformatic survey of 5526 high-resolution structures from the Protein Data Bank. This differential scale has two comparative advantages: (1) it is especially useful for treating changes in water-protein interactions that are too small to be accessible to conventional force-field calculations, and (2) for homologous structures, it can yield correlations with changes in properties from mutations in the amino acid sequences alone, without determining corresponding structural changes, either in vitro or in vivo.
244: 161:
making it difficult to obtain pure hydrophobicity scale. Nozaki and Tanford proposed the first major hydrophobicity scale for nine amino acids. Ethanol and dioxane are used as the organic solvents and the free energy of transfer of each amino acid was calculated. Non liquid phases can also be used with partitioning methods such as micellar phases and vapor phases. Two scales have been developed using micellar phases. Fendler et al. measured the partitioning of 14 radiolabeled amino acids using
152:
tendency for a residue to be found inside of a protein rather than on its surface. Since cysteine forms disulfide bonds that must occur inside a globular structure, cysteine is ranked as the most hydrophobic. The first and third scales are derived from the physiochemical properties of the amino acid side chains. These scales result mainly from inspection of the amino acid structures. Biswas et al., divided the scales based on the method used to obtain the scale into five different categories.
76: 133: 228: 219:
the increased stability is directly proportional to increase in hydrophobicity up to a certain size limit. The main disadvantage of site-directed mutagenesis method is that not all the 20 naturally occurring amino acids can substitute a single residue in a protein. Moreover, these methods have cost problems and is useful only for measuring protein stability.
169:. Also, amino acid side chain affinity for water was measured using vapor phases. Vapor phases represent the simplest non polar phases, because it has no interaction with the solute. The hydration potential and its correlation to the appearance of amino acids on the surface of proteins was studied by Wolfenden. Aqueous and 673:
Most of the existing hydrophobicity scales are derived from the properties of amino acids in their free forms or as a part of a short peptide. Bandyopadhyay-Mehler hydrophobicity scale was based on partitioning of amino acids in the context of protein structure. Protein structure is a complex mosaic
239:
methods are based on the measurement of different physical properties. Examples include, partial molar heat capacity, transition temperature and surface tension. Physical methods are easy to use and flexible in terms of solute. The most popular hydrophobicity scale was developed by measuring surface
218:
This method use DNA recombinant technology and it gives an actual measurement of protein stability. In his detailed site-directed mutagenesis studies, Utani and his coworkers substituted 19 amino acids at Trp49 of the tryptophan synthase and he measured the free energy of unfolding. They found that
200:
for the corresponding types of atoms. A differential solvent accessible surface area hydrophobicity scale based on proteins as compacted networks near a critical point, due to self-organization by evolution, was constructed based on asymptotic power-law (self-similar) behavior. This scale is based
160:
The most common method of measuring amino acid hydrophobicity is partitioning between two immiscible liquid phases. Different organic solvents are most widely used to mimic the protein interior. However, organic solvents are slightly miscible with water and the characteristics of both phases change
730:
of a hard-sphere solute with respect to that in the bulk exhibits a linear dependence on cosine value of contact angle. Based on the computed excess chemical potentials of the purely repulsive methane-sized Weeks–Chandler–Andersen solute with respect to that in the bulk, the extrapolated values of
256:
Palliser and Parry have examined about 100 scales and found that they can use them for locating B-strands on the surface of proteins. Hydrophobicity scales were also used to predict the preservation of the genetic code. Trinquier observed a new order of the bases that better reflect the conserved
722:
team recently devised a computational approach that can relate the molecular hydrophobicity scale of amino-acid chains to the contact angle of water nanodroplet. The team constructed planar networks composed of unified amino-acid side chains with native structure of the beta-sheet protein. Using
280:
The Stephen H. White website provides an example of whole residue hydrophobicity scales showing the free energy of transfer ΔG(kcal/mol) from water to POPC interface and to n-octanol. These two scales are then used together to make Whole residue hydropathy plots. The hydropathy plot constructed
115:
of the system. In terms of thermodynamics, the hydrophobic effect is the free energy change of water surrounding a solute. A positive free energy change of the surrounding solvent indicates hydrophobicity, whereas a negative free energy change implies hydrophilicity. In this way, the hydrophobic
265:
The Wimley–White whole residue hydrophobicity scales are significant for two reasons. First, they include the contributions of the peptide bonds as well as the sidechains, providing absolute values. Second, they are based on direct, experimentally determined values for transfer free energies of
151:
as the most hydrophobic residue, unlike the other two scales. This difference is due to the different methods used to measure hydrophobicity. The method used to obtain the Janin and Rose et al. scales was to examine proteins with known 3-D structures and define the hydrophobic character as the
173:
phases were used in the development of a novel partitioning scale. Partitioning methods have many drawbacks. First, it is difficult to mimic the protein interior. In addition, the role of self solvation makes using free amino acids very difficult. Moreover, hydrogen bonds that are lost in the
209:
Reversed phase liquid chromatography (RPLC) is the most important chromatographic method for measuring solute hydrophobicity. The non polar stationary phase mimics biological membranes. Peptide usage has many advantages because partition is not extended by the terminal charges in RPLC. Also,
99:, cannot accept or donate hydrogen bonds to water. Introduction of hexane into water causes disruption of the hydrogen bonding network between water molecules. The hydrogen bonds are partially reconstructed by building a water "cage" around the hexane molecule, similar to that in 678:, (known as Rekker's Fragmental Constants) widely used for pharmacophores. This scale well correlate with the existing methods, based on partitioning and free energy computations. Advantage of this scale is it is more realistic, as it is in the context of real protein structures. 1467:
Zaslavsky, B. Yu.; Mestechkina, N.M.; Miheeva, L.M.; Rogozhin, S.V. (1982). "Measurement of relative hydrophobicity of amino acid side-chains by partition in an aqueous two-phase polymeric system: Hydrophobicity scale for non-polar and ionogenic side-chains".
