Knowledge

Lipid bilayer

Source đź“ť

1047:. When a vesicle is produced inside the cell and fuses with the plasma membrane to release its contents into the extracellular space, this process is known as exocytosis. In the reverse process, a region of the cell membrane will dimple inwards and eventually pinch off, enclosing a portion of the extracellular fluid to transport it into the cell. Endocytosis and exocytosis rely on very different molecular machinery to function, but the two processes are intimately linked and could not work without each other. The primary mechanism of this interdependence is the large amount of lipid material involved. In a typical cell, an area of bilayer equivalent to the entire plasma membrane will travel through the endocytosis/exocytosis cycle in about half an hour. If these two processes were not balancing each other, the cell would either balloon outward to an unmanageable size or completely deplete its plasma membrane within a short time. 1347:
at least partially dehydrated, as the bound surface water normally present causes bilayers to strongly repel. The presence of ions, in particular divalent cations like magnesium and calcium, strongly affects this step. One of the critical roles of calcium in the body is regulating membrane fusion. Third, a destabilization must form at one point between the two bilayers, locally distorting their structures. The exact nature of this distortion is not known. One theory is that a highly curved "stalk" must form between the two bilayers. Proponents of this theory believe that it explains why phosphatidylethanolamine, a highly curved lipid, promotes fusion. Finally, in the last step of fusion, this point defect grows and the components of the two bilayers mix and diffuse away from the site of contact.
1537:. Since the lipid bilayer is the barrier between the interior and exterior of the cell, it is also the site of extensive signal transduction. Researchers over the years have tried to harness this potential to develop a bilayer-based device for clinical diagnosis or bioterrorism detection. Progress has been slow in this area and, although a few companies have developed automated lipid-based detection systems, they are still targeted at the research community. These include Biacore (now GE Healthcare Life Sciences), which offers a disposable chip for utilizing lipid bilayers in studies of binding kinetics and Nanion Inc., which has developed an 853:(AFM). Rather than using a beam of light or particles, a very small sharpened tip scans the surface by making physical contact with the bilayer and moving across it, like a record player needle. AFM is a promising technique because it has the potential to image with nanometer resolution at room temperature and even under water or physiological buffer, conditions necessary for natural bilayer behavior. Utilizing this capability, AFM has been used to examine dynamic bilayer behavior including the formation of transmembrane pores (holes) and phase transitions in supported bilayers. Another advantage is that AFM does not require fluorescent or 1488:” except that vesicle is a general term for the structure whereas liposome refers to only artificial not natural vesicles) The basic idea of liposomal drug delivery is that the drug is encapsulated in solution inside the liposome then injected into the patient. These drug-loaded liposomes travel through the system until they bind at the target site and rupture, releasing the drug. In theory, liposomes should make an ideal drug delivery system since they can isolate nearly any hydrophilic drug, can be grafted with molecules to target specific tissues and can be relatively non-toxic since the body possesses biochemical pathways for 826: 36: 932:. When a cell or vesicle with a high interior salt concentration is placed in a solution with a low salt concentration it will swell and eventually burst. Such a result would not be observed unless water was able to pass through the bilayer with relative ease. The anomalously large permeability of water through bilayers is still not completely understood and continues to be the subject of active debate. Small uncharged apolar molecules diffuse through lipid bilayers many orders of magnitude faster than ions or water. This applies both to fats and organic solvents like 1351: 607: 361:. Other lipids, such as sphingomyelin, appear to be synthesised at the external leaflet. Flippases are members of a larger family of lipid transport molecules that also includes floppases, which transfer lipids in the opposite direction, and scramblases, which randomize lipid distribution across lipid bilayers (as in apoptotic cells). In any case, once lipid asymmetry is established, it does not normally dissipate quickly because spontaneous flip-flop of lipids between leaflets is extremely slow. 386: 251: 1303: 838: 1359: 757: 301: 1156: 1051: 1016: 1615:. When they compared the area of the monolayer to the surface area of the cells, they found a ratio of two to one. Later analyses showed several errors and incorrect assumptions with this experiment but, serendipitously, these errors canceled out and from this flawed data Gorter and Grendel drew the correct conclusion- that the cell membrane is a lipid bilayer. 944: 177:. Because bilayers define the boundaries of the cell and its compartments, these membrane proteins are involved in many intra- and inter-cellular signaling processes. Certain kinds of membrane proteins are involved in the process of fusing two bilayers together. This fusion allows the joining of two distinct structures as in the 288:
group is located within this hydrated region, approximately 0.5 nm outside the hydrophobic core. In some cases, the hydrated region can extend much further, for instance in lipids with a large protein or long sugar chain grafted to the head. One common example of such a modification in nature is
1314:
is the process by which two lipid bilayers merge, resulting in one connected structure. If this fusion proceeds completely through both leaflets of both bilayers, a water-filled bridge is formed and the solutions contained by the bilayers can mix. Alternatively, if only one leaflet from each bilayer
1204:
affect the ability of proteins and small molecules to insert into the bilayer, and bilayer mechanical properties have been shown to alter the function of mechanically activated ion channels. Bilayer mechanical properties also govern what types of stress a cell can withstand without tearing. Although
680:
in part by grafting these proteins from the host membrane onto its own surface. Alternatively, some membrane proteins penetrate all the way through the bilayer and serve to relay individual signal events from the outside to the inside of the cell. The most common class of this type of protein is the
400:
At a given temperature a lipid bilayer can exist in either a liquid or a gel (solid) phase. All lipids have a characteristic temperature at which they transition (melt) from the gel to liquid phase. In both phases the lipid molecules are prevented from flip-flopping across the bilayer, but in liquid
376:
It has been reported that the organization and dynamics of the lipid monolayers in a bilayer are coupled. For example, introduction of obstructions in one monolayer can slow down the lateral diffusion in both monolayers. In addition, phase separation in one monolayer can also induce phase separation
1346:
There are four fundamental steps in the fusion process. First, the involved membranes must aggregate, approaching each other to within several nanometers. Second, the two bilayers must come into very close contact (within a few angstroms). To achieve this close contact, the two surfaces must become
1140:
both result from application of an electric field, the mechanisms involved are fundamentally different. In dielectric breakdown the barrier material is ionized, creating a conductive pathway. The material alteration is thus chemical in nature. In contrast, during electroporation the lipid molecules
264:
would be about as thick as a piece of office paper. Despite being only a few nanometers thick, the bilayer is composed of several distinct chemical regions across its cross-section. These regions and their interactions with the surrounding water have been characterized over the past several decades
1630:
Around the same time, the development of model membranes confirmed that the lipid bilayer is a stable structure that can exist independent of proteins. By “painting” a solution of lipid in organic solvent across an aperture, Mueller and Rudin were able to create an artificial bilayer and determine
1232:
is a measure of how much energy is needed to bend or flex the bilayer. Formally, bending modulus is defined as the energy required to deform a membrane from its intrinsic curvature to some other curvature. Intrinsic curvature is defined by the ratio of the diameter of the head group to that of the
1038:
Some molecules or particles are too large or too hydrophilic to pass through a lipid bilayer. Other molecules could pass through the bilayer but must be transported rapidly in such large numbers that channel-type transport is impractical. In both cases, these types of cargo can be moved across the
547:
bilayer core, as discussed in Transport across the bilayer below. The nucleus, mitochondria and chloroplasts have two lipid bilayers, while other sub-cellular structures are surrounded by a single lipid bilayer (such as the plasma membrane, endoplasmic reticula, Golgi apparatus and lysosomes). See
372:
deposition or a combination of Langmuir-Blodgett and vesicle rupture deposition it is also possible to synthesize an asymmetric planar bilayer. This asymmetry may be lost over time as lipids in supported bilayers can be prone to flip-flop. However, it has been reported that lipid flip-flop is slow
311:
Next to the hydrated region is an intermediate region that is only partially hydrated. This boundary layer is approximately 0.3 nm thick. Within this short distance, the water concentration drops from 2M on the headgroup side to nearly zero on the tail (core) side. The hydrophobic core of the
153:
at higher temperatures, and the chemical properties of the lipids' tails influence at which temperature this happens. The packing of lipids within the bilayer also affects its mechanical properties, including its resistance to stretching and bending. Many of these properties have been studied with
136:
tail consisting of two fatty acid chains. Phospholipids with certain head groups can alter the surface chemistry of a bilayer and can, for example, serve as signals as well as "anchors" for other molecules in the membranes of cells. Just like the heads, the tails of lipids can also affect membrane
1208:
As discussed in the Structure and organization section, the hydrophobic attraction of lipid tails in water is the primary force holding lipid bilayers together. Thus, the elastic modulus of the bilayer is primarily determined by how much extra area is exposed to water when the lipid molecules are
743:
of the bilayer is determined. This resistance is typically quite high (10 Ohm-cm or more) since the hydrophobic core is impermeable to charged species. The presence of even a few nanometer-scale holes results in a dramatic increase in current. The sensitivity of this system is such that even the
1283:
is a measure of how much energy it takes to expose a bilayer edge to water by tearing the bilayer or creating a hole in it. The origin of this energy is the fact that creating such an interface exposes some of the lipid tails to water, but the exact orientation of these border lipids is unknown.
1111:
Electroporation is the rapid increase in bilayer permeability induced by the application of a large artificial electric field across the membrane. Experimentally, electroporation is used to introduce hydrophilic molecules into cells. It is a particularly useful technique for large highly charged
433:
Most natural membranes are a complex mixture of different lipid molecules. If some of the components are liquid at a given temperature while others are in the gel phase, the two phases can coexist in spatially separated regions, rather like an iceberg floating in the ocean. This phase separation
429:
chain, disrupting the lipid packing. This disruption creates extra free space within the bilayer that allows additional flexibility in the adjacent chains. An example of this effect can be noted in everyday life as butter, which has a large percentage saturated fats, is solid at room temperature
1622:
in the late 1950s. Although he did not publish the first electron microscopy study of lipid bilayers J. David Robertson was the first to assert that the two dark electron-dense bands were the headgroups and associated proteins of two apposed lipid monolayers. In this body of work, Robertson put
1610:
Although the results of this experiment were accurate, Fricke misinterpreted the data to mean that the cell membrane is a single molecular layer. Prof. Dr. Evert Gorter (1881–1954) and F. Grendel of Leiden University approached the problem from a different perspective, spreading the erythrocyte
344:
and a variety of glycolipids. In some cases, this asymmetry is based on where the lipids are made in the cell and reflects their initial orientation. The biological functions of lipid asymmetry are imperfectly understood, although it is clear that it is used in several different situations. For
254:
Schematic cross sectional profile of a typical lipid bilayer. There are three distinct regions: the fully hydrated headgroups, the fully dehydrated alkane core and a short intermediate region with partial hydration. Although the head groups are neutral, they have significant dipole moments that
816:
is widely used for studies of phospholipid bilayers and biological membranes in native conditions. The analysis of P-NMR spectra of lipids could provide a wide range of information about lipid bilayer packing, phase transitions (gel phase, physiological liquid crystal phase, ripple phases, non
416:
interactions between adjacent lipid molecules. Longer-tailed lipids have more area over which to interact, increasing the strength of this interaction and, as a consequence, decreasing the lipid mobility. Thus, at a given temperature, a short-tailed lipid will be more fluid than an otherwise
1391:
intracellular trafficking. Despite years of study, much is still unknown about the function of this protein class. In fact, there is still an active debate regarding whether SNAREs are linked to early docking or participate later in the fusion process by facilitating hemifusion.
857:
labeling of the lipids, since the probe tip interacts mechanically with the bilayer surface. Because of this, the same scan can image both lipids and associated proteins, sometimes even with single-molecule resolution. AFM can also probe the mechanical nature of lipid bilayers.
389:
Diagram showing the effect of unsaturated lipids on a bilayer. The lipids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black). The resulting bilayer has more free space and is, as a consequence, more permeable to water and other small
5398:
Bermejo, M.; Avdeef, A.; Ruiz, A.; Nalda, R.; Ruell, J. A.; Tsinman, O.; González, I.; Fernández, C.; Sánchez, G.; Garrigues, T. M.; Merino, V. (2004). "PAMPA--a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones".
522:
compartments from their surroundings. Without some form of barrier delineating “self” from “non-self”, it is difficult to even define the concept of an organism or of life. This barrier takes the form of a lipid bilayer in all known life forms except for a few species of
775:
A natural lipid bilayer is not fluorescent, so at least one fluorescent dye needs to be attached to some of the molecules in the bilayer. Resolution is usually limited to a few hundred nanometers, which is unfortunately much larger than the thickness of a lipid bilayer.
795:
interacts with the sample rather than a beam of light as in traditional microscopy. In conjunction with rapid freezing techniques, electron microscopy has also been used to study the mechanisms of inter- and intracellular transport, for instance in demonstrating that
1445:. These synthetic systems are called model lipid bilayers. There are many different types of model bilayers, each having experimental advantages and disadvantages. They can be made with either synthetic or natural lipids. Among the most common model systems are: 356:
Lipid asymmetry arises, at least in part, from the fact that most phospholipids are synthesised and initially inserted into the inner monolayer: those that constitute the outer monolayer are then transported from the inner monolayer by a class of enzymes called
217:
into a two-layered sheet with the hydrophobic tails pointing toward the center of the sheet. This arrangement results in two “leaflets” that are each a single molecular layer. The center of this bilayer contains almost no water and excludes molecules like
1598:
By the early twentieth century scientists had come to believe that cells are surrounded by a thin oil-like barrier, but the structural nature of this membrane was not known. Two experiments in 1925 laid the groundwork to fill in this gap. By measuring the
1233:
tail group. For two-tailed PC lipids, this ratio is nearly one so the intrinsic curvature is nearly zero. If a particular lipid has too large a deviation from zero intrinsic curvature it will not form a bilayer and will instead form other phases such as
738:
Electrical measurements are a straightforward way to characterize an important function of a bilayer: its ability to segregate and prevent the flow of ions in solution. By applying a voltage across the bilayer and measuring the resulting current, the
972:
that pass through the bilayer, but their roles are quite different. Ion pumps are the proteins that build and maintain the chemical gradients by utilizing an external energy source to move ions against the concentration gradient to an area of higher
434:
plays a critical role in biochemical phenomena because membrane components such as proteins can partition into one or the other phase and thus be locally concentrated or activated. One particularly important component of many mixed phase systems is
2218:
Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (October 1973). "The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy".
729:
The lipid bilayer is a very difficult structure to study because it is so thin and fragile. In spite of these limitations dozens of techniques have been developed over the last seventy years to allow investigations of its structure and function.
