Knowledge

Cretaceous–Paleogene extinction event

Source 📝

1029:, a group of highly diverse, numerous, and widely distributed shelled cephalopods. The extinction of belemnites enabled surviving cephalopod clades to fill their niches. Ammonite genera became extinct at or near the K–Pg boundary; there was a smaller and slower extinction of ammonite genera prior to the boundary associated with a late Cretaceous marine regression, and a small, gradual reduction in ammonite diversity occurred throughout the very late Cretaceous. Researchers have pointed out that the reproductive strategy of the surviving nautiloids, which rely upon few and larger eggs, played a role in outsurviving their ammonoid counterparts through the extinction event. The ammonoids utilized a planktonic strategy of reproduction (numerous eggs and planktonic larvae), which would have been devastated by the K–Pg extinction event. Additional research has shown that subsequent to this elimination of ammonoids from the global biota, nautiloids began an evolutionary radiation into shell shapes and complexities theretofore known only from ammonoids. 2524:, Sierra Petersen and colleagues argue that there were two separate extinction events near the Cretaceous–Paleogene boundary, with one correlating to Deccan Trap volcanism and one correlated with the Chicxulub impact. The team analyzed combined extinction patterns using a new clumped isotope temperature record from a hiatus-free, expanded K–Pg boundary section. They documented a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. They suggested that local warming had been amplified due to the simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change. 2426:. While his assertion was not initially well-received, later intensive field studies of fossil beds lent weight to his claim. Eventually, most paleontologists began to accept the idea that the mass extinctions at the end of the Cretaceous were largely or at least partly due to a massive Earth impact. Even Walter Alvarez acknowledged that other major changes might have contributed to the extinctions. More recent arguments against the Deccan Traps as an extinction cause include that the timeline of Deccan Traps activity and pulses of climate change has been found by some studies to be asynchronous, that palynological changes do not coincide with intervals of volcanism, and that many sites show climatic stability during the latest Maastrichtian and no sign of major disruptions caused by volcanism. Multiple modelling studies conclude that an impact event, not volcanism, fits best with available evidence of extinction patterns. 1643:
devastation and mass extinction of plants at the K–Pg boundary sections, although there were substantial megafloral changes before the boundary. In North America, approximately 57% of plant species became extinct. In high southern hemisphere latitudes, such as New Zealand and Antarctica, the mass die-off of flora caused no significant turnover in species, but dramatic and short-term changes in the relative abundance of plant groups. European flora was also less affected, most likely due to its distance from the site of the Chicxulub impact. In northern Alaska and the Anadyr-Koryak region of Russia, the flora was minimally impacted. Another line of evidence of a major floral extinction is that the divergence rate of subviral pathogens of angiosperms sharply decreased, which indicates an enormous reduction in the number of flowering plants. However, phylogenetic evidence shows no mass angiosperm extinction.
1394:) helps to understand their full extinction in contrast with their close relatives, the crocodilians. Ectothermic ("cold-blooded") crocodiles have very limited needs for food (they can survive several months without eating), while endothermic ("warm-blooded") animals of similar size need much more food to sustain their faster metabolism. Thus, under the circumstances of food chain disruption previously mentioned, non-avian dinosaurs died out, while some crocodiles survived. In this context, the survival of other endothermic animals, such as some birds and mammals, could be due, among other reasons, to their smaller needs for food, related to their small size at the extinction epoch. Prolonged cold is unlikely to have been a reason for the extinction of non-avian dinosaurs given the adaptations of many dinosaurs to cold environments. 1545:, were wiped out. Only a small fraction of ground and water-dwelling Cretaceous bird species survived the impact, giving rise to today's birds. The only bird group known for certain to have survived the K–Pg boundary is the Aves. Avians may have been able to survive the extinction as a result of their abilities to dive, swim, or seek shelter in water and marshlands. Many species of avians can build burrows, or nest in tree holes, or termite nests, all of which provided shelter from the environmental effects at the K–Pg boundary. Long-term survival past the boundary was assured as a result of filling ecological niches left empty by extinction of non-avian dinosaurs. Based on molecular sequencing and fossil dating, many species of birds (the 2319: 85: 2058: 1597:). In the Hell Creek beds of North America, at least half of the ten known multituberculate species and all eleven metatherians species are not found above the boundary. Multituberculates in Europe and North America survived relatively unscathed and quickly bounced back in the Paleocene, but Asian forms were devastated, never again to represent a significant component of mammalian fauna. A recent study indicates that metatherians suffered the heaviest losses at the K–Pg event, followed by multituberculates, while eutherians recovered the quickest. K–Pg boundary mammalian species were generally small, comparable in size to 56: 2284:-containing rock usually present in the shallow seabed of the region; it had been almost entirely removed, vaporized into the atmosphere. The impactor was large enough to create a 190-kilometer-wide (120 mi) peak ring, to melt, shock, and eject deep granite, to create colossal water movements, and to eject an immense quantity of vaporized rock and sulfates into the atmosphere, where they would have persisted for several years. This worldwide dispersal of dust and sulfates would have affected climate catastrophically, led to large temperature drops, and devastated the food chain. 1270:, a diverse group of large predatory marine reptiles, also became extinct. Fossil evidence indicates that squamates generally suffered very heavy losses in the K–Pg event, only recovering 10 million years after it. The extinction of Cretaceous lizards and snakes may have led to the evolution of modern groups such as iguanas, monitor lizards, and boas. The diversification of crown group snakes has been linked to the biotic recovery in the aftermath of the K-Pg extinction event. Pan-Gekkotans weathered the extinction event well, with multiple lineages likely surviving. 2419:
time of the extinction event. Not only did the climate temperature increase, but the water temperature decreased, causing a drastic decrease in marine diversity. Evidence from Tunisia indicates that marine life was deleteriously affected by a major period of increased warmth and humidity linked to a pulse of intense Deccan Traps activity, and that marine extinctions there began before the impact event. Charophyte declines in the Songliao Basin, China before the asteroid impact have been concluded to be connected to climate changes caused by Deccan Traps activity.
872: 683:, because such communities rely less directly on food from living plants, and more on detritus washed in from the land, protecting them from extinction. Modern crocodilians can live as scavengers and survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous. Similar, but more complex patterns have been found in the oceans. Extinction was more severe among animals living in the 1387:
record is simply not good enough to permit researchers to distinguish between the options. There is no evidence that late Maastrichtian non-avian dinosaurs could burrow, swim, or dive, which suggests they were unable to shelter themselves from the worst parts of any environmental stress that occurred at the K–Pg boundary. It is possible that small dinosaurs (other than birds) did survive, but they would have been deprived of food, as herbivorous dinosaurs would have found plant material scarce and carnivores would have quickly found prey in short supply.
16257: 1140:, apparently precipitated by the K–Pg extinction event; the marine and freshwater environments of fishes mitigated the environmental effects of the extinction event. The result was Patterson's Gap, a period in the earliest part of the Cenozoic of decreased acanthomorph diversity, although acanthomorphs diversified rapidly after the extinction. Teleost fish diversified explosively after the mass extinction, filling the niches left vacant by the extinction. Groups appearing in the Paleocene and Eocene epochs include billfish, tunas, eels, and flatfish. 2138: 2083: 1374: 1315:, which lived in freshwater and marine locations. Approximately 50% of crocodyliform representatives survived across the K–Pg boundary, the only apparent trend being that no large crocodiles survived. Crocodyliform survivability across the boundary may have resulted from their aquatic niche and ability to burrow, which reduced susceptibility to negative environmental effects at the boundary. Jouve and colleagues suggested in 2008 that juvenile marine crocodyliforms lived in freshwater environments as do modern marine 515: 420: 979: 1990:, as the source of the K–Pg boundary clay. Identified in 1990 based on work by geophysicist Glen Penfield in 1978, the crater is oval, with an average diameter of roughly 180 km (110 mi), about the size calculated by the Alvarez team. In March 2010, an international panel of 41 scientists reviewed 20 years of scientific literature and endorsed the asteroid hypothesis, specifically the Chicxulub impact, as the cause of the extinction, ruling out other theories such as massive 2528: 65: 2415:
Traps volcanism resulted in carbon dioxide emissions that increased the greenhouse effect when the dust and aerosols cleared from the atmosphere. Plant fossils record a 250 ppm increase in carbon dioxide concentrations across the K-Pg boundary likely attributable to Deccan Traps activity. The increased carbon dioxide emissions also caused acid rain, evidenced by increased mercury deposition due to increased solubility of mercury compounds in more acidic water.
1734: 16669: 2035: 793:. Major spatial differences existed in calcareous nannoplankton diversity patterns; in the Southern Hemisphere, the extinction was less severe and recovery occurred much faster than in the Northern Hemisphere. Following the extinction, survivor communities dominated for several hundred thousand years. The North Pacific acted as a diversity hotspot from which later nannoplankton communities radiated as they replaced survivor faunas across the globe. 76: 1418:), which both date from approximately 75 Ma, provides information on the changes in dinosaur populations over the last 10 million years of the Cretaceous. These fossil beds are geographically limited, covering only part of one continent. The middle–late Campanian formations show a greater diversity of dinosaurs than any other single group of rocks. The late Maastrichtian rocks contain the largest members of several major clades: 1890: 45: 975:), became extinct at the K–Pg boundary, with the gradual extinction of most inoceramid bivalves beginning well before the K–Pg boundary. Deposit feeders were the most common bivalves in the catastrophe's aftermath. Abundance was not a factor that affected whether a bivalve taxon went extinct, according to evidence from North America. Veneroid bivalves developed deeper burrowing habitats as the recovery from the crisis ensued. 2065: 851:
indicates substantial extinction of these species at the K–Pg boundary, and those who think the evidence supports a gradual extinction through the boundary. There is strong evidence that local conditions heavily influenced diversity changes in planktonic foraminifera. Low and mid-latitude communities of planktonic foraminifera experienced high extinction rates, while high latitude faunas were relatively unaffected.
1867: 16679: 1168:; therefore, some amphibians do seem to have become extinct at the boundary. The relatively low levels of extinction seen among amphibians probably reflect the low extinction rates seen in freshwater animals. Following the mass extinction, frogs radiated substantially, with 88% of modern anuran diversity being traced back to three lineages of frogs that evolved after the cataclysm. 1601:; this small size would have helped them find shelter in protected environments. It is postulated that some early monotremes, marsupials, and placentals were semiaquatic or burrowing, as there are multiple mammalian lineages with such habits today. Any burrowing or semiaquatic mammal would have had additional protection from K–Pg boundary environmental stresses. 1365:
groups, possibly due to direct competition, or they simply filled empty niches, but there is no correlation between pterosaur and avian diversities that are conclusive to a competition hypothesis, and small pterosaurs were present in the Late Cretaceous. At least some niches previously held by birds were reclaimed by pterosaurs prior to the K–Pg event.
1654:, that do not require photosynthesis and use nutrients from decaying vegetation. The dominance of fungal species lasted only a few years while the atmosphere cleared and plenty of organic matter to feed on was present. Once the atmosphere cleared photosynthetic organisms returned – initially ferns and other ground-level plants. 915:, extinction patterns were highly heterogeneous and cannot be neatly attributed to any particular factor. Decapods that inhabited the Western Interior Seaway were especially hard-hit, while other regions of the world's oceans were refugia that increased chances of survival into the Palaeocene. Among retroplumid crabs, the genus 10691: 1965:, but this was the first hard evidence, and since then, studies have continued to demonstrate elevated iridium levels in association with the K-Pg boundary. This hypothesis was viewed as radical when first proposed, but additional evidence soon emerged. The boundary clay was found to be full of minute 2429:
Combining these theories, some geophysical models suggest that the impact contributed to the Deccan Traps. These models, combined with high-precision radiometric dating, suggest that the Chicxulub impact could have triggered some of the largest Deccan eruptions, as well as eruptions at active volcano
2299:
After the impact winter, the Earth entered a period of global warming as a result of the vapourisation of carbonates into carbon dioxide, whose long residence time in the atmosphere ensured significant warming would occur after more short-lived cooling gases dissipated. Carbon monoxide concentrations
1386:
Scientists agree that all non-avian dinosaurs became extinct at the K–Pg boundary. The dinosaur fossil record has been interpreted to show both a decline in diversity and no decline in diversity during the last few million years of the Cretaceous, and it may be that the quality of the dinosaur fossil
1068:
The extinction event produced major changes in Paleogene insect communities. Many groups of ants were present in the Cretaceous, but in the Eocene ants became dominant and diverse, with larger colonies. Butterflies diversified as well, perhaps to take the place of leaf-eating insects wiped out by the
4589:
Clyde, William C.; Wilf, Peter; Iglesias, Ari; Slingerland, Rudy L.; Barnum, Timothy; Bijl, Peter K.; Bralower, Timothy J.; Brinkhuis, Henk; Comer, Emily E.; Huber, Brian T.; Ibañez-Mejia, Mauricio; Jicha, Brian R.; Krause, J. Marcelo; Schueth, Jonathan D.; Singer, Bradley S.; Raigemborn, María Sol;
2275:
around the Chicxulub impact crater. The discoveries confirmed that the rock comprising the peak ring had been shocked by immense pressure and melted in just minutes from its usual state into its present form. Unlike sea-floor deposits, the peak ring was made of granite originating much deeper in the
1669:
pollen grains, but the boundary layer contains little pollen and is dominated by fern spores. More usual pollen levels gradually resume above the boundary layer. This is reminiscent of areas blighted by modern volcanic eruptions, where the recovery is led by ferns, which are later replaced by larger
4304:
MacLeod, N.; Rawson, P.F.; Forey, P.L.; Banner, F.T.; Boudagher-Fadel, M.K.; Bown, P.R.; Burnett, J.A.; Chambers, P.; Culver, S.; Evans, S.E.; Jeffery, C.; Kaminski, M.A.; Lord, A.R.; Milner, A.C.; Milner, A.R.; Morris, N.; Owen, E.; Rosen, B.R.; Smith, A.B.; Taylor, P.D.; Urquhart, E.; Young, J.R.
2418:
Evidence for extinctions caused by the Deccan Traps includes the reduction in diversity of marine life when the climate near the K–Pg boundary increased in temperature. The temperature increased about three to four degrees very rapidly between 65.4 and 65.2 million years ago, which is very near the
1714:
While it appears that many fungi were wiped out at the K-Pg boundary, there is some evidence that some fungal species thrived in the years after the extinction event. Microfossils from that period indicate a great increase in fungal spores, long before the resumption of plentiful fern spores in the
1261:
comprising lizards and snakes first diversified during the Jurassic and continued to diversify throughout the Cretaceous. They are currently the most successful and diverse group of living reptiles, with more than 10,000 extant species. The only major group of terrestrial lizards to go extinct
1214:
and are represented by living species. Analysis of turtle survivorship in the Hell Creek Formation shows a minimum of 75% of turtle species survived. Following the extinction event, turtle diversity exceeded pre-extinction levels in the Danian of North America, although in South America it remained
2462:
area, the most species-rich part of the sea, and therefore could have been enough to cause a marine mass extinction. This change would not have caused the extinction of the ammonites. The regression would also have caused climate changes, partly by disrupting winds and ocean currents and partly by
2222:
effect. If widespread fires occurred this would have exterminated the most vulnerable organisms that survived the period immediately after the impact. Experimental analysis suggests that any impact-induced wildfires were insufficient on their own to cause plant extinctions, and much of the thermal
2030:
matching those of the Chicxulub impact event. Some researchers question the interpretation of the findings at the site or are skeptical of the team leader, Robert DePalma, who had not yet received his Ph.D. in geology at the time of the discovery and whose commercial activities have been regarded
1533:
bird relatives coexisted with non-avian dinosaurs. Large collections of bird fossils representing a range of different species provide definitive evidence for the persistence of archaic birds to within 300,000 years of the K–Pg boundary. The absence of these birds in the Paleogene is evidence
1462:
in Alberta, Canada, supports the gradual extinction of non-avian dinosaurs; during the last 10 million years of the Cretaceous layers there, the number of dinosaur species seems to have decreased from about 45 to approximately 12. Other scientists have made the same assessment following their
1364:
and a basal toothed taxon of uncertain affinities, though they are represented by fragmentary remains that are difficult to assign to any given group. While this was occurring, modern birds were undergoing diversification; traditionally it was thought that they replaced archaic birds and pterosaur
1053:
from fourteen sites in North America was used as a proxy for insect diversity across the K–Pg boundary and analyzed to determine the rate of extinction. Researchers found that Cretaceous sites, prior to the extinction event, had rich plant and insect-feeding diversity. During the early Paleocene,
2414:
The Deccan Traps could have caused extinction through several mechanisms, including the release of dust and sulfuric aerosols into the air, which might have blocked sunlight and thereby reduced photosynthesis in plants. In addition, the latest Cretaceous saw a rise in global temperatures; Deccan
2190:
has been estimated at more than 100 m (330 ft) tall, as the asteroid fell into relatively shallow seas; in deep seas it would have been 4.6 km (2.9 mi) tall. Fossiliferous sedimentary rocks deposited during the K–Pg impact have been found in the Gulf of Mexico area, including
1821:
mammals occurred after approximately 185,000 years, and no more than 570,000 years, "indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event." Analysis of the carbon cycle disruptions caused by the impact constrains them to an interval of just 5,000
1621:
orders diversified soon after the K–Pg boundary. However, morphological diversification rates among eutherians after the extinction event were thrice those of before it. Also significant, within the mammalian genera, new species were approximately 9.1% larger after the K–Pg boundary. After about
1604:
After the K–Pg extinction, mammals evolved to fill the niches left vacant by the dinosaurs. Some research indicates that mammals did not explosively diversify across the K–Pg boundary, despite the ecological niches made available by the extinction of dinosaurs. Several mammalian orders have been
863:
Phytoplankton recovery in the early Paleocene provided the food source to support large benthic foraminiferal assemblages, which are mainly detritus-feeding. Ultimate recovery of the benthic populations occurred over several stages lasting several hundred thousand years into the early Paleocene.
