Knowledge

Hydrophobicity scales

Source 📝

199:
secondary structures formation is avoided by using short sequence peptides. Derivatization of amino acids is necessary to ease its partition into a C18 bonded phase. Another scale had been developed in 1971 and used peptide retention on hydrophilic gel. 1-butanol and pyridine were used as the mobile phase in this particular scale and glycine was used as the reference value. Pliska and his coworkers used thin layer chromatography to relate mobility values of free amino acids to their hydrophobicities. About a decade ago, another hydrophilicity scale was published, this scale used normal phase liquid chromatography and showed the retention of 121 peptides on an amide-80 column. The absolute values and relative rankings of hydrophobicity determined by chromatographic methods can be affected by a number of parameters. These parameters include the silica surface area and pore diameter, the choice and pH of aqueous buffer, temperature and the bonding density of stationary phase chains.
663:
of various dielectric medium generated by arrangement of different amino acids. Hence, different parts of the protein structure most likely would behave as solvents with different dielectric values. For simplicity, each protein structure was considered as an immiscible mixture of two solvents, protein interior and protein exterior. The local environment around individual amino acid (termed as "micro-environment") was computed for both protein interior and protein exterior. The ratio gives the relative hydrophobicity scale for individual amino acids. Computation was trained on high resolution protein crystal structures. This quantitative descriptor for microenvironment was derived from the
688: 676: 229:
tension values for the naturally occurring 20 amino acids in NaCl solution. The main drawbacks of surface tension measurements is that the broken hydrogen bonds and the neutralized charged groups remain at the solution air interface. Another physical property method involve measuring the solvation free energy. The solvation free energy is estimated as a product of an accessibility of an atom to the solvent and an atomic solvation parameter. Results indicate the solvation free energy lowers by an average of 1 Kcal/residue upon folding.
190:
on a bioinformatic survey of 5526 high-resolution structures from the Protein Data Bank. This differential scale has two comparative advantages: (1) it is especially useful for treating changes in water-protein interactions that are too small to be accessible to conventional force-field calculations, and (2) for homologous structures, it can yield correlations with changes in properties from mutations in the amino acid sequences alone, without determining corresponding structural changes, either in vitro or in vivo.
233: 150:
making it difficult to obtain pure hydrophobicity scale. Nozaki and Tanford proposed the first major hydrophobicity scale for nine amino acids. Ethanol and dioxane are used as the organic solvents and the free energy of transfer of each amino acid was calculated. Non liquid phases can also be used with partitioning methods such as micellar phases and vapor phases. Two scales have been developed using micellar phases. Fendler et al. measured the partitioning of 14 radiolabeled amino acids using
141:
tendency for a residue to be found inside of a protein rather than on its surface. Since cysteine forms disulfide bonds that must occur inside a globular structure, cysteine is ranked as the most hydrophobic. The first and third scales are derived from the physiochemical properties of the amino acid side chains. These scales result mainly from inspection of the amino acid structures. Biswas et al., divided the scales based on the method used to obtain the scale into five different categories.
65: 122: 217: 208:
the increased stability is directly proportional to increase in hydrophobicity up to a certain size limit. The main disadvantage of site-directed mutagenesis method is that not all the 20 naturally occurring amino acids can substitute a single residue in a protein. Moreover, these methods have cost problems and is useful only for measuring protein stability.
158:. Also, amino acid side chain affinity for water was measured using vapor phases. Vapor phases represent the simplest non polar phases, because it has no interaction with the solute. The hydration potential and its correlation to the appearance of amino acids on the surface of proteins was studied by Wolfenden. Aqueous and 662:
Most of the existing hydrophobicity scales are derived from the properties of amino acids in their free forms or as a part of a short peptide. Bandyopadhyay-Mehler hydrophobicity scale was based on partitioning of amino acids in the context of protein structure. Protein structure is a complex mosaic
228:
methods are based on the measurement of different physical properties. Examples include, partial molar heat capacity, transition temperature and surface tension. Physical methods are easy to use and flexible in terms of solute. The most popular hydrophobicity scale was developed by measuring surface
207:
This method use DNA recombinant technology and it gives an actual measurement of protein stability. In his detailed site-directed mutagenesis studies, Utani and his coworkers substituted 19 amino acids at Trp49 of the tryptophan synthase and he measured the free energy of unfolding. They found that
189:
for the corresponding types of atoms. A differential solvent accessible surface area hydrophobicity scale based on proteins as compacted networks near a critical point, due to self-organization by evolution, was constructed based on asymptotic power-law (self-similar) behavior. This scale is based
149:
The most common method of measuring amino acid hydrophobicity is partitioning between two immiscible liquid phases. Different organic solvents are most widely used to mimic the protein interior. However, organic solvents are slightly miscible with water and the characteristics of both phases change
719:
of a hard-sphere solute with respect to that in the bulk exhibits a linear dependence on cosine value of contact angle. Based on the computed excess chemical potentials of the purely repulsive methane-sized Weeks–Chandler–Andersen solute with respect to that in the bulk, the extrapolated values of