289:
shows favorable peaks on the absolute scale that correspond to the known TM helices. Thus, the whole residue hydropathy plots illustrate why transmembrane segments prefer a transmembrane location rather than a surface one.
257:
character of the genetic code. They believed new ordering of the bases was uracil-guanine-cystosine-adenine (UGCA) better reflected the conserved character of the genetic code compared to the commonly seen ordering UCAG.
1825:
Plass, Monika; Valko, Klara; Abraham, Michael H (1998). "Determination of solute descriptors of tripeptide derivatives based on high-throughput gradient high-performance liquid chromatography retention data".
1711:
Hodges, Robert S.; Zhu, Bing-Yan; Zhou, Nian E.; Mant, Colin T. (1994). "Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability".
1424:
Sharp, Kim A.; Nicholls, Anthony; Friedman, Richard; Honig, Barry (1991-10-08). "Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models".
1790:
Pliška, Vladimir; Schmidt, Manfred; Fauchère, Jean-Luc (1981). "Partition coefficients of amino acids and hydrophobic parameters π of their side-chains as measured by thin-layer chromatography".
1389:
Leodidis, Epaminondas B.; Hatton, T. Alan. (1990). "Amino acids in AOT reversed micelles. 2. The hydrophobic effect and hydrogen bonding as driving forces for interfacial solubilization".
1863:"Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit" 731:
cosine value of contact angle are calculated(ccHydrophobicity), which can be used to quantify the hydrophobicity of amino acid side chains with complete wetting behaviors.
2168:
Wimley, William C.; Creamer, Trevor P.; White, Stephen H. (1996). "Solvation Energies of Amino Acid Side Chains and Backbone in a Family of Host−Guest Pentapeptides".
2030:
Palliser, Christopher C.; Parry, David A. D. (2000). "Quantitative comparison of the ability of hydropathy scales to recognize surface ?-strands in proteins".
54:. When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside 2265:"Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network" 1076:
Bandyopadhyay, D., Mehler, E.L. (2008). "Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment".
136:
A table comparing four different scales for the hydrophobicity of an amino acid residue in a protein with the most hydrophobic amino acids on the top
1119: 843:
Biswas, Kallol M.; DeVido, Daniel R.; Dorsey, John G. (2003). "Evaluation of methods for measuring amino acid hydrophobicities and interactions".
273:
One for the transfer of unfolded chains from water to the bilayer interface (referred to as the Wimley–White interfacial hydrophobicity scale).
723:
molecular dynamics simulation, the team is able to measure the contact angle of water nanodroplet on the planar networks (caHydrophobicity).
691: 1224:
Rose, G.; Geselowitz, A.; Lesser, G.; Lee, R.; Zehfus, M. (1985-08-30). "Hydrophobicity of amino acid residues in globular proteins".
2117:
Wimley, William C.; White, Stephen H. (1996). "Experimentally determined hydrophobicity scale for proteins at membrane interfaces".
1928:
Bull, Henry B.; Breese, Keith (1974). "Surface tension of amino acid solutions: A hydrophobicity scale of the amino acid residues".
1278:
Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgate, C. C. B. (1981). "Affinities of amino acid side chains for solvent water".
61:
The hydrophobic or hydrophilic character of a compound or amino acid is its hydropathic character, hydropathicity, or hydropathy.
2043: 247:
Whole-residue octanol-scale hydropathy plot for the L-subunit of the photosynthetic reaction center of Rhodobacter sphaeroides.
197: 702:
The MD simulation system and the structure of artificial beta-folding 2D peptide network composed of unified R-side chains.
1330:
Fendler, Janos H.; Nome, Faruk; Nagyvary, Joseph (1975). "Compartmentalization of amino acids in surfactant aggregates".
675: 766:
Kyte, Jack; Doolittle, Russell F. (May 1982). "A simple method for displaying the hydropathic character of a protein".
17: 1755:
Aboderin, Akintola A. (1971). "An empirical hydrophobicity scale for α-amino-acids and some of its applications".
895:
Charton, Marvin; Charton, Barbara I. (1982). "The structural dependence of amino acid hydrophobicity parameters".
189: 147:
There are clear differences between the four scales shown in the table. Both the second and fourth scales place
2410: 2324:"Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations" 719: 2220:
White, Stephen H.; Wimley, William C. (1999). "MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles".
276:
One for the transfer of unfolded chains into octanol, which is relevant to the hydrocarbon core of a bilayer.