1124:
families and 13 batoid families thrived, of which 25 and 9, respectively, survived the K–T boundary event. Forty-seven of all neoselachian genera cross the K–T boundary, with 85% being sharks. Batoids display with 15%, a comparably low survival rate. Among elasmobranchs, those species that
850:
across the K–Pg boundary has been studied since the 1930s. Research spurred by the possibility of an impact event at the K–Pg boundary resulted in numerous publications detailing planktonic foraminiferal extinction at the boundary; there is ongoing debate between groups which think the evidence
2410:
caused the extinction were usually linked to the view that the extinction was gradual, as the flood basalt events were thought to have started around 68 Mya and lasted more than 2 million years. The most recent evidence shows that the traps erupted over a period of only 800,000 years
1642:
Plant fossils illustrate the reduction in plant species across the K–Pg boundary. There is overwhelming evidence of global disruption of plant communities at the K–Pg boundary. Extinctions are seen both in studies of fossil pollen, and fossil leaves. In North America, the data suggests massive
2503:
Proponents of multiple causation view the suggested single causes as either too small to produce the vast scale of the extinction, or not likely to produce its observed taxonomic pattern. In a review article, J. David Archibald and David E. Fastovsky discussed a scenario combining three major
1977:
along the Gulf Coast and the Caribbean provided more evidence, and suggested that the impact might have occurred nearby, as did the discovery that the K–Pg boundary became thicker in the southern United States, with meter-thick beds of debris occurring in northern New Mexico. A K-Pg boundary
1281:
Ca values indicate that prior to the mass extinction, marine reptiles at the top of food webs were feeding on only one source of calcium, suggesting their populations exhibited heightened vulnerability to extinctions at the terminus of the Cretaceous. Along with the aforementioned mosasaurs,
862:
in the ocean is thought to have decreased. As the marine microbiota recovered, it is thought that increased speciation of benthic foraminifera resulted from the increase in food sources. In some areas, such as Texas, benthic foraminifera show no sign of any major extinction event, however.
9826:
Bertrand, Ornella C.; Shelley, Sarah L.; Williamson, Thomas E.; Wible, John R.; Chester, Stephen G. B.; Flynn, John J.; Holbrook, Luke T.; Lyson, Tyler R.; Meng, Jin; Miller, Ian M.; Püschel, Hans P.; Smith, Thierry; Spaulding, Michelle; Tseng, Z. Jack; Brusatte, Stephen L. (April 2022).
1457:
biases and the sparsity of the continental fossil record. The results of this study, which were based on estimated real global biodiversity, showed that between 628 and 1,078 non-avian dinosaur species were alive at the end of the Cretaceous and underwent sudden extinction after the
12542:
Lawton, T. F.; Shipley, K. W.; Aschoff, J. L.; Giles, K. A.; Vega, F. J. (2005). "Basinward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico".
908:. Current research cannot ascertain whether the extinctions occurred prior to, or during, the boundary interval. Ostracods that were heavily sexually selected were more vulnerable to extinction, and ostracod sexual dimorphism was significantly rarer following the mass extinction. 1036:
that thrived in low-latitude, shallow-water environments during the late Cretaceous had the highest extinction rate. Mid-latitude, deep-water echinoderms were much less affected at the K–Pg boundary. The pattern of extinction points to habitat loss, specifically the drowning of
2508:, and extraterrestrial impact. In this scenario, terrestrial and marine communities were stressed by the changes in, and loss of, habitats. Dinosaurs, as the largest vertebrates, were the first affected by environmental changes, and their diversity declined. At the same time, 1397:
Whether the extinction occurred gradually or suddenly has been debated, as both views have support from the fossil record. A highly informative sequence of dinosaur-bearing rocks from the K–Pg boundary is found in western North America, particularly the late Maastrichtian-age
10795:
Depalma, Robert A.; Oleinik, Anton A.; Gurche, Loren P.; Burnham, David A.; Klingler, Jeremy J.; McKinney, Curtis J.; Cichocki, Frederick P.; Larson, Peter L.; Egerton, Victoria M.; Wogelius, Roy A.; Edwards, Nicholas P.; Bergmann, Uwe; Manning, Phillip L. (8 December 2021).
12693:
Smit, Jan; Montanari, Alessandro; Swinburne, Nicola H.; Alvarez, Walter; Hildebrand, Alan R.; Margolis, Stanley V.; Claeys, Philippe; Lowrie, William; Asaro, Frank (1992). "Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico".
4823: 804:
provide a fossil record, and not all dinoflagellate species have cyst-forming stages, which likely causes diversity to be underestimated. Recent studies indicate that there were no major shifts in dinoflagellates through the boundary layer. There were blooms of the taxa
2246:, which might have reduced sunlight reaching the Earth's surface by more than 50%. Fine silicate dust also contributed to the intense impact winter, as did soot from wildfires. The climatic forcing of this impact winter was about 100 times more potent than that of the 1680:
appears to have enhanced the ability of flowering plants to survive the extinction, probably because the additional copies of the genome such plants possessed allowed them to more readily adapt to the rapidly changing environmental conditions that followed the impact.
2332:
Other crater-like topographic features have also been proposed as impact craters formed in connection with Cretaceous–Paleogene extinction. This suggests the possibility of near-simultaneous multiple impacts, perhaps from a fragmented asteroidal object similar to the
1306:
Ten families of crocodilians or their close relatives are represented in the Maastrichtian fossil records, of which five died out prior to the K–Pg boundary. Five families have both Maastrichtian and Paleocene fossil representatives. All of the surviving families of
11809:
Kaskes, P.; Goderis, S.; Belza, J.; Tack, P.; DePalma, R. A.; Smit, J.; Vincze, Laszlo; Vabgaecje, F.; Claeys, P. (2019). "Caught in amber: Geochemistry and petrography of uniquely preserved Chicxulub microtektites from the Tanis K-Pg site from North Dakota (USA)".
945:, which collapsed due to the events surrounding the K–Pg boundary, but the use of data from coral fossils to support K–Pg extinction and subsequent Paleocene recovery, must be weighed against the changes that occurred in coral ecosystems through the K–Pg boundary. 2779:
Jones, Heather L.; Westerhold, Thomas; Birch, Heather; Hull, Pincelli; Negra, M. Hédi; Röhl, Ursula; Sepúlveda, Julio; Vellekoop, Johan; Whiteside, Jessica H.; Alegret, Laia; Henehan, Michael; Robinson, Libby; Van Dijk, Joep; Bralower, Timothy (18 January 2023).
1801:
probably died out long after the most recent fossil that has been found. Scientists have also found very few continuous beds of fossil-bearing rock that cover a time range from several million years before the K–Pg extinction to several million years after it.
2124:
of asteroids. This link has been doubted, though not disproved, in part because of a lack of observations of the asteroid and its family. It was reported in 2009 that 298 Baptistina does not share the chemical signature of the K–Pg impactor. Further, a 2011
2898:
Ferreira da Silva, Luiza Carine; Santos, Alessandra; Fauth, Gerson; Manríquez, Leslie Marcela Elizabeth; Kochhann, Karlos Guilherme Diemer; Do Monte Guerra, Rodrigo; Horodyski, Rodrigo Scalise; Villegas-Martín, Jorge; Ribeiro da Silva, Rafael (April 2023).
1331:
survived; the exact reasons for this pattern are not known. Sebecids were large terrestrial predators, are known from the Eocene of Europe, and would survive in South America into the Miocene. Tethysuchians radiated explosively after the extinction event.
2181:
deposits and sediments around the area of the Caribbean Sea and Gulf of Mexico, from the colossal waves created by the impact. These deposits have been identified in the La Popa basin in northeastern Mexico, platform carbonates in northeastern Brazil, in
1792:
The extinction's rapidity is a controversial issue because some researchers think the extinction was the result of a sudden event, while others argue that it took place over a long period. The exact length of time is difficult to determine because of the
5251: 2322:
The river bed at the Moody Creek Mine, 7 Mile Creek / Waimatuku, Dunollie, New Zealand contains evidence of a devastating event on terrestrial plant communities at the Cretaceous–Paleogene boundary, confirming the severity and global nature of the
8537:
Ocampo, A.; Vajda, V.; Buffetaut, E. (2006). "Unravelling the Cretaceous–Paleogene (K–T) turnover, evidence from flora, fauna and geology in biological processes associated with impact events". In Cockell, C.; Gilmour, I.; Koeberl, C. (eds.).
5980: 5062:
Arenillas, I.; Arz, J. A.; Molina, E.; Dupuis, C. (2000). "An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extinction and possible survivorship".
8763:
Ryan, M. J.; Russell, A. P.; Eberth, D. A.; Currie, P. J. (2001). "The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bone bed from the Dinosaur Park formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny".
5338:
Galeotti, S.; Bellagamba, M.; Kaminski, M. A.; Montanari, A. (2002). "Deep-sea benthic foraminiferal recolonisation following a volcaniclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy)".
1554:, for example, rapidly diversified in the early Paleogene and are believed to have convergently developed flightlessness at least three to six times, often fulfilling the niche space for large herbivores once occupied by non-avian dinosaurs. 2258:
dropped as much as 7 °C (13 °F) for decades after the impact. It would take at least ten years for such aerosols to dissipate, and would account for the extinction of plants and phytoplankton, and subsequently herbivores and their
2287:
The release of large quantities of sulphur aerosols into the atmosphere as a consequence of the impact would also have caused acid rain. Oceans acidified as a result. This decrease in ocean pH would kill many organisms that grow shells of
12077:
Timms, Nicholas E.; Kirkland, Christopher L.; Cavosie, Aaron J.; Rae, Auriol S.P.; Rickard, William D.A.; Evans, Noreen J.; Erickson, Timmons M.; Wittmann, Axel; Ferrière, Ludovic; Collins, Gareth S.; Gulick, Sean P.S. (15 July 2020).
3784:
Labandeira, C. C.; Johnson, K. R.; et al. (2002). "Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound". In Hartman, J.H.; Johnson, K.R.; Nichols, D.J. (eds.).
8120: 3435:"The nastiest feud in science: A Princeton geologist has endured decades of ridicule for arguing that the fifth extinction was caused not by an asteroid but by a series of colossal volcanic eruptions. But she's reopened that debate" 2512:
materials from volcanism cooled and dried areas of the globe. Then an impact event occurred, causing collapses in photosynthesis-based food chains, both in the already-stressed terrestrial food chains and in the marine food chains.
1085:
across the K–Pg boundary, which provide good evidence of extinction patterns of these classes of marine vertebrates. While the deep-sea realm was able to remain seemingly unaffected, there was an equal loss between the open marine
8344:
Butler, Richard J.; Barrett, Paul M.; Nowbath, Stephen; Upchurch, Paul (2009). "Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird / pterosaur competitive replacement".
2174:. The Chicxulub impact caused a global catastrophe. Some of the phenomena were brief occurrences immediately following the impact, but there were also long-term geochemical and climatic disruptions that devastated the ecology. 2442:
rock layers from various parts of the world, the later layers are terrestrial; earlier layers represent shorelines and the earliest layers represent seabeds. These layers do not show the tilting and distortion associated with
1978:"cocktail" of microfossils, lithic fragments, and impact-derived material deposited by gigantic sediment gravity flows was discovered in the Caribbean that served to demarcate the impact. Further research identified the giant 8698:
Rieraa, V.; Marmib, J.; Omsa, O.; Gomez, B. (March 2010). "Orientated plant fragments revealing tidal palaeocurrents in the Fumanya mudflat (Maastrichtian, southern Pyrenees): Insights in palaeogeographic reconstructions".
547:
becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised
2153:
of non-avian dinosaurs and many other species on Earth. The impact spewed hundreds of billions of tons of sulfur into the atmosphere, producing a worldwide blackout and freezing temperatures which persisted for at least a
6030:
Ward, P. D.; Kennedy, W. J.; MacLeod, K. G.; Mount, J. F. (1991). "Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain)".
11685:
Depalma, Robert A.; Smit, Jan; Burnham, David A.; Kuiper, Klaudia; Manning, Phillip L.; Oleinik, Anton; Larson, Peter; Maurrasse, Florentin J.; Vellekoop, Johan; Richards, Mark A.; Gurche, Loren; Alvarez, Walter (2019).
4592:"New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: Implications for Cretaceous-Paleogene extinction recovery and land mammal age correlations" 9138:
Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N. J.; Worthy, T. H.; Wood, J.; Lee, M. S. Y.; Cooper, A. (2014). "Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution".
2226:
Aside from the hypothesized fire effects on reduction of insolation, the impact would have created a humongous dust cloud that blocked sunlight for up to a year, inhibiting photosynthesis. The asteroid hit an area of
10737:
During, Melanie A. D.; Smit, Jan; Voeten, Dennis F. A. E.; Berruyer, Camille; Tafforeau, Paul; Sanchez, Sophie; Stein, Koen H. W.; Verdegaal-Warmerdam, Suzan J. A.; Van Der Lubbe, Jeroen H. J. L. (23 February 2022).
5176:
MacLeod, N (1996). "Nature of the Cretaceous-Tertiary (K–T) planktonic foraminiferal record: Stratigraphic confidence intervals, Signor–Lipps effect, and patterns of survivorship". In MacLeod, N.; Keller, G. (eds.).
1125:
inhabited higher latitudes and lived pelagic lifestyles were more likely to survive, whereas epibenthic lifestyles and durophagy were strongly associated with the likelihood of perishing during the extinction event.
12171:
Majaess, D. J.; Higgins, D.; Molnar, L. A.; Haegert, M. J.; Lane, D. J.; Turner, D. G.; Nielsen, I. (February 2009). "New constraints on the asteroid 298 Baptistina, the alleged family member of the K/T impactor".
1562:
Mammalian species began diversifying approximately 30 million years prior to the K–Pg boundary. Diversification of mammals stalled across the boundary. All major Late Cretaceous mammalian lineages, including
4409:
Aberhan, M.; Weidemeyer, S.; Kieesling, W.; Scasso, R.A.; Medina, F.A. (2007). "Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections".
1152:
concluded that no species of amphibian became extinct. Yet there are several species of Maastrichtian amphibian, not included as part of this study, which are unknown from the Paleocene. These include the frog
13492: 13316: 12393: 11943: 11692: 10635: 10474: 9621: 6966: 6257: 5924: 4487:
García-Girón, Jorge; Chiarenza, Alfio Alessandro; Alahuhta, Janne; DeMar, David G.; Heino, Jani; Mannion, Philip D.; Williamson, Thomas E.; Wilson Mantilla, Gregory P.; Brusatte, Stephen L. (9 December 2022).
3729: 3663: 3587: 3338: 3198: 1549:
group in particular) appeared to radiate after the K–Pg boundary. The open niche space and relative scarcity of predators following the K-Pg extinction allowed for adaptive radiation of various avian groups.
2254:, the onset of global darkness would have reached its maximum in only a few weeks and likely lasted upwards of 2 years. Freezing temperatures probably lasted for at least three years. At Brazos section, the 1452:
of Europe in 2010 supports the view that dinosaurs there had great diversity until the asteroid impact, with more than 100 living species. More recent research indicates that this figure is obscured by
7816:"Polycotylidae (Sauropterygia, Plesiosauria) from the La Colonia Formation, Patagonia, Argentina: Phylogenetic affinities of Sulcusuchus erraini and the Late Cretaceous circum-pacific polycotylid diversity" 903:
that were prevalent in the upper Maastrichtian, left fossil deposits in a variety of locations. A review of these fossils shows that ostracod diversity was lower in the Paleocene than any other time in the
823:
times, and their mineral fossil skeletons can be tracked across the K–Pg boundary. There is no evidence of mass extinction of these organisms, and there is support for high productivity of these species in
9987:
Askin, R.A.; Jacobson, S.R. (1996). "Palynological change across the Cretaceous–Tertiary boundary on Seymour Island, Antarctica: environmental and depositional factors". In Keller, G.; MacLeod, N. (eds.).
2494:
However, sea level fall as a cause of the extinction event is contradicted by other evidence, namely that sections which show no sign of marine regression still show evidence of a major drop in diversity.
407:. The surviving group of dinosaurs were avians, a few species of ground and water fowl, which radiated into all modern species of birds. Among other groups, teleost fish and perhaps lizards also radiated. 1622:
700,000 years, some mammals had reached 50 kilos (110 pounds), a 100-fold increase over the weight of those which survived the extinction. It is thought that body sizes of placental mammalian survivors
2186:
deep-sea sediments, and in the form of the thickest-known layer of graded sand deposits, around 100 m (330 ft), in the Chicxulub crater itself, directly above the shocked granite ejecta. The
9248:
Bininda-Emonds, O. R.; Cardillo M.; Jones, K. E., MacPhee, R. D.; Beck, R. M.; Grenyer, R.; Price, S. A.; Vos, R. A.; Gittleman, J. L.; Purvis, A. (2007). "The delayed rise of present-day mammals".
9354:
Goin, F. J.; Reguero, M. A.; Pascual, R.; von Koenigswald, W.; Woodburne, M. O.; Case, J. A.; Marenssi, S. A.; Vieytes, C.; Vizcaíno, S. F. (2006). "First gondwanatherian mammal from Antarctica".
5664:
Vescsei, A.; Moussavian, E. (1997). "Paleocene reefs on the Maiella Platform margin, Italy: An example of the effects of the cretaceous/tertiary boundary events on reefs and carbonate platforms".
15228: 2725: 568:
The K–Pg extinction event was severe, global, rapid, and selective, eliminating a vast number of species. Based on marine fossils, it is estimated that 75% or more of all species became extinct.
1994:. They had determined that a 10-to-15-kilometer (6 to 9 mi) asteroid hurtled into Earth at Chicxulub on Mexico's Yucatán Peninsula. Additional evidence for the impact event is found at the 1348:, were definitely present in the Maastrichtian, and they likely became extinct at the K–Pg boundary. Several other pterosaur lineages may have been present during the Maastrichtian, such as the 4914: 2117:. He further posits that the mass extinction occurred within 32,000 years of this date. The dating of hydrothermally altered structures around the crater is consistent with this timeline. 13759:"Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide" 2403:
The Deccan Traps, which erupted close to the boundary between the Mesozoic and Cenozoic, have been cited as an alternate explanation for the mass extinction. Before 2000, arguments that the
3060: 6831:
Alfaro, Michael E.; Faircloth, Brant C.; Harrington, Richard C.; Sorenson, Laurie; Friedman, Matt; Thacker, Christine E.; Oliveros, Carl H.; Černý, David; Near, Thomas J. (12 March 2018).
13255: 1670:
angiosperm plants. In North American terrestrial sequences, the extinction event is best represented by the marked discrepancy between the rich and relatively abundant late-Maastrichtian
6887:
Archibald, J. D.; Bryant, L. J. (1990). "Differential Cretaceous–Tertiary extinction of nonmarine vertebrates; evidence from northeastern Montana". In Sharpton, V.L.; Ward, P.D. (eds.).
2195:-type ecosystem, indicating that water in the Gulf of Mexico sloshed back and forth repeatedly after the impact; dead fish left in these shallow waters were not disturbed by scavengers. 929:
genera failed to cross the K–Pg boundary into the Paleocene. Further analysis of the coral extinctions shows that approximately 98% of colonial species, ones that inhabit warm, shallow
9962:
Johnson, K.R.; Hickey, L.J. (1991). "Megafloral change across the Cretaceous Tertiary boundary in the northern Great Plains and Rocky Mountains". In Sharpton, V.I.; Ward, P.D. (eds.).
14310:
Keller, G.; Adatte, T.; Gardin, S.; Bartolini, A.; Bajpai, S. (2008). "Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna-Godavari Basin, SE India".
9202:
Yonezawa, Takahiro; Segawa, Takahiro; Mori, Hiroshi; Campos, Paula F.; Hongoh, Yuichi; Endo, Hideki; Akiyoshi, Ayumi; Kohno, Naoki; Nishida, Shin; Wu, Jiaqi; Jin, Haofei (2017).