1159:
Schematic showing two possible conformations of the lipids at the edge of a pore. In the top image the lipids have not rearranged, so the pore wall is hydrophobic. In the bottom image some of the lipid heads have bent over, so the pore wall is
1012:. All ion pumps have some sort of trigger or “gating” mechanism. In the previous example it was electrical bias, but other channels can be activated by binding a molecular agonist or through a conformational change in another nearby protein. 919:
core of a lipid bilayer and, as a consequence, have low permeability coefficients across the bilayer. This effect is particularly pronounced for charged species, which have even lower permeability coefficients than neutral polar molecules.
1362:
Diagram of the action of SNARE proteins docking a vesicle for exocytosis. Complementary versions of the protein on the vesicle and the target membrane bind and wrap around each other, drawing the two bilayers close together in the
259:
The lipid bilayer is very thin compared to its lateral dimensions. If a typical mammalian cell (diameter ~10 micrometers) were magnified to the size of a watermelon (~1 ft/30 cm), the lipid bilayer making up the
1635:
showed that bilayers, in the form of lipid vesicles, could also be formed simply by exposing a dried lipid sample to water. This was an important advance, since it demonstrated that lipid bilayers form spontaneously via
1135:
This increase in permeability primarily affects transport of ions and other hydrated species, indicating that the mechanism is the creation of nm-scale water-filled holes in the membrane. Although electroporation and
602:
for example, the plasma membrane accounts for only two percent of the total bilayer area of the cell, whereas the endoplasmic reticulum contains more than fifty percent and the mitochondria a further thirty percent.
1643:
In 1977, a totally synthetic bilayer membrane was prepared by Kunitake and Okahata, from a single organic compound, didodecyldimethylammonium bromide. It clearly shows that the bilayer membrane was assembled by the
1306:
Illustration of lipid vesicles fusing showing two possible outcomes: hemifusion and full fusion. In hemifusion, only the outer bilayer leaflets mix. In full fusion both leaflets as well as the internal contents
307:
image of a bacterium. The furry appearance on the outside is due to a coat of long-chain sugars attached to the cell membrane. This coating helps trap water to prevent the bacterium from becoming dehydrated.
5264:
Maeda H, Sawa T, Konno T (July 2001). "Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS".
1000:
In contrast to ion pumps, ion channels do not build chemical gradients but rather dissipate them in order to perform work or send a signal. Probably the most familiar and best studied example is the
5469:
Avdeef, A.; Nielsen, P. E.; Tsinman, O. (2004). "PAMPA--a drug absorption in vitro model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates".
368:
will automatically make themselves slightly asymmetric, although the mechanism by which this asymmetry is generated is very different from that in cells. By utilizing two different monolayers in
715: 700:
equilibrates this distribution, displaying phosphatidylserine on the extracellular bilayer face. The presence of phosphatidylserine then triggers phagocytosis to remove the dead or dying cell.
657:
with the cell membrane at the pre-synaptic terminal and their contents are released into the space outside the cell. The contents then diffuse across the synapse to the post-synaptic terminal.
312:
bilayer is typically 3-4 nm thick, but this value varies with chain length and chemistry. Core thickness also varies significantly with temperature, in particular near a phase transition.
106:
and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few
505:
crystals and subsequent bone mineralization. Unlike PC, some of the other headgroups carry a net charge, which can alter the electrostatic interactions of small molecules with the bilayer.
1530:
or other molecular markers onto the liposome surface in the hope of actively binding them to a specific cell or tissue type. Some examples of this approach are already in clinical trials.
20: 197:
into a cell. Because lipid bilayers are fragile and invisible in a traditional microscope, they are a challenge to study. Experiments on bilayers often require advanced techniques like
5434:
Avdeef, A.; Artursson, P.; Neuhoff, S.; Lazorova, L.; Gråsjö, J.; Tavelin, S. (2005). "Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method".
685:(GPCR). GPCRs are responsible for much of the cell's ability to sense its surroundings and, because of this important role, approximately 40% of all modern drugs are targeted at GPCRs. 4245: 1495:
The first generation of drug delivery liposomes had a simple lipid composition and suffered from several limitations. Circulation in the bloodstream was extremely limited due to both
598:. All of these sub-cellular compartments are surrounded by one or more lipid bilayers and, together, typically comprise the majority of the bilayer area present in the cell. In liver 4878:
Leventis R, Gagné J, Fuller N, Rand RP, Silvius JR (November 1986). "Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholine-phosphatidic acid vesicles".
1631:
that this exhibited lateral fluidity, high electrical resistance and self-healing in response to puncture, all of which are properties of a natural cell membrane. A few years later,
4265: 3605:
Dubinnyi MA, Lesovoy DM, Dubovskii PV, Chupin VV, Arseniev AS (June 2006). "Modeling of P-NMR spectra of magnetically oriented phospholipid liposomes: A new analytical solution".
1437:
Lipid bilayers can be created artificially in the lab to allow researchers to perform experiments that cannot be done with natural bilayers. They can also be used in the field of
280:
The first region on either side of the bilayer is the hydrophilic headgroup. This portion of the membrane is completely hydrated and is typically around 0.8-0.9 nm thick. In
485:(PG). These alternate headgroups often confer specific biological functionality that is highly context-dependent. For instance, PS presence on the extracellular membrane face of 446:
While lipid tails primarily modulate bilayer phase behavior, it is the headgroup that determines the bilayer surface chemistry. Most natural bilayers are composed primarily of
4496:
Suchyna TM, Tape SE, Koeppe RE, Andersen OS, Sachs F, Gottlieb PA (July 2004). "Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers".
4729: 772:. A sample is excited with one wavelength of light and observed in another, so that only fluorescent molecules with a matching excitation and emission profile will be seen. 696:. Normally, phosphatidylserine is asymmetrically distributed in the cell membrane and is present only on the interior side. During programmed cell death a protein called a 3645:
Roiter, Yuri; Ornatska, Maryna; Rammohan, Aravind R.; Balakrishnan, Jitendra; Heine, David R.; Minko, Sergiy (2008). "Interaction of Nanoparticles with Lipid Membrane".
4979:
Georgiev, Danko D.; Glazebrook, James F. (2007). "Subneuronal processing of information by solitary waves and stochastic processes". In Lyshevski, Sergey Edward (ed.).
4229: 1526:
they are especially “leaky” and allow liposomes to exit the bloodstream at a much higher rate than normal tissue would. More recently work has been undertaken to graft
1281: 1190: 817:
bilayer phases), lipid head group orientation/dynamics, and elastic properties of pure lipid bilayer and as a result of binding of proteins and other biomolecules.
688:
In addition to protein- and solution-mediated processes, it is also possible for lipid bilayers to participate directly in signaling. A classic example of this is
5927:; Horne, R. W. (1964). "Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents As Observed in the Electron Microscope". 5300:
Lopes DE, Menezes DE, Kirchmeier MJ, Gagne JF (1999). "Cellular trafficking and cytotoxicity of anti-CD19-targeted liposomal doxorubicin in B lymphoma cells".
4629:
Rutkowski CA, Williams LM, Haines TH, Cummins HZ (June 1991). "The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy".
890:
calculations of its properties is difficult and computationally expensive. Quantum chemical calculations has recently been successfully performed to estimate
5873:
Mueller P, Rudin DO, Tien HT, Wescott WC (June 1962). "Reconstitution of cell membrane structure in vitro and its transformation into an excitable system".
1141:
are not chemically altered but simply shift position, opening up a pore that acts as the conductive pathway through the bilayer as it is filled with water.
2540:
Crane JM, Kiessling V, Tamm LK (February 2005). "Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy".
1503:. Refinement of the lipid composition to tune fluidity, surface charge density, and surface hydration resulted in vesicles that adsorb fewer proteins from 1339:
are a few of the many eukaryotic processes that rely on some form of fusion. Even the entry of pathogens can be governed by fusion, as many bilayer-coated
165:
typically includes several types of molecules in addition to the phospholipids comprising the bilayer. A particularly important example in animal cells is
470:
headgroup, as it has a negative charge on the phosphate group and a positive charge on the amine but, because these local charges balance, no net charge.
5784:
Sjöstrand FS, Andersson-Cedergren E, Dewey MM (April 1958). "The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle".
1623:
forward the concept of the “unit membrane.” This was the first time the bilayer structure had been universally assigned to all cell membranes as well as
3821:
Alireza Mashaghi et al., Hydration strongly affects the molecular and electronic structure of membrane phospholipids. J. Chem. Phys. 136, 114709 (2012)
1548:
A supported lipid bilayer (SLB) as described above has achieved commercial success as a screening technique to measure the permeability of drugs. This
349:, the phosphatidylserine â€” normally localised to the cytoplasmic leaflet â€” is transferred to the outer surface: There, it is recognised by a 4246:
https://www.researchgate.net/publication/230817087_Electron_microscope_studies_of_surface_pilli_and_vesicles_of_Salmonella_310r-_organisms?ev=prf_pub
1379:
to insert its genetic material into the host cell (enveloped viruses are those surrounded by a lipid bilayer; some others have only a protein coat).
1093:
microbes, translocate bacterial signal molecules to host or target cells to carry out multiple processes in favour of the secreting microbe e.g., in
725:. The two dark bands around the edge are the two leaflets of the bilayer. Historically, similar images confirmed that the cell membrane is a bilayer 2505:
Litman BJ (July 1974). "Determination of molecular asymmetry in the phosphatidylethanolamine surface distribution in mixed phospholipid vesicles".
5329:"Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer" 4266:
https://www.researchgate.net/publication/230793568_Discovery_of_vesicular_exocytosis_in_prokaryotes_and_its_role_in_Salmonella_invasion?ev=prf_pub
3727:
Richter RP, Brisson A (2003). "Characterization of lipid bilayers and protein assemblies supported on rough surfaces by atomic force microscopy".
3128:
Eanes ED, Hailer AW (January 1987). "Calcium phosphate precipitation in aqueous suspensions of phosphatidylserine-containing anionic liposomes".
173:. Integral membrane proteins function when incorporated into a lipid bilayer, and they are held tightly to the lipid bilayer with the help of an 2575:
Kalb E, Frey S, Tamm LK (January 1992). "Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers".
1399:(PEG) causes fusion without significant aggregation or biochemical disruption. This procedure is now used extensively, for example by fusing 5553:
Sinkó, B.; Kökösi, J.; Avdeef, A.; Takács-Novák, K. (2009). "A PAMPA study of the permeability-enhancing effect of new ceramide analogues".
4730:
https://www.researchgate.net/publication/15042978_Destabilisation_of_lamellar_dispersion_of_thylakoid_membrane_lipids_by_sucrose?ev=prf_pub
1815:
Lewis BA, Engelman DM (May 1983). "Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles".
1315:
is involved in the fusion process, the bilayers are said to be hemifused. Fusion is involved in many cellular processes, in particular in
1217:
but only weakly with tail length and unsaturation. Because the forces involved are so small, it is difficult to experimentally determine K
222:
or salts that dissolve in water. The assembly process and maintenance are driven by aggregation of hydrophobic molecules (also called the
3943:
Papahadjopoulos D, Watkins JC (September 1967). "Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals".
2932:"Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers" 1415:
as determined by the B-cell involved, but is immortalized due to the melanoma component. Fusion can also be artificially induced through
1164:
Lipid bilayers are large enough structures to have some of the mechanical properties of liquids or solids. The area compression modulus K
1116:, which would never passively diffuse across the hydrophobic bilayer core. Because of this, electroporation is one of the key methods of 886:
Lipid bilayers are complicated molecular systems with many degrees of freedom. Thus, atomistic simulation of membrane and in particular
409:
and thus wander across the surface of the membrane. Unlike liquid phase bilayers, the lipids in a gel phase bilayer have less mobility.
4230:
https://www.researchgate.net/publication/230822402_'Exocytosis_in_prokaryotes'_and_its_role_in_Salmonella_invasion?ev=prf_pub
1196:, but like any liquid, the shear modulus is zero for fluid bilayers. These mechanical properties affect how the membrane functions. K 3980:"Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness" 3823: 1786: 1459: 527:
that utilize a specially adapted lipid monolayer. It has even been proposed that the very first form of life may have been a simple
6032: 2156:
Trauble H, Haynes DH (1971). "The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition".
3849:
Chakrabarti AC (1994). "Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation".
1691:
Andersen, Olaf S.; Koeppe, II, Roger E. (June 2007). "Bilayer Thickness and Membrane Protein Function: An Energetic Perspective".
1515:(PEG) onto the liposome surface to produce “stealth” vesicles, which circulate over long times without immune or renal clearing. 813: 3271: 845:
scan of a supported lipid bilayer. The pits are defects in the bilayer, exposing the smooth surface of the substrate underneath.
1784:
Mashaghi et al. Hydration strongly affects the molecular and electronic structure of membrane phospholipids. 136, 114709 (2012)
1297: 5381: 6000: 5131: 5004: 4613: 3309: 3032: 2914: 1974: 4129:
Gundelfinger ED, Kessels MM, Qualmann B (February 2003). "Temporal and spatial coordination of exocytosis and endocytosis".
169:, which helps strengthen the bilayer and decrease its permeability. Cholesterol also helps regulate the activity of certain 5506:"P-glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model" 1454: 364:
It is possible to mimic this asymmetry in the laboratory in model bilayer systems. Certain types of very small artificial
4035:
Xiang TX, Anderson BD (June 1994). "The relationship between permeant size and permeability in lipid bilayer membranes".
960:
Two special classes of protein deal with the ionic gradients found across cellular and sub-cellular membranes in nature-
668:
are membrane proteins. Some of these proteins are linked to the exterior of the cell membrane. An example of this is the
4461:
McIntosh TJ, Simon SA (2006). "Roles of Bilayer Material Properties in Function and Distribution of Membrane Proteins".
2790:
Deverall, Miranda A.; Garg, Sumit; LĂĽdtke, Karin; Jordan, Rainer; RĂĽhe, JĂĽrgen; Naumann, Christoph A. (12 August 2008).
1572:
technique measures the permeability across specifically formulated lipid cocktail(s) found to be highly correlated with
951:
penetrate the bilayer (boundaries indicated by red and blue lines), opening a hole through which potassium ions can flow
320:
In many naturally occurring bilayers, the compositions of the inner and outer membrane leaflets are different. In human
5071:
Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity".
1449: 1284:
There is some evidence that both hydrophobic (tails straight) and hydrophilic (heads curved around) pores can coexist.
940:. Regardless of their polar character larger molecules diffuse more slowly across lipid bilayers than small molecules. 928:. Compared to ions, water molecules actually have a relatively large permeability through the bilayer, as evidenced by 1423:
formed during electroporation, which can act as the local defect point to nucleate stalk growth between two bilayers.
