Knowledge

Isotope geochemistry

Source đź“ť

286: 609:
The difference in the ratio of the sample relative to CHUR can give information on a model age of extraction from the mantle (for which an assumed evolution has been calculated relative to CHUR) and to whether this was extracted from a granitic source (depleted in radiogenic Nd), the mantle, or an
469:
Radiogenic isotopes provide powerful tracers for studying the ages and origins of Earth systems. They are particularly useful to understand mixing processes between different components, because (heavy) radiogenic isotope ratios are not usually fractionated by chemical processes.
343:(Faure, 2004). The C/C ratio is also an indicator of paleoclimate: a change in the ratio in the remains of plants indicates a change in the amount of photosynthetic activity, and thus in how favorable the environment was for the plants. During photosynthesis, organisms using the 937:, while most of the Th remains in Atlantic sediments. As a result, there is a relationship between Pa/Th in Atlantic sediments and the rate of overturning: faster overturning produces lower sediment Pa/Th ratio, while slower overturning increases this ratio. The combination of 897:
of actinides are unique amongst radiogenic isotopes because they are both radiogenic and radioactive. Because their abundances are normally quoted as activity ratios rather than atomic ratios, they are best considered separately from the other radiogenic isotope systems.
98: 976:
in natural uranium and thorium, but due to the relatively short half-life of tritium and the relatively small quantities (compared to those from anthropogenic sources) those sources of tritium usually play only a secondary role in the analysis of groundwater.
658:
Natural isotopic variations amongst the noble gases result from both radiogenic and nucleogenic production processes. Because of their unique properties, it is useful to distinguish them from the conventional radiogenic isotope systems described above.
359:, allowing scientists not only to distinguish organic matter from abiotic carbon, but also what type of photosynthetic pathway the organic matter was using. Occasional spikes in the global C/C ratio have also been useful as stratigraphic markers for 87:
is very small; for this reason, enrichments are typically reported in "per mil" (‰, parts per thousand). These enrichments (δ) represent the ratio of heavy isotope to light isotope in the sample over the ratio of a
529:
on a variety of materials. Because the lead isotopes are created by decay of different transuranic elements, the ratios of the four lead isotopes to one another can be very useful in tracking the source of melts in
473:
Radiogenic isotope tracers are most powerful when used together with other tracers: The more tracers used, the more control on mixing processes. An example of this application is to the evolution of the
281:{\displaystyle \delta {\ce {^{13}C}}=\left({\frac {\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{sample}}{\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{standard}}}-1\right)\times 1000} 598:
This initial ratio is modelled relative to CHUR (the Chondritic Uniform Reservoir), which is an approximation of the chondritic material which formed the solar system. CHUR was determined by analysing
428:. Typically, the VPDB oxygen reference is used for paleoclimate, while VSMOW is used for most other applications. Oxygen isotopes appear in anomalous ratios in atmospheric ozone, resulting from 650:
an initial osmium ratio of the sample at the time of the melting event. Osmium–osmium initial ratios are used to determine the source characteristic and age of mantle melting events.
1358:
Drake, Henrik; Roberts, Nick M. W.; Reinhardt, Manuel; Whitehouse, Martin; Ivarsson, Magnus; Karlsson, Andreas; Kooijman, Ellen; Kielman-Schmitt, Melanie (2021-06-03).
1225:
Brenninkmeijer, C. A. M.; Janssen, C.; Kaiser, J.; Röckmann, T.; Rhee, T. S.; Assonov, S. S. (2003). "Isotope effects in the chemistry of atmospheric trace compounds".
420:(VSMOW) or Vienna Pee Dee Belemnite (VPDB). Variations in oxygen isotope ratios are used to track both water movement, paleoclimate, and atmospheric gases such as 389:. Nitrogen ratios are frequently linked to agricultural activities. Nitrogen isotope data has also been used to measure the amount of exchange of air between the 646:
more readily than osmium. Hence, during melting of the mantle, rhenium is stripped out, and prevents the osmium–osmium ratio from changing appreciably. This
447:
has four stable isotopes, with the following abundances: S (0.9502), S (0.0075), S (0.0421) and S (0.0002). These abundances are compared to those found in
1634:
Arne D.; Bierlein F. P.; Morgan J. W.; Stein H. J. (2001). "Re-Os dating of sulfides associated with gold mineralisation in central Victoria, Australia".
1120:"Carbon isotope (d13C) stratigraphy across the Silurian-Devonian transition in North America: evidence for a perturbation of the global carbon cycle" 455:
and the temperature of formation of sulfur–bearing minerals as well as a biosignature that can reveal presence of sulfate reducing microbes.
670:
was trapped in the planet when it formed. Some He is being added by meteoric dust, primarily collecting on the bottom of oceans (although due to
89: 2283: 1959: 766:) from the mantle, which happens at depths of less than 60 km. However, He is transported to the surface primarily trapped in the 2585: 957:
was released to the atmosphere during atmospheric testing of nuclear bombs. Radioactive decay of tritium produces the noble gas
1033: 1557:
Kirstein L., Timmerman M. (2000). "Evidence of the proto-Iceland lume in northwestern Ireland at 42Ma from helium isotopes".
