Knowledge

Infrared sensing in snakes

Source 📝

20: 143: 241:. This is consistent with the very thin pit membrane, which would allow incoming infrared radiation to quickly and precisely warm a given ion channel and trigger a nerve impulse, as well as the vascularization of the pit membrane in order to rapidly cool the ion channel back to its original temperature state. While the molecular precursors of this mechanism are found in other snakes, the protein is both expressed to a much lower degree and much less sensitive to heat. 1295: 215:, wherein the location of a source of thermal radiation is determined by the location of the radiation on the membrane of the heat pit. However, studies that have visualized the thermal images seen by the facial pit using computer analysis have suggested that the resolution is extremely poor. The size of the opening of the pit results in poor resolution of small, warm objects, and coupled with the pit's small size and subsequent poor 139:. The purpose of the vasculature, in addition to providing oxygen to the receptor terminals, is to rapidly cool the receptors to their thermo-neutral state after being heated by thermal radiation from a stimulus. Were it not for this vasculature, the receptor would remain in a warm state after being exposed to a warm stimulus, and would present the animal with afterimages even after the stimulus was removed. 1307: 254:
infrared detection of prey. It was previously assumed that the organ evolved specifically for prey capture. However, recent evidence suggests that the pit organ is also used for thermoregulation. In an experiment that tested snakes' abilities to locate a cool thermal refuge in an uncomfortably hot maze, all pit vipers were able to locate the refuge quickly and easily, while
208:
and the firing rate of the nerves in the pit organ will return to normal. If that warm object is then removed, the pit organ will now register the space that it used to occupy as being colder, and as such the firing rate will be depressed until it adapts to the removal of the object. The latency period of adaptation is approximately 50 to 150 ms.
58:. The more advanced infrared sense of pit vipers allows these animals to strike prey accurately even in the absence of light, and detect warm objects from several meters away. It was previously thought that the organs evolved primarily as prey detectors, but recent evidence suggests that it may also be used in 219:, the image produced is of extremely low resolution and contrast. It is known that some focusing and sharpening of the image occurs in the lateral descending trigeminal tract, and it is possible that the visual and infrared integration that occurs in the tectum is also used to help sharpen the image. 194:
in the tectum respond to visual or infrared stimulation alone; others respond more strongly to combined visual and infrared stimulation, and still others respond only to a combination of visual and infrared. Some neurons appear to be tuned to detect movement in one direction. It has been found that
207:
The pit organ will adapt to a repeated stimulus; if an adapted stimulus is removed, there will be a fluctuation in the opposite direction. For example, if a warm object is placed in front of the snake, the organ will increase in firing rate at first, but after a while will adapt to the warm object
253:
prey such as rodents and birds. Blind or blindfolded rattlesnakes can strike prey accurately in the complete absence of visible light, though it does not appear that they assess prey animals based on their body temperature. In addition, snakes may deliberately choose ambush sites that facilitate
203:
of the organ. The thermal radiation above a given threshold causes an increase in the temperature of the nerve fiber, resulting in stimulation of the nerve and subsequent firing, with increased temperature resulting in increased firing rate. The sensitivity of the nerve fibers is estimated to be
258:
were unable to do so. This finding suggests that the pit vipers were using their pit organs to aid in thermoregulatory decisions. It is also possible that the organ even evolved as a defensive adaptation rather than a predatory one, or that multiple pressures have contributed to the organ's
236:
which is a temperature sensitive ion channel. It senses infrared signals through a mechanism involving warming of the pit organ, rather than chemical reaction to light. In structure and function it resembles a biological version of warmth-sensing instrument called a
102:), while boas and pythons have three or more smaller pits lining the upper and sometimes the lower lip, in or between the scales (labial pits). Those of the pitvipers are the more advanced, having a suspended sensory membrane as opposed to a simple pit structure. 118:
stretched across it. Behind the membrane, an air-filled chamber provides air contact on either side of the membrane. The pit membrane is highly vascular and heavily innervated with numerous heat-sensitive receptors formed from terminal masses of the
198:
The nerve fibers in the pit organ are constantly firing at a very low rate. Objects that are within a neutral temperature range do not change the rate of firing; the neutral range is determined by the average thermal radiation of all objects in the
227:
In spite of its detection of infrared light, the infrared detection mechanism is not similar to photoreceptors - while photoreceptors detect light via photochemical reactions, the protein in the pits of snakes is a type of
718:
Gracheva, Elena O.; Nicholas T. Ingolia; Yvonne M. Kelly; Julio F. Cordero-Morales; Gunther Hollopeter; Alexander T. Chesler; Elda E. Sánchez; John C. Perez; Jonathan S. Weissman; David Julius (15 April 2010).