46:
are the amino acids located in that region of the protein. These scales are commonly used to predict the
2263:
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng (2016).
1609:
Moret, M. A.; Zebende, G. F. (2007-01-19). "Amino acid hydrophobicity and accessible surface area".
714:
ability) of a flat surface (e.g., a counter top in kitchen or a cooking pan) can be measured by the
780: 1971:
Eisenberg, David; McLachlan, Andrew D. (1986). "Solvation energy in protein folding and binding".
1030:
Rose, G D; Wolfenden, R (1993). "Hydrogen Bonding, Hydrophobicity, Packing, and Protein Folding".
698: 1660:
Phillips, J. C. (2009-11-20). "Scaling and self-organized criticality in proteins: Lysozymec".
775: 162: 686: 1113: 87:
to exclude non-polar molecules. The effect originates from the disruption of highly dynamic
2276: 1980: 1874: 1669: 1618: 1339: 1233: 1174: 904: 740: 107:) is strongly restricted. This leads to significant losses in translational and rotational 47: 2385: 2096: 8: 2405: 1512:
Ben-Naim, A. (1990-02-15). "Solvent effects on protein association and protein folding".
995:
Eisenberg D (July 1984). "Three-dimensional structure of membrane and surface proteins".
2280: 1984: 1878: 1673: 1622: 1343: 1237: 1178: 1043: 1008: 908: 2350: 2323: 2299: 2264: 2150: 2063: 2012: 1566:
Chothia, Cyrus (1976). "The nature of the accessible and buried surfaces in proteins".
1545: 1371: 1206: 1101: 972: 947: 727: 183: 95:
do not cause the hydrophobic effect. However, a pure hydrocarbon molecule, for example
70: 1905: 1862: 1839: 1803: 1481: 856: 2355: 2304: 2245: 2237: 2233: 2193: 2185: 2142: 2134: 2055: 2047: 2004: 1996: 1953: 1945: 1941: 1910: 1892: 1843: 1807: 1772: 1768: 1737: 1729: 1725: 1693: 1685: 1642: 1634: 1591: 1583: 1579: 1537: 1529: 1485: 1449: 1441: 1406: 1363: 1355: 1303: 1295: 1257: 1249: 1198: 1190: 1093: 1055: 1047: 1012: 977: 928: 920: 916: 868: 860: 793: 789: 236: 112: 100: 51: 2067: 2016: 1549: 1105: 174:
transfer to organic solvents are not reformed but often in the interior of protein.
2345: 2335: 2294: 2284: 2229: 2177: 2154: 2126: 2039: 1988: 1937: 1900: 1882: 1835: 1799: 1764: 1721: 1677: 1626: 1575: 1521: 1477: 1433: 1398: 1375: 1347: 1287: 1241: 1210: 1182: 1085: 1039: 1004: 967: 959: 912: 852: 785: 132: 243: 104: 1151: 103:
formed at lower temperatures. The mobility of water molecules in the "cage" (or
2390: 1681: 1630: 35: 31: 91:
between molecules of liquid water. Polar chemical groups, such as OH group in
2399: 2241: 2189: 2138: 2051: 2000: 1949: 1896: 1847: 1811: 1776: 1733: 1689: 1638: 1587: 1533: 1489: 1445: 1410: 1359: 1299: 1253: 1232:(4716). American Association for the Advancement of Science (AAAS): 834–838. 1194: 1051: 963: 924: 864: 715: 88: 75: 55: 2375: 2340: 2289: 1887: 1245: 2380: 2359: 2308: 2249: 2059: 1697: 1646: 1097: 981: 872: 2197: 2146: 2008: 1957: 1914: 1741: 1541: 1525: 1453: 1367: 1307: 1261: 1059: 1016: 932: 797: 1595: 1202: 707: 227: 193: 43: 2130: 1437: 1402: 1291: 84: 2044:
10.1002/1097-0134(20010201)42:2<243::aid-prot120>3.0.co;2-b
1351: 1165:
Janin, Joël (1979). "Surface and inside volumes in globular proteins".
1089: 296: 39: 2210:
White SH. & Wimley WC (1998). Biochim. Biophys. Acta 1376:339-352.
2181: 668: 1992: 1186: 711: 140:
A number of different hydrophobicity scales have been developed. The
1133: 726:
On the other hand, previous studies show that the minimum of excess
681: 1466: 260: 166: 148: 117: 92: 2381:
NetSurfP - Secondary Structure and Surface accessibility predictor
1873:(13). Proceedings of the National Academy of Sciences: 4441–4444. 1861:
Yutani, K.; Ogasahara, K.; Tsujita, T.; Sugino, Y. (1987-07-01).
1277: 694:
on the artificial beta-sheets with various amino acid side chains
170: 121: 111:
of water molecules and makes the process unfavorable in terms of
108: 192:
for amino acid residues in the expended polypeptide chain or in
141: 96: 188:
Hydrophobicity scales can also be obtained by calculating the
945: 144:
Protscale website lists a total of 22 hydrophobicity scales.
2080:
G . Trinquier, Y.-H. Sanejouand, Protein Eng. 11 (1998) 153.