1346: 1077: 797:
has become enriched with those elements relative to the mantle and thus more He is produced in the crust than in the mantle.
1486: 1730: 53:, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them. 1699:
Reference information on isotopes, and coordination and management of isotope production, availability, and distribution
2077: 1400: 2278: 1874: 1914: 417: 298: 1177: 1023: 50: 17: 882: 1028: 429: 2324: 2072: 569: 2067: 1360:"Biosignatures of ancient microbial life are present across the igneous crust of the Fennoscandian shield" 713:
atom, creating a He and a He ion. This requires significant lithium to adversely affect the He/He ratio.
2257: 2127: 2467: 2447: 921:
on settling particles, but not at equal rates. Pa has a residence equivalent to the residence time of
585:
of geological materials, and various other materials including archaeological finds (pots, ceramics).
2457: 2429: 2262: 2041: 894: 619: 448: 84: 1119: 560:
to fingerprint bullets, because each batch of ammunition has its own peculiar Pb/Pb vs Pb/Pb ratio.
2524: 1723: 930: 639:
to produce osmium. The ratio of non-radiogenic osmium to radiogenic osmium throughout time varies.
716:
All degassed helium is lost to space eventually, due to the average speed of helium exceeding the
2462: 2412: 2199: 2046: 755: 1705:
U.S. Department of Energy program for isotope production and production research and development
678:
are younger than continental plates). However, He will be degassed from oceanic sediment during
2362: 2163: 1909: 1808: 1003: 735:
samples. How He is stored in the planet is under investigation, but it is associated with the
385:
has two stable isotopes, N and N. The ratio between these is measured relative to nitrogen in
1069: 1062: 2575: 1964: 966: 721: 80: 60: 1611: 961:. Comparing the ratio of tritium to helium-3 (H/He) allows estimation of the age of recent 2397: 2338: 2314: 1668: 1607: 1566: 1537: 1496: 1304: 1269: 1186: 1134: 582: 539: 491: 8: 2580: 2424: 2319: 2237: 2227: 2002: 1919: 1899: 1889: 1716: 1224: 986: 970: 632: 1672: 1570: 1541: 1308: 1273: 1190: 1138: 877: 2549: 2529: 2407: 2392: 2377: 2299: 2098: 2062: 1864: 1582: 1320: 1204: 1018: 1013: 998: 941:
and Pa/Th can therefore provide a more complete insight into past circulation changes.
526: 464: 59:
geochemistry is largely concerned with isotopic variations arising from mass-dependent
46: 1619: 1549: 1146: 27:
Aspect of geology studying variations in isotope abundances in the natural environment
2357: 2153: 2148: 1992: 1828: 1681: 1656: 1586: 1381: 1342: 1242: 1208: 1098: 1073: 838: 794: 636: 507: 479: 360: 1435: 858:, estimate groundwater flow rates, track water pollution, and provide insights into 2554: 2503: 2419: 2367: 2143: 2121: 1987: 1884: 1676: 1643: 1615: 1574: 1545: 1371: 1324: 1312: 1277: 1234: 1194: 1142: 910: 790: 771: 736: 687: 595:
of several minerals within a rock specimen. The initial Nd/Nd ratio is determined.
557: 475: 451:. Variations in sulfur isotope ratios are used to study the origin of sulfur in an 42: 549:
from the Arctic shelf, and provides information on the source of atmospheric lead
2487: 2452: 2439: 2402: 2349: 2207: 2102: 2036: 1997: 1834: 1595: 1490: 1483: 973: 826: 717: 675: 592: 917:
at a constant activity ratio (0.093). The decay products are rapidly removed by
416:
has three stable isotopes, O, O, and O. Oxygen ratios are measured relative to
2387: 2185: 2173: 2117: 2112: 2106: 2031: 1954: 1879: 1702: 1376: 1359: 981: 934: 763: 425: 340: 318: 56: 2569: 2304: 2222: 2217: 2168: 2158: 1798: 1385: 732: 550: 398: 68: 1633: 1281: 2382: 2180: 1894: 1869: 1854: 1820: 1780: 1452: 1406: 1260:
Mauersberger, K. (1987). "Ozone isotope measurements in the stratosphere".
1246: 1008: 962: 922: 859: 706: 531: 522: 433: 390: 1703:
Isotope Development & Production for Research and Applications (IDPRA)
1578: 2082: 1979: 1941: 1924: 1859: 1840: 1773: 1753: 1525: 1199: 1168: 914: 870: 855: 635:
which are present at very low abundances in the crust. Rhenium undergoes
394: 371: 37:
based upon the study of natural variations in the relative abundances of
1507:
Stable Isotopes and Mineral Resource Investigations in the United States
1295:
Emiliani, C.; Edwards, G. (1953). "Tertiary ocean bottom temperatures".