175:, information from the labial pit is sent directly to the contralateral optic tectum via the lateral descending trigeminal tract, bypassing the nucleus reticularus caloris. 679:
Bakken, George S.; Krochmal, Aaron R. (2007), "The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis",
178:
It is the optic tectum of the brain which eventually processes these infrared cues. This portion of the brain receives other sensory information as well, most notably
131:
lacks the suspended membrane and consists more simply of a pit lined with a membrane that is similarly innervated and vascular, though the morphology of the
952:
Shine, R; Sun, L; Kearny, M; Fitzgerald, M (2002). "Thermal correlates of foraging-site selection by Chinese pit-vipers (Gloydius shedaoensis, Viperidae)".
23:
A python (top) and rattlesnake illustrating the positions of the pit organs. Arrows pointing to the pit organs are red; a black arrow points to the nostril.
195:
the snake's visual and infrared maps of the world are overlaid in the optic tectum. This combined information is relayed via the tectum to the forebrain.
123:(terminal nerve masses, or TNMs). The receptors are therefore not discrete cells, but a part of the trigeminal nerve itself. The labial pit found in 359:
Goris, RC; Terashima, S (1973). "Central response to infra-red stimulation of the pit receptors in a crotaline snake, Trimeresurus flavoviridis".
1335: 394: 425:"Heat in evolution's kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae)" 579:
Hartline, PH; L Kass; MS Loop (1978-03-17). "Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes".
259:
development. The use of the heat pit to direct thermoregulation or other behaviors in pythons and boas has not yet been determined.
999: 1027: 536:
Newman, EA; Gruberg, ER; Hartline, PH (1980). "The infrared trigemino-tectal pathway in the rattlesnake and in the python".
229: 98:. Most superficially, pitvipers possess one large pit organ on either side of the head, between the eye and the nostril ( 1350: 1044: 475: 273: 501:
Goris, CR; et al. (2003). "The microvasculature of python pit organs: morphology and blood flow kinetics".
1311: 1243: 852:
Schraft, HA; Goodman, C; Clark, RW (2017). "Do free-ranging rattlesnakes use thermal cues to evaluate prey?".
992: 1233: 1049: 625:
Bullock, TH; Cowles, RB (1952). "Physiology of an infrared receptor: the facial pit of pit vipers".
1253: 304:"Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum" 717: 1106: 398: 1370: 1360: 1299: 1263: 1022: 985: 778:"The thermal background determines how the infrared and visual systems interact in pit vipers" 1079: 817:
Kardong, KV; Mackessy, SP (1991). "The strike behavior of a congenitally blind rattlesnake".
470:
Campbell JA, Brodie ED Jr. 1992. Biology of the Pitvipers. Texas: Selva. 467 pp. 17 plates.
211:
The facial pit actually visualizes thermal radiation using the same optical principles as a
163:
via the lateral descending trigeminal tract. From there, it is relayed to the contralateral
1156: 1089: 1069: 1064: 908: 732: 634: 588: 315: 94:
of the structure is similar between the two lineages, but they differ in gross structural
8: 1223: 1161: 1111: 115: 34:
evolved independently in three different groups of snakes, consisting of the families of
19: 1146: 912: 736: 638: 592: 319: 1186: 1116: 1084: 1059: 929: 896: 877: 834: 753: 720: 658: 561: 491:
1992. Herpetology: Third Edition. Pearson Prentice Hall: Pearson Education, Inc., 2002.
336: 303: 75: 965: 514: 159:, information from the pit organ is relayed to the nucleus reticularus caloris in the 1355: 1207: 934: 869: 799: 758: 698: 650: 604: 553: 518: 471: 446: 376: 341: 160: 142: 91: 31: 662: 565: 1273: 1268: 1181: 961: 924: 916: 881: 861: 826: 789: 748: 740: 688: 646: 642: 596: 545: 510: 436: 368: 331: 323: 120: 59: 1375: 1365: 1238: 1141: 1136: 216: 200: 897:"Infrared-sensing snakes select ambush orientation based on thermal backgrounds" 1258: 1131: 1126: 1074: 920: 466:
Greene HW. 1992. The ecological and behavioral context for pitviper evolution.
212: 183: 865: 1344: 1121: 1054: 1008: 283: 278: 66:
detection, making it a more general-purpose sensory organ than was supposed.
327: 1330: 1278: 1228: 1166: 938: 873: 803: 762: 702: 654: 600: 522: 450: 250: 164: 90:. It evolved once in pitvipers and multiple times in boas and pythons. The 557: 549: 423:
Krochmal, Aaron R.; George S. Bakken; Travis J. LaDuc (15 November 2004).