1860: 269:
Two whole-residue hydrophobicity scales have been measured:
127: 64: 2376:
ProtScale (web-based tool for calculating hydropathy plots)
1979:(6050). Springer Science and Business Media LLC: 199–203. 1423: 1173:(5696). Springer Science and Business Media LLC: 491–492. 946:
Schauperl, M; Podewitz, M; Waldner, BJ; Liedl, KR (2016).
116:
effect not only can be localized but also decomposed into
1502:
S . Damadoran, K.B. Song, J. Biol. Chem. 261 (1986) 7220.
810:
Tanford, C., The hydrophobic effect(New York:Wiley.1980).
2125:(10). Springer Science and Business Media LLC: 842–848. 948:"Enthalpic and Entropic Contributions to Hydrophobicity" 1338:(3). Springer Science and Business Media LLC: 215–232. 1320:
Y . Nozaki, C. Tanford, J. Biol. Chem. 246 (1971) 2211.
1223: 2222:
Annual Review of Biophysics and Biomolecular Structure
1032:
Annual Review of Biophysics and Biomolecular Structure
2321: 1789: 1867:
Proceedings of the National Academy of Sciences USA
1329: 669:
Bandyopadhyay-Mehler protein structure based scales
2176:(16). American Chemical Society (ACS): 5109–5124. 2167: 1970: 1432:(40). American Chemical Society (ACS): 9686–9697. 1397:(16). American Chemical Society (ACS): 6411–6420. 842: 177: 83:The hydrophobic effect represents the tendency of 2097:"Experimentally Determined Hydrophobicity Scales" 1824: 1710: 1078:Proteins: Structure, Function, and Bioinformatics 1075: 682:Scale based on contact angle of water nanodroplet 2397: 1273: 1271: 261:Wimley–White whole residue hydrophobicity scales 231:Wimley-White whole-residue hydrophobicity scales 79:Hydrogen bonds between molecules of liquid water 42:residues. The more positive the value, the more 2328:Proceedings of the National Academy of Sciences 2269:Proceedings of the National Academy of Sciences 1286:(4). American Chemical Society (ACS): 849–855. 804: 2322:Godawat, R; Jamadagni, S. N; Garde, S (2009). 1668:(5). American Physical Society (APS): 051916. 1617:(1). American Physical Society (APS): 011920. 1388: 894: 2029: 1268: 1029: 885:W . Kauzmann, Adv. Protein Chem. 14 (1959) 1. 765: 2262: 1608: 1118:: CS1 maint: multiple names: authors list ( 939: 222: 213: 2219: 2116: 2032:Proteins: Structure, Function, and Genetics 1071: 1069: 994: 838: 836: 761: 759: 757: 755: 1927: 1561: 1559: 952:Journal of Chemical Theory and Computation 834: 832: 830: 828: 826: 824: 822: 820: 818: 816: 204: 2349: 2339: 2298: 2288: 2119:Nature Structural & Molecular Biology 2090: 2088: 2086: 1904: 1886: 971: 779: 196:and multiplying the surface areas by the 128:Types of amino acid hydrophobicity scales 65:Hydrophobicity and the hydrophobic effect 1754: 1659: 1511: 1066: 752: 697: 685: 242: 226: 131: 74: 1930:Archives of Biochemistry and Biophysics 1565: 1556: 813: 235:The hydrophobicity scales developed by 155: 14: 2398: 2083: 251: 2094: 1757:International Journal of Biochemistry 1164: 30:are values that define the relative 1044:10.1146/annurev.bb.22.060193.002121 1009:10.1146/annurev.bi.53.070184.003115 676:octanol-water partition coefficient 24: 2386:Whole residue hydrophobicity scale 2099:. University of California, Irvine 25: 2422: 2369: 1391:The Journal of Physical Chemistry 2234:10.1146/annurev.biophys.28.1.319 190:solvent accessible surface areas 2315: 2256: 2213: 2204: 2161: 2110: 2074: 2023: 1964: 1921: 1854: 1818: 1783: 1748: 1704: 1653: 1602: 1505: 1496: 1460: 1417: 1382: 1323: 1314: 1217: 1158: 1144: 1126: 178:Accessible surface area methods 2228:(1). Annual Reviews: 319–365. 1332:Journal of Molecular Evolution 1038:(1). Annual Reviews: 381–415. 1023: 988: 897:Journal of Theoretical Biology 888: 879: 720:University of Nebraska-Lincoln 198:empirical solvation parameters 13: 1: 2095:White, Stephen (2006-06-29). 