581:
is an isotope system which can be utilised to provide a date as well as
1849: 1844: 1739: 918: 778: 702: 694: 679: 671: 603: 352: 344: 64: 1647: 1238: 2539: 2519: 2252: 2212: 1949: 1758: 1316: 683: 599: 578: 364: 336: 322: 1506: 929:
basin (around 1000 yrs) but Th is removed more rapidly (centuries).
720:
for the Earth. Thus, it is assumed the helium content and ratios of
374:
ratio has been used to track ocean circulation, among other things.
2534: 2372: 2016: 1929: 958: 926: 667: 574: 546: 535: 382: 38: 1523: 1166: 2544: 1768: 1763: 954: 906: 866: 863: 808:
usually is given as a multiple of the present atmospheric ratio (
786: 782: 767: 728: 710: 701:
spallation reactions which generally occur in the crust. Lithium
698: 643: 624: 515: 511: 500: 339:(VPDB). The stable carbon isotopes are fractionated primarily by 34: 1339:
Using Geochemical Data: Evaluation, Presentation, Interpretation
938: 329: 309: 1357: 829: 747: 743: 628: 444: 413: 314: 79:
For most stable isotopes, the magnitude of fractionation from
67:
isotope geochemistry is concerned with the products of natural
1099:"USGS -- Isotope Tracers -- Resources -- Isotope Geochemistry" 1969: 1708: 759: 751: 421: 1903: 1785: 1510: 588:
Sm decays to produce Nd with a half life of 1.06x10 years.
496: 1598:(2001). "The core as a possible source of mantle helium". 1593: 965:. A small amount of tritium is also produced naturally by 436:
have been used to deduce the temperature of ancient seas.
1803: 1657:"Osmium isotopic characteristics of mantle-derived rocks" 1556: 883:
USGS: Helium Discharge at Mammoth Mountain Fumarole (MMF)
682:, so cosmogenic He is not affecting the concentration or 452: 386: 804:) of He to He is often used to represent He content. 351:
show different enrichments compared to those using the
1696: 1294: 1093: 1091: 1089: 1220: 1218: 901: 878:(U-Th)/He dating of apatite as a thermal history tool 754:
chemistry, outgassing of helium requires the loss of
101: 888: 739:
and is used as a marker of material of deep origin.
2284:
Global Boundary Stratotype Section and Point (GSSP)
1086: 909:is well mixed in the ocean, and its decay produces 591:Dating is achieved usually by trying to produce an 1215: 1061: 933:effectively exports Pa from the Atlantic into the 458: 280: 1499: (C. Kendall & E.A. Caldwell, chap.2 in 1127:Palaeogeography, Palaeoclimatology, Palaeoecology 556:Lead–lead isotopes has been successfully used in 485: 2567: 1259: 1253: 1526:"Multiple fluid pulses in a Samoan harzburgite" 1524:Burnard P. G.; Farley K. A.; Turner G. (1998). 1167:Park, S.; Atlas, E. L.; Boering, K. A. (2004). 854:He/He isotope chemistry is being used to date 74: 1724: 1055: 1053: 1051: 1049: 1405:. Cambridge University Press. Archived from 1398: 835:Spreading ridge rocks: 9.1 plus or minus 3.6 1288: 1160: 727:It has been observed that He is present in 1731: 1717: 1046: 506:Lead is created in the Earth via decay of 1680: 1559:Journal of the Geological Society, London 1471:Principles of Stable Isotope Geochemistry 1375: 1198: 944: 2279:Global Standard Stratigraphic Age (GSSA) 1654: 1331: 1117: 847:Sedimentary formation water: less than 1 321:, C and C, and one radioactive isotope, 14: 2568: 1501:Isotope Tracers in Catchment Hydrology 1364:Communications Earth & Environment 1068:. New Jersey: Prentice Hall. pp.  1059: 1712: 1457:Isotopes: Principles and Applications 653: 563: 335:, is measured against Vienna Pee Dee 1497:Fundamentals of Isotope Geochemistry 1341:Longman Scientific & Technical. 1173:O isotopologues in the stratosphere" 397:using data from the greenhouse gas 1697:National Isotope Development Center 1600:Earth and Planetary Science Letters 987:Hydrologic Isotope Tracers - Helium 949: 24: 2078:Adoption of the Gregorian calendar 1477: 1064:The Geochemistry of Natural Waters 823:Old continental crust: less than 1 724:have remained essentially stable. 