245:
Palliser and Parry have examined about 100 scales and found that they can use them for locating B-strands on the surface of proteins. Hydrophobicity scales were also used to predict the preservation of the genetic code. Trinquier observed a new order of the bases that better reflect the conserved
711:
team recently devised a computational approach that can relate the molecular hydrophobicity scale of amino-acid chains to the contact angle of water nanodroplet. The team constructed planar networks composed of unified amino-acid side chains with native structure of the beta-sheet protein. Using
269:
The Stephen H. White website provides an example of whole residue hydrophobicity scales showing the free energy of transfer ΔG(kcal/mol) from water to POPC interface and to n-octanol. These two scales are then used together to make Whole residue hydropathy plots. The hydropathy plot constructed
104:
of the system. In terms of thermodynamics, the hydrophobic effect is the free energy change of water surrounding a solute. A positive free energy change of the surrounding solvent indicates hydrophobicity, whereas a negative free energy change implies hydrophilicity. In this way, the hydrophobic
254:
The Wimley–White whole residue hydrophobicity scales are significant for two reasons. First, they include the contributions of the peptide bonds as well as the sidechains, providing absolute values. Second, they are based on direct, experimentally determined values for transfer free energies of
140:
as the most hydrophobic residue, unlike the other two scales. This difference is due to the different methods used to measure hydrophobicity. The method used to obtain the Janin and Rose et al. scales was to examine proteins with known 3-D structures and define the hydrophobic character as the
162:
phases were used in the development of a novel partitioning scale. Partitioning methods have many drawbacks. First, it is difficult to mimic the protein interior. In addition, the role of self solvation makes using free amino acids very difficult. Moreover, hydrogen bonds that are lost in the
198:
Reversed phase liquid chromatography (RPLC) is the most important chromatographic method for measuring solute hydrophobicity. The non polar stationary phase mimics biological membranes. Peptide usage has many advantages because partition is not extended by the terminal charges in RPLC. Also,
88:, cannot accept or donate hydrogen bonds to water. Introduction of hexane into water causes disruption of the hydrogen bonding network between water molecules. The hydrogen bonds are partially reconstructed by building a water "cage" around the hexane molecule, similar to that in 667:, (known as Rekker's Fragmental Constants) widely used for pharmacophores. This scale well correlate with the existing methods, based on partitioning and free energy computations. Advantage of this scale is it is more realistic, as it is in the context of real protein structures. 1456:
Zaslavsky, B. Yu.; Mestechkina, N.M.; Miheeva, L.M.; Rogozhin, S.V. (1982). "Measurement of relative hydrophobicity of amino acid side-chains by partition in an aqueous two-phase polymeric system: Hydrophobicity scale for non-polar and ionogenic side-chains".
278:
shows favorable peaks on the absolute scale that correspond to the known TM helices. Thus, the whole residue hydropathy plots illustrate why transmembrane segments prefer a transmembrane location rather than a surface one.
246:
character of the genetic code. They believed new ordering of the bases was uracil-guanine-cystosine-adenine (UGCA) better reflected the conserved character of the genetic code compared to the commonly seen ordering UCAG.
1814:
Plass, Monika; Valko, Klara; Abraham, Michael H (1998). "Determination of solute descriptors of tripeptide derivatives based on high-throughput gradient high-performance liquid chromatography retention data".
1700:
Hodges, Robert S.; Zhu, Bing-Yan; Zhou, Nian E.; Mant, Colin T. (1994). "Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability".
1413:
Sharp, Kim A.; Nicholls, Anthony; Friedman, Richard; Honig, Barry (1991-10-08). "Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models".
1779:
Pliška, Vladimir; Schmidt, Manfred; Fauchère, Jean-Luc (1981). "Partition coefficients of amino acids and hydrophobic parameters π of their side-chains as measured by thin-layer chromatography".
1378:
Leodidis, Epaminondas B.; Hatton, T. Alan. (1990). "Amino acids in AOT reversed micelles. 2. The hydrophobic effect and hydrogen bonding as driving forces for interfacial solubilization".
1852:"Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit" 720:
cosine value of contact angle are calculated(ccHydrophobicity), which can be used to quantify the hydrophobicity of amino acid side chains with complete wetting behaviors.
2157:
Wimley, William C.; Creamer, Trevor P.; White, Stephen H. (1996). "Solvation Energies of Amino Acid Side Chains and Backbone in a Family of Host−Guest Pentapeptides".
2019:
Palliser, Christopher C.; Parry, David A. D. (2000). "Quantitative comparison of the ability of hydropathy scales to recognize surface ?-strands in proteins".
43:. When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside 2254:"Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network" 1065:
Bandyopadhyay, D., Mehler, E.L. (2008). "Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment".
125:
A table comparing four different scales for the hydrophobicity of an amino acid residue in a protein with the most hydrophobic amino acids on the top
1108: 832:
Biswas, Kallol M.; DeVido, Daniel R.; Dorsey, John G. (2003). "Evaluation of methods for measuring amino acid hydrophobicities and interactions".
262:
One for the transfer of unfolded chains from water to the bilayer interface (referred to as the Wimley–White interfacial hydrophobicity scale).
712:
molecular dynamics simulation, the team is able to measure the contact angle of water nanodroplet on the planar networks (caHydrophobicity).
680: 1213:
Rose, G.; Geselowitz, A.; Lesser, G.; Lee, R.; Zehfus, M. (1985-08-30). "Hydrophobicity of amino acid residues in globular proteins".
2106:
Wimley, William C.; White, Stephen H. (1996). "Experimentally determined hydrophobicity scale for proteins at membrane interfaces".