1840:10.1016/s0021-9673(97)01215-6 1804:10.1016/s0021-9673(00)82337-7 1482:10.1016/s0021-9673(01)84003-6 857:10.1016/s0021-9673(03)00182-1 851:(1–2). Elsevier BV: 637–655. 746: 1942:10.1016/0003-9861(74)90352-x 1769:10.1016/0020-711x(71)90023-1 1763:(11). Elsevier BV: 537–544. 1726:10.1016/0021-9673(94)80452-4 1580:10.1016/0022-2836(76)90191-1 1568:Journal of Molecular Biology 917:10.1016/0022-5193(82)90191-6 790:10.1016/0022-2836(82)90515-0 768:Journal of Molecular Biology 7: 1936:(2). Elsevier BV: 665–670. 1834:(1–2). Elsevier BV: 51–60. 1828:Journal of Chromatography A 1792:Journal of Chromatography A 1714:Journal of Chromatography A 1470:Journal of Chromatography A 903:(4). Elsevier BV: 629–644. 845:Journal of Chromatography A 734: 48:transmembrane alpha-helices 10: 2427: 1682:10.1103/physreve.80.051916 1631:10.1103/physreve.75.011920 774:(1). Elsevier BV: 105–32. 690:Contact angles of a water 181: 68: 2391:Membrane protein explorer 1476:(1). Elsevier BV: 21–28. 710:, the hydrophobicity (or 223:Physical property methods 214:Site-directed mutagenesis 1720:(1). Elsevier BV: 3–15. 1574:(1). Elsevier BV: 1–12. 964:10.1021/acs.jctc.6b00422 2341:10.1073/pnas.0902778106 2290:10.1073/pnas.1616138113 1888:10.1073/pnas.84.13.4441 1246:10.1126/science.4023714 1152:"Hydrophobicity Scales" 205:Chromatographic methods 1798:. Elsevier BV: 79–92. 703: 695: 248: 232: 163:sodium dodecyl sulfate 137: 80: 2411:Intermolecular forces 2038:(2). Wiley: 243–255. 1526:10.1002/bip.360290312 1520:(3). Wiley: 567–596. 701: 689: 325:Octanol − interface, 246: 230: 135: 78: 28:Hydrophobicity scales 1134:"Expasy - ProtScale" 741:Hydrophobic mismatch 718:of water droplet. A 156:Partitioning methods 2334:(36): 15119–15124. 2281:2016PNAS..11312946Z 2275:(46): 12946–12951. 2131:10.1038/nsb1096-842 1985:1986Natur.319..199E 1879:1987PNAS...84.4441Y 1674:2009PhRvE..80e1916P 1623:2007PhRvE..75a1920M 1438:10.1021/bi00104a017 1403:10.1021/j100379a047 1344:1975JMolE...6..215F 1292:10.1021/bi00507a030 1238:1985Sci...229..834R 1179:1979Natur.277..491J 909:1982JThBi..99..629C 252:Recent applications 1352:10.1007/bf01732358 1090:10.1002/prot.21958 997:Annu. Rev. Biochem 728:chemical potential 704: 696: 249: 233: 184:Implicit solvation 138: 101:clathrate hydrates 81: 71:Hydrophobic effect 2182:10.1021/bi9600153 1662:Physical Review E 1611:Physical Review E 666: 665: 301:Interface scale, 237:physical property 52:membrane proteins 16:(Redirected from 2418: 2364: 2363: 2353: 2343: 2319: 2313: 2312: 2302: 2292: 2260: 2254: 2253: 2217: 2211: 2208: 2202: 2201: 2165: 2159: 2158: 2114: 2108: 2107: 2105: 2104: 2092: 2081: 2078: 2072: 2071: 2027: 2021: 2020: 1993:10.1038/319199a0 1968: 1962: 1961: 1925: 1919: 1918: 1908: 1890: 1858: 1852: 1851: 1822: 1816: 1815: 1787: 1781: 1780: 1752: 1746: 1745: 1708: 1702: 1701: 1657: 1651: 1650: 1606: 1600: 1599: 1563: 1554: 1553: 1509: 1503: 1500: 1494: 1493: 1464: 1458: 1457: 1421: 1415: 1414: 1386: 1380: 1379: 1327: 1321: 1318: 1312: 1311: 1275: 1266: 1265: 1221: 1215: 1214: 1187:10.1038/277491a0 1162: 1156: 1155: 1148: 1142: 1141: 1130: 1124: 1123: 1117: 1109: 1073: 1064: 1063: 1027: 1021: 1020: 992: 986: 985: 975: 943: 937: 936: 892: 886: 883: 877: 876: 840: 811: 808: 802: 801: 783: 763: 706:In the field of 313:Octanol scale, 293: 292: 21: 18:Hydropathy index 2426: 2425: 2421: 2420: 2419: 2417: 2416: 2415: 2396: 2395: 2372: 2367: 2320: 2316: 2261: 2257: 2218: 2214: 2209: 2205: 2166: 2162: 2115: 2111: 2102: 2100: 2093: 2084: 2079: 2075: 2028: 2024: 1969: 1965: 1926: 1922: 1859: 1855: 1823: 1819: 1788: 1784: 1753: 1749: 1709: 1705: 1658: 1654: 1607: 1603: 1564: 1557: 1510: 1506: 1501: 1497: 1465: 1461: 1422: 1418: 1387: 1383: 1328: 1324: 1319: 1315: 1276: 1269: 1222: 1218: 1163: 1159: 1150: 1149: 1145: 1132: 1131: 1127: 1111: 1110: 1074: 1067: 1028: 1024: 993: 989: 944: 940: 893: 889: 884: 880: 841: 814: 809: 805: 764: 753: 749: 737: 684: 671: 340: 333: 326: 321: 314: 309: 302: 288: 284: 263: 254: 225: 216: 207: 186: 180: 158: 130: 124:contributions. 