538:and even the origin of people via 25: 2597: 1690: 889:Isotopes in actinide decay chains 613: 328:The stable carbon isotope ratio, 542:of their teeth, skin and bones. 432:. Isotope ratios in fossilized 418:Vienna Standard Mean Ocean Water 299:Hydrogen isotope biogeochemistry 2586:Geochronological dating methods 1960:English and British regnal year 1661:Geochimica et Cosmochimica Acta 1392: 1178:Journal of Geophysical Research 1024:Isotope-ratio mass spectrometry 459:Radiogenic isotope geochemistry 51:isotope-ratio mass spectrometry 1738: 1351: 1111: 1034:Urey–Bigeleisen–Mayer equation 1029:Sulfur isotope biogeochemistry 844:Ocean and terrestrial water: 1 486:Lead–lead isotope geochemistry 430:mass-independent fractionation 13: 1: 2073:Old Style and New Style dates 1620:10.1016/s0012-821x(01)00418-6 1550:10.1016/s0009-2541(97)00175-7 1449:(Cambridge University Press). 1442:(Cambridge University Press). 1424: 1147:10.1016/s0031-0182(02)00510-2 850:Thermal spring water: 3 to 11 2025:Pre-Julian / Julian 1682:10.1016/0016-7037(91)90318-y 1493: (University of Ottawa) 1262:Geophysical Research Letters 1118:Saltzman, Matthew R (2002). 982:USGS Tritium/Helium-3 Dating 902:Protactinium/Thorium – Pa/Th 7: 2258:Geological history of Earth 2128:Astronomical year numbering 1464:Stable Isotope Geochemistry 992: 770:lattice of minerals within 662: 377: 292: 75:Stable isotope geochemistry 10: 2602: 1517: 1447:Radiogenic Isotope Geology 1429: 1402:Radiogenic Isotope Geology 1377:10.1038/s43247-021-00170-2 705:is the process by which a 617: 567: 489: 462: 307: 296: 2512: 2496: 2480: 2438: 2430:Thermoluminescence dating 2348: 2337: 2325:Samarium–neodymium dating 2292: 2271: 2245: 2236: 2198: 2136: 2091: 2055: 2024: 2015: 1978: 1940: 1819: 1794: 1746: 642:Rhenium prefers to enter 570:Samarium–neodymium dating 545:It has been used to date 482:through geological time. 439: 408: 303: 224: 210: 162: 148: 117: 85:equilibrium fractionation 2144:Chinese sexagenary cycle 1627: 1459:(John Wiley & Sons). 1455:, Mensing T. M. (2004), 1337:Rollinson, H.R. (1993). 1039: 931:Thermohaline circulation 781:production (by decay of 525:is useful for providing 363:, especially during the 219: 213: 205: 199: 157: 151: 143: 137: 112: 106: 2358:Amino acid racemisation 1612:2001E&PSL.192...45P 1282:10.1029/GL014i001p00080 777:Helium-4 is created by 742:Due to similarities in 693:Helium-3 is created by 540:isotopic fingerprinting 2363:Archaeomagnetic dating 1875:Era of Caesar (Iberia) 1484:Environmental Isotopes 1060:Drever, James (2002). 1004:Environmental isotopes 945:Anthropogenic isotopes 503:: Pb, Pb, Pb, and Pb. 282: 2263:Geological time units 1579:10.1144/jgs.157.5.923 1399:Dickin, A.P. (2005). 967:cosmic ray spallation 620:Rhenium–osmium dating 583:isotopic fingerprints 449:Cañon Diablo troilite 283: 61:isotope fractionation 2315:Law of superposition 2310:Isotope geochemistry 1445:Dickin A.P., 2005. 1200:10.1029/2003JD003731 697:bombardment, and by 633:siderophile elements 99: 31:Isotope geochemistry 2448:Fluorine absorption 2425:Luminescence dating 2320:Luminescence dating 2228:Milankovitch cycles 2068:Proleptic Gregorian 1900:Hindu units of time 1673:1991GeCoA..55.1421M 1571:2000JGSoc.157..923K 1542:1998ChGeo.147...99B 1309:1953Natur.171..887E 1274:1987GeoRL..14...80M 1191:2004JGRD..109.1305P 1139:2002PPP...187...83S 999:Cosmogenic isotopes 756:volatile components 707:high-energy neutron 2550:Terminus post quem 2530:Synchronoptic view 2497:Linguistic methods 2458:Obsidian hydration 2393:Radiometric dating 2378:Incremental dating 2300:Chronostratigraphy 1489:2007-02-08 at the 1466:(Springer Verlag). 