3002: 1086: 1209:
stretched apart. It is not surprising given this understanding of the forces involved that studies have shown that K
1058:
3,10:r:- pathogens docking on plasma membrane of macrophage cells (M) in chicken ileum, for host-pathogen signaling
1541:
system. Other, more exotic applications are also being pursued such as the use of lipid bilayer membrane pores for
875: 718: 304: 114:) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and 1395:
In studies of molecular and cellular biology it is often desirable to artificially induce fusion. The addition of
5991: 5237:
Boris EH, Winterhalter M, Frederik PM, Vallner JJ, Lasic DD (1997). "Stealth liposomes: from theory to product".
1593: 664:. This is an extremely broad and important class of biomolecule. It is estimated that up to a third of the human 155: 1054:
Exocytosis of outer membrane vesicles (MV) liberated from inflated periplasmic pockets (p) on surface of human
709: 5149:"Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential" 4835:
Papahadjopoulos D, Nir S, DĂĽzgĂĽnes N (April 1990). "Molecular mechanisms of calcium-induced membrane fusion".
1484:
for drug delivery, especially for cancer treatment. (Note- the term “liposome” is in essence synonymous with “
768:
A lipid bilayer cannot be seen with a traditional microscope because it is too thin, so researchers often use
4913:
Markin VS, Kozlov MM, Borovjagin VL (October 1984). "On the theory of membrane fusion. The stalk mechanism".
2470:
Kornberg RD, McConnell HM (March 1971). "Inside-outside transitions of phospholipids in vesicle membranes".
6025: 5198:"Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes" 1074: 395: 2724:"Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes" 653:
which are, inside the cell, loaded with the neurotransmitters to be released later. These loaded vesicles
6110: 3690:"Lipid membrane phase behavior elucidated in real time by controlled environment atomic force microscopy" 2612:"Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study" 870:
where the refractive index in the plane of the bilayer differs from that perpendicular by as much as 0.1
3558:"Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release" 3446:"Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer" 2669:"Effective Parameters Controlling Sterol Transfer: A Time-Resolved Small-Angle Neutron Scattering Study" 672:
protein, which identifies cells as “self” and thus inhibits their destruction by the immune system. The
401:
phase bilayers a given lipid will exchange locations with its neighbor millions of times a second. This
6205: 682: 274: 4078:
Gouaux E, Mackinnon R (December 2005). "Principles of selective ion transport in channels and pumps".
2667:
Perez-Salas, Ursula; Porcar, Lionel; Garg, Sumit; Ayee, Manuela A. A.; Levitan, Irena (October 2022).
6210: 6101: 3387:"Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties" 1375:. The first of these proteins to be studied were the viral fusion proteins, which allow an enveloped 1121: 969: 661: 227: 170: 4770:"The effects of intra-membrane viscosity on lipid membrane morphology: complete analytical solution" 2842:"Domain Registration in Raft-Mimicking Lipid Mixtures Studied Using Polymer-Tethered Lipid Bilayers" 2840:
Garg, Sumit; RĂĽhe, JĂĽrgen; LĂĽdtke, Karin; Jordan, Rainer; Naumann, Christoph A. (15 February 2007).
1464: 5692:
Dooren LJ, Wiedemann LR (1986). "On bimolecular layers of lipids on the chromocytes of the blood".
4988: 1612: 1129: 986: 478: 325: 95: 2791: 6018: 3444:
Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV (April 2001).
1581: 1420: 1150: 850: 842: 830: 769: 214: 202: 985:. Alternatively, the energy source can be another chemical gradient already in place, as in the 825: 6114: 6096: 2792:"Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers" 2320: 1577: 978: 874:
units. This has been used to characterise the degree of order and disruption in bilayers using
418: 369: 336:
and its phosphorylated derivatives. By contrast, the outer (extracellular) leaflet is based on
2183:
Bretscher MS (1 March 1972). "Asymmetrical Lipid Bilayer Structure for Biological Membranes".
1266: 1205:
lipid bilayers can easily bend, most cannot stretch more than a few percent before rupturing.
1175: 618:
a chemical reaction on the interior domain (red). The gray feature is the surrounding bilayer.
6150: 6105: 6007:
Simulations and publication links related to the cross sectional structure of lipid bilayers.
4957: 4474: 3892:
Hauser H, Phillips MC, Stubbs M (October 1972). "Ion permeability of phospholipid bilayers".
1704: 1221:. Most techniques require sophisticated microscopy and very sensitive measurement equipment. 740: 638: 595: 412:
The phase behavior of lipid bilayers is determined largely by the strength of the attractive
5819:
Robertson JD (1960). "The molecular structure and contact relationships of cell membranes".
4980: 2256:"Investigating lipid headgroup composition within epithelial membranes: a systematic review" 1077:, a Nobel prize-winning (year, 2013) process, is traditionally regarded as a prerogative of 35: 5924: 5882: 5609: 5080: 4781: 4677: 4560: 4505: 4419: 4366: 4087: 3991: 3901: 3827: 3778: 3654: 3514: 3457: 3398: 3228:
Koch AL (1984). "Primeval cells: possible energy-generating and cell-division mechanisms".
3184: 2943: 2853: 2803: 2735: 2623: 2424: 2369: 2267: 2112: 2003: 1863: 1790: 1645: 1632: 1432: 1311: 1293: 1137: 1040: 654: 482: 438:, which modulates bilayer permeability, mechanical strength, and biochemical interactions. 333: 5121: 3502: 3090: 2413:"Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly" 1852:"Neutron Diffraction Studies on the Location of Water in Lecithin Bilayer Model Membranes" 1480:
To date, the most successful commercial application of lipid bilayers has been the use of
1419:
in a process known as electrofusion. It is believed that this phenomenon results from the
660:
Lipid bilayers are also involved in signal transduction through their role as the home of
8: 4981: 3767:"Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy" 3327:"An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins" 1662: 1619: 1512: 1469: 1396: 788: 784: 463: 413: 337: 266: 231: 198: 174: 162: 91: 28: 5886: 5613: 5084: 4785: 4681: 4564: 4509: 4423: 4370: 4091: 3995: 3905: 3782: 3658: 3518: 3461: 3402: 3188: 2947: 2857: 2807: 2739: 2627: 2428: 2373: 2271: 2116: 2007: 1867: 5906: 5761: 5736: 5717: 5669: 5644: 5578: 5530: 5505: 5173: 5148: 5104: 5053: 5010: 4860: 4812: 4769: 4698: 4665: 4581: 4548: 4529: 4443: 4321: 4198: 4173: 4154: 4111: 4060: 4012: 3979: 3925: 3874: 3799: 3766: 3744: 3582: 3557: 3538: 3478: 3445: 3253: 3205: 3172: 3153: 2882: 2841: 2764: 2723: 2704: 2644: 2611: 2393: 2301: 2133: 2100: 2074: 1935: 1910: 1767: 1716: 1667: 1538: 974: 689: 474: 329: 290: 270: 223: 5940: 5797: 5278: 5250: 5214: 5197: 4754: 4689: 4572: 4330: 4305: 4003: 3765:
Steltenkamp S, MĂĽller MM, Deserno M, Hennesthal C, Steinem C, Janshoff A (July 2006).
3469: 3421: 3386: 3196: 3173:"Binding of peptides with basic residues to membranes containing acidic phospholipids" 2447: 2412: 2337: 2124: 1926: 1886: 1851: 1828: 1350: 6155: 5944: 5898: 5855: 5828: 5801: 5766: 5709: 5674: 5625: 5570: 5535: 5486: 5451: 5416: 5350: 5282: 5219: 5178: 5127: 5096: 5057: 5045: 5014: 5000: 4961: 4922: 4895: 4852: 4817: 4799: 4703: 4646: 4609: 4586: 4521: 4478: 4435: 4392: 4387: 4354: 4335: 4278: 4256:
YashRoy R.C. (1998) Discovery of vesicular exocytosis in prokaryotes and its role in
4203: 4146: 4103: 4052: 4017: 3960: 3956: 3917: 3866: 3804: 3709: 3670: 3622: 3587: 3530: 3483: 3426: 3348: 3343: 3326: 3305: 3275: 3245: 3210: 3145: 3110: 3071: 3028: 2998: 2971: 2966: 2931: 2910: 2887: 2869: 2819: 2769: 2751: 2708: 2696: 2688: 2649: 2592: 2588: 2557: 2522: 2487: 2452: 2385: 2342: 2305: 2293: 2285: 2236: 2232: 2200: 2169: 2138: 2066: 2031: 2026: 1991: 1970: 1963: 1940: 1891: 1832: 1759: 1754: 1735: 1708: 1485: 1438: 1388: 1332: 912: 628: 365: 178: 5721: 5582: 4378: 4158: 4115: 4064: 3878: 3748: 3257: 3157: 2722:
Garg, S.; Porcar, L.; Woodka, A. C.; Butler, P. D.; Perez-Salas, U. (20 July 2011).
2397: 2078: 1771: 6170: 6088: 5971: 5936: 5910: 5890: 5846:
Robertson JD (1959). "The ultrastructure of cell membranes and their derivatives".
5793: 5756: 5748: 5701: 5664: 5656: 5617: 5562: 5525: 5517: 5478: 5443: 5408: 5378: 5340: 5309: 5274: 5246: 5209: 5168: 5160: 5108: 5088: 5037: 4992: 4953: 4887: 4864: 4844: 4807: 4789: 4750: 4693: 4685: 4638: 4576: 4568: 4533: 4513: 4470: 4447: 4427: 4382: 4374: 4325: 4317: 4193: 4185: 4138: 4095: 4044: 4007: 3999: 3952: 3929: 3909: 3858: 3794: 3786: 3736: 3701: 3662: 3614: 3577: 3569: 3542: 3522: 3473: 3465: 3416: 3406: 3338: 3237: 3200: 3192: 3137: 3102: 3061: 2961: 2951: 2877: 2861: 2811: 2759: 2743: 2680: 2639: 2631: 2584: 2549: 2514: 2479: 2442: 2432: 2377: 2332: 2275: 2228: 2192: 2165: 2128: 2120: 2058: 2021: 2011: 1930: 1922: 1881: 1871: 1824: 1749: 1720: 1700: 1372: 1319:, since the eukaryotic cell is extensively sub-divided by lipid bilayer membranes. 1214: 1005: 871: 833:
images showing formation of transmembrane pores (holes) in supported lipid bilayer
650: 646: 519: 466:(PC), accounting for about half the phospholipids in most mammalian cells. PC is a 146: 83: 6010: 5997: 462:
are also important components. Of the phospholipids, the most common headgroup is
6165: 6004: 5385: 4306:"Gene transfer into mouse lyoma cells by electroporation in high electric fields" 3503:"Single-channel currents recorded from membrane of denervated frog muscle fibres" 2990: 2381: 2049:
Marsh D (December 2002). "Membrane water-penetration profiles from spin labels".
1545:
by Oxford Nanolabs. To date, this technology has not proven commercially viable.
1442: 1416: 1384: 1106: 965: 261: 119: 3790: 3618: 3050:"The role of phosphatidylserine in recognition of apoptotic cells by phagocytes" 2865: 2635: 1607:
solutions, Hugo Fricke determined that the cell membrane was 3.3 nm thick.
417:
identical long-tailed lipid. Transition temperature can also be affected by the
293:
coat on a bacterial outer membrane, which helps retain a water layer around the
6050: 5621: 5521: 5482: 5447: 5412: 4794: 4549:"Mechanical properties of vesicles. II. A model for osmotic swelling and lysis" 4240:
YashRoy R C (1993) Electron microscope studies of surface pili and vesicles of
3091:"The role of matrix vesicles in growth plate development and biomineralization" 2684: 1740: 1542: 1001: 714: 606: 502: 377:
in other monolayer even when other monolayer can not phase separate by itself.
239: 138: 67: 56: 5313: 2747: 2062: 1257:
is not measured experimentally but rather is calculated from measurements of K
610:
Illustration of a GPCR signaling protein. In response to a molecule such as a
6199: 6175: 6135: 6042: 5164: 4996: 4803: 2873: 2823: 2755: 2692: 2289: 1637: 1508: 1328: 1324: 1193: 1090: 1085:
was however broken with the revelation that nanovesicles, popularly known as
1044: 937: 867: 761: 756: 722: 677: 559: 528: 451: 341: 235: 186: 182: 71: 5345: 5328: 4099: 3705: 3411: 2668: 385: 250: 66:. These membranes are flat sheets that form a continuous barrier around all 6073: 6063: 5948: 5902: 5859: 5832: 5805: 5770: 5678: 5629: 5574: 5566: 5539: 5490: 5455: 5420: 5354: 5286: 5182: 5049: 4965: 4821: 4707: 4525: 4482: 4439: 4396: 4150: 4107: 3921: 3870: 3808: 3713: 3674: 3626: 3487: 3352: 3114: 3075: 3066: 3049: 2975: 2956: 2909:(Extended Paperback ed.). Princeton, N.J: Princeton University Press. 2891: 2773: 2700: 2653: 2561: 2437: 2360:
Bretscher MS (August 1973). "Membrane structure: some general principles".
2297: 2196: 2142: 2070: 2035: 2016: 1944: 1895: 1712: 1523: 1500: 1249:
made from galactolipid-rich thylakoid membranes destabilises bilayers into
1228:, which is a measure of how much energy is needed to stretch the bilayer, K 1117: 693: 587: 583: 571: 536: 532: 494: 447: 281: 129: 87: 5713: 5223: 5100: 4926: 4899: 4856: 4650: 4590: 4339: 4207: 4056: 4021: 3964: 3534: 3430: 3249: 3214: 3149: 2930:
Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (September 2001).
2596: 2526: 2491: 2389: 2346: 2240: 2204: 1876: 1836: 1763: 539:. The partitioning ability of the lipid bilayer is based on the fact that 6068: 5752: 4741:
Weaver JC, Chizmadzhev YA (1996). "Theory of electroporation: A review".
4189: 3573: 2456: 2101:"Effect of chain length and unsaturation on elasticity of lipid bilayers" 1604: 1600: 1504: 1029: 994: 961: 948: 916: 745: 544: 540: 486: 459: 435: 422: 402: 321: 166: 133: 111: 5975: 5660: 5645:"The electrical capacity of suspensions with special reference to blood" 5504:
Dagenais, C.; Avdeef, A.; Tsinman, O.; Dudley, A.; Beliveau, R. (2009).
5367: 5028:
Chen YA, Scheller RH (February 2001). "SNARE-mediated membrane fusion".