1917:
Bull, Henry B.; Breese, Keith (1974). "Surface tension of amino acid solutions: A hydrophobicity scale of the amino acid residues".
1267:
Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgate, C. C. B. (1981). "Affinities of amino acid side chains for solvent water".
50:
The hydrophobic or hydrophilic character of a compound or amino acid is its hydropathic character, hydropathicity, or hydropathy.
2032: 236:
Whole-residue octanol-scale hydropathy plot for the L-subunit of the photosynthetic reaction center of Rhodobacter sphaeroides.
186: 691:
The MD simulation system and the structure of artificial beta-folding 2D peptide network composed of unified R-side chains.
1319:
Fendler, Janos H.; Nome, Faruk; Nagyvary, Joseph (1975). "Compartmentalization of amino acids in surfactant aggregates".
664: 755:
Kyte, Jack; Doolittle, Russell F. (May 1982). "A simple method for displaying the hydropathic character of a protein".
1744:
Aboderin, Akintola A. (1971). "An empirical hydrophobicity scale for α-amino-acids and some of its applications".
884:
Charton, Marvin; Charton, Barbara I. (1982). "The structural dependence of amino acid hydrophobicity parameters".
178: 136:
There are clear differences between the four scales shown in the table. Both the second and fourth scales place
2399: 2313:"Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations" 708: 2209:
White, Stephen H.; Wimley, William C. (1999). "MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles".
265:
One for the transfer of unfolded chains into octanol, which is relevant to the hydrocarbon core of a bilayer.
35:
are the amino acids located in that region of the protein. These scales are commonly used to predict the
2252:
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng (2016).
1598:
Moret, M. A.; Zebende, G. F. (2007-01-19). "Amino acid hydrophobicity and accessible surface area".
703:
ability) of a flat surface (e.g., a counter top in kitchen or a cooking pan) can be measured by the
769: 1960:
Eisenberg, David; McLachlan, Andrew D. (1986). "Solvation energy in protein folding and binding".
1019:
Rose, G D; Wolfenden, R (1993). "Hydrogen Bonding, Hydrophobicity, Packing, and Protein Folding".
687: 1649:
Phillips, J. C. (2009-11-20). "Scaling and self-organized criticality in proteins: Lysozymec".
764: 151: 675: 1102: 76:
to exclude non-polar molecules. The effect originates from the disruption of highly dynamic
2265: 1969: 1863: 1658: 1607: 1328: 1222: 1163: 893: 729: 96:) is strongly restricted. This leads to significant losses in translational and rotational 36: 2374: 2085: 8: 2394: 1501:
Ben-Naim, A. (1990-02-15). "Solvent effects on protein association and protein folding".
984:
Eisenberg D (July 1984). "Three-dimensional structure of membrane and surface proteins".
2269: 1973: 1867: 1662: 1611: 1332: 1226: 1167: 1032: 997: 897: 2339: 2312: 2288: 2253: 2139: 2052: 2001: 1555:
Chothia, Cyrus (1976). "The nature of the accessible and buried surfaces in proteins".
1534: 1360: 1195: 1090: 961: 936: 716: 172: 84:
do not cause the hydrophobic effect. However, a pure hydrocarbon molecule, for example
59: 1894: 1851: 1828: 1792: 1470: 845: 2344: 2293: 2234: 2226: 2222: 2182: 2174: 2131: 2123: 2044: 2036: 1993: 1985: 1942: 1934: 1930: 1899: 1881: 1832: 1796: 1761: 1757: 1726: 1718: 1714: 1682: 1674: 1631: 1623: 1580: 1572: 1568: 1526: 1518: 1474: 1438: 1430: 1395: 1352: 1344: 1292: 1284: 1246: 1238: 1187: 1179: 1082: 1044: 1036: 1001: 966: 917: 909: 905: 857: 849: 782: 778: 225: 101: 89: 40: 2056: 2005: 1538: 1094: 163:
transfer to organic solvents are not reformed but often in the interior of protein.
2334: 2324: 2283: 2273: 2218: 2166: 2143: 2115: 2028: 1977: 1926: 1889: 1871: 1824: 1788: 1753: 1710: 1666: 1615: 1564: 1510: 1466: 1422: 1387: 1364: 1336: 1276: 1230: 1199: 1171: 1074: 1028: 993: 956: 948: 901: 841: 774: 121: 232: 93: 1140: 92:
formed at lower temperatures. The mobility of water molecules in the "cage" (or
2379: 1670: 1619: 24: 20: 80:
between molecules of liquid water. Polar chemical groups, such as OH group in
2388: 2230: 2178: 2127: 2040: 1989: 1938: 1885: 1836: 1800: 1765: 1722: 1678: 1627: 1576: 1522: 1478: 1434: 1399: 1348: 1288: 1242: 1221:(4716). American Association for the Advancement of Science (AAAS): 834–838. 1183: 1040: 952: 913: 853: 704: 77: 64: 44: 2364: 2329: 2278: 1876: 1234: 2369: 2348: 2297: 2238: 2048: 1686: 1635: 1086: 970: 861: 2186: 2135: 1997: 1946: 1903: 1730: 1530: 1514: 1442: 1356: 1296: 1250: 1048: 1005: 921: 786: 1584: 1191: 696: 216: 182: 32: 2119: 1426: 1391: 1280: 73: 2033:
10.1002/1097-0134(20010201)42:2<243::aid-prot120>3.0.co;2-b
1340: 1154:
Janin, Joël (1979). "Surface and inside volumes in globular proteins".