1169:"Measurements of N 1019:Radiometric dating 1014:Isotopic signature 815:Common values for 722:Earth's atmosphere 654:Noble gas isotopes 564:Samarium–neodymium 465:Radiometric dating 278: 47:isotopic abundance 2563: 2562: 2476: 2475: 2333: 2332: 2194: 2193: 2149:Geologic Calendar 2011: 2010: 1655:Martin C (1991). 1648:10.2113/96.6.1455 1347:978-0-582-06701-1 1303:(4359): 887–888. 1239:10.1021/cr020644k 1233:(12): 5125–5161. 1079:978-0-13-272790-7 795:continental crust 637:radioactive decay 610:enriched source. 508:actinide elements 361:chemostratigraphy 259: 226: 220: 218: 217: 216: 206: 204: 203: 202: 164: 158: 156: 155: 154: 144: 142: 141: 140: 113: 111: 110: 109: 16:(Redirected from 2593: 2555:ASPRO chronology 2504:Glottochronology 2420:Tephrochronology 2368:Dendrochronology 2346: 2345: 2243: 2242: 2042:Proleptic Julian 2032:Pre-Julian Roman 2022: 2021: 1817: 1816: 1733: 1726: 1719: 1710: 1709: 1686: 1684: 1667:(5): 1421–1434. 1651: 1642:(6): 1455–1459. 1636:Economic Geology 1623: 1590: 1553: 1530:Chemical Geology 1473:(Prentice Hall). 1469:Sharp Z., 2006. 1462:Hoefs J., 2004. 1418: 1417: 1415: 1414: 1396: 1390: 1389: 1379: 1355: 1349: 1335: 1329: 1328: 1317:10.1038/171887c0 1292: 1286: 1285: 1257: 1251: 1250: 1227:Chemical Reviews 1222: 1213: 1212: 1202: 1164: 1158: 1157: 1155: 1153: 1124: 1115: 1109: 1108: 1106: 1105: 1095: 1084: 1083: 1067: 1057: 950:Tritium/helium-3 893:Isotopes in the 772:fluid inclusions 558:forensic science 534:, the source of 499:has four stable 492:Lead–lead dating 287: 285: 284: 279: 271: 267: 260: 258: 257: 231: 227: 225: 214: 211: 200: 197: 190: 189: 169: 165: 163: 152: 149: 138: 135: 128: 118: 107: 49:are measured by 45:. Variations in 33:is an aspect of 21: 2601: 2600: 2596: 2595: 2594: 2592: 2591: 2590: 2566: 2565: 2564: 2559: 2508: 2492: 2488:Molecular clock 2481:Genetic methods 2472: 2453:Nitrogen dating 2440:Relative dating 2434: 2403:Potassium–argon 2350:Absolute dating 2340: 2329: 2288: 2267: 2232: 2208:Cosmic Calendar 2200:Astronomic time 2190: 2132: 2087: 2051: 2037:Original Julian 2007: 1974: 1936: 1835:Ab urbe condita 1813: 1790: 1742: 1737: 1693: 1630: 1596:Halliday, A. N. 1536:(1–2): 99–114. 1520: 1491:Wayback Machine 1480: 1478:Stable isotopes 1440:Isotope Geology 1432: 1427: 1422: 1421: 1412: 1410: 1397: 1393: 1356: 1352: 1336: 1332: 1293: 1289: 1258: 1254: 1223: 1216: 1172: 1165: 1161: 1151: 1149: 1133:(1–2): 83–100. 1122: 1116: 1112: 1103: 1101: 1097: 1096: 1087: 1080: 1058: 1047: 1042: 995: 974:ternary fission 952: 947: 904: 891: 827:mid-ocean ridge 718:escape velocity 676:tectonic plates 665: 656: 622: 616: 572: 566: 494: 488: 467: 461: 442: 411: 402: 380: 356: 348: 319:stable isotopes 312: 306: 301: 295: 232: 212: 198: 196: 192: 191: 170: 150: 136: 134: 130: 129: 127: 126: 122: 105: 100: 97: 96: 77: 28: 23: 22: 18:Isotope geology 15: 12: 11: 5: 2599: 2589: 2588: 2583: 2578: 2561: 2560: 2558: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2525:New Chronology 2522: 2516: 2514: 2513:Related topics 2510: 2509: 2507: 2506: 2500: 2498: 2494: 2493: 2491: 2490: 2484: 2482: 2478: 2477: 2474: 2473: 2471: 2470: 2465: 2460: 2455: 2450: 2444: 2442: 2436: 2435: 2433: 2432: 2427: 2422: 2417: 2416: 2415: 2410: 2405: 2400: 2390: 2388:Paleomagnetism 2385: 2380: 2375: 2370: 2365: 2360: 2354: 2352: 2343: 2335: 2334: 2331: 2330: 2328: 2327: 2322: 2317: 2312: 2307: 2302: 2296: 2294: 2290: 2289: 2287: 2286: 2281: 2275: 2273: 2269: 2268: 2266: 2265: 2260: 2255: 2249: 2247: 2240: 2234: 2233: 2231: 2230: 2225: 2220: 2215: 2210: 2204: 2202: 2196: 2195: 2192: 2191: 2189: 2188: 2186:New Earth