4891: 4642: 4517: 4355:"Laboratory-scale evidence for lightning-mediated gene transfer in soil" 3591: 2518: 2483: 1354:
Schematic illustration of the process of fusion through stalk formation.
989:. It is through the action of ion pumps that cells are able to regulate 837: 158:
made by model bilayers have also been used clinically to deliver drugs.
19: 6145: 6140: 5705: 5122:
Jordan, Carol A.; Neumann, Eberhard; Sowershi mason, Arthur E. (1989).
4942:"Protein-lipid interplay in fusion and fission of biological membranes" 4848: 4048: 3862: 3241: 3141: 2280: 2255: 1672: 1657: 1527: 1489: 1380: 1358: 1320: 1302: 1078: 1070: 1033: 933: 895: 797: 697: 632: 599: 555: 498: 467: 350: 126: 4303: 3978:
Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (January 1996).
3740: 3666: 2553: 5894: 5092: 5041: 3913: 3526: 2815: 1624: 1534: 1408: 1316: 1125: 982: 887: 615: 579: 575: 563: 549: 490: 473:
Other headgroups are also present to varying degrees and can include
406: 346: 294: 285: 107: 75: 5597: 4941: 4431: 4142: 3689: 1371:
since biological fusion is almost always regulated by the action of
760:
Human red blood cells viewed through a fluorescence microscope. The
300: 6180: 6130: 3048:
Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (July 1998).
1481: 1412: 1336: 1050: 792: 665: 591: 358: 63: 40: 3764: 3644: 3556:
Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (May 1979).
3272:"5.1 Cell Membrane Structure | Life Science | University of Tokyo" 2099:
Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (July 2000).
1383:
cells also use fusion proteins, the best-studied of which are the
562:(also known as the plasma membrane). Many prokaryotes also have a 118:
by transporting ions across their membranes using proteins called
5783: 5737:"On bimolecular layers of lipids on the chromocytes of the blood" 3106: 1404: 1343:
have dedicated fusion proteins to gain entry into the host cell.
1234: 1192:, can be used to describe them. Solid lipid bilayers also have a 1155: 929: 854: 801: 614:
binding to the exterior domain (blue) the GPCR changes shape and
611: 567: 524: 103: 5236: 4220:
YashRoy R.C. (1999) 'Exocytosis in prokaryotes' and its role in
3443: 1533:
Another potential application of lipid bilayers is the field of
1511:. The most significant advance in this area was the grafting of 1124:. It has even been proposed that electroporation resulting from 924:
typically have a higher rate of diffusion through bilayers than
518:
The primary role of the lipid bilayer in biology is to separate
6160: 6078: 2217: 1573: 1400: 1261:
and bilayer thickness, since the three parameters are related.
1009: 925: 891: 642: 455: 426: 150: 5433: 4720:
YashRoy R.C. (1994) Destabilisation of lamellar dispersion of
4628: 4304:
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982).
3604: 1015: 110:
in width, because they are impermeable to most water-soluble (
39:
The three main structures phospholipids form in solution; the
5552: 4353:
Demanèche S, Bertolla F, Buret F, et al. (August 2001).
1569: 1519: 1496: 1376: 1367:
The situation is further complicated when considering fusion
1340: 921: 430:
while vegetable oil, which is mostly unsaturated, is liquid.
219: 194: 190: 79: 60: 24: 2098: 1019:
Schematic illustration of pinocytosis, a type of endocytosis
5962:
Kunitake T (1977). "A totally synthetic bilayer membrane".
5503: 5299: 4666:"Dynamic tension spectroscopy and strength of biomembranes" 4128: 3171:
Kim J, Mosior M, Chung LA, Wu H, McLaughlin S (July 1991).
2929: 764:
has been stained with a fluorescent dye. Scale bar is 20ÎĽm.
669: 4834: 4410:
Garcia ML (July 2004). "Ion channels: gate expectations".
4174:"Membrane flow during pinocytosis. A stereologic analysis" 3640: 3638: 3636: 2610:
Lin WC, Blanchette CD, Ratto TV, Longo ML (January 2006).
1960: 807: 641:, whereby a nerve impulse that has reached the end of one 154:
the use of artificial "model" bilayers produced in a lab.
4663: 4547:
Hallett FR, Marsh J, Nickel BG, Wood JM (February 1993).
4495: 3977: 2666: 1113: 673: 142: 99: 98:
in the cell. The lipid bilayer is the barrier that keeps
5327:
Matsumura Y, Gotoh M, Muro K, et al. (March 2004).
4987:. Nano and Microengineering Series. CRC Press. pp.  4664:
Evans E, Heinrich V, Ludwig F, Rawicz W (October 2003).
3324: 3047: 2789: 324:, the inner (cytoplasmic) leaflet is composed mostly of 5872: 4877: 3633: 2609: 1969:(10th ed.). Englewood Cliffs, N.J: Prentice Hall. 1518:
The first stealth liposomes were passively targeted at
990: 943: 637:
The most familiar form of cellular signaling is likely
115: 5397: 4912: 4546: 4352: 3942: 3088: 2721: 1849: 1693:
Annual Review of Biophysics and Biomolecular Structure
1522:
tissues. Because tumors induce rapid and uncontrolled
649:. This transmission is made possible by the action of 1992:"Polarity and permeation profiles in lipid membranes" 1269: 1178: 645:
is conveyed to an adjacent neuron via the release of
5468: 5146: 3891: 3681: 3555: 2839: 2254:
Coones, R. T.; Green, R. J.; Frazier, R. A. (2021).
1961:
Parker J, Madigan MT, Brock TD, Martinko JM (2003).
1734:
Divecha, Nullin; Irvine, Robin F (27 January 1995).
373:
compare to cholesterol and other smaller molecules.
6040: 5196:Chonn A, Semple SC, Cullis PR (15 September 1992). 4828: 3936: 3089:Anderson HC, Garimella R, Tague SE (January 2005). 1908: 1850:Zaccai G, Blasie JK, Schoenborn BP (January 1975). 861: 5994:An extensive database of lipid physical properties 5326: 4978: 4939: 4244:3,10:r:- organisms. Ind Jl of Anim Sci 63, 99-102. 4171: 3760: 3758: 2539: 2253: 1962: 1690: 1640:and do not require a patterned support structure. 1275: 1184: 1097:and microbe-environment interactions, in general. 5195: 5124:Electroporation and electrofusion in cell biology 4740: 3687: 2469: 2318: 878:to understand mechanisms of protein interaction. 6197: 4933: 4122: 3170: 881: 43:(a closed bilayer), the micelle and the bilayer. 5691: 4226:ICAR NEWS - A Science and Technology Newsletter 4077: 3842: 3755: 2904: 2319:Bell RM, Ballas LM, Coleman RA (1 March 1981). 901: 380: 5839: 5812: 5263: 5070: 4603: 4172:Steinman RM, Brodie SE, Cohn ZA (March 1976). 3848: 3726: 3299: 3295: 3293: 3022: 2410: 800:vesicles are the means of chemical release at 213:When phospholipids are exposed to water, they 145:phase state at lower temperatures but undergo 141:of the bilayer. The bilayer can adopt a solid 6026: 5955: 5777: 5734: 5320: 5140: 4622: 4608:. Cambridge, UK: Cambridge University Press. 4460: 4346: 4034: 3384: 3018: 3016: 3014: 2353: 2176: 2155: 2094: 2092: 2090: 2088: 1814: 1733: 1618:This theory was confirmed through the use of 1023: 513: 353:that then actively scavenges the dying cell. 208: 132:that have a hydrophilic phosphate head and a 27:bilayer cross section is made up entirely of 5923: 5917: 5866: 5845: 5818: 5027: 4972: 4871: 4454: 4279:"Exocytosis from gram negative bacteria for 4165: 3500: 3325:Martelli PL, Fariselli P, Casadio R (2003). 3318: 3082: 2923: 2574: 2463: 2359: 2211: 2182: 1909:Nagle JF, Tristram-Nagle S (November 2000). 1507:and thus are less readily recognized by the 1411:” from this combination expresses a desired 814:NMR(nuclear magnetic resonance) spectroscopy 137:properties, for instance by determining the 125:Biological bilayers are usually composed of 5510:European Journal of Pharmaceutical Sciences 5471:European Journal of Pharmaceutical Sciences 5436:European Journal of Pharmaceutical Sciences 5401:European Journal of Pharmaceutical Sciences 4540: 4489: 4297: 3720: 3437: 3359: 3304:(4th ed.). New York: Garland Science. 3290: 3127: 2404: 2149: 1956: 1954: 1810: 1808: 1684: 703: 6033: 6019: 5961: 5728: 5636: 5379:Nanion Technologies. Automated Patch Clamp 5115: 5064: 4906: 4734: 4403: 4071: 3885: 3549: 3378: 3041: 3011: 2498: 2085: 1727: 1475: 947:Structure of a potassium ion channel. The 820: 751: 733: 5760: 5694:Journal of European Journal of Pediatrics 5685: 5668: 5529: 5344: 5293: 5257: 5230: 5213: 5189: 5172: 4811: 4793: 4697: 4657: 4580: 4409: 4386: 4329: 4197: 4028: 4011: 3971: 3798: 3581: 3494: 3477: 3420: 3410: 3365: 3342: 3204: 3121: 3065: 2965: 2955: 2881: 2763: 2643: 2533: 2504: 2446: 2436: 2336: 2279: 2132: 2025: 2015: 1934: 1885: 1875: 1843: 1753: 1335:, and transport of waste products to the 955: 245: 16:Membrane of two layers of lipid molecules 5642: 5589: 5147:Immordino ML, Dosio F, Cattel L (2006). 5021: 4958:10.1146/annurev.biochem.72.121801.161504 4767: 4597: 4475:10.1146/annurev.biophys.35.040405.102022 3598: 3221: 3027:(2nd ed.). Boston: Academic Press. 2898: 2568: 2312: 2042: 1983: 1951: 1902: 1805: 1705:10.1146/annurev.biophys.36.040306.132643 1460:Tethered Bilayer Lipid Membranes (t-BLM) 1387:. SNARE proteins are used to direct all 1357: 1349: 1301: 1154: 1128:strikes could be a mechanism of natural 1049: 1014: 942: 849:A new method to study lipid bilayers is 836: 824: 787:offers a higher resolution image. In an 755: 713: 605: 535:capability being the production of more 384: 299: 249: 82:are made of a lipid bilayer, as are the 34: 18: 5361: 4983:Nano and Molecular Electronics Handbook 4276: 3366:Filmore D (2004). "It's A GPCR World". 3227: 3164: 2988: 2603: 2048: 1989: 808:Nuclear magnetic resonance spectroscopy 6198: 5595: 5369:. Biacore Inc. Retrieved Feb 12, 2009. 3688:Tokumasu F, Jin AJ, Dvorak JA (2002). 1298:Interbilayer forces in membrane fusion 866:Lipid bilayers exhibit high levels of 779: 6014: 4743:Bioelectrochemistry and Bioenergetics 4283:invasion of chicken ileal epithelium" 3385:Montal M, Mueller P (December 1972). 2835: 2833: 2785: 2783: 915:molecules have low solubility in the 906: 441: 255:influence the molecular arrangement. 5598:"The recent development of Biology" 4940:Chernomordik LV, Kozlov MM (2003). 4768:Zeidi, Mahdi; Kim, Chun IL (2018). 2411:Rothman JE, Kennedy EP (May 1977). 566:, but the cell wall is composed of 508: 421:of the lipid tails. An unsaturated 13: 4463:Annu. Rev. Biophys. Biomol. Struct 4322:10.1002/j.1460-2075.1982.tb01257.x 2830: 2780: 1270: 1237:or inverted micelles. Addition of 1179: 1100: 558:have only one lipid bilayer - the 543:molecules cannot easily cross the 14: 6222: 5998:Structure of Fluid Lipid Bilayers 5985: 4287:Indian Journal of Poultry Science 3824:"The Journal of Chemical Physics" 3501:Neher E, Sakmann B (April 1976). 