1078: 285: 28: 2199:
White SH. & Wimley WC (1998). Biochim. Biophys. Acta 1376:339-352.
2170: 657: 1981: 1175: 700: 129:
A number of different hydrophobicity scales have been developed. The
1122: 715:
On the other hand, previous studies show that the minimum of excess
670: 1455: 249: 155: 137: 106: 81: 2370:
NetSurfP - Secondary Structure and Surface accessibility predictor
1862:(13). Proceedings of the National Academy of Sciences: 4441–4444. 1850:
Yutani, K.; Ogasahara, K.; Tsujita, T.; Sugino, Y. (1987-07-01).
1266: 683:
on the artificial beta-sheets with various amino acid side chains
159: 110: 100:
of water molecules and makes the process unfavorable in terms of
97: 181:
for amino acid residues in the expended polypeptide chain or in
130: 85: 177:
Hydrophobicity scales can also be obtained by calculating the
934: 133:
Protscale website lists a total of 22 hydrophobicity scales.
2069:
G . Trinquier, Y.-H. Sanejouand, Protein Eng. 11 (1998) 153.
1849: 258:
Two whole-residue hydrophobicity scales have been measured:
116: 53: 2365:
ProtScale (web-based tool for calculating hydropathy plots)
1968:(6050). Springer Science and Business Media LLC: 199–203. 1412: 1162:(5696). Springer Science and Business Media LLC: 491–492. 935:
Schauperl, M; Podewitz, M; Waldner, BJ; Liedl, KR (2016).
105:
effect not only can be localized but also decomposed into
1491:
S . Damadoran, K.B. Song, J. Biol. Chem. 261 (1986) 7220.
799:
Tanford, C., The hydrophobic effect(New York:Wiley.1980).
2114:(10). Springer Science and Business Media LLC: 842–848. 937:"Enthalpic and Entropic Contributions to Hydrophobicity" 1327:(3). Springer Science and Business Media LLC: 215–232. 1309:
Y . Nozaki, C. Tanford, J. Biol. Chem. 246 (1971) 2211.
1212: 2211:
Annual Review of Biophysics and Biomolecular Structure
1021:
Annual Review of Biophysics and Biomolecular Structure
2310: 1778: 1856:
Proceedings of the National Academy of Sciences USA
1318: 658:
Bandyopadhyay-Mehler protein structure based scales
2165:(16). American Chemical Society (ACS): 5109–5124. 2156: 1959: 1421:(40). American Chemical Society (ACS): 9686–9697. 1386:(16). American Chemical Society (ACS): 6411–6420. 831: 166: 72:The hydrophobic effect represents the tendency of 2086:"Experimentally Determined Hydrophobicity Scales" 1813: 1699: 1067:Proteins: Structure, Function, and Bioinformatics 1064: 671:Scale based on contact angle of water nanodroplet 2386: 1262: 1260: 250:Wimley–White whole residue hydrophobicity scales 220:Wimley-White whole-residue hydrophobicity scales 68:Hydrogen bonds between molecules of liquid water 31:residues. The more positive the value, the more 2317:Proceedings of the National Academy of Sciences 2258:Proceedings of the National Academy of Sciences 1275:(4). American Chemical Society (ACS): 849–855. 793: 2311:Godawat, R; Jamadagni, S. N; Garde, S (2009). 1657:(5). American Physical Society (APS): 051916. 1606:(1). American Physical Society (APS): 011920. 1377: 883: 2018: 1257: 1018: 874:W . Kauzmann, Adv. Protein Chem. 14 (1959) 1. 754: 2251: 1597: 1107:: CS1 maint: multiple names: authors list ( 928: 211: 202: 2208: 2105: 2021:Proteins: Structure, Function, and Genetics 1060: 1058: 983: 827: 825: 750: 748: 746: 744: 1916: 1550: 1548: 941:Journal of Chemical Theory and Computation 823: 821: 819: 817: 815: 813: 811: 809: 807: 805: 193: 2338: 2328: 2287: 2277: 2108:Nature Structural & Molecular Biology 2079: 2077: 2075: 1893: 1875: 960: 768: 185:and multiplying the surface areas by the 117:Types of amino acid hydrophobicity scales 54:Hydrophobicity and the hydrophobic effect 1743: 1648: 1500: 1055: 741: 686: 674: 231: 215: 120: 63: 1919:Archives of Biochemistry and Biophysics 1554: 1545: 802: 224:The hydrophobicity scales developed by 144: 2387: 2072: 240: 2083: 1746:International Journal of Biochemistry 1153: 19:are values that