105:solvation shell 73: 67: 23: 22: 15: 12: 11: 5: 2424: 2414: 2413: 2408: 2394: 2393: 2388: 2383: 2378: 2371: 2370:External links 2368: 2366: 2365: 2314: 2255: 2212: 2203: 2160: 2109: 2082: 2073: 2022: 1963: 1920: 1853: 1817: 1782: 1747: 1703: 1652: 1601: 1555: 1504: 1495: 1459: 1416: 1381: 1322: 1313: 1267: 1216: 1157: 1143: 1138:web.expasy.org 1125: 1084:(2): 646–659. 1065: 1022: 987: 958:(9): 4600–10. 938: 887: 878: 812: 803: 781:10.1.1.458.454 750: 748: 745: 744: 743: 736: 733: 683: 680: 670: 667: 664: 663: 660: 657: 654: 650: 649: 646: 643: 640: 636: 635: 632: 629: 626: 622: 621: 618: 615: 612: 608: 607: 604: 601: 598: 594: 593: 590: 587: 584: 580: 579: 576: 573: 570: 566: 565: 562: 559: 556: 552: 551: 548: 545: 542: 538: 537: 534: 531: 528: 524: 523: 520: 517: 514: 510: 509: 506: 503: 500: 496: 495: 492: 489: 486: 482: 481: 478: 475: 472: 468: 467: 464: 461: 458: 454: 453: 450: 447: 444: 440: 439: 436: 433: 430: 426: 425: 422: 419: 416: 412: 411: 408: 405: 402: 398: 397: 394: 391: 388: 384: 383: 380: 377: 374: 370: 369: 366: 363: 360: 356: 355: 352: 349: 346: 342: 341: 338: 331: 323: 319: 311: 307: 299: 286: 282: 278: 277: 274: 266:polypeptides. 262: 259: 253: 250: 224: 221: 215: 212: 206: 203: 182:Main article: 179: 176: 157: 154: 129: 126: 89:hydrogen bonds 69:Main article: 66: 63: 36:hydrophilicity 32:hydrophobicity 9: 6: 4: 3: 2: 2423: 2412: 2409: 2407: 2404: 2403: 2401: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2373: 2361: 2357: 2352: 2347: 2342: 2337: 2333: 2329: 2325: 2318: 2310: 2306: 2301: 2296: 2291: 2286: 2282: 2278: 2274: 2270: 2266: 2259: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2207: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2164: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2098: 2091: 2089: 2087: 2077: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2033: 2026: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1916: 1912: 1907: 1902: 1898: 1894: 1889: 1884: 1880: 1876: 1872: 1868: 1864: 1857: 1849: 1845: 1841: 1837: 1833: 1829: 1821: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1778: 1774: 1770: 1766: 1762: 1758: 1751: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1707: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1656: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1605: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1562: 1560: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1508: 1499: 1491: 1487: 1483: 1479: 1475: 1471: 1463: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1420: 1412: 1408: 1404: 1400: 1396: 1392: 1385: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1326: 1317: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1274: 1272: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1220: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1153: 1147: 1139: 1135: 1129: 1121: 1115: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1070: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1026: 1018: 1014: 1010: 1006: 1002: 998: 991: 983: 979: 974: 969: 965: 961: 957: 953: 949: 942: 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 891: 882: 874: 870: 866: 862: 858: 854: 850: 846: 839: 837: 835: 833: 831: 829: 827: 825: 823: 821: 819: 817: 807: 799: 795: 791: 787: 782: 777: 773: 769: 762: 760: 758: 756: 751: 742: 739: 738: 732: 729: 724: 721: 717: 716:contact angle 713: 709: 700: 693: 688: 679: 677: 661: 658: 655: 