9563:
Shupinski, Alex B.; Wagner, Peter J.; Smith, Felisa A.; Lyons, S. Kathleen (3 July 2024). "Unique functional diversity during early Cenozoic mammal radiation of North America".
15662: 2575: 11174:
Renne, Paul R.; Deino, Alan L.; Hilgen, Frederik J.; Kuiper, Klaudia F.; Mark, Darren F.; Mitchell, William S.; Morgan, Leah E.; Mundil, Roland; Smit, Jan (8 February 2013).
2781: 13310:
Lyons, Shelby L.; Karp, Allison T.; Bralower, Timothy J.; Grice, Kliti; Schaefer, Bettina; Gulick, Sean P. S.; Morgan, Joanna V.; Freeman, Katherine H. (28 September 2020).
2129:(WISE) study of reflected light from the asteroids of the family estimated their break-up at 80 Ma, giving them insufficient time to shift orbits and impact Earth by 66 Ma. 2094:
Some critics of the impact theory have put forward that the impact precedes the mass extinction by about 300,000 years and thus was not its cause. However, in a 2013 paper,
2782:"Stratigraphy of the Cretaceous/Paleogene (K/Pg) boundary at the Global Stratotype Section and Point (GSSP) in El Kef, Tunisia: New insights from the El Kef Coring Project" 12211:
Reddy, V.; Emery, J. P.; Gaffey, M. J.; Bottke, W. F.; Cramer, A.; Kelley, M. S. (December 2009). "Composition of 298 Baptistina: Implications for the K/T impactor link".
8736:
le Loeuff, J. (2012). "Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: How many dinosaur species became extinct at the Cretaceous-Tertiary boundary?".
2073: 1961:. Because of this, the Alvarez team suggested that an asteroid struck the Earth at the time of the K–Pg boundary. There were earlier speculations on the possibility of an 11002:"An asteroid killed dinosaurs in spring—which might explain why mammals survived – New study sheds light on why species extinction was so selective after the K-Pg impact" 13185:
Senel, Cem Berk; Kaskes, Pim; Temel, Orkun; Vellekoop, Johan; Goderis, Steven; DePalma, Robert; Prins, Maarten A.; Claeys, Philippe; Karatekin, Özgür (30 October 2023).
8167:
Company, J.; Ruiz-Omeñaca, J. I.; Pereda Suberbiola, X. (1999). "A long-necked pterosaur (Pterodactyloidea, Azhdarchidae) from the upper Cretaceous of Valencia, Spain".
1665:. Just two species of fern appear to have dominated the landscape for centuries after the event. In the sediments below the K–Pg boundary the dominant plant remains are 11637:
Stöffler, Dieter; Artemieva, Natalya A.; Ivanov, Boris A.; Hecht, Lutz; Kenkmann, Thomas; Schmitt, Ralf Thomas; Tagle, Roald Alberto; Wittmann, Axel (26 January 2010).
5426:
Brouwers, E. M.; de Deckker, P. (1993). "Late Maastrichtian and Danian Ostracode Faunas from Northern Alaska: Reconstructions of Environment and Paleogeography".
3298:"The dinosaur-killing asteroid acidified the ocean in a flash: the Chicxulub event was as damaging to life in the oceans as it was to creatures on land, a study shows" 12617:
Norris, R. D.; Firth, J.; Blusztajn, J. S. & Ravizza, G. (2000). "Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact".
8809:
Sloan, R. E.; Rigby, K.; van Valen, L. M.; Gabriel, Diane (1986). "Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation".
2479:
that ten million years before had been host to diverse communities such as are found in rocks of the Dinosaur Park Formation. Another consequence was an expansion of
5707:
Rosen, B. R.; Turnšek, D. (1989). Jell A; Pickett JW (eds.). "Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary".
3444: 9429: 6665:
Cione, Alberto L.; Santillana, Sergio; Gouiric-Cavalli, Soledad; Acosta Hospitaleche, Carolina; Gelfo, Javier N.; López, Guillermo M.; Reguero, Marcelo (May 2018).
6620:
Zinsmeister, W. J. (1 May 1998). "Discovery of fish mortality horizon at the K–T boundary on Seymour Island: Re-evaluation of events at the end of the Cretaceous".
6071:
Harries, P. J.; Johnson, K. R.; Cobban, W. A.; Nichols, D.J. (2002). "Marine Cretaceous-Tertiary boundary section in southwestern South Dakota: Comment and reply".
3256:
Hildebrand, A. R.; Penfield, G. T.; et al. (1991). "Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán peninsula, Mexico".
2057: 1493:(about 1 million years after the K–Pg extinction event). If their existence past the K–Pg boundary can be confirmed, these hadrosaurids would be considered a 297:. The fact that the extinctions occurred simultaneously provides strong evidence that they were caused by the asteroid. A 2016 drilling project into the Chicxulub 13580: 13757:
Kawaragi, Ko; Sekine, Yasuhito; Kadono, Toshihiko; Sugita, Seiji; Ohno, Sohsuke; Ishibashi, Ko; Kurosawa, Kosuke; Matsui, Takafumi; Ikeda, Susumu (30 May 2009).
12174: 12055: 10019: 9682: 9565: 5985: 1805:
The sedimentation rate and thickness of K–Pg clay from three sites suggest rapid extinction, perhaps over a period of less than 10,000 years. At one site in the
12314: 8392:"Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity" 1776:
assumptions" for the June dating have since all been refuted. Another modern study opted for the spring–summer range. A study of fossilized fish bones found at
379:, which became extinct), and many species of plankton. It is estimated that 75% or more of all species on Earth vanished. However, the extinction also provided 102:
a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
9909:
Vajda, Vivi; Raine, J. Ian; Hollis, Christopher J. (2001). "Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike".
6789:"The Cretaceous–Paleogene transition in spiny-rayed fishes: surveying "Patterson's Gap" in the acanthomorph skeletal record André Dumont medalist lecture 2018" 5401:
Coles, G. P.; Ayress, M. A.; Whatley, R. C. (1990). "A comparison of North Atlantic and 20 Pacific deep-sea Ostracoda". In Whatley, R. C.; Maybury, C. (eds.).
8015:"Phylogenetic structure of the extinction and biotic factors explaining differential survival of terrestrial notosuchians at the Cretaceous–Palaeogene crisis" 4591: 8871:. International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, 9–12 July 2000. Vol. 1053. Vienna, Austria. pp. 45–46. 2031:
with suspicion. Furthermore, indirect evidence of an asteroid impact as the cause of the mass extinction comes from patterns of turnover in marine plankton.
14614:
Sial, A. N.; Lacerda, L. D.; Ferreira, V. P.; Frei, R.; Marquillas, R. A.; Barbosa, J. A.; Gaucher, C.; Windmöller, C. C.; Pereira, N. S. (1 October 2013).
6729: 5129: 3123: 2438:
There is clear evidence that sea levels fell in the final stage of the Cretaceous by more than at any other time in the Mesozoic era. In some Maastrichtian
1323:
became extinct; freshwater environments were not so strongly affected by the K–Pg extinction event as marine environments were. Among the terrestrial clade
14347:
Callegaro, Sara; Baker, Don R.; Renne, Paul R.; Melluso, Leone; Geraki, Kalotina; Whitehouse, Martin J.; De Min, Angelo; Marzoli, Andrea (6 October 2023).
7710: 6165: 4351: 3307: 2022:. Tanis is an extraordinary and unique site because it appears to record the events from the first minutes until a few hours after the impact of the giant 14415: 7307:
Apesteguía, Sebastián; Novas, Fernando E. (2003). "Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana".
4915:"Calcareous Nannofossils Across the Cretaceous–Tertiary Boundary at Brazos, Texas, U.S.A.: Extinction and Survivorship, Biostratigraphy, and Paleoecology" 2422:
In the years when the Deccan Traps hypothesis was linked to a slower extinction, Luis Alvarez (d. 1988) replied that paleontologists were being misled by
750:
during the Paleogene Period. After the K–Pg extinction event, biodiversity required substantial time to recover, despite the existence of abundant vacant
11780:
Tanis, a mixed marine-continental event deposit at the KPG Boundary in North Dakota caused by a seiche triggered by seismic waves of the Chicxulub Impact
7971:"The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary" 3787:
The Hell Creek formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous
2202:, cooking exposed organisms. This is debated, with opponents arguing that local ferocious fires, probably limited to North America, fall short of global 15490: 11001: 4824:"The role of regional survivor incumbency in the evolutionary recovery of calcareous nannoplankton from the Cretaceous/Paleogene (K/Pg) mass extinction" 591:, but are unknown from the Cenozoic anywhere in the world. Similarly, fossil pollen shows devastation of the plant communities in areas as far apart as 387:—sudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the 16723: 15655: 11381:
Bohor, B. F.; Foord, E. E.; Modreski, P. J.; Triplehorn, D. M. (1984). "Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary".
10557:
Carvalho, Mónica R.; Jaramillo, Carlos; Parra, Felipe de la; Caballero-Rodríguez, Dayenari; Herrera, Fabiany; Wing, Scott; et al. (2 April 2021).
12671: 11639:"Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling" 7021:
Evans, Susan E.; Klembara, Jozef (2005). "A choristoderan reptile (Reptilia: Diapsida) from the Lower Miocene of northwest Bohemia (Czech Republic)".
6189:"A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) – a story of persistence, food availability and a big bang" 14946: 14712: 14620: 14479: 14268: 13887: 12816: 8701: 8585: 6451: 6371: 5208: 4238:
Wilf, P.; Johnson, K.R. (2004). "Land plant extinction at the end of the Cretaceous: A quantitative analysis of the North Dakota megafloral record".
2845: 1587:
survived the K–Pg extinction event, although they suffered losses. In particular, metatherians largely disappeared from North America, and the Asian
1497:. The scientific consensus is that these fossils were eroded from their original locations and then re-buried in much later sediments (also known as 1054:
flora were relatively diverse with little predation from insects, even 1.7 million years after the extinction event. Studies of the size of the
11028:
Signor, Philip W. III; Lipps, Jere H. (1982). "Sampling bias, gradual extinction patterns, and catastrophes in the fossil record". In Silver, L.T.;
10446: 9301: 8286: 5711:. Proceedings of the Fifth International Symposium on Fossil Cnidaria including Archaeocyatha and Spongiomorphs (8). Brisbane, Queensland: 355–370. 4450:
Sheehan, Peter M.; Fastovsky, D. E. (1992). "Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana".
2547: 3052: 15379: 3903: 14793: 12859: 11811: 8218: 6109: 16596: 12118:
Bottke, W. F.; Vokrouhlický, D.; Nesvorný, D. (September 2007). "An asteroid breakup 160 Myr ago as the probable source of the K/T impactor".
8906: 6449:
Kriwet, Jürgen; Benton, Michael J. (2004). "Neoselachian (Chondrichthyes, Elasmobranchii) Diversity across the Cretaceous–Tertiary Boundary".
5471:
Martins, Maria João Fernandes; Hunt, Gene; Thompson, Carmi Milagros; Lockwood, Rowan; Swaddle, John P.; Puckett, T. Markham (26 August 2020).
1474:
up to 1.3 m (4 ft 3.2 in) above and 40,000 years later than the K–Pg boundary. Pollen samples recovered near a fossilized
15648: 14942:"Coastal ecosystem responses to late stage Deccan Trap volcanism: the post K–T boundary (Danian) palynofacies of Mumbai (Bombay), west India" 13969: 12779: 7151: 12934:"An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub" 10910: 10015:"No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France" 4918: 12752: 12274: 9065: 8064:
Martin, Jeremy E.; Pochat-Cottilloux, Yohan; Laurent, Yves; Perrier, Vincent; Robert, Emmanuel; Antoine, Pierre-Olivier (28 October 2022).
6312:
Wilf, P.; Labandeira, C. C.; Johnson, K. R.; Ellis, B. (2006). "Decoupled plant and insect diversity after the end-Cretaceous extinction".
4870:
Gedl, P. (2004). "Dinoflagellate cyst record of the deep-sea Cretaceous-Tertiary boundary at Uzgru, Carpathian Mountains, Czech Republic".
743: 13148:
Ohno, S.; et al. (2014). "Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification".
6962:"Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary" 2650:
Shocked minerals have their internal structure deformed, and are created by intense pressures as in nuclear blasts and meteorite impacts.
2558: 8940:
Hou, L.; Martin, M.; Zhou, Z.; Feduccia, A. (1996). "Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China".
1723:
would not need sunlight, allowing them to survive during a period when the atmosphere was likely clogged with dust and sulfur aerosols.
16708: 16653: 12991: 11491:
Bourgeois, J.; Hansen, T. A.; Wiberg, P. A.; Kauffman, E. G. (1988). "A tsunami deposit at the Cretaceous-Tertiary boundary in Texas".
11057: 4731: 2695: 2451:, a drop in sea level. There is no direct evidence for the cause of the regression, but the currently accepted explanation is that the 1148:
There is limited evidence for extinction of amphibians at the K–Pg boundary. A study of fossil vertebrates across the K–Pg boundary in
785:
deposits for which the Cretaceous is named. The turnover in this group is clearly marked at the species level. Statistical analysis of
261:
10 to 15 km (6 to 9 mi) wide, 66 million years ago, which devastated the global environment, mainly through a lingering
11893:"Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): paleoenvironmental inferences" 8880: 7653:
Martin, Jeremy E.; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent (5 June 2017).
2149:. The aftermath of this immense asteroid collision, which occurred approximately 66 million years ago, is believed to have caused the 234:, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal 15181:"Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktonic foraminifera from Brazos River, Texas" 13928: 11998:
Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; STüBEN, Doris; Berner, Zsolt; Kramar, Utz; Harting, Markus (26 January 2010).
7554:
Klein, Catherine G.; Pisani, Davide; Field, Daniel J.; Lakin, Rebecca; Wills, Matthew A.; Longrich, Nicholas R. (14 September 2021).
5817:
Marshall, C. R.; Ward, P. D. (1996). "Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys".
5473:"Shifts in sexual dimorphism across a mass extinction in ostracods: implications for sexual selection as a factor in extinction risk" 4152:
Weishampel, D. B.; Barrett, P. M. (2004). "Dinosaur distribution". In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.).
2839:
Irizarry, Kayla M.; Witts, James T.; Garb, Matthew P.; Rashkova, Anastasia; Landman, Neil H.; Patzkowsky, Mark E. (15 January 2023).
2171: 1486: 789:
losses at this time suggests that the decrease in diversity was caused more by a sharp increase in extinctions than by a decrease in
10362:
Field, Daniel J.; Bercovici, Antoine; Berv, Jacob S.; Dunn, Regan; Fastovsky, David E.; Lyson, Tyler R.; et al. (24 May 2018).
6960:
Feng, Yan-Jie; Blackburn, David C.; Liang, Dan; Hillis, David M.; Wake, David B.; Cannatella, David C.; Zhang, Peng (18 July 2017).
5767:
MacLeod, K. G. (1994). "Extinction of Inoceramid Bivalves in Maastrichtian Strata of the Bay of Biscay Region of France and Spain".
16478: 15810: 13811: 13371:
Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke (14 July 2016).
4656:
Pospichal, J. J. (1996). "Calcareous nannofossils and clastic sediments at the Cretaceous–Tertiary boundary, northeastern Mexico".
2638: 2304:
and methane concentrations. The impact's injection of water vapour into the atmosphere also produced major climatic perturbations.
1041:, the shallow-water reefs in existence at that time, by the extinction event. Atelostomatans were affected by the Lilliput effect. 14475:"Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean)" 3396:(2012). "The Cretaceous–Tertiary mass extinction, Chicxulub impact, and Deccan volcanism. Earth and life". In Talent, John (ed.). 3093: 2901:"High-latitude Cretaceous–Paleogene transition: New paleoenvironmental and paleoclimatic insights from Seymour Island, Antarctica" 16728: 16440: 10126: 10078: 9798: 7115: 5872:"The first 2 million years after the Cretaceous-Tertiary boundary in east Texas: rate and paleoecology of the molluscan recovery" 11133:"Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales" 10629:
Visscher, H.; Brinkhuis, H.; Dilcher, D. L.; Elsik, W. C.; Eshet, Y.; Looy, C. V.; Rampino, M. R.; Traverse, A. (5 March 1996).
1185:(a group of semi-aquatic diapsids of uncertain position) survived across the K–Pg boundary subsequently becoming extinct in the 332:, and sea level change. However, in January 2020, scientists reported that climate-modeling of the extinction event favored the 16580: 16425: 15872: 15091: 12932:
Belcher, Claire M.; Hadden, Rory M.; Rein, Guillermo; Morgan, Joanna V.; Artemieva, Natalia; Goldin, Tamara (22 January 2015).
12452: 9316: 6737: 5300:"The Cretaceous–Paleogene (K–P) boundary at Brazos, Texas: Sequence stratigraphy, depositional events and the Chicxulub impact" 5134: 4596: 4199: 2786: 2581: 478: 14214:
Courtillot, Vincent; Besse, Jean; Vandamme, Didier; Montigny, Raymond; Jaeger, Jean-Jacques; Cappetta, Henri (November 1986).
6939:
Gardner, J. D. (2000). "Albanerpetontid amphibians from the upper Cretaceous (Campanian and Maastrichtian) of North America".
5626:"Costacopluma (Decapoda: Brachyura: Retroplumidae) from the Maastrichtian and Paleocene of Senegal: A survivor of K/Pg events" 2841:"Faunal and stratigraphic analysis of the basal Cretaceous-Paleogene (K-Pg) boundary event deposits, Brazos River, Texas, USA" 1210:
species passed through the K–Pg boundary. All six turtle families in existence at the end of the Cretaceous survived into the
16538: 16420: 15860: 15586: 15461: 15185: 14865: 14027: 13870: 13044: 12814:
Kring, David A. (2007). "The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary".
12665: 12519: 11043: 9997: 9971: 9406: 8682: 8563: 8518: 7367: 7163: 6904: 6495: 6430: 6187:
Wiese, Frank; Schlüter, Nils; Zirkel, Jessica; Herrle, Jens O.; Friedrich, Oliver (9 August 2023). Carnevale, Giorgio (ed.).
5410: 5186: 5006: 4169: 3794: 3417: 2760: 2735: 2679: 2569: 1727: 634:-eaters survived the extinction event, perhaps because of the increased availability of their food sources. Neither strictly 485: 14881:
Sprain, Courtney J.; Renne, Paul R.; Vanderkluysen, Loÿc; Pande, Kanchan; Self, Stephen; Mittal, Tushar (22 February 2019).
14756:"Extinction, survivorship and evolution of planktic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia" 9678:"Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction" 2411:
spanning the K–Pg boundary, and therefore may be responsible for the extinction and the delayed biotic recovery thereafter.