380: 345: 1202: 1171: 1151: 608: 132: 744: 372: 249:
Infrared sensing snakes use pit organs extensively to detect and target
1176: 838: 794: 777: 693: 422: 268: 172: 156: 155:
In all cases, the facial pit is innervated by the trigeminal nerve. In
136: 128: 111: 99: 87: 79: 55: 51: 43: 39: 441: 424: 255: 238: 830: 1039: 63: 28: 191: 95: 977: 1033: 168: 124: 114:, the heat pit consists of a deep pocket in the rostrum with a 83: 35: 1336:
Infrared vision in snakes summary article (archived 7/15/2013)
233: 187: 179: 50:
allows these animals to essentially "see" radiant heat at
244: 951: 776:
Chen, Q; Liu, Y; Brauth, SE; Fang, G; Tang, Y (2017).
578: 535: 851: 894: 775: 721:"Molecular basis of infrared detection by snakes" 1342: 816: 678: 358: 301: 993: 713: 711: 624: 1331:Physorg article on Infrared vision in snakes 895:Schraft, HA; Bakken, GS; Clark, RW (2019). 1000: 986: 708: 69: 928: 793: 752: 692: 440: 335: 674: 672: 620: 618: 141: 46:(pit vipers). What is commonly called a 18: 462: 460: 418: 416: 1343: 245:Behavioral and ecological implications 222: 981: 669: 615: 500: 395:"Snake infrared detection unravelled" 1306: 572: 538:The Journal of Comparative Neurology 529: 494: 481: 457: 413: 230:transient receptor potential channel 854:Journal of Comparative Physiology A 146:Diagram of the Crotaline pit organ. 13: 14: 1387: 1324: 1007: 302:Newman, EA; Hartline, PH (1981). 135:differs between these snakes and 1305: 1294: 1293: 274:Infrared sensing in vampire bats 1050:Central pattern generator (CPG) 945: 888: 845: 810: 782:Journal of Experimental Biology 769: 681:Journal of Experimental Biology 429:Journal of Experimental Biology 361:Journal of Experimental Biology 150: 1244:Frog hearing and communication 647:10.1126/science.115.2994.541-a 387: 352: 295: 1: 966:10.1016/S0306-4565(02)00009-8 515:10.1016/s0026-2862(03)00003-7 289: 182:stimulation, but also motor, 42:(pythons), and the subfamily 7: 262: 16:Sensory abilities in snakes 10: 1392: 1249:Infrared sensing in snakes 1234:Jamming avoidance response 954:Journal of Thermal Biology 921:10.1038/s41598-019-40466-0 105: 1351:Electromagnetic radiation 1289: 1216: 1195: 1099: 1015: 866:10.1007/s00359-017-1239-8 74:The facial pit underwent 1254:Caridoid escape reaction 1107:Theodore Holmes Bullock 328:10.1126/science.7256281 70:Phylogeny and evolution 1264:Surface wave detection 941:– via in review. 819:Journal of Herpetology 601:10.1126/science.628839 503:Microvascular Research 147: 54:between 5 and 30  24: 1080:Anti-Hebbian learning 550:10.1002/cne.901910309 145: 27:The ability to sense 22: 1157:Bernhard Hassenstein 1090:Ultrasound avoidance 1065:Fixed action pattern 1028:Coincidence detector 788:(Pt 17): 3103–3109. 435:(Pt 24): 4231–4238. 1224:Animal echolocation 1162:Werner E. Reichardt 1112:Walter Heiligenberg 913:2019NatSR...9.3950S 745:10.1038/nature08943 737:2010Natur.464.1006G 731:(7291): 1006–1011. 639:1952Sci...115..541B 593:1978Sci...199.1225H 587:(4334): 1225–1229. 401:on 28 December 2016 373:10.1242/jeb.58.1.59 320:1981Sci...213..789N 223:Molecular mechanism 204:<0.001 °C. 1187:Fernando Nottebohm 1085:Sound localization 1060:Lateral inhibition 901:Scientific Reports 795:10.1242/jeb.155382 694:10.1242/jeb.006965 148: 76:parallel evolution 25: 1321: 1320: 1208:Slice preparation 1070:Krogh's Principle 1045:Feature detection 687:(16): 2801–2810, 633:(2994): 541–543. 