652: 651: 647: 644: 641: 638: 637: 633: 630: 627: 624: 623: 619: 616: 613: 610: 609: 605: 602: 599: 596: 595: 591: 588: 585: 582: 581: 577: 574: 571: 568: 567: 563: 560: 557: 554: 553: 549: 546: 543: 540: 539: 535: 532: 529: 526: 525: 521: 518: 515: 512: 511: 507: 504: 501: 498: 497: 493: 490: 487: 484: 483: 479: 476: 473: 470: 469: 465: 462: 459: 456: 455: 451: 448: 445: 442: 441: 437: 434: 431: 428: 427: 423: 420: 417: 414: 413: 409: 406: 403: 400: 399: 395: 392: 389: 386: 385: 381: 378: 375: 372: 371: 367: 364: 361: 358: 357: 353: 350: 347: 344: 343: 337: 330: 324: 318: 312: 306: 300: 298: 295: 294: 291: 275: 272: 271: 270: 267: 258: 245: 241: 238: 229: 220: 211: 202: 199: 195: 191: 185: 175: 172: 168: 164: 153: 150: 145: 143: 134: 125: 123: 119: 114: 110: 106: 102: 98: 94: 90: 86: 77: 72: 62: 59: 57: 56:lipid bilayer 53: 49: 45: 41: 37: 33: 29: 19: 2331: 2327: 2317: 2272: 2268: 2258: 2225: 2221: 2215: 2206: 2173: 2170:Biochemistry 2169: 2163: 2122: 2118: 2112: 2101:. Retrieved 2076: 2035: 2031: 2025: 1976: 1972: 1966: 1933: 1929: 1923: 1870: 1866: 1856: 1831: 1827: 1820: 1795: 1791: 1785: 1760: 1756: 1750: 1717: 1713: 1706: 1665: 1661: 1655: 1614: 1610: 1604: 1571: 1567: 1517: 1513: 1507: 1498: 1473: 1469: 1462: 1429: 1426:Biochemistry 1425: 1419: 1394: 1390: 1384: 1335: 1331: 1325: 1316: 1283: 1280:Biochemistry 1279: 1229: 1225: 1219: 1170: 1166: 1160: 1146: 1137: 1128: 1114:cite journal 1081: 1077: 1035: 1031: 1025: 1000: 996: 990: 955: 951: 941: 900: 896: 890: 881: 848: 844: 806: 771: 767: 725: 705: 672: 335: 328: 316: 304: 279: 268: 264: 255: 234: 217: 208: 187: 159: 146: 139: 82: 60: 27: 26: 1514:Biopolymers 1003:: 595–623. 708:engineering 692:nanodroplet 322:(kcal/mol) 310:(kcal/mol) 194:alpha-helix 113:free energy 44:hydrophobic 2406:Biophysics 2400:Categories 2103:2009-06-12 747:References 297:Amino acid 40:amino acid 2242:1056-8700 2190:0006-2960 2139:1545-9993 2052:0887-3585 2001:0028-0836 1950:0003-9861 1897:0027-8424 1848:0021-9673 1812:0021-9673 1777:0020-711X 1734:0021-9673 1690:1539-3755 1639:1539-3755 1588:0022-2836 1534:0006-3525 1490:0021-9673 1446:0006-2960 1411:0022-3654 1360:0022-2844 1300:0006-2960 1254:0036-8075 1195:0028-0836 1052:1056-8700 925:0022-5193 865:0021-9673 776:CiteSeerX 712:dewetting 118:enthalpic 2360:19706896 2309:27803319 2250:10410805 2068:23839522 2060:11119649 2017:21867582 1698:20365015 1647:17358197 1550:25691137 1106:20929779 1098:18247345 982:27442443 873:12877193 735:See also 281:using ΔG 167:micelles 149:cysteine 122:entropic 93:methanol 2351:2741215 2300:5135335 2277:Bibcode 2198:8611495 2155:1823375 2147:8836100 2009:3945310 1981:Bibcode 1958:4839053 1915:3299367 1875:Bibcode 1742:7921179 1670:Bibcode 1619:Bibcode 1542:2331515 1454:1911756 1376:2394979 1368:1206727 1340:Bibcode 1308:7213619 1262:4023714 1234:Bibcode 1226:Science 1211:4338901 1175:Bibcode 1060:8347995 1017:6383201 973:5024328 933:7183857 905:Bibcode 798:7108955 171:polymer 109:entropy 2358:  2348:  2307:  2297:  2248:  2240:  2196:  2188:  2153:  2145:  2137:  2066:  2058:  2050:  2015:  2007:  1999:  1973:Nature 1956:  1948:  1913:  1906:305105 1903:  1895:  1846:  1810:  1775:  1740:  1732:  1696:  1688:  1645:  1637:  1596:994183 1594:  1586:  1548:  1540:  1532:  1488:  1452:  1444:  1409:  1374:  1366:  1358:  1306:  1298:  1260:  1252:  1209:  1203:763335 1201:  1193:  1167:Nature 1104:  1096:  1058:  1050:  1015:  980:  970:  931:  923:  871:  863:  796:  778:  572:−0.07 519:−0.71 516:−0.94 505:−0.02 502:−0.24 474:−0.01 452:−0.06 438:−0.24 435:−2.09 432:−1.85 424:−0.31 410:−0.44 407:−0.67 404:−0.23 396:−0.53 393:−0.46 382:−0.58 379:−1.71 376:−1.13 368:−0.69 365:−1.25 362:−0.56 354:−0.81 351:−1.12 348:−0.31 165:(SDS) 