2991:"Chapter 10: Membrane Structures" 1787:"The Journal of Chemical Physics" 1470:Droplet Interface Bilayers (DIBs) 1087:bacterial outer membrane vesicles 226:). This complex process includes 5741:Journal of Experimental Medicine 1426: 1004:, which allows conduction of an 876:dual polarisation interferometry 862:Dual polarisation interferometry 719:Transmission Electron Microscope 5546: 5497: 5462: 5427: 5391: 5388:. Retrieved Feb 28, 2010. (PDF) 5372: 4761: 4714: 4379:10.1128/AEM.67.8.3440-3444.2001 4270: 4250: 4234: 4228:, (Oct-Dec) vol. 5(4), page 18. 4214: 3815: 3264: 2982: 2715: 2673:The Journal of Membrane Biology 2660: 2247: 1965:Brock biology of microorganisms 1594:History of cell membrane theory 345:example, when a cell undergoes 5239:Advanced Drug Delivery Reviews 3694:Journal of Electron Microscopy 3344:10.1093/bioinformatics/btg1027 1778: 1455:Supported lipid bilayers (SLB) 1441:, to define the boundaries of 968:. Both pumps and channels are 710:Lipid bilayer characterization 497:vesicles is necessary for the 1: 5941:10.1016/S0022-2836(64)80115-7 5798:10.1016/S0022-5320(58)80008-8 5649:Journal of General Physiology 5279:10.1016/S0168-3659(01)00309-1 5251:10.1016/S0169-409X(96)00456-5 5215:10.1016/S0021-9258(19)37026-7 4755:10.1016/S0302-4598(96)05062-3 4726:Biochimica et Biophysica Acta 4690:10.1016/S0006-3495(03)74658-X 4573:10.1016/S0006-3495(93)81384-5 4264:, vol. 75(10), pp. 1062-1066. 4004:10.1016/S0006-3495(96)79575-9 3470:10.1016/S0006-3495(01)76153-X 3302:Molecular biology of the cell 3197:10.1016/S0006-3495(91)82037-9 2995:Molecular Biology of the Cell 2338:10.1016/S0022-2275(20)34952-X 2125:10.1016/S0006-3495(00)76295-3 1927:10.1016/S0304-4157(00)00016-2 1911:"Structure of lipid bilayers" 1829:10.1016/S0022-2836(83)80007-2 1678: 882:Quantum chemical calculations 5929:Journal of Molecular Biology 5735:Gorter E, Grendel F (1925). 5555:Chemistry & Biodiversity 5302:Journal of Liposome Research 4724:membrane lipids by sucrose. 3957:10.1016/0005-2736(67)90095-8 2936:Proc. Natl. Acad. Sci. U.S.A 2589:10.1016/0005-2736(92)90101-Q 2417:Proc. Natl. Acad. Sci. U.S.A 2382:10.1126/science.181.4100.622 2233:10.1016/0005-2736(73)90143-0 2170:10.1016/0009-3084(71)90010-7 1996:Proc. Natl. Acad. Sci. U.S.A 1856:Proc. Natl. Acad. Sci. U.S.A 1755:10.1016/0092-8674(95)90409-3 1373:membrane-associated proteins 1144: 1075:membrane vesicle trafficking 902:Transport across the bilayer 898:moments of lipid membranes. 622: 396:Lipid bilayer phase behavior 381:Phases and phase transitions 315: 7: 6111:Peripheral membrane protein 3791:10.1529/biophysj.106.081398 3619:10.1016/j.ssnmr.2005.10.009 3607:Solid State Nucl Magn Reson 2866:10.1529/biophysj.106.091082 2636:10.1529/biophysj.105.067066 1651: 1611:lipids as a monolayer on a 1450:Black lipid membranes (BLM) 1239:small hydrophilic molecules 977:. The energy source can be 574:, not lipids. In contrast, 10: 6227: 6102:Integral membrane proteins 5622:10.1126/science.20.519.777 5522:10.1016/j.ejps.2009.06.009 5483:10.1016/j.ejps.2004.04.009 5448:10.1016/j.ejps.2004.11.011 5413:10.1016/j.ejps.2003.10.009 5126:. New York: Plenum Press. 4795:10.1038/s41598-018-31251-6 2685:10.1007/s00232-022-00231-3 1591: 1587: 1430: 1421:energetically active edges 1291: 1148: 1104: 1027: 1024:Endocytosis and exocytosis 970:integral membrane proteins 841:Illustration of a typical 707: 683:G protein-coupled receptor 662:integral membrane proteins 626: 514:Containment and separation 425:can produce a kink in the 393: 275:nuclear magnetic resonance 209:Structure and organization 171:integral membrane proteins 6123: 6087: 6049: 5314:10.3109/08982109909024786 4728:, vol. 1212, pp. 129-133. 2748:10.1016/j.bpj.2011.06.014 2063:10.1007/s00249-002-0245-z 1287: 1067:Exocytosis in prokaryotes 981:, as is the case for the 405:exchange allows lipid to 228:non-covalent interactions 96:membrane-bound organelles 5821:Prog. Biophys. Mol. Biol 5596:Loeb J (December 1904). 5165:10.2217/17435889.1.3.297 5030:Nat. Rev. Mol. Cell Biol 4997:10.1201/9781315221670-17 4359:Appl. Environ. Microbiol 4131:Nat. Rev. Mol. Cell Biol 2905:Berg, Howard C. (1993). 1736:"Phospholipid signaling" 1613:Langmuir-Blodgett trough 1539:automated patch clamping 1276:{\displaystyle \Lambda } 1185:{\displaystyle \Lambda } 1130:horizontal gene transfer 1002:voltage-gated Na channel 704:Characterization methods 531:with virtually its sole 479:phosphatidylethanolamine 326:phosphatidylethanolamine 297:to prevent dehydration. 6146:Lipid raft/microdomains 4604:Boal, David H. (2001). 4100:10.1126/science.1113666 3412:10.1073/pnas.69.12.3561 3300:Alberts, Bruce (2002). 3023:Yeagle, Philip (1993). 2989:Alberts, Bruce (2017). 2907:Random walks in biology 1476:Commercial applications 1151:Lipid bilayer mechanics 851:Atomic force microscopy 821:Atomic force microscopy 770:fluorescence microscopy 752:Fluorescence microscopy 734:Electrical measurements 203:atomic force microscopy 6151:Membrane contact sites 6115:Lipid-anchored protein 6097:Membrane glycoproteins 5567:10.1002/cbdv.200900149 3945:Biochim. Biophys. Acta 3067:10.1038/sj.cdd.4400404 3025:The membranes of cells 2957:10.1073/pnas.191168698 2577:Biochim. Biophys. Acta 2438:10.1073/pnas.74.5.1821 2221:Biochim. Biophys. Acta 2197:10.1038/newbio236011a0 2017:10.1073/pnas.131023798 1915:Biochim. Biophys. Acta 1578:gastrointestinal tract 1407:cells. The resulting “ 1364: 1355: 1308: 1277: 1186: 1161: 1063: 1039:cell membrane through 1020: 956:Ion pumps and channels 952: 846: 834: 765: 726: 619: 419:degree of unsaturation 391: 308: 256: 246:Cross section analysis 59:made of two layers of 44: 32: 6106:transmembrane protein 6003:11 April 2011 at the 5384:31 March 2010 at the 5346:10.1093/annonc/mdh092 4915:Gen. Physiol. Biophys 4837:J. Bioenerg. Biomembr 4606:Mechanics of the cell 3706:10.1093/jmicro/51.1.1 3391:Proc. Natl. Acad. Sci 3368:Modern Drug Discovery 1990:Marsh D (July 2001). 1877:10.1073/pnas.72.1.376 1646:intermolecular forces 1592:Further information: 1431:Further information: 1361: 1353: 1305: 1278: 1213:varies strongly with 1187: 1158: 1149:Further information: 1120:as well as bacterial 1105:Further information: 1073:, popularly known as 1069:: Membrane vesicular 1053: 1018: 946: 840: 828: 759: 717: 708:Further information: 639:synaptic transmission 609: 596:endoplasmic reticulum 394:Further information: 388: 303: 253: 38: 22: 6131:Caveolae/Coated pits 5753:10.1084/jem.41.4.439 4190:10.1083/jcb.68.3.665 3574:10.1083/jcb.81.2.275 3337:(Suppl 1): i205–11. 1433:Model lipid bilayers 1294:Lipid bilayer fusion 1267: 1176: 1138:dielectric breakdown 791:, a beam of focused 489:is a marker of cell 483:phosphatidylglycerol 334:phosphatidylinositol 232:van der Waals forces 193:, or the entry of a 163:biological membranes 53:phospholipid bilayer 5976:10.1021/ja00453a066 5887:1962Natur.194..979M 5786:J. Ultrastruct. Res 5661:10.1085/jgp.9.2.137 5614:1904Sci....20..777L 5085:1975Natur.256..495K 4892:10.1021/bi00370a600 4786:2018NatSR...812845Z 4682:2003BpJ....85.2342E 4643:10.1021/bi00237a008 4565:1993BpJ....64..435H 4518:10.1038/nature02743 4510:2004Natur.430..235S 4424:2004Natur.430..153G 4371:2001ApEnM..67.3440D 4277:YashRoy RC (1998). 4092:2005Sci...310.1461G 3996:1996BpJ....70..339P 3906:1972Natur.239..342H 3783:2006BpJ....91..217S 3659:2008NanoL...8..941R 3519:1976Natur.260..799N 3462:2001BpJ....80.1829M 3403:1972PNAS...69.3561M 3278:on 22 February 2014 3189:1991BpJ....60..135K 2997:. Garland Science. 2948:2001PNAS...9810642D 2858:2007BpJ....92.1263G 2846:Biophysical Journal 2808:2008SMat....4.1899D 2740:2011BpJ...101..370G 2728:Biophysical Journal 2628:2006BpJ....90..228L 2519:10.1021/bi00711a010 2484:10.1021/bi00783a003 2429:1977PNAS...74.1821R 2374:1973Sci...181..622B 2321:"Lipid topogenesis" 2272:2021SMat...17.6773C 2117:2000BpJ....79..328R 2008:2001PNAS...98.7777M 1868:1975PNAS...72..376Z 1663:Membrane biophysics 1620:electron microscopy 1582:blood–brain barrier 1513:polyethylene glycol 1397:polyethylene glycol 1253:phase. Typically, K 1168:, bending modulus K 789:electron microscope 785:Electron microscopy 780:Electron microscopy 744:activity of single 464:phosphatidylcholine 338:phosphatidylcholine 267:x-ray reflectometry 199:electron microscopy 175:annular lipid shell 29:phosphatidylcholine 6156:Membrane nanotubes 6041:Structures of the 5848:Biochem. Soc. Symp 5706:10.1007/BF00439232 4946:Annu. Rev. Biochem 4849:10.1007/BF00762944 4774:Scientific Reports 4049:10.1007/bf00232899 3863:10.1007/BF00813743 3242:10.1007/BF02102359 3142:10.1007/BF02555727 3130:Calcif. Tissue Int 2281:10.1039/D1SM00703C 2185:Nature New Biology 2158:Chem. Phys. Lipids 1668:Lipid polymorphism 1365: 1356: 1309: 1273: 1247:lamellar liposomes 1182: 1172:, and edge energy 1162: 1112:molecules such as 1095:host cell invasion 1064: 1021: 995:pumping of protons 975:chemical potential 953: 847: 835: 766: 727: 690:phosphatidylserine 620: 475:phosphatidylserine 392: 330:phosphatidylserine 309: 291:lipopolysaccharide 271:neutron scattering 257: 224:hydrophobic effect 45: 33: 6206:Biological matter 6189: 6188: 6089:Membrane proteins 5970:(11): 3860–3861. 5643:Fricke H (1925). 5267:J Control Release 5133:978-0-306-43043-5 5006:978-0-8493-8528-5 4615:978-0-521-79681-1 3741:10.1021/la026427w 3667:10.1021/nl080080l 3513:(5554): 799–802. 3311:978-0-8153-4072-0 3054:Cell Death Differ 3034:978-0-12-769041-4 2916:978-0-691-00064-0 2554:10.1021/la047654w 2368:(4100): 622–629. 2266:(28): 6773–6786. 1976:978-0-13-049147-3 1439:Synthetic Biology 1245:into mixed lipid 907:Passive diffusion 748:can be resolved. 721:(TEM) image of a 676:virus evades the 651:synaptic vesicles 647:neurotransmitters 629:Neurotransmission 442:Surface chemistry 370:Langmuir-Blodgett 179:acrosome reaction 161:The structure of 6218: 6211:Membrane biology 6171:Nuclear envelope 6166:Nodes of Ranvier 6035: 6028: 6021: 6012: 6011: 5980: 5979: 5964:J. Am. Chem. Soc 5959: 5953: 5952: 5921: 5915: 5914: 5895:10.1038/194979a0 5881:(4832): 979–80. 5870: 5864: 5863: 5843: 5837: 5836: 5816: 5810: 5809: 5781: 5775: 5774: 5764: 5732: 5726: 5725: 5689: 5683: 5682: 5672: 5640: 5634: 5633: 5608:(519): 777–786. 5593: 5587: 5586: 5550: 5544: 5543: 5533: 5501: 5495: 5494: 5466: 5460: 5459: 5431: 5425: 5424: 5395: 5389: 5376: 5370: 5365: 5359: 5358: 5348: 5324: 5318: 5317: 5297: 5291: 5290: 5261: 5255: 5254: 5234: 5228: 5227: 5217: 5208:(26): 18759–65. 5193: 5187: 5186: 5176: 5144: 5138: 5137: 5119: 5113: 5112: 5093:10.1038/256495a0 5068: 5062: 5061: 5042:10.1038/35052017 5025: 5019: 5018: 4986: 4976: 4970: 4969: 4937: 4931: 4930: 4910: 4904: 4903: 4875: 4869: 4868: 4832: 4826: 4825: 4815: 4797: 4765: 4759: 4758: 4738: 4732: 4718: 4712: 4711: 4701: 4661: 4655: 4654: 4626: 4620: 4619: 4601: 4595: 4594: 4584: 4544: 4538: 4537: 4504:(6996): 235–40. 