442:10.1242/jeb.01278 92:electrophysiology 32:thermal radiation 1383: 1309: 1308: 1297: 1296: 1274:Mechanoreception 1269:Electroreception 1182:Masakazu Konishi 1147:Jörg-Peter Ewert 1002: 995: 988: 979: 978: 970: 969: 949: 943: 942: 932: 892: 886: 885: 849: 843: 842: 814: 808: 807: 797: 773: 767: 766: 756: 715: 706: 705: 696: 676: 667: 666: 622: 613: 612: 576: 570: 569: 533: 527: 526: 498: 492: 485: 479: 464: 455: 454: 444: 420: 411: 410: 408: 406: 397:. Archived from 391: 385: 384: 356: 350: 349: 339: 314:(4509): 789–91. 299: 121:trigeminal nerve 60:thermoregulation 1391: 1390: 1386: 1385: 1384: 1382: 1381: 1380: 1341: 1340: 1327: 1322: 1317: 1285: 1239:Vision in toads 1212: 1191: 1142:Erich von Holst 1137:Karl von Frisch 1095: 1011: 1006: 975: 973: 950: 946: 893: 889: 850: 846: 831:10.2307/1564650 815: 811: 774: 770: 716: 709: 677: 670: 623: 616: 577: 573: 534: 530: 499: 495: 486: 482: 465: 458: 421: 414: 404: 402: 393: 392: 388: 357: 353: 300: 296: 292: 265: 247: 225: 217:heat conduction 201:receptive field 153: 108: 72: 17: 12: 11: 5: 1389: 1379: 1378: 1373: 1368: 1363: 1358: 1353: 1339: 1338: 1333: 1326: 1325:External links 1323: 1319: 1318: 1316: 1315: 1303: 1290: 1287: 1286: 1284: 1283: 1282: 1281: 1271: 1266: 1261: 1259:Vocal learning 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1220: 1218: 1214: 1213: 1211: 1210: 1205: 1199: 1197: 1193: 1192: 1190: 1189: 1184: 1179: 1174: 1169: 1164: 1159: 1154: 1149: 1144: 1139: 1134: 1132:Donald Kennedy 1129: 1127:Donald Griffin 1124: 1119: 1117:Niko Tinbergen 1114: 1109: 1103: 1101: 1097: 1096: 1094: 1093: 1087: 1082: 1077: 1075:Hebbian theory 1072: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1030: 1025: 1019: 1017: 1013: 1012: 1005: 1004: 997: 990: 982: 972: 971: 960:(5): 405–412. 944: 887: 860:(3): 295–303. 844: 825:(2): 208–211. 809: 768: 707: 668: 614: 571: 544:(3): 465–477. 528: 509:(3): 179–185. 493: 480: 456: 412: 386: 351: 293: 291: 288: 287: 286: 281: 276: 271: 264: 261: 246: 243: 224: 221: 213:pinhole camera 184:proprioceptive 152: 149: 107: 104: 71: 68: 15: 9: 6: 4: 3: 2: 1388: 1377: 1374: 1372: 1371:Snake anatomy 1369: 1367: 1364: 1362: 1361:Heat transfer 1359: 1357: 1354: 1352: 1349: 1348: 1346: 1337: 1334: 1332: 1329: 1328: 1314: 1313: 1304: 1302: 1301: 1292: 1291: 1288: 1280: 1277: 1276: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1221: 1219: 1215: 1209: 1206: 1204: 1201: 1200: 1198: 1194: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1122:Konrad Lorenz 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1104: 1102: 1098: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1055:NMDA receptor 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1035: 1031: 1029: 1026: 1024: 1021: 1020: 1018: 1014: 1010: 1009:Neuroethology 1003: 998: 996: 991: 989: 984: 983: 980: 976: 967: 963: 959: 955: 948: 940: 936: 931: 926: 922: 918: 914: 910: 906: 902: 898: 891: 883: 879: 875: 871: 867: 863: 859: 855: 848: 840: 836: 832: 828: 824: 820: 813: 805: 801: 796: 791: 787: 783: 779: 772: 764: 760: 755: 750: 746: 742: 738: 734: 730: 726: 722: 714: 712: 704: 700: 695: 690: 686: 682: 675: 673: 664: 660: 656: 652: 648: 644: 640: 636: 632: 628: 621: 619: 610: 606: 602: 598: 594: 590: 586: 582: 575: 567: 563: 559: 555: 551: 547: 543: 539: 532: 524: 520: 516: 512: 508: 504: 497: 490: 484: 477: 476:0-9630537-0-1 473: 469: 463: 461: 452: 448: 443: 438: 434: 430: 426: 419: 417: 400: 396: 390: 382: 378: 374: 370: 366: 362: 355: 347: 