define the relative 1033:10.1146/annurev.bb.22.060193.002121 998:10.1146/annurev.bi.53.070184.003115 665:octanol-water partition coefficient 13: 2375:Whole residue hydrophobicity scale 2088:. University of California, Irvine 14: 2411: 2358: 1380:The Journal of Physical Chemistry 2223:10.1146/annurev.biophys.28.1.319 179:solvent accessible surface areas 2304: 2245: 2202: 2193: 2150: 2099: 2063: 2012: 1953: 1910: 1843: 1807: 1772: 1737: 1693: 1642: 1591: 1494: 1485: 1449: 1406: 1371: 1312: 1303: 1206: 1147: 1133: 1115: 167:Accessible surface area methods 2217:(1). Annual Reviews: 319–365. 1321:Journal of Molecular Evolution 1027:(1). Annual Reviews: 381–415. 1012: 977: 886:Journal of Theoretical Biology 877: 868: 709:University of Nebraska-Lincoln 187:empirical solvation parameters 1: 2084:White, Stephen (2006-06-29). 1829:10.1016/s0021-9673(97)01215-6 1793:10.1016/s0021-9673(00)82337-7 1471:10.1016/s0021-9673(01)84003-6 846:10.1016/s0021-9673(03)00182-1 840:(1–2). Elsevier BV: 637–655. 735: 1931:10.1016/0003-9861(74)90352-x 1758:10.1016/0020-711x(71)90023-1 1752:(11). Elsevier BV: 537–544. 1715:10.1016/0021-9673(94)80452-4 1569:10.1016/0022-2836(76)90191-1 1557:Journal of Molecular Biology 906:10.1016/0022-5193(82)90191-6 779:10.1016/0022-2836(82)90515-0 757:Journal of Molecular Biology 7: 1925:(2). Elsevier BV: 665–670. 1823:(1–2). Elsevier BV: 51–60. 1817:Journal of Chromatography A 1781:Journal of Chromatography A 1703:Journal of Chromatography A 1459:Journal of Chromatography A 892:(4). Elsevier BV: 629–644. 834:Journal of Chromatography A 723: 37:transmembrane alpha-helices 10: 2416: 1671:10.1103/physreve.80.051916 1620:10.1103/physreve.75.011920 763:(1). Elsevier BV: 105–32. 679:Contact angles of a water 170: 57: 2380:Membrane protein explorer 1465:(1). Elsevier BV: 21–28. 699:, the hydrophobicity (or 212:Physical property methods 203:Site-directed mutagenesis 1709:(1). Elsevier BV: 3–15. 1563:(1). Elsevier BV: 1–12. 953:10.1021/acs.jctc.6b00422 2330:10.1073/pnas.0902778106 2279:10.1073/pnas.1616138113 1877:10.1073/pnas.84.13.4441 1235:10.1126/science.4023714 1141:"Hydrophobicity Scales" 194:Chromatographic methods 1787:. Elsevier BV: 79–92. 692: 684: 237: 221: 152:sodium dodecyl sulfate 126: 69: 2400:Intermolecular forces 2027:(2). Wiley: 243–255. 1515:10.1002/bip.360290312 1509:(3). Wiley: 567–596. 690: 678: 314:Octanol − interface, 235: 219: 124: 67: 17:Hydrophobicity scales 1123:"Expasy - ProtScale" 730:Hydrophobic mismatch 707:of water droplet. A 145:Partitioning methods 2323:(36): 15119–15124. 2270:2016PNAS..11312946Z 2264:(46): 12946–12951. 2120:10.1038/nsb1096-842 1974:1986Natur.319..199E 1868:1987PNAS...84.4441Y 1663:2009PhRvE..80e1916P 1612:2007PhRvE..75a1920M 1427:10.1021/bi00104a017 1392:10.1021/j100379a047 1333:1975JMolE...6..215F 1281:10.1021/bi00507a030 1227:1985Sci...229..834R 1168:1979Natur.277..491J 898:1982JThBi..99..629C 241:Recent applications 1341:10.1007/bf01732358 1079:10.1002/prot.21958 986:Annu. Rev. Biochem 717:chemical potential 693: 685: 238: 222: 173:Implicit solvation 127: 90:clathrate hydrates 70: 60:Hydrophobic effect 2171:10.1021/bi9600153 1651:Physical Review E 1600:Physical Review E 655: 654: 290:Interface scale, 226:physical property 41:membrane proteins 2407: 2353: 2352: 2342: 2332: 2308: 2302: 2301: 2291: 2281: 2249: 2243: 2242: 2206: 2200: 2197: 2191: 2190: 2154: 2148: 2147: 2103: 2097: 2096: 2094: 2093: 2081: 2070: 2067: 2061: 2060: 2016: 2010: 2009: 1982:10.1038/319199a0 1957: 1951: 1950: 1914: 1908: 1907: 1897: 1879: 1847: 1841: 1840: 1811: 1805: 1804: 1776: 1770: 1769: 1741: 1735: 1734: 1697: 1691: 1690: 1646: 1640: 1639: 1595: 1589: 1588: 1552: 1543: 1542: 1498: 1492: 1489: 1483: 1482: 1453: 1447: 1446: 1410: 1404: 1403: 1375: 1369: 1368: 1316: 1310: 1307: 1301: 1300: 1264: 1255: 1254: 1210: 1204: 1203: 1176:10.1038/277491a0 1151: 1145: 