4493: 4487: 4486: 4458: 4452: 4451: 4407: 4401: 4400: 4390: 4350: 4344: 4343: 4333: 4301: 4295: 4294: 4274: 4268: 4254: 4248: 4238: 4232: 4218: 4212: 4211: 4201: 4169: 4163: 4162: 4126: 4120: 4119: 4086:(5753): 1461–5. 4075: 4069: 4068: 4032: 4026: 4025: 4015: 3975: 3969: 3968: 3940: 3934: 3933: 3914:10.1038/239342a0 3889: 3883: 3882: 3846: 3840: 3839: 3837: 3835: 3826:. Archived from 3819: 3813: 3812: 3802: 3762: 3753: 3752: 3724: 3718: 3717: 3685: 3679: 3678: 3642: 3631: 3630: 3602: 3596: 3595: 3585: 3553: 3547: 3546: 3527:10.1038/260799a0 3498: 3492: 3491: 3481: 3441: 3435: 3434: 3424: 3414: 3382: 3376: 3375: 3363: 3357: 3356: 3346: 3322: 3316: 3315: 3297: 3288: 3287: 3285: 3283: 3274:. Archived from 3268: 3262: 3261: 3225: 3219: 3218: 3208: 3168: 3162: 3161: 3125: 3119: 3118: 3086: 3080: 3079: 3069: 3045: 3039: 3038: 3020: 3009: 3008: 2986: 2980: 2979: 2969: 2959: 2927: 2921: 2920: 2902: 2896: 2895: 2885: 2852:(4): 1263–1270. 2837: 2828: 2827: 2816:10.1039/B800801A 2802:(9): 1899–1908. 2787: 2778: 2777: 2767: 2719: 2713: 2712: 2679:(4–5): 423–435. 2664: 2658: 2657: 2647: 2607: 2601: 2600: 2572: 2566: 2565: 2537: 2531: 2530: 2502: 2496: 2495: 2467: 2461: 2460: 2450: 2440: 2408: 2402: 2401: 2357: 2351: 2350: 2340: 2316: 2310: 2309: 2283: 2251: 2245: 2244: 2215: 2209: 2208: 2180: 2174: 2173: 2153: 2147: 2146: 2136: 2096: 2083: 2082: 2046: 2040: 2039: 2029: 2019: 1987: 1981: 1980: 1968: 1958: 1949: 1948: 1938: 1906: 1900: 1899: 1889: 1879: 1847: 1841: 1840: 1812: 1803: 1802: 1800: 1798: 1789:. Archived from 1782: 1776: 1775: 1757: 1731: 1725: 1724: 1688: 1443:artificial cells 1333:sperm activation 1282: 1280: 1279: 1274: 1224:In contrast to K 1215:osmotic pressure 1191: 1189: 1188: 1183: 1006:action potential 987:Ca/Na antiporter 930:osmotic swelling 872:refractive index 578:have a range of 509:Biological roles 493:, whereas PS in 147:phase transition 86:surrounding the 84:nuclear membrane 6226: 6225: 6221: 6220: 6219: 6217: 6216: 6215: 6196: 6195: 6190: 6185: 6119: 6083: 6051:Membrane lipids 6045: 6039: 6005:Wayback Machine 5988: 5983: 5960: 5956: 5922: 5918: 5871: 5867: 5844: 5840: 5817: 5813: 5782: 5778: 5733: 5729: 5690: 5686: 5641: 5637: 5594: 5590: 5561:(11): 1867–74. 5551: 5547: 5502: 5498: 5467: 5463: 5432: 5428: 5396: 5392: 5386:Wayback Machine 5377: 5373: 5366: 5362: 5325: 5321: 5298: 5294: 5262: 5258: 5245:(2–3): 165–77. 5235: 5231: 5194: 5190: 5145: 5141: 5134: 5120: 5116: 5079:(5517): 495–7. 5069: 5065: 5026: 5022: 5007: 4977: 4973: 4938: 4934: 4911: 4907: 4886:(22): 6978–87. 4876: 4872: 4833: 4829: 4766: 4762: 4739: 4735: 4719: 4715: 4662: 4658: 4637:(23): 5688–96. 4627: 4623: 4616: 4602: 4598: 4545: 4541: 4494: 4490: 4459: 4455: 4432:10.1038/430153a 4418:(6996): 153–5. 4408: 4404: 4351: 4347: 4302: 4298: 4275: 4271: 4262:Current Science 4255: 4251: 4239: 4235: 4219: 4215: 4170: 4166: 4143:10.1038/nrm1016 4127: 4123: 4076: 4072: 4033: 4029: 3976: 3972: 3941: 3937: 3900:(5371): 342–4. 3890: 3886: 3847: 3843: 3833: 3831: 3822: 3820: 3816: 3763: 3756: 3725: 3721: 3686: 3682: 3643: 3634: 3603: 3599: 3554: 3550: 3499: 3495: 3442: 3438: 3383: 3379: 3364: 3360: 3323: 3319: 3312: 3298: 3291: 3281: 3279: 3270: 3269: 3265: 3226: 3222: 3169: 3165: 3126: 3122: 3101:(1–3): 822–37. 3087: 3083: 3046: 3042: 3035: 3021: 3012: 3005: 2987: 2983: 2942:(19): 10642–7. 2928: 2924: 2917: 2903: 2899: 2838: 2831: 2788: 2781: 2720: 2716: 2665: 2661: 2608: 2604: 2573: 2569: 2538: 2534: 2503: 2499: 2468: 2464: 2409: 2405: 2358: 2354: 2317: 2313: 2252: 2248: 2216: 2212: 2181: 2177: 2154: 2150: 2097: 2086: 2051:Eur. Biophys. J 2047: 2043: 2002:(14): 7777–82. 1988: 1984: 1977: 1959: 1952: 1907: 1903: 1848: 1844: 1813: 1806: 1796: 1794: 1785: 1783: 1779: 1732: 1728: 1689: 1685: 1681: 1654: 1596: 1590: 1478: 1435: 1429: 1417:electroporation 1300: 1290: 1268: 1265: 1264: 1260: 1256: 1231: 1227: 1220: 1212: 1203: 1199: 1177: 1174: 1173: 1171: 1167: 1153: 1147: 1109: 1107:Electroporation 1103: 1101:Electroporation 1036: 1026: 958: 909: 904: 884: 864: 823: 810: 782: 754: 736: 712: 706: 635: 625: 516: 511: 444: 398: 383: 322:red blood cells 318: 262:plasma membrane 248: 211: 17: 12: 11: 5: 6224: 6214: 6213: 6208: 6187: 6186: 6184: 6183: 6178: 6176:Phycobilisomes 6173: 6168: 6163: 6158: 6153: 6148: 6143: 6138: 6136:Cell junctions 6133: 6127: 6125: 6121: 6120: 6118: 6117: 6108: 6099: 6093: 6091: 6085: 6084: 6082: 6081: 6076: 6071: 6066: 6061: 6055: 6053: 6047: 6046: 6038: 6037: 6030: 6023: 6015: 6009: 6008: 5995: 5987: 5986:External links 5984: 5982: 5981: 5954: 5935:(5): 660–668. 5925:Bangham, A. D. 5916: 5865: 5838: 5811: 5776: 5727: 5684: 5635: 5588: 5545: 5496: 5461: 5426: 5390: 5371: 5360: 5319: 5308:(2): 199–228. 5292: 5273:(1–3): 47–61. 5256: 5229: 5188: 5159:(3): 297–315. 5139: 5132: 5114: 5063: 5020: 5005: 4971: 4952:(1): 175–207. 4932: 4905: 4870: 4827: 4760: 4733: 4713: 4676:(4): 2342–50. 4656: 4621: 4614: 4596: 4539: 4488: 4453: 4402: 4345: 4296: 4269: 4249: 4233: 4213: 4164: 4121: 4070: 4037:J. Membr. Biol 4027: 3970: 3935: 3884: 3841: 3830:on 15 May 2016 3814: 3754: 3735:(5): 1632–40. 3719: 3680: 3653:(3): 941–944. 3632: 3613:(4): 305–311. 3597: 3568:(2): 275–300. 3548: 3493: 3456:(4): 1829–36. 3436: 3397:(12): 3561–6. 3377: 3358: 3331:Bioinformatics 3317: 3310: 3289: 3263: 3220: 3163: 3120: 3081: 3040: 3033: 3010: 3003: 2981: 2922: 2915: 2897: 2829: 2779: 2734:(2): 370–377. 2714: 2659: 2602: 2567: 2548:(4): 1377–88. 2532: 2513:(14): 2844–8. 2497: 2478:(7): 1111–20. 2462: 2403: 2352: 2331:(3): 391–403. 2311: 2246: 2210: 2175: 2148: 2084: 2041: 1982: 1975: 1950: 1901: 1862:(1): 376–380. 1842: 1804: 1793:on 15 May 2016 1777: 1748:(2): 269–278. 1726: 1699:(1): 107–130. 1682: 1680: 1677: 1676: 1675: 1670: 1665: 1660: 1653: 1650: 1589: 1586: 1576:cultures, the 1543:DNA sequencing 1477: 1474: 1473: 1472: 1467: 1462: 1457: 1452: 1428: 1425: 1289: 1286: 1272: 1258: 1254: 1229: 1225: 1218: 1210: 1201: 1197: 1181: 1169: 1165: 1146: 1143: 1122:transformation 1102: 1099: 1089:, released by 1043:or budding of 1025: 1022: 957: 954: 908: 905: 903: 900: 883: 880: 863: 860: 822: 819: 809: 806: 781: 778: 753: 750: 735: 732: 705: 702: 624: 621: 582:including the 570:or long chain 515: 512: 510: 507: 503:hydroxyapatite 443: 440: 382: 379: 317: 314: 247: 244: 240:hydrogen bonds 210: 207: 74:of almost all 72:cell membranes 57:polar membrane 15: 9: 6: 4: 3: 2: 6223: 6212: 6209: 6207: 6204: 6203: 6201: 6194: 6192: 6182: 6179: 6177: 6174: 6172: 6169: 6167: 6164: 6162: 6161:Myelin sheath 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6142: 6139: 6137: 6134: 6132: 6129: 6128: 6126: 6122: 6116: 6112: 6109: 6107: 6103: 6100: 6098: 6095: 6094: 6092: 6090: 6086: 6080: 6077: 6075: 6074:Sphingolipids 6072: 6070: 6067: 6065: 6064:Phospholipids 6062: 6060: 6059:Lipid bilayer 6057: 6056: 6054: 6052: 6048: 6044: 6043:cell membrane 6036: 6031: 6029: 6024: 6022: 6017: 6016: 6013: 6006: 6002: 5999: 5996: 5993: 5990: 5989: 5977: 5973: 5969: 5965: 5958: 5950: 5946: 5942: 5938: 5934: 5930: 5926: 5920: 5912: 5908: 5904: 5900: 5896: 5892: 5888: 5884: 5880: 5876: 5869: 5861: 5857: 5853: 5849: 5842: 5834: 5830: 5826: 5822: 5815: 5807: 5803: 5799: 5795: 5792:(3): 271–87. 5791: 5787: 5780: 5772: 5768: 5763: 5758: 5754: 5750: 5747:(4): 439–43. 5746: 5742: 5738: 5731: 5723: 5719: 5715: 5711: 5707: 5703: 5699: 5695: 5688: 5680: 5676: 5671: 5666: 5662: 5658: 5655:(2): 137–52. 5654: 5650: 5646: 5639: 5631: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5599: 5592: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5556: 5549: 5541: 5537: 5532: 5527: 5523: 5519: 5516:(2): 121–37. 5515: 5511: 5507: 5500: 5492: 5488: 5484: 5480: 5477:(5): 365–74. 5476: 5472: 5465: 5457: 5453: 5449: 5445: 5442:(4): 333–49. 5441: 5437: 5430: 5422: 5418: 5414: 5410: 5407:(4): 429–41. 5406: 5402: 5394: 5387: 5383: 5380: 5375: 5368: 5364: 5356: 5352: 5347: 5342: 5339:(3): 517–25. 5338: 5334: 5330: 5323: 5315: 5311: 5307: 5303: 5296: 5288: 5284: 5280: 5276: 5272: 5268: 5260: 5252: 5248: 5244: 5240: 5233: 5225: 5221: 5216: 5211: 5207: 5203: 5202:J. Biol. Chem 5199: 5192: 5184: 5180: 5175: 5170: 5166: 5162: 5158: 5154: 5153:Int J Nanomed 5150: 5143: 5135: 5129: 5125: 5118: 5110: 5106: 5102: 5098: 5094: 5090: 5086: 5082: 5078: 5074: 5067: 5059: 5055: 5051: 5047: 5043: 5039: 5036:(2): 98–106. 5035: 5031: 5024: 5016: 5012: 5008: 5002: 4998: 4994: 4990: 4985: 4984: 4975: 4967: 4963: 4959: 4955: 4951: 4947: 4943: 4936: 4928: 4924: 4921:(5): 361–77. 4920: 4916: 4909: 4901: 4897: 4893: 4889: 4885: 4881: 4874: 4866: 4862: 4858: 4854: 4850: 4846: 4843:(2): 157–79. 4842: 4838: 4831: 4823: 4819: 4814: 4809: 4805: 4801: 4796: 4791: 4787: 4783: 4779: 4775: 4771: 4764: 4756: 4752: 4749:(2): 135–60. 4748: 4744: 4737: 4731: 4727: 4723: 4717: 4709: 4705: 4700: 4695: 4691: 4687: 4683: 4679: 4675: 4671: 4667: 4660: 4652: 4648: 4644: 4640: 4636: 4632: 4625: 4617: 4611: 4607: 4600: 4592: 4588: 4583: 4578: 4574: 4570: 4566: 4562: 4559:(2): 435–42. 4558: 4554: 4550: 4543: 4535: 4531: 4527: 4523: 4519: 4515: 4511: 4507: 4503: 4499: 4492: 4484: 4480: 4476: 4472: 4469:(1): 177–98. 4468: 4464: 4457: 4449: 4445: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4413: 4406: 4398: 4394: 4389: 4384: 4380: 4376: 4372: 4368: 4365:(8): 3440–4. 4364: 4360: 4356: 4349: 4341: 4337: 4332: 4327: 4323: 4319: 4315: 4311: 4307: 4300: 4293:(2): 119–123. 4292: 4288: 4284: 4282: 4273: 4267: 4263: 4259: 4253: 4247: 4243: 4237: 4231: 4227: 4223: 4217: 4209: 4205: 4200: 4195: 4191: 4187: 4184:(3): 665–87. 4183: 4179: 4175: 4168: 4160: 4156: 4152: 4148: 4144: 4140: 4137:(2): 127–39. 4136: 4132: 4125: 4117: 4113: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4081: 4074: 4066: 4062: 4058: 4054: 4050: 4046: 4043:(2): 111–22. 4042: 4038: 4031: 4023: 4019: 4014: 4009: 4005: 4001: 3997: 3993: 3990:(1): 339–48. 3989: 3985: 3981: 3974: 3966: 3962: 3958: 3954: 3951:(4): 639–52. 3950: 3946: 3939: 3931: 3927: 3923: 3919: 3915: 3911: 3907: 3903: 3899: 3895: 3888: 3880: 3876: 3872: 3868: 3864: 3860: 3857:(3): 213–29. 3856: 3852: 3845: 3829: 3825: 3818: 3810: 3806: 3801: 3796: 3792: 3788: 3784: 3780: 3777:(1): 217–26. 