343: 338: 333: 329: 325: 321: 317: 313: 309: 305: 298: 294: 285: 284:Thermoception 282: 280: 279:Neuroethology 277: 275: 272: 270: 267: 266: 260: 257: 252: 242: 240: 235: 231: 220: 218: 214: 209: 205: 202: 196: 193: 189: 185: 181: 176: 174: 170: 166: 162: 158: 144: 140: 138: 134: 130: 126: 122: 117: 113: 103: 101: 97: 93: 89: 85: 81: 77: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 30: 21: 1310: 1298: 1279:Lateral line 1248: 1229:Waggle dance 1167:Eric Knudsen 1032: 974: 957: 953: 947: 904: 900: 890: 857: 853: 847: 822: 818: 812: 785: 781: 771: 728: 724: 684: 680: 630: 626: 584: 580: 574: 541: 537: 531: 506: 502: 496: 488: 483: 467: 432: 428: 403:. Retrieved 399:the original 389: 367:(1): 59–76. 364: 360: 354: 311: 307: 297: 251:warm-blooded 248: 226: 210: 206: 197: 177: 165:optic tectum 154: 151:Neuroanatomy 109: 73: 47: 26: 1203:Patch clamp 1172:Eric Kandel 1152:Franz Huber 1023:Feedforward 907:(1): 3950. 256:true vipers 133:vasculature 100:loreal pits 52:wavelengths 1345:Categories 1177:Nobuo Suga 1092:in insects 405:20 January 290:References 269:Crotalinae 157:crotalines 137:crotalines 112:pit vipers 44:Crotalinae 40:Pythonidae 239:bolometer 82:and some 80:pitvipers 48:pit organ 1356:Ethology 1300:Category 1040:Instinct 1016:Concepts 939:30850649 874:29218413 804:28855322 763:20228791 703:17690227 663:30122231 655:17731960 566:10279222 523:12711259 451:15531644 263:See also 188:auditory 116:membrane 64:predator 38:(boas), 29:infrared 1312:Commons 1217:Systems 1196:Methods 930:6408448 909:Bibcode 882:3370317 839:1564650 754:2855400 733:Bibcode 635:Bibcode 627:Science 589:Bibcode 581:Science 558:7410602 381:4350276 346:7256281 337:2693128 316:Bibcode 308:Science 192:neurons 190:. Some 173:pythons 161:medulla 129:pythons 106:Anatomy 96:anatomy 88:pythons 1376:Snakes 1366:Senses 1100:People 1034:Umwelt 937:  927:  880:  872:  837:  802:  761:  751:  725:Nature 701:  661:  653:  609:628839 607:  564:  556:  521:  489:et al. 487:Pough 474:  449:  379:  344:  334:  36:Boidae 878:S2CID 835:JSTOR 659:S2CID 562:S2CID 234:TRPA1 180:optic 167:. In 935:PMID 870:PMID 800:PMID 759:PMID 699:PMID 651:PMID 605:PMID 554:PMID 519:PMID 472:ISBN 447:PMID 407:2017 377:PMID 342:PMID 186:and 171:and 169:boas 127:and 125:boas 86:and 84:boas 62:and 962:doi 925:PMC 917:doi 862:doi 858:204 827:doi 790:doi 786:220 749:PMC 741:doi 729:464 689:doi 685:210 643:doi 631:115 597:doi 585:199 546:doi 542:191 511:doi 437:doi 433:207 369:doi 332:PMC 324:doi 312:213 110:In 78:in 1347:: 958:27 956:. 933:. 923:. 915:. 903:. 899:. 876:. 868:. 856:. 833:. 823:25 821:. 798:. 784:. 780:. 757:. 747:. 739:. 727:. 723:. 710:^ 697:, 683:, 671:^ 657:. 649:. 641:. 629:. 617:^ 603:. 595:. 583:. 560:. 552:. 540:. 517:. 507:65 505:. 468:In 459:^ 445:. 431:. 427:. 415:^ 375:. 365:58 363:. 340:. 330:. 322:. 310:. 306:. 232:, 56:μm 1001:e 994:t 987:v 968:. 964:: 919:: 911:: 905:9 884:. 864:: 841:. 829:: 806:. 792:: 765:. 743:: 735:: 691:: 665:. 645:: 637:: 611:. 599:: 591:: 568:. 548:: 525:. 513:: 478:. 453:. 439:: 409:. 383:. 371:: 348:. 326:: 318::

Index


infrared
thermal radiation
Boidae
Pythonidae
Crotalinae
wavelengths
μm
thermoregulation
predator
parallel evolution
pitvipers
boas
pythons
electrophysiology
anatomy
loreal pits
pit vipers
membrane
trigeminal nerve
boas
pythons
vasculature
crotalines

crotalines
medulla
optic tectum
boas
pythons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.