142:Expasy 97:hexane 2151:S2CID 2064:S2CID 2013:S2CID 1546:S2CID 1372:S2CID 1207:S2CID 1102:S2CID 662:2.41 659:3.64 656:1.23 653:Asp- 648:1.81 645:2.80 642:0.99 639:Lys+ 634:1.61 631:3.63 628:2.02 625:Glu- 620:1.37 617:2.33 614:0.96 611:His+ 606:1.14 603:1.15 600:0.01 592:1.00 589:1.81 586:0.81 583:Arg+ 578:0.50 575:0.43 569:Asp0 564:0.43 561:0.85 558:0.42 550:0.33 547:0.46 544:0.13 536:0.33 533:0.50 530:0.17 522:0.23 508:0.22 494:0.19 491:0.77 488:0.58 480:0.12 477:0.11 471:Glu0 466:0.11 463:0.25 460:0.14 449:0.11 446:0.17 443:His0 421:0.14 418:0.45 390:0.07 85:water 2356:PMID 2305:PMID 2246:PMID 2238:ISSN 2194:PMID 2186:ISSN 2143:PMID 2135:ISSN 2056:PMID 2048:ISSN 2005:PMID 1997:ISSN 1954:PMID 1946:ISSN 1911:PMID 1893:ISSN 1844:ISSN 1808:ISSN 1773:ISSN 1738:PMID 1730:ISSN 1694:PMID 1686:ISSN 1643:PMID 1635:ISSN 1592:PMID 1584:ISSN 1538:PMID 1530:ISSN 1486:ISSN 1450:PMID 1442:ISSN 1407:ISSN 1364:PMID 1356:ISSN 1304:PMID 1296:ISSN 1258:PMID 1250:ISSN 1199:PMID 1191:ISSN 1120:link 1094:PMID 1056:PMID 1048:ISSN 1013:PMID 978:PMID 929:PMID 921:ISSN 869:PMID 861:ISSN 849:1000 794:PMID 597:Gly 555:Asn 541:Ser 527:Ala 513:Tyr 499:Cys 485:Gln 457:Thr 429:Trp 415:Pro 401:Met 387:Val 373:Phe 359:Leu 345:Ile 332:woct 320:woct 285:− ΔG 283:woct 120:and 2346:PMC 2336:doi 2332:106 2295:PMC 2285:doi 2273:113 2230:doi 2178:doi 2127:doi 2040:doi 1989:doi 1977:319 1938:doi 1934:161 1901:PMC 1883:doi 1836:doi 1832:803 1800:doi 1796:216 1765:doi 1722:doi 1718:676 1678:doi 1627:doi 1576:doi 1572:105 1522:doi 1478:doi 1474:240 1434:doi 1399:doi 1348:doi 1288:doi 1242:doi 1230:229 1183:doi 1171:277 1086:doi 1040:doi 1005:doi 968:PMC 960:doi 913:doi 853:doi 786:doi 772:157 339:wif 334:− Δ 308:wif 287:wif 50:of 38:of 34:or 2402:: 2354:. 2344:. 2330:. 2326:. 2303:. 2293:. 2283:. 2271:. 2267:. 2244:. 2236:. 2226:28 2224:. 2192:. 2184:. 2174:35 2172:. 2149:. 2141:. 2133:. 2121:. 2085:^ 2062:. 2054:. 2046:. 2036:42 2034:. 2011:. 2003:. 1995:. 1987:. 1975:. 1952:. 1944:. 1932:. 1909:. 1899:. 1891:. 1881:. 1871:84 1869:. 1865:. 1842:. 1830:. 1806:. 1794:. 1771:. 1759:. 1736:. 1728:. 1716:. 1692:. 1684:. 1676:. 1666:80 1664:. 1641:. 1633:. 1625:. 1615:75 1613:. 1590:. 1582:. 1570:. 1558:^ 1544:. 1536:. 1528:. 1518:29 1516:. 1484:. 1472:. 1448:. 1440:. 1430:30 1428:. 1405:. 1395:94 1393:. 1370:. 1362:. 1354:. 1346:. 1334:. 1302:. 1294:. 1284:20 1282:. 1270:^ 1256:. 1248:. 1240:. 1228:. 1205:. 1197:. 1189:. 1181:. 1169:. 1136:. 1116:}} 1112:{{ 1100:. 1092:. 1082:72 1080:. 1068:^ 1054:. 1046:. 1036:22 1034:. 1011:. 1001:53 999:. 976:. 966:. 956:12 954:. 950:. 927:. 919:. 911:. 901:99 899:. 867:. 859:. 847:. 815:^ 792:. 784:. 770:. 754:^ 58:. 2362:. 2338:: 2311:. 2287:: 2279:: 2252:. 2232:: 2200:. 2180:: 2157:. 2129:: 2123:3 2106:. 2070:. 2042:: 2019:. 1991:: 1983:: 1960:. 1940:: 1917:. 1885:: 1877:: 1850:. 1838:: 1814:. 1802:: 1779:. 1767:: 1761:2 1744:. 1724:: 1700:. 1680:: 1672:: 1649:. 1629:: 1621:: 1598:. 1578:: 1552:. 1524:: 1492:. 1480:: 1456:. 1436:: 1413:. 1401:: 1378:. 1350:: 1342:: 1336:6 1310:. 1290:: 1264:. 1244:: 1236:: 1213:. 1185:: 1177:: 1154:. 1140:. 1122:) 1108:. 1088:: 1062:. 1042:: 1019:. 1007:: 984:. 962:: 935:. 915:: 907:: 875:. 855:: 800:. 788:: 336:G 329:G 327:Δ 317:G 315:Δ 305:G 303:Δ 20:)

Index

Hydropathy index
hydrophobicity
hydrophilicity
amino acid
hydrophobic
transmembrane alpha-helices
membrane proteins
lipid bilayer
Hydrophobic effect

water
hydrogen bonds
methanol
hexane
clathrate hydrates
solvation shell
entropy
free energy
enthalpic
entropic

Expasy
cysteine
sodium dodecyl sulfate
micelles
polymer
Implicit solvation
solvent accessible surface areas
alpha-helix
empirical solvation parameters

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.