1938: 746:. The elimination of dominant Cretaceous groups allowed other organisms to take their place, causing a remarkable amount of 16703: 16178: 11546:"The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" 5871: 7865:"Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility" 4103:"Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction" 3434: 1933:
many times greater than normal (30, 160, and 20 times in three sections originally studied). Iridium is extremely rare in
16738: 16611: 16360: 14423: 14312: 14220: 14049: 13763: 13707: 13659: 13611: 11137: 9423: 8444:"Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary" 5252:"Comparative biogeographic analysis of planktic foraminiferal survivorship across the Cretaceous/Tertiary (K/T) boundary" 3470: 2126: 10413: 933:
waters, became extinct. The solitary corals, which generally do not form reefs and inhabit colder and deeper (below the
16753: 16533: 15750: 14792:
Zhang, Laiming; Wang, Chengshan; Wignall, Paul B.; Kluge, Tobias; Wan, Xiaoqiao; Wang, Qian; Gao, Yuan (1 March 2018).
13570: 12453:"Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous" 12213: 12004: 11643: 8865:
Compelling new evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone San Juan Basin, New Mexico and Colorado, USA
7978: 7023: 6511:
Noubhani, Abdelmajid (2010). "The Selachians' faunas of the Moroccan phosphate deposits and the K-T mass extinctions".
4107: 610:
Despite the event's severity, there was significant variability in the rate of extinction between and within different
14794:"Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China" 12047: 7202:"Tracing the patterns of non-marine turtle richness from the Triassic to the Palaeogene: from origin to global spread" 5981:"The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves" 5530:"Temporal shifts in ostracode sexual dimorphism from the Late Cretaceous to the late Eocene of the U.S. Coastal Plain" 5130:"How complete are Cretaceous /Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation" 2235:
rock containing a large amount of combustible hydrocarbons and sulfur, much of which was vaporized, thereby injecting
1529:. Several analyses of bird fossils show divergence of species prior to the K–Pg boundary, and that duck, chicken, and 16498: 15774: 15248: 14616:"Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition" 13863:
The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions
13547:
Hand, Eric (17 November 2016). "Updated: Drilling of dinosaur-killing impact crater explains buried circular hills".
12938: 12302: 11288:
Smit, J.; Klaver, J. (1981). "Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event".
8066:"Anatomy and phylogeny of an exceptionally large sebecid (Crocodylomorpha) from the middle Eocene of southern France" 6166:"Variation in echinoid biodiversity during the Cenomanian-early Turonian transgressive episode in Charentes (France)" 6108:
Iba, Yasuhiro; Mutterlose, Jörg; Tanabe, Kazushige; Sano, Shin-ichi; Misaki, Akihiro; Terabe, Kazunobu (1 May 2011).
4936: 4307: 1878: 1848: 1662: 1448:, which suggests food was plentiful immediately prior to the extinction. A study of 29 fossil sites in Catalan 231: 11797:
Life after impact: A remarkable mammal burrow from the Chicxulub aftermath in the Hell Creek Formation, North Dakota
7795:
O'Keefe, F. R. (2001). "A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia)".
7615:"An early Eocene pan-gekkotan from France could represent an extra squamate group that survived the K-Pg extinction" 7200:
Cleary, Terri J.; Benson, Roger B. J.; Holroyd, Patricia A.; Barrett, Paul M. (10 May 2020). Mannion, Philip (ed.).
858:
foraminifera became extinct during the event, presumably because they depend on organic debris for nutrients, while
522: 427: 16632: 16601: 15798: 15786: 5374:
Kuhnt, W.; Collins, E. S. (1996). "8. Cretaceous to Paleogene benthic foraminifers from the Iberia abyssal plain".
5204:"The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction?" 1231:, had begun to decline by the mid-Cretaceous, although they remained successful in the Late Cretaceous of southern 549: 492: 329: 11131:
Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M. (15 October 2016).
9786: 1817:
lasted approximately 1,000 years, and no more than 71,000 years; at the same location, the earliest appearance of
1752:
the extinction-associated freezing to early June. A later study shifted the dating to spring season, based on the
16410: 16307: 15836: 15312:"End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change" 13607:"The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol" 12887: 12345: 12084: 9425:
The Extinction of the Multituberculates Outside North America: a Global Approach to Testing the Competition Model
8309: 8249: 7705: 7507:"A new polyglyphanodontian lizard with a complete lower temporal bar from the Upper Cretaceous of southern China" 7250:"Surviving the Cretaceous-Paleogene mass extinction event: A terrestrial stem turtle in the Cenozoic of Laurasia" 6770: 6667:"Before and after the K/Pg extinction in West Antarctica: New marine fish records from Marambio (Seymour) Island" 5920:"Abundance not linked to survival across the end-Cretaceous mass extinction: Patterns in North American bivalves" 4774:
Jiang, Shijun; Bralower, Timothy J.; Patzkowsky, Mark E.; Kump, Lee R.; Schueth, Jonathan D. (28 February 2010).
3172: 2563: 2247: 2223:
radiation generated by the impact would have been absorbed by the atmosphere and ejecta in the lower atmosphere.
1458:
Cretaceous–Paleogene extinction event. Alternatively, interpretation based on the fossil-bearing rocks along the
506: 309:, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an 15157: 12717: 11937:
Keller, G.; Adatte, T.; Stinnesbeck, W.; Rebolledo-Vieyra, _; Fucugauchi, J. U.; Kramar, U.; Stüben, D. (2004).
11615: 11563: 11352: 10348: 8787: 7156:
Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas
7036: 6094: 6054: 5998: 5147: 4752: 4679: 4567: 4473: 4392: 4253: 4212: 3297: 3279: 893:
across the K–Pg boundary. The apparent rate is influenced by a lack of fossil records, rather than extinctions.
16713: 16287: 15233:
Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality
14566:
Milligan, Joseph N.; Royer, Dana L.; Franks, Peter J.; Upchurch, Garland R.; McKee, Melissa L. (7 March 2019).
12640: 12310: 11333:
Olsson, Richard K.; Miller, Kenneth G.; Browning, James V.; Habib, Daniel; Sugarman, Peter J. (1 August 1997).
10470:"Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event" 10170:"Divergence rates of subviral pathogens of angiosperms abruptly decreased at the Cretaceous-Paleogene boundary" 10074:"Flora development in Northeastern Asia and Northern Alaska during the Cretaceous-Paleogene transitional epoch" 9964:
Global Catastrophes in Earth History: An interdisciplinary conference on impacts, volcanism, and mass mortality
8391: 6889:
Global Catastrophes in Earth History: an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality
4194: 2318: 1657:
In some regions, the Paleocene recovery of plants began with recolonizations by fern species, represented as a
687:
than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on
14448: 9321:(Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation" 7991: 5528:
Samuels-Fair, Maya; Martins, Maria João Fernandes; Lockwood, Rowan; Swaddle, John P.; Hunt, Gene (June 2022).
4380: 293:
in the early 1990s, which provided conclusive evidence that the K–Pg boundary clay represented debris from an
16733: 16637: 15494: 15482: 14436: 13997: 13954: 13913: 12748: 11592:
Pope, K. O.; Ocampo, A. C.; Kinsland, G. L.; Smith, R. (1996). "Surface expression of the Chicxulub crater".
11335:"Ejecta layer at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX)" 10122:"Albian-Paleocene flora of the north pacific: Systematic composition, palaeofloristics and phytostratigraphy" 9865: 7619: 6837: 5582: 5304: 3536: 3334:"Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact" 2207: 2099: 559: 514: 419: 14349:"Recurring volcanic winters during the latest Cretaceous: Sulfur and fluorine budgets of Deccan Traps lavas" 10364:"Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction" 16468: 15559: 15514: 14572: 12460: 9502:
Springer, Mark S.; Foley, Nicole M.; Brady, Peggy L.; Gatesy, John; Murphy, William J. (29 November 2019).
6110:"Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous−Paleogene event" 1730:, the largest known mass extinction in Earth's history, with up to 96% of all species suffering extinction. 526: 431: 14615: 10414:"Online guide to the continental Cretaceous–Tertiary boundary in the Raton basin, Colorado and New Mexico" 6558:"Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays" 5577: 3577:
Chiarenza, Alfio Alessandro; Farnsworth, Alexander; Mannion, Philip D.; Lunt, Daniel J.; Valdes, Paul J.;
2900: 2840: 2311:
definitively known to be associated with an impact, and other large extraterrestrial impacts, such as the
1061:, produced by either cicada nymphs or beetle larvae, over the course of the K-Pg transition show that the 16748: 16718: 16682: 16553: 14671: 12996: 11999: 11638: 11038:. Vol. Special Publication 190. Boulder, Colorado: Geological Society of America. pp. 291–296. 10440: 8121:"Biotic and abiotic factors and the phylogenetic structure of extinction in the evolution of Tethysuchia" 7863:
Fischer, Valentin; Bardet, Nathalie; Benson, Roger B. J.; Arkhangelsky, Maxim S.; Friedman, Matt (2016).
7613:Čerňanský, Andrej; Daza, Juan; Tabuce, Rodolphe; Saxton, Elizabeth; Vidalenc, Dominique (December 2023). 7152:"Temporal changes within the latest Cretaceous and early Paleogene turtle faunas of northeastern Montana" 6365:
Wiest, Logan A.; Lukens, William E.; Peppe, Daniel J.; Driese, Steven G.; Tubbs, Jack (1 February 2018).
5203: 2300:
also increased and caused particularly devastating global warming because of the consequent increases in
1244: 758:
suggests that biotic recovery was more rapid in the Southern Hemisphere than in the Northern Hemisphere.
519: 424: 8013:
Aubier, Paul; Jouve, Stéphane; Schnyder, Johann; Cubo, Jorge (20 February 2023). Mannion, Philip (ed.).
4693:
Bown, P. (2005). "Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary".
1623: 985:
bivalves from the Late Cretaceous of the Omani Mountains, United Arab Emirates. Scale bar is 10 mm.
956:
of marine invertebrates, survived the K–Pg extinction event and diversified during the early Paleocene.
727:
included these shell builders, became extinct or suffered heavy losses. For example, it is thought that
527: 432: 343:
A wide range of terrestrial species perished in the K–Pg extinction, the best-known being the non-avian
16201: 11545: 11334: 10013:
Wappler, Torsten; Currano, Ellen D.; Wilf, Peter; Rust, Jes; Labandeira, Conrad C. (22 December 2009).
9247: 3883: 3056: 2334: 1823: 1784:
suggests that the Cretaceous-Paleogene mass extinction happened during the Northern Hemisphere spring.
1198:
palatal teeth suggest that there were dietary changes among the various species across the K–Pg event.
15180: 15083: 13088:"Site of asteroid impact changed the history of life on Earth: The low probability of mass extinction" 10325:
Schultz, P.; d'Hondt, S. (1996). "Cretaceous–Tertiary (Chicxulub) impact angle and its consequences".
10218:"No phylogenetic evidence for angiosperm mass extinction at the Cretaceous–Palaeogene (K-Pg) boundary" 10072:
Herman, A. B.; Akhmetiev, M. A.; Kodrul, T. M.; Moiseeva, M. G.; Iakovleva, A. I. (24 February 2009).
8621:"The Hell Creek Formation and its contribution to the Cretaceous–Paleogene extinction: A short primer" 6366: 5024:"Sedimentology and extinction patterns across the Cretaceous-Tertiary boundary interval in east Texas" 4539:"Mosasaur predation on upper Cretaceous nautiloids and ammonites from the United States Pacific Coast" 3400:
Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time
2267:
would have a reasonable chance of survival. In 2016, a scientific drilling project obtained deep rock-
1684:
Beyond extinction impacts, the event also caused more general changes of flora such as giving rise to
963:
genera exhibited significant diminution after the K–Pg boundary. Entire groups of bivalves, including
16543: 15896: 15762: 15579: 13703:"Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model" 13251:"On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections" 12851: 11081:"A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3" 10631:"The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse" 8065: 1950: 1266:, a diverse group of mainly herbivorous lizards known predominantly from the Northern Hemisphere The 525: 524: 430: 429: 14264:"Deccan volcanism at the Cretaceous-Tertiary boundary: past climatic crises as a key to the future?" 13807:"Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases" 12235: 9204:"Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites" 8203: 1946: 622:
reaching the ground. This plant extinction caused a major reshuffling of the dominant plant groups.
521: 426: 16575: 16567: 16463: 16415: 16171: 15848: 15702: 14567: 12580:"A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil" 8918: 2552: 2039: 1021:
class Cephalopoda became extinct at the K–Pg boundary. These included the ecologically significant
520: 518: 499: 425: 423: 321:
and produced long-lasting effects on the climate, detailing the mechanisms of the mass extinction.
17: 15033:"State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact" 7655:"Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction" 6920:
Estes, R. (1964). "Fossil vertebrates from the late Cretaceous Lance formation, eastern Wyoming".
4490:"Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous" 2198:
The re-entry of ejecta into Earth's atmosphere included a brief (hours-long) but intense pulse of
528: 523: 433: 428: 16513: 15726: 15478: 15266:"Calcareous Nannofossil Succession across the Cretaceous/Tertiary Boundary in East-Central Texas" 14941: 14707: 14474: 13758: 12266: 12079: 11892: 11747: 11261: 9061: 8019: 7815: 7206: 6666: 6622: 5769: 5625: 5529: 5299: 4822:
Schueth, Jonathan D.; Bralower, Timothy J.; Jiang, Shijun; Patzkowsky, Mark E. (September 2015).
2472: 2423: 2255: 1794: 1411: 1391: 1298:
had disappeared from fossil record tens of millions of years prior to the K-Pg extinction event.
14755: 14473:
Berggren, W.A; Aubry, M.-P; van Fossen, M; Kent, D.V; Norris, R.D; Quillévéré, F (1 June 2000).
14263: 14215: 14150:
Courtillot, V.; Féraud, G.; Maluski, H.; Vandamme, D.; Moreau, M. G.; Besse, J. (30 June 1988).
14044: 13806: 13702: 13654: 13606: 12739: 12504: 11799:
Paper No. 113–16, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
11796: 11782:
Paper No. 113–15, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
11779: 11080: 8674: 8580: 8343: 7752:
Chatterjee, S.; Small, B. J. (1989). "New plesiosaurs from the Upper Cretaceous of Antarctica".
5092:"The Cretaceous-Tertiary boundary transition in the Antarctic Ocean and its global implications" 5091: 5023: 2296:
rain through the production of nitrogen oxides and their subsequent reaction with water vapour.
1719:
are almost exclusive microfossils for a short span during and after the iridium boundary. These
450: 84: 16380: 16332: 14990:"Stable climate in India during Deccan volcanism suggests limited influence on K–Pg extinction" 13436: 13373:"Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction" 12883:"Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact" 12777:
Smit, Jan (1999). "The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta".
12230: 10277: 8547: 8399: 8347: 8302:"The rise of birds and mammals: Are microevolutionary processes sufficient for macroevolution?" 8125: 7111:"100 million years of land vertebrate evolution: The Cretaceous-early Tertiary transition" 5876: 5624:
Hyžný, Matúš; Perrier, Vincent; Robin, Ninon; Martin, Jeremy E.; Sarr, Raphaël (January 2016).
5256: 5022:
Hansen, T.; Farrand, R.B.; Montgomery, H.A.; Billman, H.G.; Blechschmidt, G. (September 1987).
4828: 4739: 4240: 4161: 3996:"The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation" 3899:"Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction" 3409: 2214:
suggested that, based on the amount of soot in the global debris layer, the entire terrestrial
2114: 1720: 1647: 1407: 937:) areas of the ocean were less impacted by the K–Pg boundary. Colonial coral species rely upon 14857: 13488:"Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary" 12655: 11436:"Shocked quartz in the Cretaceous-Tertiary boundary clays: Evidence for a global distribution" 7186: 6367:"Terrestrial evidence for the Lilliput effect across the Cretaceous-Paleogene (K-Pg) boundary" 3194:"Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary" 1646:
Due to the wholesale destruction of plants at the K–Pg boundary, there was a proliferation of
607:. Nevertheless, high latitudes appear to have been less strongly affected than low latitudes. 16743: 16503: 16458: 16337: 16226: 16216: 15822: 15375: 15316: 15134:
Li, Liangquan; Keller, Gerta (1998). "Abrupt deep-sea warming at the end of the Cretaceous".
14015: 13991: 13974: 13948: 13907: 12267:"NASA's WISE raises doubt about asteroid family believed responsible for dinosaur extinction" 11234: 9508: 9295: 8280: 7869: 7723: 7560: 5722:
Raup, D. M.; Jablonski, D. (1993). "Geography of end-Cretaceous marine bivalve extinctions".
4996: 2312: 840:
to the Upper Paleocene, a significant turnover in species but not a catastrophic extinction.
14708:"Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record" 14684: 14325: 14233: 13776: 13720: 13672: 13624: 13249:
Bardeen, Charles G.; Garcia, Rolando R.; Toon, Owen B.; Conley, Andrew J. (21 August 2017).
12226: 11150: 11033: 8539: 8243:
Slack, K, E; Jones, C M; Ando, T; Harrison, G L; Fordyce, R E; Arnason, U; Penny, D (2006).
4153: 3961:
Jablonski, D.; Chaloner, W. G. (1994). "Extinctions in the fossil record (and discussion)".
3397: 2699: 2141:
Artistic impression of the asteroid slamming into tropical, shallow seas of the sulfur-rich
198:
weighing more than 25 kilograms (55 pounds) also became extinct, with the exception of some
16606: 16375: 16365: 16322: 15572: 15407: 15325: 15145: 15100: 15046: 15003: 14955: 14896: 14807: 14721: 14680: 14629: 14532: 14488: 14362: 14321: 14277: 14229: 14165: 14101: 13820: 13772: 13716: 13668: 13620: 13501: 13431: 13200: 13159: 13099: 12896: 12825: 12788: 12705: 12628: 12591: 12552: 12469: 12402: 12354: 12222: 12193: 12129: 11952: 11904: 11849: 11701: 11603: 11502: 11449: 11392: 11299: 11146: 11097: 10953: 10866: 10853:
During, Melanie A. D.; Smit, Jan; Voeten, Dennis F. A. E.; et al. (23 February 2022).