3776: 3772: 3768: 3761: 3759: 3750: 3746: 3742: 3738: 3734: 3730: 3723: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3684: 3676: 3672: 3668: 3664: 3660: 3656: 3652: 3648: 3641: 3639: 3637: 3628: 3624: 3620: 3616: 3612: 3608: 3601: 3593: 3589: 3584: 3579: 3575: 3571: 3567: 3563: 3559: 3552: 3544: 3540: 3536: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3504: 3497: 3489: 3485: 3480: 3475: 3471: 3467: 3463: 3459: 3455: 3451: 3447: 3440: 3432: 3428: 3423: 3418: 3413: 3408: 3404: 3400: 3396: 3392: 3388: 3381: 3373: 3369: 3362: 3354: 3350: 3345: 3340: 3336: 3332: 3328: 3321: 3313: 3307: 3303: 3296: 3294: 3277: 3273: 3267: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3231: 3224: 3216: 3212: 3207: 3202: 3198: 3194: 3190: 3186: 3183:(1): 135–48. 3182: 3178: 3174: 3167: 3159: 3155: 3151: 3147: 3143: 3139: 3135: 3131: 3124: 3116: 3112: 3108: 3104: 3100: 3096: 3095:Front. Biosci 3092: 3085: 3077: 3073: 3068: 3063: 3060:(7): 551–62. 3059: 3055: 3051: 3044: 3036: 3030: 3026: 3019: 3017: 3015: 3006: 3004:9781317563747 3000: 2996: 2992: 2985: 2977: 2973: 2968: 2963: 2958: 2953: 2949: 2945: 2941: 2937: 2933: 2926: 2918: 2912: 2908: 2901: 2893: 2889: 2884: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2836: 2834: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2786: 2784: 2775: 2771: 2766: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2725: 2718: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2663: 2655: 2651: 2646: 2641: 2637: 2633: 2629: 2625: 2622:(1): 228–37. 2621: 2617: 2613: 2606: 2598: 2594: 2590: 2586: 2583:(2): 307–16. 2582: 2578: 2571: 2563: 2559: 2555: 2551: 2547: 2543: 2536: 2528: 2524: 2520: 2516: 2512: 2508: 2501: 2493: 2489: 2485: 2481: 2477: 2473: 2466: 2458: 2454: 2449: 2444: 2439: 2434: 2430: 2426: 2423:(5): 1821–5. 2422: 2418: 2414: 2407: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2356: 2348: 2344: 2339: 2334: 2330: 2326: 2322: 2315: 2307: 2303: 2299: 2295: 2291: 2287: 2282: 2277: 2273: 2269: 2265: 2261: 2257: 2250: 2242: 2238: 2234: 2230: 2227:(2): 178–93. 2226: 2222: 2214: 2206: 2202: 2198: 2194: 2191:(61): 11–12. 2190: 2186: 2179: 2171: 2167: 2164:(4): 324–35. 2163: 2159: 2152: 2144: 2140: 2135: 2130: 2126: 2122: 2118: 2114: 2111:(1): 328–39. 2110: 2106: 2102: 2095: 2093: 2091: 2089: 2080: 2076: 2072: 2068: 2064: 2060: 2057:(7): 559–62. 2056: 2052: 2045: 2037: 2033: 2028: 2023: 2018: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1978: 1972: 1967: 1966: 1957: 1955: 1946: 1942: 1937: 1932: 1928: 1924: 1921:(3): 159–95. 1920: 1916: 1912: 1905: 1897: 1893: 1888: 1883: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1846: 1838: 1834: 1830: 1826: 1822: 1818: 1811: 1809: 1792: 1788: 1781: 1773: 1769: 1765: 1761: 1756: 1751: 1747: 1743: 1742: 1737: 1730: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1687: 1683: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1655: 1649: 1647: 1641: 1639: 1638:self assembly 1634: 1628: 1626: 1621: 1616: 1614: 1608: 1606: 1602: 1595: 1585: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1546: 1544: 1540: 1536: 1531: 1529: 1525: 1521: 1516: 1514: 1510: 1509:immune system 1506: 1502: 1499:clearing and 1498: 1493: 1491: 1487: 1483: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1447: 1446: 1444: 1440: 1434: 1427:Model systems 1424: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1393: 1390: 1386: 1382: 1378: 1374: 1370: 1360: 1352: 1348: 1344: 1342: 1338: 1334: 1330: 1326: 1325:fertilization 1322: 1318: 1313: 1304: 1299: 1295: 1285: 1262: 1252: 1248: 1244: 1240: 1236: 1222: 1216: 1206: 1195: 1194:shear modulus 1157: 1152: 1142: 1139: 1133: 1131: 1127: 1123: 1119: 1115: 1108: 1098: 1096: 1092: 1091:gram-negative 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1057: 1052: 1048: 1046: 1042: 1035: 1031: 1017: 1013: 1011: 1007: 1003: 998: 996: 992: 988: 984: 980: 976: 971: 967: 963: 950: 949:alpha helices 945: 941: 939: 935: 931: 927: 923: 918: 914: 899: 897: 893: 889: 879: 877: 873: 869: 868:birefringence 859: 856: 852: 844: 839: 832: 827: 818: 815: 805: 803: 799: 794: 790: 786: 777: 773: 771: 763: 762:cell membrane 758: 749: 747: 742: 731: 724: 723:lipid vesicle 720: 716: 711: 701: 699: 695: 691: 686: 684: 679: 678:immune system 675: 671: 667: 663: 658: 656: 652: 648: 644: 640: 634: 630: 617: 613: 608: 604: 601: 597: 593: 589: 585: 581: 577: 573: 572:carbohydrates 569: 565: 561: 560:cell membrane 557: 553: 551: 546: 542: 538: 537:phospholipids 534: 530: 529:lipid vesicle 526: 521: 506: 504: 500: 496: 492: 488: 484: 480: 476: 471: 469: 465: 461: 457: 453: 452:sphingolipids 449: 448:phospholipids 439: 437: 431: 428: 424: 420: 415: 414:Van der Waals 410: 408: 404: 397: 387: 378: 374: 371: 367: 362: 360: 354: 352: 348: 343: 342:sphingomyelin 339: 335: 331: 327: 323: 313: 306: 302: 298: 296: 292: 287: 284:bilayers the 283: 278: 276: 272: 268: 263: 252: 243: 241: 237: 236:electrostatic 233: 229: 225: 221: 216: 215:self-assemble 206: 204: 200: 196: 192: 188: 184: 183:fertilization 180: 176: 172: 168: 164: 159: 157: 152: 148: 144: 140: 135: 131: 130:phospholipids 128: 123: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 62: 58: 54: 50: 49:lipid bilayer 42: 37: 30: 26: 21: 6193: 6191: 6069:Lipoproteins 6058: 5967: 5963: 5957: 5932: 5928: 5919: 5878: 5874: 5868: 5851: 5847: 5841: 5824: 5820: 5814: 5789: 5785: 5779: 5744: 5740: 5730: 5697: 5693: 5687: 5652: 5648: 5638: 5605: 5601: 5591: 5558: 5554: 5548: 5513: 5509: 5499: 5474: 5470: 5464: 5439: 5435: 5429: 5404: 5400: 5393: 5374: 5363: 5336: 5332: 5322: 5305: 5301: 5295: 5270: 5266: 5259: 5242: 5238: 5232: 5205: 5201: 5191: 5156: 5152: 5142: 5123: 5117: 5076: 5072: 5066: 5033: 5029: 5023: 4982: 4974: 4949: 4945: 4935: 4918: 4914: 4908: 4883: 4880:Biochemistry 4879: 4873: 4840: 4836: 4830: 4780:(1): 12845. 4777: 4773: 4763: 4746: 4742: 4736: 4725: 4721: 4716: 4673: 4669: 4659: 4634: 4631:Biochemistry 4630: 4624: 4605: 4599: 4556: 4552: 4542: 4501: 4497: 4491: 4466: 4462: 4456: 4415: 4411: 4405: 4362: 4358: 4348: 4316:(7): 841–5. 4313: 4309: 4299: 4290: 4286: 4280: 4272: 4261: 4257: 4252: 4241: 4236: 4225: 4221: 4216: 4181: 4178:J. Cell Biol 4177: 4167: 4134: 4130: 4124: 4083: 4079: 4073: 4040: 4036: 4030: 3987: 3983: 3973: 3948: 3944: 3938: 3897: 3893: 3887: 3854: 3850: 3844: 3832:. Retrieved 3828:the original 3817: 3774: 3770: 3732: 3728: 3722: 3697: 3693: 3683: 3650: 3647:Nano Letters 3646: 3610: 3606: 3600: 3565: 3562:J. Cell Biol 3561: 3551: 3510: 3506: 3496: 3453: 3449: 3439: 3394: 3390: 3380: 3371: 3367: 3361: 3334: 3330: 3320: 3301: 3280:. Retrieved 3276:the original 3266: 3236:(3): 270–7. 3233: 3230:J. Mol. Evol 3229: 3223: 3180: 3176: 3166: 3133: 3129: 3123: 3107:10.2741/1576 3098: 3094: 3084: 3057: 3053: 3043: 3024: 2994: 2984: 2939: 2935: 2925: 2906: 2900: 2849: 2845: 2799: 2795: 2731: 2727: 2717: 2676: 2672: 2662: 2619: 2615: 2605: 2580: 2576: 2570: 2545: 2541: 2535: 2510: 2507:Biochemistry 2506: 2500: 2475: 2472:Biochemistry 2471: 2465: 2420: 2416: 2406: 2365: 2361: 2355: 2328: 2325:J. Lipid Res 2324: 2314: 2263: 2259: 2249: 2224: 2220: 2213: 2188: 2184: 2178: 2161: 2157: 2151: 2108: 2104: 2054: 2050: 2044: 1999: 1995: 1985: 1964: 1918: 1914: 1904: 1859: 1855: 1845: 1823:(2): 211–7. 1820: 1817:J. Mol. Biol 1816: 1795:. Retrieved 1791:the original 1780: 1745: 1739: 1729: 1696: 1692: 1686: 1642: 1633:Alec Bangham 1629: 1617: 1609: 1597: 1565: 1564:ermeability 1561: 1557: 1553: 1549: 1547: 1532: 1524:angiogenesis 1517: 1501:phagocytosis 1494: 1479: 1436: 1394: 1368: 1366: 1345: 1310: 1263: 1250: 1246: 1242: 1238: 1223: 1207: 1163: 1160:hydrophilic. 1134: 1118:transfection 1110: 1094: 1082: 1081:cells. This 1066: 1065: 1059: 1055: 1037: 999: 962:ion channels 959: 910: 885: 865: 848: 811: 783: 774: 767: 746:ion channels 737: 728: 694:phagocytosis 687: 659: 636: 588:mitochondria 554: 533:biosynthetic 517: 495:growth plate 487:erythrocytes 472: 468:zwitterionic 445: 432: 411: 399: 375: 363: 355: 319: 310: 282:phospholipid 279: 277:techniques. 258: 212: 160: 124: 88:cell nucleus 55:) is a thin 52: 48: 46: 5827:: 343–418. 3851:Amino Acids 3282:10 November 3136:(1): 43–8. 2796:Soft Matter 2260:Soft Matter 1627:membranes. 1605:erythrocyte 1601:capacitance 1030:Endocytosis 983:Na-K ATPase 917:hydrocarbon 829:3d-Adapted 692:-triggered 600:hepatocytes 556:Prokaryotes 545:hydrophobic 541:hydrophilic 460:cholesterol 436:cholesterol 423:double bond 403:random walk 167:cholesterol 151:fluid state 134:hydrophobic 127:amphiphilic 112:hydrophilic 23:This fluid 6200:Categories 6141:Glycocalyx 5700:(5): 329. 5333:Ann. Oncol 4991:–1–17–41. 4670:Biophys. J 4553:Biophys. J 4281:Salmonella 4260:invasion. 4258:Salmonella 4242:Salmonella 4224:invasion. 4222:salmonella 3984:Biophys. J 3771:Biophys. J 3700:(1): 1–9. 3450:Biophys. J 3177:Biophys. J 2616:Biophys. J 2105:Biophys. J 1679:References 1673:Lipidomics 1658:Surfactant 1584:and skin. 1556:rtificial 1535:biosensors 1528:antibodies 1381:Eukaryotic 1321:Exocytosis 1317:eukaryotes 1292:See also: 1079:eukaryotic 1071:exocytosis 1056:Salmonella 1034:Exocytosis 1028:See also: 934:chloroform 896:quadrupole 798:exocytotic 741:resistance 698:scramblase 633:Lipid raft 627:See also: 580:organelles 576:eukaryotes 499:nucleation 390:molecules. 351:macrophage 108:nanometers 6181:Porosomes 5058:205012830 5015:199021983 4804:2045-2322 4722:thylakoid 2874:0006-3495 2824:1744-6848 2756:1542-0086 2709:248375027 2693:1432-1424 2306:235708094 2290:1744-683X 1625:organelle 1490:degrading 1482:liposomes 1409:hybridoma 1389:vesicular 1271:Λ 1180:Λ 1145:Mechanics 1126:lightning 966:ion pumps 888:ab initio 793:electrons 623:Signaling 616:catalyzes 592:lysosomes 564:cell wall 550:Organelle 491:apoptosis 481:(PE) and 359:flippases 347:apoptosis 316:Asymmetry 295:bacterium 286:phosphate 120:ion pumps 92:membranes 78:and many 76:organisms 64:molecules 6001:Archived 5949:14187392 5903:14476933 5860:13651159 5854:: 3–43. 5833:13742209 5806:13550367 5771:19868999 5722:36842138 5679:19872238 5630:17730464 5583:27395246 5575:19937821 5540:19591928 5491:15265506 5456:15734300 5421:14998573 5382:Archived 5355:14998859 5287:11489482 5183:17717971 5050:11252968 4966:14527322 4822:30150612 4708:14507698 4526:15241420 4483:16689633 4440:15241399 4397:11472916 4159:14415959 4151:12563290 4116:16323721 4108:16322449 4065:20394005 3922:12635233 3879:24350029 3871:11543596 3809:16617084 3749:56532332 3729:Langmuir 3714:12003236 3675:18254602 3627:16298110 3488:11259296 3353:12855459 3258:21635206 3158:26435152 3115:15569622 3076:10200509 2976:11535814 2892:17114215 2774:21767489 2701:35467109 2654:16214871 2562:15697284 2542:Langmuir 2398:34501546 2298:34212942 2143:10866959 2079:36212541 2071:12602343 2036:11438731 1945:11063882 1896:16592215 1772:14120598 1713:17263662 1652:See also 1560:embrane 1552:arallel 1492:lipids. 1465:Vesicles 1413:antibody 1363:process. 