Time 2183: 2178: 2177: 2176: 2171: 2161: 2156: 2151: 2146: 2140: 2138: 2134: 2133: 2131: 2130: 2125: 2115: 2110: 2095: 2093: 2089: 2088: 2086: 2085: 2080: 2075: 2070: 2065: 2059: 2057: 2053: 2052: 2050: 2049: 2047:Revised Julian 2044: 2039: 2034: 2028: 2026: 2019: 2013: 2012: 2009: 2008: 2006: 2005: 2000: 1995: 1990: 1984: 1982: 1976: 1975: 1973: 1972: 1967: 1965:Lists of kings 1962: 1957: 1955:Canon of Kings 1952: 1946: 1944: 1938: 1937: 1935: 1934: 1933: 1932: 1927: 1922: 1917: 1907: 1897: 1892: 1887: 1882: 1880:Before present 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1838: 1831: 1825: 1823: 1814: 1812: 1811: 1806: 1801: 1795: 1792: 1791: 1789: 1788: 1783: 1778: 1777: 1776: 1766: 1761: 1756: 1750: 1748: 1744: 1743: 1736: 1735: 1728: 1721: 1713: 1707: 1706: 1700: 1692: 1691:External links 1689: 1688: 1687: 1652: 1629: 1626: 1625: 1624: 1591: 1565:(5): 923–927. 1554: 1519: 1516: 1515: 1514: 1504: 1494: 1479: 1476: 1475: 1474: 1467: 1460: 1450: 1443: 1431: 1428: 1426: 1423: 1420: 1419: 1391: 1350: 1330: 1287: 1252: 1214: 1185:(D1): D01305. 1170: 1159: 1110: 1085: 1078: 1044: 1043: 1041: 1038: 1037: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 994: 991: 990: 989: 984: 951: 948: 946: 943: 935:Southern Ocean 903: 900: 890: 887: 886: 885: 880: 852: 851: 848: 845: 842: 841:rocks: 5 to 42 836: 833: 832:(MORB): 7 to 9 824: 764:carbon dioxide 731:emissions and 686:ratios of the 674:, all oceanic 664: 661: 655: 652: 618:Main article: 615: 614:Rhenium–osmium 612: 568:Main article: 565: 562: 527:isotopic dates 490:Main article: 487: 484: 480:Earth's mantle 463:Main article: 460: 457: 441: 438: 426:carbon dioxide 410: 407: 400: 379: 376: 354: 346: 341:photosynthesis 308:Main article: 305: 302: 297:Main article: 294: 291: 290: 289: 277: 274: 270: 266: 263: 256: 253: 250: 247: 244: 241: 238: 235: 230: 223: 209: 195: 188: 185: 182: 179: 176: 173: 168: 161: 147: 133: 125: 121: 116: 104: 76: 73: 57:Stable isotope 26: 9: 6: 4: 3: 2: 2598: 2587: 2584: 2582: 2579: 2577: 2574: 2573: 2571: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2517: 2515: 2511: 2505: 2502: 2501: 2499: 2495: 2489: 2486: 2485: 2483: 2479: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2445: 2443: 2441: 2437: 2431: 2428: 2426: 2423: 2421: 2418: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2395: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2355: 2353: 2351: 2347: 2344: 2342: 2339:Chronological 2336: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2305:Geochronology 2303: 2301: 2298: 2297: 2295: 2291: 2285: 2282: 2280: 2277: 2276: 2274: 2270: 2264: 2261: 2259: 2256: 2254: 2251: 2250: 2248: 2244: 2241: 2239: 2238:Geologic time 2235: 2229: 2226: 2224: 2223:Metonic cycle 2221: 2219: 2218:Galactic year 2216: 2214: 2211: 2209: 2206: 2205: 2203: 2201: 2197: 2187: 2184: 2182: 2179: 2175: 2172: 2170: 2167: 2166: 2165: 2162: 2160: 2159:ISO week date 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2141: 2139: 2135: 2129: 2126: 2123: 2119: 2116: 2114: 2111: 2108: 2104: 2100: 2097: 2096: 2094: 2090: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2060: 2058: 2054: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2029: 2027: 2023: 2020: 2018: 2014: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1985: 1983: 1981: 1977: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1947: 1945: 1943: 1939: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1912: 1911: 1908: 1905: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1865:Byzantine era 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1842: 1839: 1837: 1836: 1832: 1830: 1827: 1826: 1824: 1822: 1821:Calendar eras 1818: 1815: 1810: 1807: 1805: 1802: 1800: 1797: 1796: 1793: 1787: 1784: 