10809: 10751: 10703: 10644: 10572: 10483: 10336: 9920: 9844: 9753: 9630: 9363: 9259: 9150: 9011: 8951: 8872: 8863: 8820: 8775: 8710: 8634: 8408: 8356: 8077: 8028: 7878: 7829: 7761: 7569: 7518: 7453: 7316: 6746: 6631: 6571: 6522: 6460: 6380: 6323: 6266: 6123: 6082: 6042: 5828: 5778: 5733: 5673: 5437: 5348: 4961: 4879: 4776:"Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary" 4704: 4667: 4605: 4555: 4461: 4421: 4368: 4316: 4056: 3912: 3825: 3738: 3672: 3596: 3515: 3439: 3405: 3347: 3267: 3207: 3140: 2982: 2912: 2854: 2795: 2468: 2439: 2251: 2007: 1831: 1749: 1737: 1471: 1399: 1247:. Outside of New Zealand, one rhynchocephalian is known to have crossed the K-Pg boundary, 890: 12933: 9504:"Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary" 7154:. In Wilson, Gregory P.; Clemens, William A.; Horner, John R.; Hartman, Joseph H. (eds.). 6557: 2483:
environments, since continental runoff now had longer distances to travel before reaching
2142: 1987: 1973:
and other minerals were also identified in the K–Pg boundary. The identification of giant
290: 190:
approximately 66 million years ago. The event caused the extinction of all non-avian
8: 16672: 16435: 16317: 16312: 16302: 16221: 16164: 14883:"The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary" 14568:"No Evidence for a Large Atmospheric CO 2 Spike Across the Cretaceous-Paleogene Boundary" 14523: 13038:
Morgan, Joanna V.; Bralower, Timothy J.; Brugger, Julia; Wünnemann, Kai (12 April 2022).
12389:"Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary" 10692:"Palaeobotanical evidence for a June 'impact winter' at the Cretaceous/Tertiary boundary" 9614: 8625: 8503: 7926: 7820: 7201: 6671: 5630: 5028: 2555: – One of the five most severe extinction events in the history of the Earth's biota 2146: 1995: 1906: 1870: 1777: 1482: 1467: 882: 755: 462: 318: 250: 15564: 15549: 15411: 15329: 15149: 15104: 15050: 15007: 14959: 14900: 14811: 14725: 14633: 14536: 14492: 14391: 14366: 14348: 14281: 14169: 14105: 13824: 13701:
Pope, Kevin O.; Baines, Kevin H.; Ocampo, Adriana C.; Ivanov, Boris A. (December 1994).
13505: 13204: 13163: 13103: 12900: 12829: 12792: 12709: 12632: 12595: 12556: 12473: 12406: 12358: 12197: 12133: 11956: 11908: 11853: 11705: 11607: 11506: 11453: 11396: 11380: 11303: 11101: 10957: 10870: 10813: 10755: 10707: 10648: 10576: 10529: 10487: 10340: 10250: 10217: 9924: 9848: 9757: 9634: 9367: 9263: 9154: 9015: 8955: 8876: 8824: 8779: 8714: 8638: 8412: 8360: 8081: 8032: 7969:
Jouve, S.; Bardet, N.; Jalil, N.-E.; Suberbiola, X. P.; Bouya, B.; Amaghzaz, M. (2008).
7882: 7833: 7765: 7614: 7573: 7522: 7457: 7320: 6750: 6635: 6575: 6526: 6464: 6384: 6327: 6270: 6225: 6188: 6127: 6086: 6046: 5832: 5782: 5737: 5677: 5441: 5352: 4965: 4883: 4708: 4671: 4609: 4559: 4465: 4425: 4372: 4320: 4060: 3916: 3829: 3812:"First evidence for a massive extinction event affecting bees close to the K-T boundary" 3742: 3676: 3600: 3519: 3351: 3271: 3211: 3144: 3083: 2986: 2966:"The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary" 2916: 2858: 2799: 1661:
in the geologic record; this same pattern of fern recolonization was observed after the
16758: 15604: 15534: 15430: 15395: 15346: 15311: 15285: 15161: 15116: 14189: 14125: 13655:"Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary" 13575: 13524: 13487: 13407: 13377: 13372: 13348: 13311: 13287: 13250: 13224: 13120: 13087: 12579: 12485: 12248: 12244: 12183: 12153: 12017: 11873: 11724: 11687: 11656: 11526: 11473: 11416: 11315: 11270: 10997: 10979: 10887: 10854: 10830: 10797: 10772: 10739: 10719: 10604: 10506: 10469: 10395: 10307: 10191: 10169: 10049: 10014: 9944: 9886: 9712: 9677: 9540: 9503: 9479: 9452: 9379: 9353: 9283: 9184: 9115: 9088: 9043: 8975: 8861: 8844: 8791: 8667: 8470: 8443: 8424: 8372: 8184: 8101: 7995: 7951: 7901: 7864: 7845: 7777: 7727: 7590: 7555: 7482: 7441: 7417: 7384: 7340: 7284: 7254: 7249: 7173: 7132: 7086: 7064: 7059: 7040: 6998: 6961: 6788: 6762: 6647: 6595: 6538: 6513: 6347: 5852: 5794: 5689: 5505: 5472: 5453: 5072: 4977: 4895: 4756: 4631: 4571: 4514: 4489: 4384: 4332: 4257: 4129: 4102: 4080: 4000: 3935: 3898: 3848: 3811: 3761: 3724: 3695: 3658: 3627: 3582: 3549: 3475: 3370: 3333: 3302: 3230: 3193: 3164: 3006: 2965: 2928: 2870: 2811: 2301: 2272: 2137: 2010:, a group of rocks spanning four states in North America renowned for many significant 1852: 1726:
The proliferation of fungi has occurred after several extinction events, including the
1614: 1605:
interpreted as diversifying immediately after the K–Pg boundary, including Chiroptera (
1432: 1349: 1263: 1227:
which were a globally distributed and diverse group of lepidosaurians during the early
1215:
diminished. European turtles likewise recovered rapidly following the mass extinction.
1038: 1002: 747: 688: 658: 384: 278: 258: 137:
than the upper and lower layers. Picture taken at the San Diego Natural History Museum;
14733: 14692: 14663: 14544: 14500: 11975: 11938: 11916: 11748:"National Natural Landmarks – National Natural Landmarks (U.S. National Park Service)" 11490: 11175: 10186: 9829: 9737:"Cope's rule and the dynamics of body mass evolution in North American fossil mammals" 9736: 9653: 9616: 8994: 8301: 8201: 7970: 6289: 6252: 6070: 5956: 5919: 5360: 5337: 4538: 3501: 16642: 16528: 16518: 16271: 16231: 15738: 15467: 15457: 15435: 15351: 15244: 15202: 15165: 15136: 15064: 15037: 14994: 14922: 14914: 14887: 14861: 14850: 14823: 14798: 14771: 14589: 14548: 14440: 14396: 14378: 14289: 14241: 14181: 14117: 14062: 14023: 14011: 13866: 13836: 13732: 13728: 13680: 13632: 13529: 13461: 13453: 13412: 13394: 13353: 13335: 13292: 13274: 13228: 13216: 13191: 13186: 13150: 13125: 13061: 13039: 13013: 12965: 12914: 12721: 12696: 12661: 12619: 12603: 12541: 12515: 12430: 12425: 12388: 12338: 12145: 12021: 11980: 11936: 11865: 11840: 11729: 11660: 11619: 11594: 11567: 11550: 11518: 11493: 11465: 11440: 11408: 11383: 11356: 11339: 11205: 11197: 11180: 11113: 11088: 11049: 11039: 10983: 10971: 10915: 10892: 10835: 10777: 10672: 10667: 10630: 10608: 10596: 10588: 10563: 10558: 10511: 10387: 10327: 10299: 10282: 10255: 10237: 10195: 10143: 10121: 10095: 10073: 10054: 10036: 9993: 9967: 9936: 9911: 9890: 9878: 9870: 9835: 9769: 9744: 9717: 9699: 9658: 9594: 9582: 9545: 9527: 9484: 9402: 9383: 9275: 9227: 9188: 9176: 9141: 9120: 9035: 8992: 8967: 8942: 8836: 8811: 8795: 8678: 8559: 8540: 8514: 8475: 8326: 8268: 8142: 8105: 8093: 8046: 7955: 7943: 7906: 7849: 7781: 7686: 7678: 7595: 7536: 7487: 7469: 7422: 7404: 7363: 7332: 7289: 7271: 7223: 7159: 7091: 7003: 6985: 6900: 6862: 6854: 6806: 6651: 6599: 6587: 6562: 6542: 6491: 6426: 6396: 6339: 6314: 6294: 6230: 6212: 6139: 6114: 6073: 6033: 6002: 5961: 5943: 5893: 5844: 5819: 5798: 5749: 5724: 5693: 5599: 5510: 5492: 5406: 5387: 5273: 5225: 5221: 5182: 5151: 5107: 5041: 5002: 4981: 4932: 4899: 4845: 4797: 4780: 4695: 4658: 4635: 4575: 4519: 4452: 4412: 4359: 4336: 4175: 4165: 4154: 4134: 4072: 4047: 4019: 3940: 3853: 3790: 3766: 3700: 3632: 3614: 3553: 3541: 3506: 3413: 3398: 3375: 3258: 3235: 3156: 3131: 3121: 2998: 2973: 2932: 2874: 2815: 2756: 2731: 2675: 2505: 2459: 2289: 2218:
might have burned, implying a global soot-cloud blocking out the sun and creating an
2121: 1685: 1160: 1032:
Approximately 35% of echinoderm genera became extinct at the K–Pg boundary, although
859: 767: 700: 618:
declined or became extinct as atmospheric particles blocked sunlight and reduced the
257:, it is now generally thought that the K–Pg extinction was caused by the impact of a 117: 12489: 12252: 12170: 11877: 11477: 11420: 10399: 10311: 9948: 9337: 8979: 8848: 8428: 8376: 8188: 7999: 7731: 7044: 6832: 6766: 6351: 4760: 4388: 4261: 4084: 3168: 2389:
would since have been obscured by the northward tectonic drift of Africa and India.
1498: 123:
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near
16647: 16395: 16370: 16327: 16297: 16246: 16241: 15671: 15629: 15618: 15425: 15415: 15341: 15333: 15277: 15236: 15229:"The Cretaceous/Tertiary boundary impact hypothesis and the paleontological record" 15194: 15153: 15120: 15108: 15054: 15011: 14963: 14904: 14815: 14767: 14729: 14688: 14637: 14581: 14540: 14496: 14432: 14386: 14370: 14353: 14329: 14285: 14237: 14193: 14173: 14156: 14129: 14109: 14092: 14058: 13828: 13780: 13724: 13676: 13628: 13552: 13519: 13509: 13445: 13432:"Chicxulub and Climate: Radiative Perturbations of Impact-Produced S-Bearing Gases" 13402: 13386: 13343: 13325: 13282: 13264: 13208: 13167: 13115: 13107: 13053: 13005: 12955: 12947: 12904: 12833: 12796: 12713: 12636: 12599: 12560: 12477: 12420: 12410: 12362: 12240: 12157: 12137: 12120: 12093: 12013: 11970: 11960: 11912: 11857: 11719: 11709: 11652: 11611: 11559: 11530: 11510: 11457: 11400: 11348: 11319: 11307: 11290: 11189: 11154: 11105: 11029: 10961: 10944: 10882: 10874: 10825: 10817: 10767: 10759: 10723: 10711: 10662: 10652: 10580: 10559:"Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests" 10501: 10491: 10377: 10344: 10291: 10245: 10229: 10181: 10135: 10087: 10044: 10028: 9928: 9860: 9852: 9761: 9707: 9691: 9648: 9638: 9590: 9574: 9535: 9517: 9474: 9466: 9451:
Pires, Mathias M.; Rankin, Brian D.; Silvestro, Daniele; Quental, Tiago B. (2018).
9371: 9287: 9267: 9250: 9217: 9166: 9158: 9110: 9102: 9047: 9027: 9019: 9002: 8993:
Clarke, J.A.; Tambussi, C.P.; Noriega, J.I.; Erickson, G.M.; Ketcham, R.A. (2005).
8959: 8828: 8808: 8783: 8762: 8745: 8718: 8642: 8594: 8551: 8465: 8455: 8416: 8364: 8318: 8258: 8176: 8166: 8134: 8085: 8036: 7987: 7935: 7896: 7886: 7837: 7769: 7719: 7668: 7628: 7585: 7577: 7556:"Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction" 7526: 7477: 7461: 7412: 7396: 7344: 7324: 7279: 7263: 7215: 7124: 7081: 7073: 7032: 6993: 6975: 6892: 6846: 6796: 6754: 6688: 6680: 6639: 6579: 6530: 6468: 6388: 6331: 6284: 6274: 6220: 6202: 6131: 6090: 6050: 6029: 5994: 5951: 5933: 5885: 5856: 5836: 5786: 5741: 5681: 5639: 5591: 5549: 5545: 5541: 5500: 5484: 5445: 5383: 5356: 5313: 5265: 5217: 5143: 5103: 5037: 4969: 4924: 4887: 4837: 4789: 4748: 4712: 4675: 4621: 4613: 4563: 4509: 4501: 4469: 4429: 4376: 4324: 4249: 4208: 4124: 4116: 4064: 4009: 3970: 3930: 3920: 3843: 3833: 3756: 3746: 3690: 3680: 3622: 3604: 3531: 3523: 3365: 3355: 3275: 3225: 3215: 3148: 3010: 2990: 2924: 2920: 2862: 2803: 2467:
and increasing global temperatures. Marine regression also resulted in the loss of
2362: 2342: 2308: 2150: 2087: 2023: 2015: 1983: 1979: 1922: 1856: 1827: 1568: 1361: 1113:(skates and rays) lost nearly all the identifiable species, while more than 90% of 825: 751: 716: 553: 282: 243: 172: 31: 12800: 11109: 9375: 8963: 8647: 8620: 8089: 7841: 7773: 7531: 7506: 6833:"Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary" 6684: 5840: 5643: 5578:"Selective extinction at the end-Cretaceous and appearance of the modern Decapoda" 4973: 4891: 4408: 3152: 1470:. Evidence of this existence is based on the discovery of dinosaur remains in the 127:, The Netherlands (finger is just below the actual Cretaceous–Paleogene boundary); 16355: 16292: 15510: 15451: 14967: 14641: 12837: 12616: 11514: 11461: 11404: 10368: 9765: 9457: 9208: 9093: 8832: 8722: 8598: 8460: 7659: 7385:"The youngest South American rhynchocephalian, a survivor of the K/Pg extinction" 7110: 6891:. Special Paper. Vol. 247. Geological Society of America. pp. 549–562. 6787:
Friedman, Matt; V. Andrews, James; Saad, Hadeel; El-Sayed, Sanaa (16 June 2023).
6727: 6664: 6472: 6392: 6207: 5317: 4068: 3838: 3088: 2866: 2452: 2292:. The heating of the atmosphere during the impact itself may have also generated 1974: 1934: 1514: 1494: 1353: 1308: 1224: 1062: 1050: 889:
There is significant variation in the fossil record as to the extinction rate of
333: 294: 223: 14088:"Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary" 11861: 11591: 11235:"Darkness caused by dino-killing asteroid snuffed out life on Earth in 9 months" 9089:"Diversification of Neoaves: integration of molecular sequence data and fossils" 8749: 7968: 7924:
Brochu, C. A. (2004). "Calibration age and quartet divergence date estimation".
7706:"Consequences of the Cretaceous/Paleogene Mass Extinction for Marine Ecosystems" 6311: 6250: 5298:
Schulte, Peter; Speijer, Robert; Mai, Hartmut; Kontny, Agnes (1 February 2006).
2669: 55: 16508: 16483: 15613: 15519: 15447: 15396:"A seismically induced onshore surge deposit at the KPg boundary, North Dakota" 14333: 13784: 13493:
Proceedings of the National Academy of Sciences of the United States of America
13449: 13317:
Proceedings of the National Academy of Sciences of the United States of America
13212: 13111: 13057: 12880: 12394:
Proceedings of the National Academy of Sciences of the United States of America
12210: 11944:
Proceedings of the National Academy of Sciences of the United States of America
11693:
Proceedings of the National Academy of Sciences of the United States of America
11688:"A seismically induced onshore surge deposit at the KPG boundary, North Dakota" 11159: 11132: 10966: 10939: 10878: 10821: 10763: 10636:
Proceedings of the National Academy of Sciences of the United States of America
10475:
Proceedings of the National Academy of Sciences of the United States of America
9622:
Proceedings of the National Academy of Sciences of the United States of America
8368: 8322: 7581: 7383:
Apesteguía, Sebastián; Gómez, Raúl O.; Rougier, Guillermo W. (7 October 2014).
7267: 6967:
Proceedings of the National Academy of Sciences of the United States of America
6258:
Proceedings of the National Academy of Sciences of the United States of America
5925:
Proceedings of the National Academy of Sciences of the United States of America
3730:
Proceedings of the National Academy of Sciences of the United States of America
3664:
Proceedings of the National Academy of Sciences of the United States of America
3588:
Proceedings of the National Academy of Sciences of the United States of America
3583:"Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction" 3339:
Proceedings of the National Academy of Sciences of the United States of America
3199:
Proceedings of the National Academy of Sciences of the United States of America
2721: 2533: 2517: 2346: 2211: 2183: 2177:
The scientific consensus is that the asteroid impact at the K–Pg boundary left
2159: 1970: 1925:
layers found all over the world at the Cretaceous–Paleogene boundary contain a
1910: 1874: 1761: 1757: 1584: 1580: 1542: 1526: 1522: 1489:
in Colorado, indicate that the animal lived during the Cenozoic, approximately
1459: 1320: 1287: 1133: 1098: 871: 801: 797: 786: 672: 615: 286: 266: 254: 16548: 14664:"The end-cretaceous mass extinction in the marine realm: Year 2000 assessment" 12097: 11838:
Barras, Colin (5 April 2019). "Does fossil site record dino-killing impact?".
11053: 10417: 10382: 10363: 10139: 10091: 9830:"Brawn before brains in placental mammals after the end-Cretaceous extinction" 9453:"Diversification dynamics of mammalian clades during the K–Pg mass extinction" 9222: 9203: 8245:"Early Penguin Fossils, Plus Mitochondrial Genomes, Calibrate Avian Evolution" 8180: 7673: 7654: 7440:
Herrera-Flores, Jorge A.; Stubbs, Thomas L.; Benton, Michael J. (March 2021).
6850: 6643: 6534: 5889: 5790: 5269: 4303: 571:
The event appears to have affected all continents at the same time. Non-avian
133:
rock with an intermediate claystone layer that contains 1,000 times more
16697: 16385: 16236: 16211: 15964: 15206: 15016: 14989: 14918: 14827: 14593: 14444: 14382: 14185: 14121: 13840: 13457: 13398: 13339: 13312:"Organic matter from the Chicxulub crater exacerbated the K–Pg impact winter" 13278: 13220: 13065: 13017: 12969: 12415: 12025: 11664: 11571: 11360: 11201: 11035:
Geological implications of impacts of large asteroids and comets on the Earth
10592: 10241: 10147: 10099: 10040: 9874: 9703: 9676:
Halliday, Thomas John Dixon; Upchurch, Paul; Goswami, Anjali (29 June 2016).