1144: 1137: 1131: 1130: 1119: 1113: 1112: 1106: 1098: 1062: 1053: 1052: 1016: 1010: 1009: 981: 975: 974: 964: 932: 926: 925: 881: 875: 872: 866: 865: 829: 800: 797: 791: 790: 772: 752: 695:In the field of 302:Octanol scale, 282: 281: 2415: 2414: 2410: 2409: 2408: 2406: 2405: 2404: 2385: 2384: 2361: 2356: 2309: 2305: 2250: 2246: 2207: 2203: 2198: 2194: 2155: 2151: 2104: 2100: 2091: 2089: 2082: 2073: 2068: 2064: 2017: 2013: 1958: 1954: 1915: 1911: 1848: 1844: 1812: 1808: 1777: 1773: 1742: 1738: 1698: 1694: 1647: 1643: 1596: 1592: 1553: 1546: 1499: 1495: 1490: 1486: 1454: 1450: 1411: 1407: 1376: 1372: 1317: 1313: 1308: 1304: 1265: 1258: 1211: 1207: 1152: 1148: 1139: 1138: 1134: 1121: 1120: 1116: 1100: 1099: 1063: 1056: 1017: 1013: 982: 978: 933: 929: 882: 878: 873: 869: 830: 803: 798: 794: 753: 742: 738: 726: 673: 660: 329: 322: 315: 310: 303: 298: 291: 277: 273: 252: 243: 214: 205: 196: 175: 169: 147: 119: 113:contributions. 94:solvation shell 62: 56: 12: 11: 5: 2413: 2403: 2402: 2397: 2383: 2382: 2377: 2372: 2367: 2360: 2359:External links 2357: 2355: 2354: 2303: 2244: 2201: 2192: 2149: 2098: 2071: 2062: 2011: 1952: 1909: 1842: 1806: 1771: 1736: 1692: 1641: 1590: 1544: 1493: 1484: 1448: 1405: 1370: 1311: 1302: 1256: 1205: 1146: 1132: 1127:web.expasy.org 1114: 1073:(2): 646–659. 1054: 1011: 976: 947:(9): 4600–10. 927: 876: 867: 801: 792: 770:10.1.1.458.454 739: 737: 734: 733: 732: 725: 722: 672: 669: 659: 656: 653: 652: 649: 646: 643: 639: 638: 635: 632: 629: 625: 624: 621: 618: 615: 611: 610: 607: 604: 601: 597: 596: 593: 590: 587: 583: 582: 579: 576: 573: 569: 568: 565: 562: 559: 555: 554: 551: 548: 545: 541: 540: 537: 534: 531: 527: 526: 523: 520: 517: 513: 512: 509: 506: 503: 499: 498: 495: 492: 489: 485: 484: 481: 478: 475: 471: 470: 467: 464: 461: 457: 456: 453: 450: 447: 443: 442: 439: 436: 433: 429: 428: 425: 422: 419: 415: 414: 411: 408: 405: 401: 400: 397: 394: 391: 387: 386: 383: 380: 377: 373: 372: 369: 366: 363: 359: 358: 355: 352: 349: 345: 344: 341: 338: 335: 331: 330: 327: 320: 312: 308: 300: 296: 288: 275: 271: 267: 266: 263: 255:polypeptides. 251: 248: 242: 239: 213: 210: 204: 201: 195: 192: 171:Main article: 168: 165: 146: 143: 118: 115: 78:hydrogen bonds 58:Main article: 55: 52: 25:hydrophilicity 21:hydrophobicity 9: 6: 4: 3: 2: 2412: 2401: 2398: 2396: 2393: 2392: 2390: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2362: 2350: 2346: 2341: 2336: 2331: 2326: 2322: 2318: 2314: 2307: 2299: 2295: 2290: 2285: 2280: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2205: 2196: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2153: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2102: 2087: 2080: 2078: 2076: 2066: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2015: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1956: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1905: 1901: 1896: 1891: 1887: 1883: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1846: 1838: 1834: 1830: 1826: 1822: 1818: 1810: 1802: 1798: 1794: 1790: 1786: 1782: 1775: 1767: 1763: 1759: 1755: 1751: 1747: 1740: 1732: 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1696: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1594: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1551: 1549: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1497: 1488: 1480: 1476: 1472: 1468: 1464: 1460: 1452: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1409: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1315: 1306: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1263: 1261: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1142: 1136: 1128: 1124: 1118: 1110: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1059: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1015: 1007: 1003: 999: 995: 991: 987: 980: 972: 968: 963: 958: 954: 950: 946: 942: 938: 931: 923: 919: 915: 