1337:lysozome 1251:micellar 1235:micelles 1045:vesicles 993:via the 855:isotopic 802:synapses 666:proteome 568:proteins 458:such as 230:such as 156:Vesicles 104:proteins 41:liposome 6079:Sterols 5992:LIPIDAT 5911:2110051 5883:Bibcode 5762:2130960 5714:3539619 5670:2140799 5610:Bibcode 5602:Science 5531:2747801 5224:1527006 5174:2426795 5109:4161444 5101:1172191 5081:Bibcode 4927:6510702 4900:3801406 4865:1465571 4857:2139437 4813:6110749 4782:Bibcode 4699:1303459 4678:Bibcode 4651:2043611 4591:8457669 4582:1262346 4561:Bibcode 4534:4401688 4506:Bibcode 4448:4427370 4420:Bibcode 4367:Bibcode 4340:6329708 4208:1030706 4199:2109655 4088:Bibcode 4080:Science 4057:7932645 4022:8770210 4013:1224932 3992:Bibcode 3965:6048247 3930:4185197 3902:Bibcode 3800:1479081 3779:Bibcode 3655:Bibcode 3583:2110310 3543:4204985 3535:1083489 3515:Bibcode 3479:1301372 3458:Bibcode 3431:4509315 3399:Bibcode 3374:: 24–9. 3250:6242168 3215:1883932 3206:1260045 3185:Bibcode 3150:3103899 2944:Bibcode 2883:1783876 2854:Bibcode 2804:Bibcode 2765:3136766 2736:Bibcode 2645:1367021 2624:Bibcode 2597:1311950 2527:4407872 2492:4324203 2425:Bibcode 2390:4724478 2370:Bibcode 2362:Science 2347:7017050 2268:Bibcode 2241:4356540 2205:4502419 2134:1300937 2113:Bibcode 2004:Bibcode 1936:2747654 1864:Bibcode 1837:6854644 1764:7834746 1721:6521535 1588:History 1486:vesicle 1405:myeloma 1401:B-cells 1369:in vivo 1341:viruses 1243:sucrose 1060:in vivo 1010:neurons 926:cations 612:hormone 584:nucleus 525:archaea 520:aqueous 456:sterols 407:diffuse 366:vesicle 181:during 94:of the 80:viruses 5947:  5909:  5901:  5875:Nature 5858:  5831:  5804:  5769:  5759:  5720:  5712:  5677:  5667:  5628:  5581:  5573:  5538:  5528:  5489:  5454:  5419:  5353:  5285:  5222:  5181:  5171:  5130:  5107:  5099:  5073:Nature 5056:  5048:  5013:  5003:  4964:  4925:  4898:  4863:  4855:  4820:  4810:  4802:  4706:  4696:  4649:  4612:  4589:  4579:  4532:  4524:  4498:Nature 4481:  4446:  4438:  4412:Nature 4395:  4385:  4338:  4331:553119 4328:  4310:EMBO J 4206:  4196:  4157:  4149:  4114:  4106:  4063:  4055:  4020:  4010:  3963:  3928:  3920:  3894:Nature 3877:  3869:  3834:17 May 3807:  3797:  3747:  3712:  3673:  3625:  3590:  3580:  3541:  3533:  3507:Nature 3486:  3476:  3429:  3422:389821 3419:  3351:  3308:  3256:  3248:  3213:  3203:  3156:  3148:  3113:  3074:  3031:  3001:  2974:  2964:  2913:  2890:  2880:  2872:  2822:  2772:  2762:  2754:  2707:  2699:  2691:  2652:  2642:  2595:  2560:  2525:  2490:  2457:405668 2455:  2448:431015 2445:  2396:  2388:  2345:  2304:  2296:  2288:  2239:  2203:  2141:  2131:  2077:  2069:  2034:  2024:  1973:  1943:  1933:  1894:  1887:432308 1884:  1835:  1797:17 May 1770:  1762:  1719:  1711:  1574:Caco-2 1385:SNAREs 1327:of an 1312:Fusion 1288:Fusion 1041:fusion 1008:along 922:Anions 892:dipole 643:neuron 450:, but 427:alkane 273:, and 220:sugars 185:of an 90:, and 70:. The 6124:Other 5907:S2CID 5718:S2CID 5579:S2CID 5105:S2CID 5054:S2CID 5011:S2CID 4861:S2CID 4530:S2CID 4444:S2CID 4388:93040 4155:S2CID 4112:S2CID 4061:S2CID 3926:S2CID 3875:S2CID 3745:S2CID 3592:38256 3539:S2CID 3254:S2CID 3154:S2CID 2967:58519 2705:S2CID 2394:S2CID 2302:S2CID 2075:S2CID 2027:35418 1768:S2CID 1717:S2CID 1570:PAMPA 1568:ssay 1520:tumor 1505:serum 1497:renal 1403:with 1377:virus 1241:like 1200:and K 938:ether 913:polar 911:Most 477:(PS) 265:with 195:virus 191:sperm 189:by a 149:to a 139:phase 68:cells 61:lipid 25:lipid 5945:PMID 5899:PMID 5856:PMID 5829:PMID 5802:PMID 5767:PMID 5710:PMID 5675:PMID 5626:PMID 5571:PMID 5536:PMID 5487:PMID 5452:PMID 5417:PMID 5351:PMID 5283:PMID 5220:PMID 5179:PMID 5128:ISBN 5097:PMID 5046:PMID 5001:ISBN 4962:PMID 4923:PMID 4896:PMID 4853:PMID 4818:PMID 4800:ISSN 4704:PMID 4647:PMID 4610:ISBN 4587:PMID 4522:PMID 4479:PMID 4436:PMID 4393:PMID 4336:PMID 4204:PMID 4147:PMID 4104:PMID 4053:PMID 4018:PMID 3961:PMID 3918:PMID 3867:PMID 3836:2012 3805:PMID 3710:PMID 3671:PMID 3623:PMID 3588:PMID 3531:PMID 3484:PMID 3427:PMID 3349:PMID 3306:ISBN 3284:2012 3246:PMID 3211:PMID 3146:PMID 3111:PMID 3072:PMID 3029:ISBN 2999:ISBN 2972:PMID 2911:ISBN 2888:PMID 2870:ISSN 2820:ISSN 2770:PMID 2752:ISSN 2697:PMID 2689:ISSN 2650:PMID 2593:PMID 2581:1103 2558:PMID 2523:PMID 2488:PMID 2453:PMID 2386:PMID 2343:PMID 2294:PMID 2286:ISSN 2237:PMID 2201:PMID 2139:PMID 2067:PMID 2032:PMID 1971:ISBN 1941:PMID 1919:1469 1892:PMID 1833:PMID 1799:2012 1760:PMID 1741:Cell 1709:PMID 1307:mix. 1296:and 1083:myth 1032:and 964:and 936:and 894:and 670:CD59 655:fuse 631:and 594:and 454:and 332:and 289:the 238:and 201:and 100:ions 51:(or 47:The 5972:doi 5937:doi 5891:doi 5879:194 5794:doi 5757:PMC 5749:doi 5702:doi 5698:145 5665:PMC 5657:doi 5618:doi 5563:doi 5526:PMC 5518:doi 5479:doi 5444:doi 5409:doi 5341:doi 5310:doi 5275:doi 5247:doi 5210:doi 5206:267 5169:PMC 5161:doi 5089:doi 5077:256 5038:doi 4993:doi 4954:doi 4888:doi 4845:doi 4808:PMC 4790:doi 4751:doi 4694:PMC 4686:doi 4639:doi 4577:PMC 4569:doi 4514:doi 4502:430 4471:doi 4428:doi 4416:430 4383:PMC 4375:doi 4326:PMC 4318:doi 4194:PMC 4186:doi 4139:doi 4096:doi 4084:310 4045:doi 4041:140 4008:PMC 4000:doi 3953:doi 3949:135 3910:doi 3898:239 3859:doi 3795:PMC 3787:doi 3737:doi 3702:doi 3663:doi 3615:doi 3578:PMC 3570:doi 3523:doi 3511:260 3474:PMC 3466:doi 3417:PMC 3407:doi 3339:doi 3238:doi 3201:PMC 3193:doi 3138:doi 3103:doi 3062:doi 2962:PMC 2952:doi 2878:PMC 2862:doi 2812:doi 2760:PMC 2744:doi 2732:101 2681:doi 2677:255 2640:PMC 2632:doi 2585:doi 2550:doi 2515:doi 2480:doi 2443:PMC 2433:doi 2378:doi 2366:181 2333:doi 2276:doi 2229:doi 2225:323 2193:doi 2189:236 2166:doi 2129:PMC 2121:doi 2059:doi 2022:PMC 2012:doi 1931:PMC 1923:doi 1882:PMC 1872:doi 1825:doi 1821:166 1750:doi 1701:doi 1603:of 1331:by 1329:egg 1114:DNA 979:ATP 843:AFM 831:AFM 674:HIV 501:of 305:TEM 187:egg 143:gel 6202:: 5968:99 5966:. 5943:. 5931:. 5905:. 5897:. 5889:. 5877:. 5852:16 5850:. 5825:10 5823:. 5800:. 5788:. 5765:. 5755:. 5745:41 5743:. 5739:. 5716:. 5708:. 5696:. 5673:. 5663:. 5651:. 5647:. 5624:. 5616:. 5606:20 5604:. 5600:. 5577:. 5569:. 5557:. 5534:. 5524:. 5514:38 5512:. 5508:. 5485:. 5475:22 5473:. 5450:. 5440:24 5438:. 5415:. 5405:21 5403:. 5349:. 5337:15 5335:. 5331:. 5304:. 5281:. 5271:74 5269:. 5243:24 5241:. 5218:. 5204:. 5200:. 5177:. 5167:. 5155:. 5151:. 5103:. 5095:. 5087:. 5075:. 5052:. 5044:. 5032:. 5009:. 4999:. 4989:17 4960:. 4950:72 4948:. 4944:. 4917:. 4894:. 4884:25 4882:. 4859:. 4851:. 4841:22 4839:. 4816:. 4806:. 4798:. 4788:. 4776:. 4772:. 4747:41 4745:. 4702:. 4692:. 4684:. 4674:85 4672:. 4668:. 4645:. 4635:30 4633:. 4585:. 4575:. 4567:. 4557:64 4555:. 4551:. 4528:. 4520:. 4512:. 4500:. 4477:. 4467:35 4465:. 4442:. 4434:. 4426:. 4414:. 4391:. 4381:. 4373:. 4363:67 4361:. 4357:. 4334:. 4324:. 4312:. 4308:. 4291:33 4289:. 4285:. 4202:. 4192:. 4182:68 4180:. 4176:. 4153:. 4145:. 4133:. 4110:. 4102:. 4094:. 4082:. 4059:. 4051:. 4039:. 4016:. 4006:. 3998:. 3988:70 3986:. 3982:. 3959:. 3947:. 3924:. 3916:. 3908:. 3896:. 3873:. 3865:. 3853:. 3803:. 3793:. 3785:. 3775:91 3773:. 3769:. 3757:^ 3743:. 3733:19 3731:. 3708:. 3698:51 3696:. 3692:. 3669:. 3661:. 3649:. 3635:^ 3621:. 3611:29 3609:. 3586:. 3576:. 3566:81 3564:. 3560:. 3537:. 3529:. 3521:. 3509:. 3505:. 3482:. 3472:. 3464:. 3454:80 3452:. 3448:. 3425:. 3415:. 3405:. 3395:69 3393:. 3389:. 3372:11 3370:. 3347:. 3335:19 3333:. 3329:. 3292:^ 3252:. 3244:. 3234:21 3232:. 3209:. 3199:. 3191:. 3181:60 3179:. 3175:. 3152:. 3144:. 3134:40 3132:. 3109:. 3099:10 3097:. 3093:. 3070:. 3056:. 3052:. 3013:^ 2993:. 2970:. 2960:. 2950:. 2940:98 2938:. 2934:. 2886:. 2876:. 2868:. 2860:. 2850:92 2848:. 2844:. 2832:^ 2818:. 2810:. 2798:. 2794:. 2782:^ 2768:. 2758:. 2750:. 2742:. 2730:. 2726:. 2703:. 2695:. 2687:. 2675:. 2671:. 2648:. 2638:. 2630:. 2620:90 2618:. 2614:. 2591:. 2579:. 2556:. 2546:21 2544:. 2521:. 2511:13 2509:. 2486:. 2476:10 2474:. 2451:. 2441:. 2431:. 2421:74 2419:. 2415:. 2392:. 2384:. 2376:. 2364:. 2341:. 2329:22 2327:. 2323:. 2300:. 2292:. 2284:. 2274:. 2264:17 2262:. 2258:. 2235:. 2223:. 2199:. 2187:. 2160:. 2137:. 2127:. 2119:. 2109:79 2107:. 2103:. 2087:^ 2073:. 2065:. 2055:31 2053:. 2030:. 2020:. 2010:. 2000:98 1998:. 1994:. 1953:^ 1939:. 1929:. 1917:. 1913:. 1890:. 1880:. 1870:. 1860:72 1858:. 1854:. 1831:. 1819:. 1807:^ 1766:. 1758:. 1746:80 1744:. 1738:. 1715:. 1707:. 1697:36 1695:. 1648:. 1580:, 1323:, 1132:. 997:. 991:pH 812:P- 804:. 590:, 586:, 552:. 340:, 328:, 269:, 242:. 234:, 205:. 122:. 116:pH 102:, 6113:/ 6104:/ 6034:e 6027:t 6020:v 5978:. 5974:: 5951:. 5939:: 5933:8 5913:. 5893:: 5885:: 5862:. 5835:. 5808:. 5796:: 5790:1 5773:. 5751:: 5724:. 5704:: 5681:. 5659:: 5653:9 5632:. 5620:: 5612:: 5585:. 5565:: 5559:6 5542:. 5520:: 5493:. 5481:: 5458:. 5446:: 5423:. 5411:: 5357:. 5343:: 5316:. 5312:: 5306:9 5289:. 5277:: 5253:. 5249:: 5226:. 5212:: 5185:. 5163:: 5157:1 5136:. 5111:. 5091:: 5083:: 5060:. 5040:: 5034:2 5017:. 4995:: 4968:. 4956:: 4929:. 4919:3 4902:. 4890:: 4867:. 4847:: 4824:. 4792:: 4784:: 4778:8 4757:. 4753:: 4710:. 4688:: 4680:: 4653:. 4641:: 4618:. 4593:. 4571:: 4563:: 4536:. 4516:: 4508:: 4485:. 4473:: 4450:. 4430:: 4422:: 4399:. 4377:: 4369:: 4342:. 4320:: 4314:1 4210:. 4188:: 4161:. 4141:: 4135:4 4118:. 4098:: 4090:: 4067:. 4047:: 4024:. 4002:: 3994:: 3967:. 3955:: 3932:. 3912:: 3904:: 3881:. 3861:: 3855:6 3838:. 3811:. 3789:: 3781:: 3751:. 3739:: 3716:. 3704:: 3677:. 3665:: 3657:: 3651:8 3629:. 3617:: 3594:. 3572:: 3545:. 3525:: 3517:: 3490:. 3468:: 3460:: 3433:. 3409:: 3401:: 3355:. 3341:: 3314:. 3286:. 3260:. 3240:: 3217:. 3195:: 3187:: 3160:. 3140:: 3117:. 3105:: 3078:. 3064:: 3058:5 3037:. 3007:. 2978:. 2954:: 2946:: 2919:. 2894:. 2864:: 2856:: 2826:. 2814:: 2806:: 2800:4 2776:. 2746:: 2738:: 2711:. 2683:: 2656:. 2634:: 2626:: 2599:. 2587:: 2564:. 2552:: 2529:. 2517:: 2494:. 2482:: 2459:. 2435:: 2427:: 2400:. 2380:: 2372:: 2349:. 2335:: 2308:. 2278:: 2270:: 2243:. 2231:: 2207:. 2195:: 2172:. 2168:: 2162:7 2145:. 2123:: 2115:: 2081:. 2061:: 2038:. 2014:: 2006:: 1979:. 1947:. 1925:: 1898:. 1874:: 1866:: 1839:. 1827:: 1801:. 1774:. 1752:: 1723:. 1703:: 1566:a 1562:p 1558:m 1554:a 1550:p 1259:a 1255:b 1230:b 1226:a 1219:a 1211:a 1202:b 1198:a 1170:b 1166:a 1062:. 31:.

Index


lipid
phosphatidylcholine

liposome
polar membrane
lipid
molecules
cells
cell membranes
organisms
viruses
nuclear membrane
cell nucleus
membranes
membrane-bound organelles
ions
proteins
nanometers
hydrophilic
pH
ion pumps
amphiphilic
phospholipids
hydrophobic
phase
gel
phase transition
fluid state
Vesicles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