9586: 9531: 9522: 9328: 8995:"Definitive fossil evidence for the extant avian radiation in the Cretaceous" 8146: 8097: 8050: 7682: 7540: 7473: 7408: 7275: 7227: 6989: 6941: 6858: 6810: 6400: 6216: 6143: 6006: 5947: 5897: 5745: 5603: 5595: 5496: 5277: 5229: 5155: 4849: 4801: 4328: 4179: 4042: 3618: 3578: 3053:"Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast" 2476: 2236: 2219: 2082: 2003: 1926: 1773: 1588: 1420: 1378: 1373: 1345: 1291: 1249: 1232: 1191: 1087: 1082: 771: 692: 676: 576: 262: 15471: 15420: 15198: 15059: 15032: 14909: 14882: 13556: 13514: 13330: 13269: 12386: 11965: 11714: 11193: 10911:"Springtime was the season the dinosaurs died, ancient fish fossils suggest" 10584: 10496: 10295: 9932: 9856: 9643: 9162: 8555: 8513:(2nd ed.). Berkeley: University of California Press. pp. 672–684. 8263: 8244: 6980: 6583: 6335: 5938: 4014: 3995: 3925: 3751: 3725:"Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary" 3685: 3609: 3527: 3360: 3220: 2994: 2527: 2475:
of North America. The loss of these seas greatly altered habitats, removing
30:"Extinction of the non-avian dinosaurs" redirects here. For other uses, see 16627: 16206: 15624: 15479:
Papers and presentations resulting from the 2016 Chicxulub drilling project
15439: 15355: 15068: 14940:
Cripps, J.A.; Widdowson, M.; Spicer, R.A.; Jolley, D.W. (1 February 2005).
14926: 14552: 14400: 14374: 14309: 14151: 14087: 13736: 13533: 13465: 13416: 13357: 13296: 13129: 12960: 12918: 12741:
Field guide to Cretaceous-tertiary boundary sections in northeastern Mexico
12725: 12149: 12080:"Shocked titanite records Chicxulub hydrothermal alteration and impact age" 11984: 11869: 11733: 11623: 11522: 11469: 11412: 11209: 11117: 11006: 10975: 10896: 10839: 10781: 10676: 10657: 10600: 10515: 10391: 10303: 10259: 10233: 10058: 10032: 9940: 9882: 9803: 9721: 9695: 9662: 9598: 9578: 9549: 9488: 9470: 9279: 9231: 9180: 9124: 9106: 9087:
Ericson, P. G.; Anderson, C. L.; Britton, T.; et al. (December 2006).
9039: 8840: 8662: 8479: 8330: 8272: 7947: 7910: 7690: 7632: 7599: 7491: 7426: 7400: 7336: 7293: 7095: 7007: 6866: 6591: 6343: 6298: 6279: 6234: 5965: 5753: 5514: 5488: 5061: 4928: 4523: 4505: 4138: 4120: 4076: 4023: 3974: 3944: 3857: 3770: 3704: 3636: 3545: 3393: 3379: 3239: 3160: 3002: 2407: 2404: 2398: 2386: 2382: 2243: 1999: 1962: 1918: 1806: 1781: 1753: 1703: 1593: 1510: 1426: 1341: 1312: 1283: 1182: 1164: 1129: 968: 923: 847: 778: 684: 680: 627: 619: 356: 325: 207: 144: 14988:
Dzombak, R.M.; Sheldon, N.D.; Mohabey, D.M.; Samant, B. (September 2020).
14706:
Adatte, Thierry; Keller, Gerta; Stinnesbeck, Wolfgang (28 February 2002).
13805:
Pierazzo, Elisabetta; Kring, David A.; Melosh, H. Jay (25 November 1998).
12434: 12000:"More evidence that the Chicxulub impact predates the K/T mass extinction" 10445:. Scientific Monograph. Vol. 5. United States National Park Service. 9773: 8971: 5848: 4775: 4590:
Schmitz, Mark D.; Sluijs, Appy; Zamaloa, María del Carmen (1 March 2014).
3500:
Hull, Pincelli M.; Bornemann, André; Penman, Donald E. (17 January 2020).
1626:
increased first, allowing them to fill niches after the extinctions, with
16488: 16473: 16256: 14585: 14416:"Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous" 12481: 12450: 12117: 11544:
Bralower, Timothy J.; Paull, Charles K.; Mark Leckie, R. (1 April 1998).
11259:
de Laubenfels, M. W. (1956). "Dinosaur extinction: One more hypothesis".
11176:"Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary" 10556: 8581:"Polar dinosaurs and the question of dinosaur extinction: a brief review" 6801: 6486:
Patterson, C. (1993). "Osteichthyes: Teleostei". In Benton, M. J. (ed.).
5554: 4352:"Detritus feeding as a buffer to extinction at the end of the Cretaceous" 2480: 2293: 2268: 2187: 2178: 2043: 1969:
of rock, crystallized from droplets of molten rock formed by the impact.
1914: 1902: 1765: 1671: 1438: 1357: 1295: 1102: 1091: 1022: 949: 934: 696: 668: 639: 635: 604: 443: 324:
Other causal or contributing factors to the extinction may have been the
203: 199: 140: 15485:, GSA Annual Meeting in Seattle, Washington, USA – 2017, Session No. 192 15337: 15240: 13430:
Pierazzo, Elisabetta; Hahmann, Andrea N.; Sloan, Lisa C. (5 July 2004).
12951: 12141: 9271: 9086: 9023: 8119:
Forêt, Tom; Aubier, Paul; Jouve, Stéphane; Cubo, Jorge (23 April 2024).
7891: 7465: 7328: 6922:
University of California Publications, Department of Geological Sciences
6896: 4841: 4195:"Productivity across the Cretaceous/Tertiary boundary in high latitudes" 3025: 2727:
Life: A natural history of the first four billion years of life on Earth
2381:
impact, and the controversial and much larger 600 km (370 mi)
2086:
Radar topography reveals the 180 km (112 mi)-wide ring of the
305:
ejected within minutes from deep in the earth, but contained hardly any
16187: 16027: 16000: 15937: 15289: 15265: 12367: 12340: 11819:. Vol. 6. Houston, TX: Lunar and Planetary Institute. pp. 1–2 11433: 11274: 10442:
Invasion and Recovery of Vegetation after a Volcanic Eruption in Hawaii
9617:"Placental mammal diversification and the Cretaceous–Tertiary boundary" 9031: 8138: 8041: 8014: 7306: 7219: 7136: 6693: 5685: 5457: 5400: 5076: 4626: 4160:(2nd ed.). Berkeley, CA: University of California Press. pp.  3991: 2605: 2521: 2488: 2095: 1814: 1769: 1688: 1677: 1666: 1658: 1627: 1572: 1444: 1324: 1155: 1137: 1070: 1055: 1026: 1014: 900: 837: 820: 816: 790: 775: 728: 724: 592: 588: 314: 211: 109: 15555: 13832: 13390: 13009: 12992:"Wildfires and animal extinctions at the Cretaceous/Tertiary boundary" 12909: 12882: 9990:
Cretaceous–Tertiary Mass Extinctions: Biotic and Environmental Changes
9799:"Mammals' bodies outpaced their brains right after the dinosaurs died" 9171: 8862:
Fassett, J. E.; Lucas, S. G.; Zielinski, R. A.; Budahn, J. R. (2001).
7077: 6253:"Impact of the terminal Cretaceous event on plant–insect associations" 6164:
Neraudeau, Didier; Thierry, Jacques; Moreau, Pierre (1 January 1997).
5179:
Cretaceous–Tertiary Mass Extinctions: Biotic and environmental changes
4433: 3659:"Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary" 1065:
occurred in terrestrial invertebrates thanks to the extinction event.
978: 645:
seem to have survived. Rather, the surviving mammals and birds fed on
16493: 16009: 15919: 15714: 15112: 14819: 14177: 14113: 13171: 12564: 12512:
The Sea (Ideas and Observations on Progress in the Study of the Seas)
11311: 10715: 8939: 8697: 8202:
Barrett, P. M.; Butler, R. J.; Edwards, N. P.; Milner, A. R. (2008).
8063: 6758: 6135: 4729: 4716: 4617: 3723:
Longrich, N. R.; Bhullar, B.-A. S.; Gauthier, J. A. (December 2012).
2897: 2807: 2637:), which is now discouraged as a formal geochronological unit by the 2617: 2366: 2260: 2232: 2215: 2203: 2019: 1991: 1699: 1618: 1610: 1564: 1518: 1475: 1454: 1328: 1316: 1211: 1114: 998: 994: 990: 938: 829: 623: 388: 380: 376: 352: 337: 298: 195: 15640: 15281: 15084:"Triggering of the largest Deccan eruptions by the Chicxulub impact" 14016:"Multiple Impacts at the KT Boundary and the Death of the Dinosaurs" 13256:
Proceedings of the National Academy of Sciences of the United States
12339:
Robertson, D. S.; Lewis, W. M.; Sheehan, P. M.; Toon, O. B. (2013).
11435: 10468:
Fawcett, Jeffrey A.; Maere, Steven; Van de Peer, Yves (April 2009).
9615:
Springer, M. S.; Murphy, W. J.; Eizirik, E.; O'Brien, S. J. (2003).
8509:. In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.). 7128: 5870:
Hansen, Thor A.; Farrell, Benjamin R.; Upshaw, Banks (Spring 1993).
5449: 4920:
The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas
4793: 3122:
Alvarez, Luis W.; Alvarez, Walter; Asaro, F.; Michel, H. V. (1980).
3017: 2026:
in extreme detail. Amber from the site has been reported to contain
1889: 317:. In October 2019, researchers asserted that the event rapidly 313:
into the atmosphere, causing longer-term effects on the climate and
147:, which are another hypothesized cause of the K–Pg extinction event. 16523: 15991: 15982: 15955: 15946: 15928: 15526: 10798:"Seasonal calibration of the end-cretaceous Chicxulub impact event" 10534: 7939: 6728:
Robertson, D. S.; McKenna, M. C.; Toon, O. B.; et al. (2004).
6193: 4952:
MacLeod, N. (1998). "Impacts and marine invertebrate extinctions".
3816: 2630: 2509: 2491:, those that prefer marine environments, such as sharks, suffered. 2264: 2199: 2192: 2047: 1966: 1958: 1894: 1818: 1810: 1695: 1576: 1449: 1267: 1258: 1228: 1110: 1094: 1018: 960: 912: 905: 896: 878: 844: 736: 732: 708: 572: 360: 344: 274: 239: 227: 219: 215: 191: 105: 99: 12188: 8420: 7060:"Morphology and function of the palatal dentition in Choristodera" 5527: 4732:"Origination, extinction, and mass depletions of marine diversity" 4486: 3502:"On impact and volcanism across the Cretaceous-Paleogene boundary" 281:, was bolstered by the discovery of the 180 km (112 mi) 64: 16018: 15973: 10940:"Fossil fish reveal timing of asteroid that killed the dinosaurs" 10530:"Dinosaur-killing asteroid strike gave rise to Amazon rainforest" 10216:
Thompson, Jamie B.; Ramírez-Barahona, Santiago (September 2023).
8766: 7442:"Ecomorphological diversification of squamates in the Cretaceous" 6830: 5428: 4546: 4449: 3255: 2444: 2350: 2338: 2281: 2239: 2027: 1930: 1798: 1546: 1538: 1415: 1403: 1311:
inhabited freshwater and terrestrial environments—except for the
1236: 1186: 1149: 1006: 972: 964: 930: 855: 782: 704: 631: 404: 396: 392: 372: 364: 310: 302: 235: 183: 134: 130: 124: 113: 12577: 12334: 12332: 8536: 7158:. Boulder, CO: Geological Society of America. pp. 299–312. 2755:. Portland, Oregon: Graphic Arts Center Publishing. p. 20. 2698:. International Commission on Stratigraphy. 2015. Archived from 1866: 15310:
Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C. (2016).
14213: 14149: 14045:"40Ar/39Ar dating on volcanic rocks of the Deccan Traps, India" 12306: 8389: 7862: 4151: 3783: 3124:"Extraterrestrial cause for the Cretaceous–Tertiary extinction" 2464: 2378: 2315:
impact, do not coincide with any noticeable extinction events.
2277: 2228: 2011: 1882: 1698:, replacing species composition and structure of local forests 1651: 1631: 1551: 1530: 1207: 1106: 982: 953: 833: 720: 712: 675:, few animal groups became extinct, including large forms like 665: 646: 642: 596: 584: 580: 541: 348: 306: 180: 75: 44: 13037: 12979:– via Lyell Collections Geological Society Publications. 12881:
Pope, K.O.; Baines, K.H.; Ocampo, A.C.; Ivanov, B. A. (1997).
12446: 12444: 9825: 9137: 6786: 5021: 4821: 3657:
Longrich, Nicholas R.; Tokaryk, Tim; Field, Daniel J. (2011).
3576: 2608:, which in turn originates from the correspondent German term 1826:
demonstrated that the period of global darkness following the
1382:
was among the dinosaurs living on Earth before the extinction.
1132:
at a fossil site immediately above the K–Pg boundary layer on
249:
As originally proposed in 1980 by a team of scientists led by
16156: 15530: 14880: 12692: 12329: 11997: 11891:
Alegret, Laia; Molina, Eustoquio; Thomas, Ellen (July 2003).
10628: 10071: 6886: 6251:
Labandeira, Conrad C.; Johnson, Kirk R.; Wilf, Peter (2002).
5425: 5376:
Proceedings of the Ocean Drilling Program, Scientific Results
4045:(1995). "Explosive evolution in Tertiary birds and mammals". 3192:
Vellekoop, J.; Sluijs, A.; Smit, J.; et al. (May 2014).
2670:
Ogg, James G.; Gradstein, F. M.; Gradstein, Felix M. (2004).
2484: 2167: 2064: 1954: 1797:, where the fossil record is so incomplete that most extinct 1733: 1716: 1691: 1478: 1390:
The growing consensus about the endothermy of dinosaurs (see
1121: 1033: 1010: 942: 926: 654: 611: 600: 544: 383:
opportunities: in its wake, many groups underwent remarkable
368: 270: 187: 176: 14414:
Nordt, Lee; Atchley, Stacy; Dworkin, Steve (December 2003).
12341:"K/Pg extinction: Re-evaluation of the heat/fire hypothesis" 11939:"Chicxulub impact predates the K–T boundary mass extinction" 11636: 9787:
How life blossomed after the dinosaurs died | Science | AAAS
7652: 6556:
Guinot, Guillaume; Condamine, Fabien L. (23 February 2023).
4588: 3877: 2276:
earth, which had been ejected to the surface by the impact.
2034: 1319:
juveniles, which would have helped them survive where other
15158:
10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2
14987: 14939: 14565: 14472: 14216:"Deccan flood basalts at the Cretaceous/Tertiary boundary?" 14152:"Deccan flood basalts and the Cretaceous/Tertiary boundary" 12718:
10.1130/0091-7613(1992)020<0099:TBDWCU>2.3.CO;2
12441: 11616:
10.1130/0091-7613(1996)024<0527:SEOTCC>2.3.CO;2
11564:
10.1130/0091-7613(1998)026<0331:TCTBCC>2.3.CO;2
11353:
10.1130/0091-7613(1997)025<0759:ELATCT>2.3.CO;2
11130: 10794: 10349:
10.1130/0091-7613(1996)024<0963:CTCIAA>2.3.CO;2
9450: 8788:
10.1669/0883-1351(2001)016<0482:ttoaco>2.0.co;2
7037:
10.1671/0272-4634(2005)025[0171:ACRRDF]2.0.CO;2
6095:
10.1130/0091-7613(2002)030<0955:MCTBSI>2.0.CO;2
6055:
10.1130/0091-7613(1991)019<1181:AAIBEP>2.3.CO;2
5999:
10.1666/0094-8373(2004)030<0507:TTEAIM>2.0.CO;2
5470: 5148:
10.1130/0016-7606(1991)103<1439:HCACTB>2.3.CO;2
4773: 4753:
10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2
4680:
10.1130/0091-7613(1996)024<0255:CNACSA>2.3.CO;2
4568:
10.1669/0883-1351(2004)019<0096:MPOUCN>2.0.CO;2
4474:
10.1130/0091-7613(1992)020<0556:MEOLDV>2.3.CO;2
4254:
10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2
4213:
10.1130/0016-7606(1994)106<1254:PATCTB>2.3.CO;2
3963:
Philosophical Transactions of the Royal Society of London B
3810:
Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P. (2013).
3280:
10.1130/0091-7613(1991)019<0867:ccapct>2.3.co;2
3191: 2120:
In 2007, it was proposed that the impactor belonged to the
1942: 1609:) and Cetartiodactyla (a diverse group that today includes 650: 218:
era, while heralding the beginning of the current era, the
15525:
Robert A. de Palm has found strong evidence that the
14346: 13756: 13604: 12641:
10.1130/0091-7613(2000)28<1119:MFOTNA>2.0.CO;2
12505:"Chapter 3. Geologic effects and records of tsunamis" 10278:"Fungal Proliferation at the Cretaceous-Tertiary Boundary" 8907:"No Paleocene dinosaurs in the San Juan Basin, New Mexico" 7751: 7505:
Xing, Lida; Niu, Kecheng; Evans, Susan E. (January 2023).
7439: 7199: 5816: 2963: 2751:
Muench, David; Muench, Marc; Gilders, Michelle A. (2000).
2576:
Timeline of Cretaceous–Paleogene extinction event research
2050:, shows an abrupt change from dark- to light-colored rock. 1534:
that a mass extinction of archaic birds took place there.
1521:
became extinct, including then-flourishing groups such as
15594: 15303: 13187:"Chicxulub impact winter sustained by fine silicate dust" 13184: 13040:"The Chicxulub impact and its environmental consequences" 11332: 10271: 10269: 9961: 9562: 9396: 7992:
10.1671/0272-4634(2008)28[409:TOACPP]2.0.CO;2
7612: 6186: 5663: 4998:
Evolutionary Catastrophes: The science of mass extinction
4381:
10.1130/0091-7613(1986)14<868:DFAABT>2.0.CO;2
3471:"Asteroid or Volcano? New Clues to the Dinosaurs' Demise" 3251: 3249: 2838: 2158:
The collision would have released the same energy as 100
1606: 1598: 1254:
known from the earliest Paleocene (Danian) of Patagonia.
400: 15533:—were indeed wiped out 66 million years ago by the 15491:"Chicxulub impact event: Understanding the K–T boundary" 14437:
10.1130/1052-5173(2003)013<4:TEFTGE>2.0.CO;2
11684: 11543: 10852: 10736: 10550: 10215: 9501: 9201: 8619:
Fastovsky, David E.; Bercovici, Antoine (January 2016).
8299: 6959: 5721: 5576:
Schweitzer, Carrie E; Feldmann, Rodney M (1 June 2023).