911: 907: 903: 899: 895: 891: 887: 880: 871: 863: 859: 855: 851: 847: 843: 839: 835: 828: 826: 824: 822: 820: 818: 816: 814: 812: 810: 808: 806: 796: 788: 784: 780: 776: 771: 766: 762: 758: 751: 749: 747: 745: 740: 731: 728: 727: 721: 718: 713: 710: 706: 705:contact angle 702: 698: 689: 682: 677: 668: 666: 650: 647: 644: 641: 640: 636: 633: 630: 627: 626: 622: 619: 616: 613: 612: 608: 605: 602: 599: 598: 594: 591: 588: 585: 584: 580: 577: 574: 571: 570: 566: 563: 560: 557: 556: 552: 549: 546: 543: 542: 538: 535: 532: 529: 528: 524: 521: 518: 515: 514: 510: 507: 504: 501: 500: 496: 493: 490: 487: 486: 482: 479: 476: 473: 472: 468: 465: 462: 459: 458: 454: 451: 448: 445: 444: 440: 437: 434: 431: 430: 426: 423: 420: 417: 416: 412: 409: 406: 403: 402: 398: 395: 392: 389: 388: 384: 381: 378: 375: 374: 370: 367: 364: 361: 360: 356: 353: 350: 347: 346: 342: 339: 336: 333: 332: 326: 319: 313: 307: 301: 295: 289: 287: 284: 283: 280: 264: 261: 260: 259: 256: 247: 234: 230: 227: 218: 209: 200: 191: 188: 184: 180: 174: 164: 161: 157: 153: 142: 139: 134: 132: 123: 114: 112: 108: 103: 99: 95: 91: 87: 83: 79: 75: 66: 61: 51: 48: 46: 45:lipid bilayer 42: 38: 34: 30: 26: 22: 18: 2320: 2316: 2306: 2261: 2257: 2247: 2214: 2210: 2204: 2195: 2162: 2159:Biochemistry 2158: 2152: 2111: 2107: 2101: 2090:. Retrieved 2065: 2024: 2020: 2014: 1965: 1961: 1955: 1922: 1918: 1912: 1859: 1855: 1845: 1820: 1816: 1809: 1784: 1780: 1774: 1749: 1745: 1739: 1706: 1702: 1695: 1654: 1650: 1644: 1603: 1599: 1593: 1560: 1556: 1506: 1502: 1496: 1487: 1462: 1458: 1451: 1418: 1415:Biochemistry 1414: 1408: 1383: 1379: 1373: 1324: 1320: 1314: 1305: 1272: 1269:Biochemistry 1268: 1218: 1214: 1208: 1159: 1155: 1149: 1135: 1126: 1117: 1103:cite journal 1070: 1066: 1024: 1020: 1014: 989: 985: 979: 944: 940: 930: 889: 885: 879: 870: 837: 833: 795: 760: 756: 714: 694: 661: 324: 317: 305: 293: 268: 257: 253: 244: 223: 206: 197: 176: 148: 135: 128: 71: 49: 16: 15: 1503:Biopolymers 992:: 595–623. 697:engineering 681:nanodroplet 311:(kcal/mol) 299:(kcal/mol) 183:alpha-helix 102:free energy 33:hydrophobic 2395:Biophysics 2389:Categories 2092:2009-06-12 736:References 286:Amino acid 29:amino acid 2231:1056-8700 2179:0006-2960 2128:1545-9993 2041:0887-3585 1990:0028-0836 1939:0003-9861 1886:0027-8424 1837:0021-9673 1801:0021-9673 1766:0020-711X 1723:0021-9673 1679:1539-3755 1628:1539-3755 1577:0022-2836 1523:0006-3525 1479:0021-9673 1435:0006-2960 1400:0022-3654 1349:0022-2844 1289:0006-2960 1243:0036-8075 1184:0028-0836 1041:1056-8700 914:0022-5193 854:0021-9673 765:CiteSeerX 701:dewetting 107:enthalpic 2349:19706896 2298:27803319 2239:10410805 2057:23839522 2049:11119649 2006:21867582 1687:20365015 1636:17358197 1539:25691137 1095:20929779 1087:18247345 971:27442443 862:12877193 724:See also 270:using ΔG 156:micelles 138:cysteine 111:entropic 82:methanol 2340:2741215 2289:5135335 2266:Bibcode 2187:8611495 2144:1823375 2136:8836100 1998:3945310 1970:Bibcode 1947:4839053 1904:3299367 1864:Bibcode 1731:7921179 1659:Bibcode 1608:Bibcode 1531:2331515 1443:1911756 1365:2394979 1357:1206727 1329:Bibcode 1297:7213619 1251:4023714 1223:Bibcode 1215:Science 1200:4338901 1164:Bibcode 1049:8347995 1006:6383201 962:5024328 922:7183857 894:Bibcode 787:7108955 160:polymer 98:entropy 2347:  2337:  2296:  2286:  2237:  2229:  2185:  2177:  2142:  2134:  2126:  2055:  2047:  2039:  2004:  1996:  1988:  1962:Nature 1945:  1937:  1902:  1895:305105 1892:  1884:  1835:  1799:  1764:  1729:  1721:  1685:  1677:  1634:  1626:  1585:994183 1583:  1575:  1537:  1529:  1521:  1477:  1441:  1433:  1398:  1363:  1355:  1347:  1295:  1287:  1249:  1241:  1198:  1192:763335 1190:  1182:  1156:Nature 1093:  1085:  1047:  1039:  1004:  969:  959:  920:  912:  860:  852:  785:  767:  561:−0.07 508:−0.71 505:−0.94 494:−0.02 491:−0.24 463:−0.01 441:−0.06 427:−0.24 424:−2.09 