1782: 1779: 1775: 1772: 1771: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1751: 1749: 1745: 1741: 1734: 1729: 1727: 1722: 1720: 1715: 1714: 1711: 1704: 1701: 1698: 1695: 1694: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1653: 1649: 1645: 1641: 1637: 1632: 1631: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1594:Porcelli D.; 1592: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1522: 1521: 1512: 1508: 1505: 1502: 1498: 1495: 1492: 1488: 1485: 1482: 1481: 1472: 1468: 1465: 1461: 1458: 1454: 1451: 1448: 1444: 1441: 1437: 1434: 1433: 1409:on 2014-03-27 1408: 1404: 1403: 1395: 1387: 1383: 1378: 1373: 1369: 1365: 1361: 1354: 1348: 1344: 1340: 1334: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1291: 1283: 1279: 1275: 1271: 1267: 1263: 1256: 1248: 1244: 1240: 1236: 1232: 1228: 1221: 1219: 1210: 1206: 1201: 1196: 1192: 1188: 1184: 1180: 1179: 1174: 1163: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1114: 1100: 1094: 1092: 1090: 1081: 1075: 1071: 1066: 1065: 1056: 1054: 1052: 1050: 1045: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 996: 988: 985: 983: 980: 979: 978: 975: 972: 968: 964: 963:ground waters 960: 956: 942: 940: 936: 932: 928: 924: 920: 916: 912: 908: 899: 896: 884: 881: 879: 876: 875: 874: 872: 868: 865: 861: 857: 849: 846: 843: 840: 837: 834: 831: 828: 825: 822: 821: 820: 818: 813: 811: 807: 803: 798: 796: 792: 788: 784: 780: 775: 773: 769: 765: 761: 757: 753: 749: 745: 740: 738: 734: 733:oceanic ridge 730: 725: 723: 719: 714: 712: 708: 704: 700: 696: 691: 689: 685: 681: 677: 673: 669: 660: 651: 649: 645: 640: 638: 634: 630: 626: 621: 611: 607: 605: 601: 596: 594: 589: 586: 584: 580: 576: 571: 561: 559: 554: 552: 548: 543: 541: 537: 533: 532:igneous rocks 528: 524: 521:Lead isotope 519: 517: 513: 509: 504: 502: 498: 493: 483: 481: 477: 476:Earth's crust 471: 466: 456: 454: 450: 446: 437: 435: 431: 427: 423: 419: 415: 406: 404: 396: 392: 388: 384: 375: 373: 368: 366: 362: 358: 350: 342: 338: 334: 332: 326: 324: 320: 316: 311: 300: 275: 272: 268: 264: 261: 254: 251: 248: 245: 242: 239: 236: 233: 228: 221: 207: 193: 186: 183: 180: 177: 174: 171: 166: 159: 145: 131: 123: 119: 114: 102: 95: 94: 93: 91: 86: 82: 72: 70: 69:radioactivity 66: 62: 58: 54: 52: 48: 44: 40: 36: 32: 19: 2576:Geochemistry 2468:Stratigraphy 2413:Uranium–lead 2383:Lichenometry 2309: 2181:Winter count 2164:Mesoamerican 2092:Astronomical 1910:Mesoamerican 1895:Sothic cycle 1870:Seleucid era 1855:Bosporan era 1843: / 1833: 1781:Paleontology 1664: 1660: 1639: 1635: 1606:(1): 45–56. 1603: 1599: 1562: 1558: 1533: 1529: 1500: 1470: 1463: 1456: 1446: 1439: 1436:Allègre C.J. 1411:. Retrieved 1407:the original 1401: 1394: 1367: 1363: 1353: 1338: 1333: 1300: 1296: 1290: 1268:(1): 80–83. 1265: 1261: 1255: 1230: 1226: 1182: 1176: 1162: 1150:. Retrieved 1130: 1126: 1113: 1102:. Retrieved 1063: 1009:Geochemistry 953: 905: 895:decay chains 892: 860:hydrothermal 856:groundwaters 853: 816: 814: 809: 805: 801: 799: 776: 741: 726: 715: 692: 666: 657: 647: 641: 623: 608: 606:meteorites. 597: 590: 587: 573: 555: 544: 523:geochemistry 520: 510:, primarily 505: 495: 472: 468: 443: 434:foraminifera 412: 391:stratosphere 381: 369: 330: 327: 313: 92:. That is, 78: 55: 30: 29: 2408:Radiocarbon 2083:Dual dating 1942:Regnal year 1920:Short Count 1860:Bostran era 1841:Anno Domini 1774:Big History 1754:Archaeology 1370:(1): 1–13. 