5001:. Cambridge, UK: Cambridge University Press. p. 2. 4954:
Special Publications of the Geological Society of London
4872:
Special Publications of the Geological Society of London
2778: 15552:—University of California Museum of Paleontology (1995) 14705: 14613: 13370: 13248: 12931: 12175:
The Journal of the Royal Astronomical Society of Canada
12076: 11813:
Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136)
10467: 10438: 10020:
Proceedings of the Royal Society B: Biological Sciences
9683:
Proceedings of the Royal Society B: Biological Sciences
9675: 9566:
Proceedings of the Royal Society B: Biological Sciences
9314: 8012: 7389:
Proceedings of the Royal Society B: Biological Sciences
6107: 5706: 5623: 5477:
Proceedings of the Royal Society B: Biological Sciences
5373: 5297: 3722: 3718: 3716: 3714: 13700: 13309: 12451:
Brugger, Julia; Feulner, Georg; Petri, Stefan (2016).
11808: 11173: 10361: 10266: 10012: 8673:. Princeton, NJ: Princeton University Press. pp.  8242: 7382: 6364: 6163: 5709:
Memoir of the Association of Australasian Paleontology
3246: 2600:
The abbreviation is derived from the juxtaposition of
1235:. They are represented today by a single species, the 15309: 14791: 13605:
Sigurdsson, H.; D'Hondt, S.; Carey, S. (April 1992).
12514:. Vol. 15: Tsunamis. Boston, MA: Harvard University. 12387:
Pope, K. O.; d'Hondt, S. L.; Marshall. C. R. (1998).
8911:
Geological Society of America Abstracts with Programs
8441: 7553: 4305:(1997). "The Cretaceous–Tertiary biotic transition". 4237: 3960: 3873: 3871: 3869: 3867: 2566: – Extinction event around 444 million years ago 2433: 1822:
years. Models presented at the annual meeting of the
1109:, skates, and rays) disappeared after this event and 770:
represents one of the most dramatic turnovers in the
15227:
Keller, Gerta; Barrera, Enriqueta (1 January 1990).
13429: 11434:
Bohor, B. F.; Modreski, P. J.; Foord, E. E. (1987).
11258: 8532: 8530: 8442:
Longrich, N. R.; Martill, D. M.; Andres, B. (2018).
8204:"Pterosaur distribution in time and space: an atlas" 8118: 7711:
Annual Review of Ecology, Evolution, and Systematics
7150:
Holroyd, Patricia A.; Hutchinson, J. Howard (2013).
4923:. Society of Sedimentary Geology. pp. 157–178. 4193:
Barrera, Enriqueta; Keller, Gerta (1 October 1994).
4096: 4094: 4037: 4035: 4033: 3711: 3656: 2455:
became less active and sank under their own weight.
14521:Courtillot, Vincent (1990). "A volcanic eruption". 14413: 13804: 11890: 11233:updated, Mindy Weisberger last (22 December 2021). 7058:Matsumoto, Ryoko; Evans, Susan E. (November 2015). 5869: 4233: 4231: 4229: 3789:. Geological Society of America. pp. 297–327. 3652: 3650: 3648: 3646: 3499: 3026:"The Asteroid and the Dinosaur (Nova S08E08, 1981)" 2750: 2458:A severe regression would have greatly reduced the 1813:, after the K–Pg boundary layer was deposited, the 14849: 11287: 10324: 9828: 9399:Classification of mammals: Above the species level 9243: 9241: 8666: 8618: 8542:Biological Processes Associated with Impact Events 7794: 6619: 6420: 5575: 5202:Keller, G.; Li, L.; MacLeod, N. (1 January 1996). 5128:Macleod, Norman; Keller, Gerta (1 November 1991). 4730:Bambach, R. K.; Knoll, A. H.; Wang, S. C. (2004). 3864: 3051:Sleep, Norman H.; Lowe, Donald R. (9 April 2014). 2584: – Mass extinction ending the Triassic period 2385:. Any other craters that might have formed in the 1591:became extinct (aside from the lineage leading to 1513:regard birds as the only surviving dinosaurs (see 1069:extinction. The advanced mound-building termites, 885:(Upper Cretaceous), Owl Creek, Ripley, Mississippi 15231:. In Sharpton, Virgil L.; Ward, Peter D. (eds.). 14947:Palaeogeography, Palaeoclimatology, Palaeoecology 14713:Palaeogeography, Palaeoclimatology, Palaeoecology 14621:Palaeogeography, Palaeoclimatology, Palaeoecology 14480:Palaeogeography, Palaeoclimatology, Palaeoecology 14269:Palaeogeography, Palaeoclimatology, Palaeoecology 12817:Palaeogeography, Palaeoclimatology, Palaeoecology 10276:Vajda, Vivi; McLoughlin, Stephen (5 March 2004). 9866:20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20 8702:Palaeogeography, Palaeoclimatology, Palaeoecology 8586:Palaeogeography, Palaeoclimatology, Palaeoecology 8527: 7149: 6452:Palaeogeography, Palaeoclimatology, Palaeoecology 6372:Palaeogeography, Palaeoclimatology, Palaeoecology 6246: 6244: 5209:Palaeogeography, Palaeoclimatology, Palaeoecology 4091: 4030: 3986: 3984: 3537:20.500.11820/483a2e77-318f-476a-8fec-33a45fbdc90b 2846:Palaeogeography, Palaeoclimatology, Palaeoecology 1101:, approximately 7 out of the 41 families of 828:as a result of cooling temperatures in the early 819:have left a geological record since at least the 742:The K–Pg extinction had a profound effect on the 16695: 15394:DePalma, Robert A.; et al. (1 April 2019). 14004: 13978:. Archived from the original on 11 December 2011 12303:"How an asteroid ended the age of the dinosaurs" 9908: 7745: 4655: 4226: 3956: 3954: 3809: 3643: 3327: 3325: 2487:. While this change was favorable to freshwater 1715:recovery after the impact. Monoporisporites and 1617:), although recent research concludes that only 355:. In the oceans, the K–Pg extinction killed off 27:Mass extinction event about 66 million years ago 15380:University of California Museum of Paleontology 10275: 9238: 8904: 6555: 5201: 3904:Proceedings of the National Academy of Sciences 3464: 3462: 3291: 3289: 2341:. In addition to the 180 km (110 mi) 800:is not so well understood, mainly because only 517: 422: 232:K–Pg boundary, Fatkito boundary or K–T boundary 16597:International Union for Conservation of Nature 10416:. U.S. Geological Survey. 2004. Archived from 10318: 8501: 8293: 7108: 7057: 6938: 6241: 5766: 5250:MacLeod, Norman; Keller, Gerta (Spring 1994). 3981: 3495: 3493: 3084:"Dinosaur asteroid hit 'worst possible place'" 2170:)—more than a billion times the energy of the 226:, the K–Pg event is marked by a thin layer of 16172: 15656: 15580: 15226: 13961: 13143: 13141: 13139: 12780:Annual Review of Earth and Planetary Sciences 12502: 12296: 12294: 12292: 9986: 9904: 9902: 9900: 8735: 7923: 7020: 6730:"Survival in the first hours of the Cenozoic" 5378:. Proceedings of the Ocean Drilling Program. 5249: 5127: 4349: 4343: 4192: 3951: 3322: 2674:. Cambridge, UK: Cambridge University Press. 2210:". A paper in 2013 by a prominent modeler of 1901:In 1980, a team of researchers consisting of 1466:Several researchers support the existence of 15263: 13935:. Archived from the original on 6 April 2012 13894:. Archived from the original on 25 June 2012 13653:Prinn, Ronald G.; Fegley, Bruce (May 1987). 12164: 11785: 11078: 10990: 10461: 10439:Smathers, G.A.; Mueller-Dombois, D. (1974). 9610: 9608: 9390: 9300:: CS1 maint: multiple names: authors list ( 8390:Prondvai, E.; Bodor, E. R.; Ösi, A. (2014). 8285:: CS1 maint: multiple names: authors list ( 7813: 7504: 7247: 6723: 6721: 6719: 6717: 6715: 6713: 6711: 6448: 4917:. In Keller, Gerta; Adatte, Thierry (eds.). 4536: 4100: 3896: 3459: 3286: 3044: 2964:Schulte, Peter; et al. (5 March 2010). 2959: 2957: 2955: 2953: 2951: 2949: 2572: – Earth's most severe extinction event 2548:Climate across Cretaceous–Paleogene boundary 2263:. Creatures whose food chains were based on 2191:tsunami wash deposits carrying remains of a 1044: 15493:. NASA Space Imagery Center. Archived from 15488: 14086:Duncan, R. A.; Pyle, D. G. (30 June 1988). 13652: 13085: 12578:Albertão, G. A.; P. P. Martins Jr. (1996). 12510:. In Robinson, A.R.; Bernard, E.N. (eds.). 12111: 11027: 8738:Bulletin de la Société Géologique de France 8502:David, Archibald; Fastovsky, David (2004). 7703: 6490:. Vol. 2. Springer. pp. 621–656. 6170:Bulletin de la Société Géologique de France 5812: 5810: 5808: 4951: 4350:Sheehan, Peter M.; Hansen, Thor A. (1986). 4299: 4297: 4295: 4293: 4291: 3490: 2559:List of possible impact structures on Earth 2447:, therefore the likeliest explanation is a 1073:, also appear to have risen in importance. 347:, along with many mammals, birds, lizards, 277:. The impact hypothesis, also known as the 16654:The Sixth Extinction: An Unnatural History 16179: 16165: 15663: 15649: 15587: 15573: 14520: 14261: 14085: 14010: 13967: 13926: 13885: 13136: 12289: 12204: 11768: 10855:"The Mesozoic terminated in boreal spring" 10740:"The Mesozoic terminated in boreal spring" 10689: 9897: 9415: 4994: 4289: 4287: 4285: 4283: 4281: 4279: 4277: 4275: 4273: 4271: 3117: 3115: 3113: 3111: 2629:The former designation includes the term ' 1537:The most successful and dominant group of 1128:There is evidence of a mass extinction of 1049:Insect damage to the fossilized leaves of 16724:Events in the geological history of Earth 15429: 15419: 15373: 15345: 15058: 15015: 14908: 14390: 13523: 13513: 13485: 13406: 13347: 13329: 13286: 13268: 13119: 12959: 12908: 12424: 12414: 12366: 12300: 12234: 12187: 11974: 11964: 11723: 11713: 11158: 10996: 10965: 10886: 10829: 10771: 10666: 10656: 10505: 10495: 10381: 10249: 10185: 10048: 9864: 9734: 9711: 9652: 9642: 9605: 9539: 9521: 9478: 9221: 9170: 9114: 8898: 8646: 8578: 8469: 8459: 8262: 8040: 7962: 7900: 7890: 7672: 7589: 7530: 7481: 7416: 7283: 7085: 6997: 6979: 6880: 6800: 6708: 6692: 6485: 6288: 6278: 6224: 6206: 5955: 5937: 5553: 5504: 4625: 4513: 4128: 4013: 3934: 3924: 3847: 3837: 3803: 3760: 3750: 3694: 3684: 3626: 3608: 3535: 3369: 3359: 3229: 3219: 3050: 2946: 2696:"International Chronostratigraphic Chart" 2172:atomic bombings of Hiroshima and Nagasaki 1674:record and the post-boundary fern spike. 1097:feeders on the continental shelf. Within 836:species survived the transition from the 15133: 15081: 13812:Journal of Geophysical Research: Planets 12382: 12380: 12378: 9062:"Primitive birds shared dinosaurs' fate" 8855: 8497: 8495: 8493: 8491: 8489: 7724:10.1146/annurev.ecolsys.35.021103.105715 7102: 6510: 5978: 5917: 5805: 5405:. Chapman & Hall. pp. 287–305. 5169: 4869: 4692: 4530: 4445: 4443: 4041: 2639:International Commission on Stratigraphy 2526: 2327: 2317: 2136: 2081: 2033: 1888: 1865: 1732: 1700:during ~6 million years of recovery 1372: 977: 870: 15509: 15393: 14856:. Princeton University Press. pp.  14847: 14081: 14079: 14042: 13860: 11930: 11232: 10127:Stratigraphy and Geological Correlation 10079:Stratigraphy and Geological Correlation 8669:The Horned Dinosaurs: A Natural History 8655: 7116:Annals of the Missouri Botanical Garden 5175: 4912: 4268: 3878:Nichols, D. J.; Johnson, K. R. (2008). 3332:Henehan, Michael J. (21 October 2019). 3331: 3108: 3023: 2345:, there is the 24 km (15 mi) 2006:. Tanis is part of the heavily studied 1294:, became extinct during the event. The 866: 301:confirmed that the peak ring comprised 14: 16696: 15446: 15178: 15092:Geological Society of America Bulletin 14753: 14661: 14020:30th International Geological Congress 13600: 13598: 13571:"Chicxulub crater dinosaur extinction" 13045:Nature Reviews Earth & Environment 12653: 12277:from the original on 23 September 2011 11837: 11678: 11228: 11226: 10937: 10167: 10119: 9068:from the original on 24 September 2011 8802: 8661: 7248:Pérez-García, Adán (30 January 2020). 6738:Geological Society of America Bulletin 5135:Geological Society of America Bulletin 5089: 4913:Tantawy, Abdel Aziz (1 January 2011). 4597:Geological Society of America Bulletin 4200:Geological Society of America Bulletin 3432: 3392: 3187: 3185: 2787:Geological Society of America Bulletin 2744: 2720: 1861: 1368: 1262:at the end of the Cretaceous were the 1189:. The gharial-like choristodere genus 699:always or sometimes feed on detritus. 476: 469: 460: 455: 410: 16160: 15670: 15644: 15596:Cretaceous–Paleogene extinction event 15568: 15186:Paleoceanography and Paleoclimatology 15082:Richards, M. A.; et al. (2015). 15030: 12989: 12813: 12674:from the original on 1 September 2019 12375: 10406: 8486: 6919: 6444: 6442: 6066: 6064: 6025: 6023: 4440: 3990: 3572: 3570: 3447:from the original on 21 February 2019 2714: 2307:The end-Cretaceous event is the only 2208:Cretaceous–Paleogene firestorm debate 1953:. Instead, iridium is more common in 1637: 922:Approximately 60% of late-Cretaceous 739:that became extinct at the boundary. 504: 497: 490: 483: 16678: 14781:– via Elsevier Science Direct. 14076: 13583:from the original on 9 November 2017 13546: 13147: 12776: 12107:– via Elsevier Science Direct. 12058:from the original on 8 February 2013 9421: 9397:McKenna, M. C.; Bell, S. K. (1997). 9064:. Science Daily. 20 September 2011. 8608:– via Elsevier Science Direct. 8579:Buffetaut, Eric (18 November 2004). 7376: 7357: 7014: 6704:– via Elsevier Science Direct. 5653:– via Elsevier Science Direct. 5565:– via Elsevier Science Direct. 5327:– via Elsevier Science Direct. 5239:– via Elsevier Science Direct. 5117:– via Elsevier Science Direct. 5051:– via Elsevier Science Direct. 3581:; Allison, Peter A. (21 July 2020). 3468: 3310:from the original on 24 October 2019 3295: 3081: 2893: 2891: 2834: 2832: 2774: 2772: 2616:, which is the abbreviation for the 2588: 2531:Speculative artist's rendering of a 2132: 2077:Location of Chicxulub crater, Mexico 1579:(which includes modern placentals), 1575:(which includes modern marsupials), 1517:). It is thought that all non-avian 540:(not the absolute number) of marine 448: 440: 143:'s Citadel, an eroded hill from the 16612:Voluntary Human Extinction Movement 16361:Extinction risk from climate change 14424:Geological Society of America Today 14313:Earth and Planetary Science Letters 14221:Earth and Planetary Science Letters 14050:Earth and Planetary Science Letters 13764:Earth and Planetary Science Letters 13708:Earth and Planetary Science Letters 13660:Earth and Planetary Science Letters 13612:Earth and Planetary Science Letters 13595: 13486:Vellekoop, J.; et al. (2013). 13086:Kaiho, Kunio; Oshima, Naga (2017). 12758:from the original on 21 August 2019 12214:Meteoritics & Planetary Science 12048:"Dinosaur extinction battle flares" 12045: 12005:Meteoritics & Planetary Science 11644:Meteoritics & Planetary Science 11223: 11138:Earth and Planetary Science Letters 11072: 9428:(M.S.). The Ohio State University. 8300:Penny, D.; Phillips, M. J. (2004). 7814:O'Gorman, José P. (December 2022). 7511:Journal of Systematic Palaeontology 3182: 3063:from the original on 1 January 2017 2127:Wide-field Infrared Survey Explorer 1842: 1760:records of well-preserved bones of 1663:1980 Mount St. Helens eruption 442:Marine extinction intensity during 24: 15366: 15264:Jiang, M. J.; Gartner, S. (1986). 15031:Renne, P. R.; et al. (2015). 13888:"Debating the Dinosaur Extinction" 13579:. New York, NY. 18 November 2016. 12317:from the original on 26 April 2022 12245:10.1111/j.1945-5100.2009.tb02001.x 12018:10.1111/j.1945-5100.2004.tb01133.x 11657:10.1111/j.1945-5100.2004.tb01128.x 10938:Barras, Colin (23 February 2022). 10120:Herman, A. B. (10 December 2013). 9315:Gelfo, J. N.; Pascual, R. (2001). 8224:from the original on 6 August 2017 8070:Journal of Vertebrate Paleontology 7979:Journal of Vertebrate Paleontology 7704:D'Hondt, Steven (17 August 2005). 7024:Journal of Vertebrate Paleontology 6439: 6061: 6020: 4108:Proceedings of the Royal Society B 3567: 3096:from the original on 18 March 2018 2604:, the common abbreviation for the 2582:Triassic–Jurassic extinction event 2498: 2434:Maastrichtian sea-level regression 1764:fishes. The study noted that "the 1273: 1120:In the Maastrichtian age, 28  575:, for example, are known from the 536:The blue graph shows the apparent 513: 418: 25: 16770: 15543: 15235:. Geological Society of America. 14545:10.1038/scientificamerican1090-85 12939:Journal of the Geological Society 12862:from the original on 26 July 2019 12035:– via Wiley Online Library. 