421:−1.85 413:−0.31 399:−0.44 396:−0.67 393:−0.23 385:−0.53 382:−0.46 371:−0.58 368:−1.71 365:−1.13 357:−0.69 354:−1.25 351:−0.56 343:−0.81 340:−1.12 337:−0.31 154:(SDS) 131:Expasy 86:hexane 2140:S2CID 2053:S2CID 2002:S2CID 1535:S2CID 1361:S2CID 1196:S2CID 1091:S2CID 651:2.41 648:3.64 645:1.23 642:Asp- 637:1.81 634:2.80 631:0.99 628:Lys+ 623:1.61 620:3.63 617:2.02 614:Glu- 609:1.37 606:2.33 603:0.96 600:His+ 595:1.14 592:1.15 589:0.01 581:1.00 578:1.81 575:0.81 572:Arg+ 567:0.50 564:0.43 558:Asp0 553:0.43 550:0.85 547:0.42 539:0.33 536:0.46 533:0.13 525:0.33 522:0.50 519:0.17 511:0.23 497:0.22 483:0.19 480:0.77 477:0.58 469:0.12 466:0.11 460:Glu0 455:0.11 452:0.25 449:0.14 438:0.11 435:0.17 432:His0 410:0.14 407:0.45 379:0.07 74:water 2345:PMID 2294:PMID 2235:PMID 2227:ISSN 2183:PMID 2175:ISSN 2132:PMID 2124:ISSN 2045:PMID 2037:ISSN 1994:PMID 1986:ISSN 1943:PMID 1935:ISSN 1900:PMID 1882:ISSN 1833:ISSN 1797:ISSN 1762:ISSN 1727:PMID 1719:ISSN 1683:PMID 1675:ISSN 1632:PMID 1624:ISSN 1581:PMID 1573:ISSN 1527:PMID 1519:ISSN 1475:ISSN 1439:PMID 1431:ISSN 1396:ISSN 1353:PMID 1345:ISSN 1293:PMID 1285:ISSN 1247:PMID 1239:ISSN 1188:PMID 1180:ISSN 1109:link 1083:PMID 1045:PMID 1037:ISSN 1002:PMID 967:PMID 918:PMID 910:ISSN 858:PMID 850:ISSN 838:1000 783:PMID 586:Gly 544:Asn 530:Ser 516:Ala 502:Tyr 488:Cys 474:Gln 446:Thr 418:Trp 404:Pro 390:Met 376:Val 362:Phe 348:Leu 334:Ile 321:woct 309:woct 274:− ΔG 272:woct 109:and 2335:PMC 2325:doi 2321:106 2284:PMC 2274:doi 2262:113 2219:doi 2167:doi 2116:doi 2029:doi 1978:doi 1966:319 1927:doi 1923:161 1890:PMC 1872:doi 1825:doi 1821:803 1789:doi 1785:216 1754:doi 1711:doi 1707:676 1667:doi 1616:doi 1565:doi 1561:105 1511:doi 1467:doi 1463:240 1423:doi 1388:doi 1337:doi 1277:doi 1231:doi 1219:229 1172:doi 1160:277 1075:doi 1029:doi 994:doi 957:PMC 949:doi 902:doi 842:doi 775:doi 761:157 328:wif 323:− Δ 297:wif 276:wif 39:of 27:of 23:or 2391:: 2343:. 2333:. 2319:. 2315:. 2292:. 2282:. 2272:. 2260:. 2256:. 2233:. 2225:. 2215:28 2213:. 2181:. 2173:. 2163:35 2161:. 2138:. 2130:. 2122:. 2110:. 2074:^ 2051:. 2043:. 2035:. 2025:42 2023:. 2000:. 1992:. 1984:. 1976:. 1964:. 1941:. 1933:. 1921:. 1898:. 1888:. 1880:. 1870:. 1860:84 1858:. 1854:. 1831:. 1819:. 1795:. 1783:. 1760:. 1748:. 1725:. 1717:. 1705:. 1681:. 1673:. 1665:. 1655:80 1653:. 1630:. 1622:. 1614:. 1604:75 1602:. 1579:. 1571:. 1559:. 1547:^ 1533:. 1525:. 1517:. 1507:29 1505:. 1473:. 1461:. 1437:. 1429:. 1419:30 1417:. 1394:. 1384:94 1382:. 1359:. 1351:. 1343:. 1335:. 1323:. 1291:. 1283:. 1273:20 1271:. 1259:^ 1245:. 1237:. 1229:. 1217:. 1194:. 1186:. 1178:. 1170:. 1158:. 1125:. 1105:}} 1101:{{ 1089:. 1081:. 1071:72 1069:. 1057:^ 1043:. 1035:. 1025:22 1023:. 1000:. 990:53 988:. 965:. 955:. 945:12 943:. 939:. 916:. 908:. 900:. 890:99 888:. 856:. 848:. 836:. 804:^ 781:. 773:. 759:. 743:^ 47:. 2351:. 2327:: 2300:. 2276:: 2268:: 2241:. 2221:: 2189:. 2169:: 2146:. 2118:: 2112:3 2095:. 2059:. 2031:: 2008:. 1980:: 1972:: 1949:. 1929:: 1906:. 1874:: 1866:: 1839:. 1827:: 1803:. 1791:: 1768:. 1756:: 1750:2 1733:. 1713:: 1689:. 1669:: 1661:: 1638:. 1618:: 1610:: 1587:. 1567:: 1541:. 1513:: 1481:. 1469:: 1445:. 1425:: 1402:. 1390:: 1367:. 1339:: 1331:: 1325:6 1299:. 1279:: 1253:. 1233:: 1225:: 1202:. 1174:: 1166:: 1143:. 1129:. 1111:) 1097:. 1077:: 1051:. 1031:: 1008:. 996:: 973:. 951:: 924:. 904:: 896:: 864:. 844:: 789:. 777:: 325:G 318:G 316:Δ 306:G 304:Δ 294:G 292:Δ

Index

hydrophobicity
hydrophilicity
amino acid
hydrophobic
transmembrane alpha-helices
membrane proteins
lipid bilayer
Hydrophobic effect

water
hydrogen bonds
methanol
hexane
clathrate hydrates
solvation shell
entropy
free energy
enthalpic
entropic

Expasy
cysteine
sodium dodecyl sulfate
micelles
polymer
Implicit solvation
solvent accessible surface areas
alpha-helix
empirical solvation parameters

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.