971:spontaneous 871:ore genesis 862:processes, 800:The ratio ( 709:bombards a 395:troposphere 387:ambient air 41:of various 2581:Geophysics 2570:Categories 2003:Vietnamese 1915:Long Count 1850:Anno Mundi 1845:Common Era 1747:Key topics 1740:Chronology 1425:References 1413:2013-10-10 1104:2009-01-18 923:deep water 919:adsorption 779:radiogenic 703:spallation 695:cosmic ray 680:subduction 672:subduction 604:achondrite 65:radiogenic 63:, whereas 2540:Year zero 2520:Chronicle 2463:Seriation 2398:Lead–lead 2272:Standards 2253:Deep time 2213:Ephemeris 2099:Lunisolar 2063:Gregorian 2056:Gregorian 2017:Calendars 1980:Era names 1950:Anka year 1829:Human Era 1759:Astronomy 1587:128600558 1438:, 2008. 1386:2662-4435 1209:140545969 684:noble gas 600:chondrite 579:neodymium 551:pollution 547:ice cores 536:sediments 365:Paleozoic 337:Belemnite 273:× 262:− 103:δ 2535:Timeline 2373:Ice core 2246:Concepts 1993:Japanese 1925:Tzolk'in 1890:Egyptian 1487:Archived 1453:Faure G. 1247:14664646 993:See also 959:helium-3 927:Atlantic 793:). The 791:elements 789:-series 668:Helium-3 663:Helium-3 648:locks in 644:sulfides 593:isochron 575:Samarium 501:isotopes 383:Nitrogen 378:Nitrogen 317:has two 293:Hydrogen 90:standard 43:elements 39:isotopes 2545:Floruit 2293:Methods 2154:Iranian 2122:Islamic 1988:Chinese 1799:Periods 1769:History 1764:Geology 1669:Bibcode 1608:Bibcode 1567:Bibcode 1538:Bibcode 1509: ( 1503:, 1998) 1430:General 1325:4239689 1305:Bibcode 1270:Bibcode 1187:Bibcode 1135:Bibcode 1070:311–322 955:Tritium 925:in the 907:Uranium 867:geology 864:igneous 839:Hotspot 787:thorium 783:uranium 768:crystal 729:volcano 711:lithium 699:lithium 625:Rhenium 516:thorium 512:uranium 453:orebody 357:pathway 349:pathway 81:kinetic 35:geology 2341:dating 2137:Others 2103:Hebrew 1998:Korean 1809:Epochs 1585:  1384:  1345:  1323:  1297:Nature 1245:  1207:  1076:  830:basalt 748:carbon 744:helium 737:mantle 688:mantle 629:osmium 445:Sulfur 440:Sulfur 414:Oxygen 409:Oxygen 315:Carbon 304:Carbon 2174:Aztec 2118:Lunar 2113:Solar 2107:Hindu 1970:Limmu 1930:Haab' 1885:Hijri 1628:Re–Os 1583:S2CID 1518:He/He 1321:S2CID 1205:S2CID 1152:7 Jan 1123:(PDF) 1040:Notes 760:water 752:magma 422:ozone 2169:Maya 1904:Yuga 1804:Eras 1786:Time 1511:USGS 1382:ISSN 1343:ISBN 1243:PMID 1154:2017 1074:ISBN 969:and 913:and 869:and 817:R/Ra 746:and 631:are 627:and 602:and 514:and 497:Lead 478:and 424:and 393:and 370:The 310:δ13C 276:1000 83:and 1677:doi 1644:doi 1616:doi 1604:192 1575:doi 1563:157 1546:doi 1534:147 1372:doi 1313:doi 1301:171 1278:doi 1235:doi 1231:103 1195:doi 1183:109 1143:doi 1131:187 873:. 812:). 750:in 2572:: 2105:, 1675:. 1665:55 1663:. 1659:. 1640:96 1638:. 1614:. 1602:. 1581:. 1573:. 1561:. 1544:. 1532:. 1528:. 1380:. 1366:. 1362:. 1319:. 1311:. 1299:. 1276:. 1266:14 1264:. 1241:. 1229:. 1217:^ 1203:. 1193:. 1181:. 1175:. 1141:. 1129:. 1125:. 1088:^ 1072:. 1048:^ 939:δC 915:Th 911:Pa 819:: 810:Ra 774:. 762:, 690:. 553:. 518:. 405:. 367:. 325:. 222:12 208:13 160:12 146:13 115:13 71:. 2124:) 2120:( 2109:) 2101:( 1906:) 1902:( 1732:e 1725:t 1718:v 1685:. 1679:: 1671:: 1650:. 1646:: 1622:. 1618:: 1610:: 1589:. 1577:: 1569:: 1552:. 1548:: 1540:: 1513:) 1416:. 1388:. 1374:: 1368:2 1327:. 1315:: 1307:: 1284:. 1280:: 1272:: 1249:. 1237:: 1211:. 1197:: 1189:: 1171:2 1156:. 1145:: 1137:: 1107:. 1082:. 806:R 802:R 785:/ 758:( 577:– 403:O 401:2 399:N 372:C 355:4 353:C 347:3 345:C 333:C 331:δ 323:C 288:‰ 269:) 265:1 255:d 252:r 249:a 246:d 243:n 240:a 237:t 234:s 229:) 215:C 201:C 194:( 187:e 184:l 181:p 178:m 175:a 172:s 167:) 153:C 139:C 132:( 124:( 120:= 108:C 20:)

Index

Isotope geology
geology
isotopes
elements
isotopic abundance
isotope-ratio mass spectrometry
Stable isotope
isotope fractionation
radiogenic
radioactivity
kinetic
equilibrium fractionation
standard
Hydrogen isotope biogeochemistry
δ13C
Carbon
stable isotopes
C
δC
Belemnite
photosynthesis
C3 pathway
C4 pathway
chemostratigraphy
Paleozoic
C
Nitrogen
ambient air
stratosphere
troposphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