11951:(11). Washington, DC: 3753–3758. 11674:– via Wiley Online Library. 10449:from the original on 3 April 2014 10187:10.3897/rethinkingecology.4.33014 9966:. Geological Society of America. 9432:from the original on 8 April 2015 7237:– via Wiley Online Library. 4308:Journal of the Geological Society 3911:(13). Washington, DC: 5218–5223. 3433:Bosker, Bianca (September 2018). 2888: 2829: 2769: 2570:Permian–Triassic extinction event 1728:Permian–Triassic extinction event 1301: 993:(represented by the modern order 16677: 16668: 16667: 16633:Decline in amphibian populations 16602:IUCN Species Survival Commission 16255: 16145:Millions of years before present 15257: 15220: 15172: 15127: 15075: 15024: 14981: 14933: 14874: 14841: 14785: 14747: 14699: 14655: 14607: 14559: 14514: 14466: 14407: 14340: 14303: 14262:Courtillot, V. (December 1990). 14255: 14207: 14143: 14043:Kaneoka, Ichiro (January 1980). 14036: 14022:. Vol. 26. pp. 31–54. 13920: 13879: 13854: 13798: 13750: 13694: 13646: 13563: 13540: 13479: 13423: 13364: 13303: 13242: 13178: 13079: 13031: 12990:Adair, Robert K. (1 June 2010). 12983: 12925: 12874: 12844: 12807: 12770: 12732: 12686: 12647: 12610: 12571: 12535: 12496: 12259: 12070: 12039: 11991: 11884: 11831: 11802: 11740: 11630: 11585: 11537: 11484: 11427: 11374: 11326: 11281: 11252: 11167: 11124: 11021: 10931: 10903: 10846: 10788: 10730: 10683: 10622: 10522: 10432: 10355: 10209: 10161: 10113: 10065: 10006: 9980: 9955: 9819: 9791: 9780: 9728: 9669: 9556: 9495: 9444: 9347: 9308: 9195: 9131: 9080: 9054: 8986: 8933: 8886:from the original on 5 June 2011 8756: 8729: 8691: 8612: 8572: 8435: 8383: 8337: 8236: 8195: 8160: 8112: 8057: 8006: 7917: 7856: 7807: 7788: 7697: 7646: 7606: 7547: 7498: 7433: 7351: 7300: 7241: 7193: 7143: 7051: 5918:Lockwood, Rowan (4 March 2003). 5388:10.2973/odp.proc.sr.149.254.1996 5181:. W.W. Norton. pp. 85–138. 2644: 2063: 2056: 1176: 661:(dead plant and animal matter). 550:Capitanian mass extinction event 116:, where erosion has exposed the 83: 74: 63: 54: 43: 16308:Human impact on the environment 15556:The Great Chicxulub Debate 2004 13865:. Harper Collins. p. 336. 12888:Journal of Geophysical Research 12346:Journal of Geophysical Research 12085:Geochimica et Cosmochimica Acta 11060:from the original on 5 May 2016 8310:Trends in Ecology and Evolution 8250:Molecular Biology and Evolution 6953: 6932: 6913: 6824: 6780: 6658: 6613: 6549: 6504: 6479: 6414: 6358: 6305: 6180: 6157: 6101: 5972: 5911: 5863: 5760: 5715: 5700: 5657: 5617: 5569: 5521: 5464: 5419: 5394: 5367: 5331: 5291: 5243: 5195: 5121: 5083: 5055: 5015: 4988: 4945: 4906: 4863: 4815: 4767: 4723: 4686: 4649: 4582: 4480: 4402: 4186: 4145: 3890: 3777: 3469:Joel, Lucas (16 January 2020). 3426: 3386: 3296:Joel, Lucas (21 October 2019). 3075: 3024:Alvarez, Luis (10 March 1981). 2564:Late Ordovician mass extinction 2392: 2361:), the 20 km (12 mi) 2248:1991 eruption of Mount Pinatubo 1218: 1117:(bony fish) families survived. 16729:Events that forced the climate 16288:Climate variability and change 16186: 15529:—and nearly all other life on 14754:Keller, Gerta (October 1988). 13968:Mullen, L. (3 November 2004). 13927:Mullen, L. (20 October 2004). 13886:Mullen, L. (13 October 2004). 12657:Tsunami: The Underrated Hazard 6838:Nature Ecology & Evolution 5546:10.1016/j.marmicro.2020.101959 3082:Amos, Jonathan (15 May 2017). 2925:10.1016/j.marmicro.2023.102214 2688: 2663: 2623: 2594: 2504:postulated causes: volcanism, 2038:The K–Pg boundary exposure in 1748:A 1991 study of fossil leaves 1286:, represented by the families 328:and other volcanic eruptions, 13: 1: 16709:Cretaceous–Paleogene boundary 16638:Decline in insect populations 16581:IUCN Red List extinct species 15483:Geological Society of America 14852:T. rex and the Crater of Doom 14734:10.1016/S0031-0182(01)00395-9 14693:10.1016/S0032-0633(01)00032-0 14501:10.1016/S0031-0182(00)00031-6 12801:10.1146/annurev.earth.27.1.75 12749:Lunar and Planetary Institute 11917:10.1016/S0377-8398(03)00022-7 11110:10.1126/science.291.5510.1952 10168:Bajdek, Piotr (10 May 2019). 9401:. Columbia University Press. 9376:10.1144/GSL.SP.2006.258.01.10 8964:10.1126/science.274.5290.1164 8648:10.1016/j.cretres.2015.07.007 8090:10.1080/02724634.2023.2193828 7842:10.1016/j.cretres.2022.105339 7774:10.1144/GSL.SP.1989.047.01.15 7620:Acta Palaeontologica Polonica 7532:10.1080/14772019.2023.2281494 6685:10.1016/j.cretres.2018.01.004 5979:Lockwood, Rowan (Fall 2004). 5841:10.1126/science.274.5291.1360 5644:10.1016/j.cretres.2015.08.010 5583:Journal of Crustacean Biology 5361:10.1016/s0377-8398(01)00037-8 4974:10.1144/GSL.SP.1998.140.01.16 4892:10.1144/GSL.SP.2004.230.01.13 3153:10.1126/science.208.4448.1095 2730:. Vintage. pp. 238–260. 2250:. According to models of the 2100:Berkeley Geochronology Center 1941:which mostly sank along with 1849:Cretaceous–Paleogene boundary 1468:Paleocene non-avian dinosaurs 1335: 1143: 761: 723:), and those organisms whose 391:, evolving new forms such as 15560:Geological Society of London 15515:"The Day the Dinosaurs Died" 14968:10.1016/j.palaeo.2004.11.007 14772:10.1016/0377-8398(88)90005-9 14642:10.1016/j.palaeo.2013.07.019 14573:Geophysical Research Letters 14290:10.1016/0031-0182(90)90070-N 14242:10.1016/0012-821X(86)90118-4 14063:10.1016/0012-821X(80)90009-6 13970:"Shiva: Another K–T impact?" 13729:10.1016/0012-821X(94)90186-4 13681:10.1016/0012-821X(87)90046-X 13633:10.1016/0012-821X(92)90113-A 12838:10.1016/j.palaeo.2007.02.037 12654:Bryant, Edward (June 2014). 12604:10.1016/0037-0738(95)00128-X 12461:Geophysical Research Letters 11581:– via GeoScienceWorld. 11515:10.1126/science.241.4865.567 11462:10.1126/science.236.4802.705 11405:10.1126/science.224.4651.867 11370:– via GeoScienceWorld. 11079:Mukhopadhyay, Sujoy (2001). 9766:10.1126/science.280.5364.731 8833:10.1126/science.232.4750.629 8723:10.1016/j.palaeo.2010.01.037 8599:10.1016/j.palaeo.2004.02.050 8461:10.1371/journal.pbio.2001663 7754:Geological Society of London 6473:10.1016/j.palaeo.2004.02.049 6393:10.1016/j.palaeo.2017.12.005 6208:10.1371/journal.pone.0288046 5318:10.1016/j.sedgeo.2005.09.021 5222:10.1016/0031-0182(95)00009-7 5165:– via GeoScienceWorld. 5108:10.1016/0377-8398(93)90010-U 5090:Keller, Gerta (April 1993). 5042:10.1016/0195-6671(87)90023-1 4222:– via GeoScienceWorld. 4069:10.1126/science.267.5198.637 3839:10.1371/journal.pone.0076683 2867:10.1016/j.palaeo.2022.111334 2656: 2537:shortly after the K-Pg event 1893:Late Cretaceous global map ( 1830:would have persisted in the 1406:. Comparison with the older 1340:Two families of pterosaurs, 1206:More than 80% of Cretaceous 1081:There are fossil records of 796:The K–Pg boundary record of 7: 16704:Late Cretaceous extinctions 15456:. New York: Vintage Books. 15179:Keller, Gerta (June 1989). 14672:Planetary and Space Science 14662:Keller, Gerta (July 2001). 13098:(1). Article number 14855. 12997:American Journal of Physics 11862:10.1126/science.364.6435.10 9191:– via Web of Science. 8750:10.2113/gssgfbull.183.6.547 8156:– via Cambridge Core. 6421:Grimaldi, David A. (2007). 6016:– via Cambridge Core. 5907:– via Cambridge Core. 5403:Ostracoda and Global Events 5287:– via Cambridge Core. 4859:– via Cambridge Core. 3880:Plants and the K–T Boundary 2541: 1787: 1171: 1017:) all other species of the 971:(giant relatives of modern 731:were the principal food of 614:. Species that depended on 210:. It marked the end of the 10: 16775: 16739:Hypothetical impact events 16202:Background extinction rate 15550:What killed the dinosaurs? 15453:Earth: An Intimate History 14334:10.1016/j.epsl.2008.01.015 13785:10.1016/j.epsl.2009.02.037 13450:10.1089/153110703321632453 13213:10.1038/s41561-023-01290-4 13112:10.1038/s41598-017-14199-x 13058:10.1038/s43017-022-00283-y 11160:10.1016/j.epsl.2016.07.041 10967:10.1038/d41586-022-00511-x 10879:10.1038/s41586-022-04446-1 10822:10.1038/s41598-021-03232-9 10764:10.1038/s41586-022-04446-1 10157:– via Springer Link. 10109:– via Springer Link. 9356:Geological Society, London 8369:10.1666/0094-8373-35.3.432 8323:10.1016/j.tree.2004.07.015 7582:10.1038/s41467-021-25136-y 7452:(3): rsos.201961, 201961. 7446:Royal Society Open Science 7268:10.1038/s41598-020-58511-8 3884:Cambridge University Press 3057:American Geophysical Union 2672:A geologic time scale 2004 2396: 1846: 1824:American Geophysical Union 1702:to former levels of plant 1557: 1201: 967:(reef-building clams) and 744:evolution of life on Earth 735:, a group of giant marine 238:, which is more common in 29: 16754:Meteorological hypotheses 16663: 16620: 16589: 16566: 16524:End-Jurassic or Tithonian 16451: 16403: 16394: 16346: 16280: 16264: 16253: 16194: 16064: 15678: 15602: 13996:: CS1 maint: unfit URL ( 13953:: CS1 maint: unfit URL ( 13912:: CS1 maint: unfit URL ( 12660:. Springer. p. 178. 12301:Osterloff, Emily (2018). 12098:10.1016/j.gca.2020.04.031 10383:10.1016/j.cub.2018.04.062 10140:10.1134/S0869593813070034 10092:10.1134/S0869593809010079 9336:: 369–379. Archived from 9319:Peligrotherium tropicalis 9223:10.1016/j.cub.2016.10.029 8546:. SpringerLink. pp.  7674:10.1016/j.cub.2017.04.043 6851:10.1038/s41559-018-0494-6 6644:10.1017/S0022336000024331 6535:10.1080/08912961003707349 6425:. Cambridge Univ Pr (E). 5890:10.1017/S0094837300015906 5791:10.1017/S0022336000026652 5270:10.1017/S0094837300012653 2578: – Research timeline 2430:sites anywhere on Earth. 1951:planetary differentiation 1837: 1743: 1250:Kawasphenodon peligrensis 1045:Terrestrial invertebrates 811:Braarudosphaera bigelowii 807:Thoracosphaera operculata 552:are clickable links; see 175:of three-quarters of the 98:Artist's rendering of an 16576:Lists of extinct species 15017:10.1016/j.gr.2020.04.007 14760:Marine Micropaleontology 12852:"Chicxulub impact event" 12416:10.1073/pnas.95.19.11028 11897:Marine Micropaleontology 9523:10.3389/fgene.2019.01241 9422:Wood, D. Joseph (2010). 9358:. Special Publications. 8905:Sullivan, R. M. (2003). 7756:. Special Publications. 7360:Tuatara: A living fossil 6423:Evolution of the Insects 5746:10.1126/science.11537491 5534:Marine Micropaleontology 5341:Marine Micropaleontology 5096:Marine Micropaleontology 4329:10.1144/gsjgs.154.2.0265 2905:Marine Micropaleontology 2553:Late Devonian extinction 2040:Trinidad Lake State Park 1709: 1630:increasing later in the 1504: 919:was a notable survivor. 214:period, and with it the 15421:10.1073/pnas.1817407116 15199:10.1029/PA004i003p00287 15060:10.1126/science.aac7549 14910:10.1126/science.aav1446 14685:2001P&SS...49..817K 14326:2008E&PSL.268..293K 14234:1986E&PSL..80..361C 13861:Brannen, Peter (2017). 13777:2009E&PSL.282...56K 13721:1994E&PSL.128..719P 13673:1987E&PSL..83....1P 13625:1992E&PSL.109..543S 13557:10.1126/science.aaf5684 13515:10.1073/pnas.1319253111 13331:10.1073/pnas.2004596117 13270:10.1073/pnas.1708980114 12227:2009M&PS...44.1917R 11966:10.1073/pnas.0400396101 11715:10.1073/pnas.1817407116 11262:Journal of Paleontology 11194:10.1126/science.1230492 11151:2016E&PSL.452..272C 10585:10.1126/science.abf1969 10497:10.1073/pnas.0900906106 10296:10.1126/science.1093807 9933:10.1126/science.1064706 9857:10.1126/science.abl5584 9644:10.1073/pnas.0334222100 9163:10.1126/science.1251981 8917:(5): 15. Archived from 8556:10.1007/3-540-25736-5_9 8181:10.1023/A:1003851316054 7109:Novacek, M. J. (1999). 6981:10.1073/pnas.1704632114 6623:Journal of Paleontology 6584:10.1126/science.abn2080 6336:10.1126/science.1129569 5939:10.1073/pnas.0535132100 5770:Journal of Paleontology 4015:10.1080/106351599260472 3926:10.1073/pnas.0808468106 3752:10.1073/pnas.1211526110 3686:10.1073/pnas.1110395108 3610:10.1073/pnas.2006087117 3528:10.1126/science.aay5055 3361:10.1073/pnas.1905989116 3221:10.1073/pnas.1319253111 2995:10.1126/science.1177265 2473:Western Interior Seaway 2256:sea surface temperature 1412:Dinosaur Park Formation 1076: 832:. Approximately 46% of 826:southern high latitudes 748:species diversification 695:, while animals on the 657:, which in turn fed on 94:Clockwise from the top: 16381:Latent extinction risk 14375:10.1126/sciadv.adg8284 12503:Bourgeois, J. (2009). 12311:Natural History Museum 10658:10.1073/pnas.93.5.2155 10234:10.1098/rsbl.2023.0314 10033:10.1098/rspb.2009.1255 9735:Alroy, J. (May 1998). 9696:10.1098/rspb.2015.3026 9579:10.1098/rspb.2024.0778 9471:10.1098/rsbl.2018.0458 9107:10.1098/rsbl.2006.0523 7797:Acta Zoologica Fennica 7633:10.4202/app.01083.2023 7401:10.1098/rspb.2014.0811 6280:10.1073/pnas.042492999 5596:10.1093/jcbiol/ruad018 5489:10.1098/rspb.2020.0730 4995:Courtillot, V (1999). 4929:10.2110/sepmsp.100.157 4506:10.1126/sciadv.add5040 4121:10.1098/rspb.2009.2177 3975:10.1098/rstb.1994.0045 3882:. Cambridge, England: 2538: 2324: 2155: 2091: 2051: 1898: 1886: 1740: 1567:(egg-laying mammals), 1408:Judith River Formation 1383: 1165:Albanerpeton galaktion 986: 886: 531: 436: 351:, plants, and all the 16714:Paleogene extinctions 16338:Paradox of enrichment 16227:Functional extinction 16217:Ecological extinction 15317:Nature Communications 13975:Astrobiology Magazine 13933:Astrobiology Magazine 13892:Astrobiology Magazine 12273:. 20 September 2011. 11763:Year designated: 1966 9509:Frontiers in Genetics 8504:"Dinosaur extinction" 8264:10.1093/molbev/msj124 7870:Nature Communications 7561:Nature Communications 4537:Kauffman, E. (2004). 4101:Friedman, M. (2010). 3897:Friedman, M. (2009). 2530: 2463:reducing the Earth's 2377:) possibly formed by 2328:Multiple impact event 2321: 2313:Manicouagan Reservoir 2140: 2085: 2037: 2014:discoveries from the 1909:, his son, geologist 1892: 1869: 1736: 1376: 981: 874: 587:, South America, and 560:source and image info 530: 457:Millions of years ago 435: 16734:Evolution of mammals 16607:Extinction Rebellion 16549:Pliocene–Pleistocene 16431:Cretaceous–Paleogene 16376:Hypothetical species 16366:Extinction threshold 16323:Overabundant species 15885:Cretaceous–Paleogene 15489:Kring, D.A. (2005). 15376:"The K–T extinction" 15099:(11–12): 1507–1520. 14586:10.1029/2018GL081215 13819:(E12): 28607–28625. 12482:10.1002/2016GL072241 11000:(23 February 2022). 10420:on 25 September 2006 10376:(11): 1825–1831.e2. 9343:on 12 February 2012. 8169:Geologie en Mijnbouw 7667:(11): 1641–1644.e2. 6802:10.20341/gb.2023.002 4398:on 27 February 2019. 3440:The Atlantic Monthly 2516:Based on studies at 2252:Hell Creek Formation 2113:years ago, based on 2102:dated the impact at 2074:class=notpageimage| 2008:Hell Creek Formation 1873:, left, and his son 1832:Hell Creek Formation 1738:Hell Creek Formation 1472:Hell Creek Formation 1400:Hell Creek Formation 1264:polyglyphanodontians 1156:Theatonius lancensis 941:with photosynthetic 891:marine invertebrates 867:Marine invertebrates 854:Numerous species of 754:. Evidence from the 319:acidified the oceans 167:, also known as the 157:Cretaceous–Paleogene 16534:Cenomanian-Turonian 16479:Cambrian–Ordovician 16411:Ordovician–Silurian 16318:Mutational meltdown 16303:Habitat destruction 16222:Extinct in the wild 15837:Ordovician-Silurian 15811:Cambrian-Ordovician 15751:Cenomanian-Turonian 15412:2019PNAS..116.8190D 15338:10.1038/ncomms12079 15330:2016NatCo...712079P 15241:10.1130/SPE247-p563 15150:1998Geo....26..995L 15105:2015GSAB..127.1507R 15051:2015Sci...350...76R 15008:2020GondR..85...19D 14960:2005PPP...216..303C 14901:2019Sci...363..866S 14848:Alvarez, W (1997). 14812:2018Geo....46..271Z 14726:2002PPP...178..165A 14634:2013PPP...387..153S 14537:1990SciAm.263d..85C 14524:Scientific American 14493:2000PPP...159....1B 14367:2023SciA....9G8284C 14282:1990PPP....89..291C 14170:1988Natur.333..843C 14106:1988Natur.333..841D 13825:1998JGR...10328607P 13506:2014PNAS..111.7537V 13324:(41): 25327–25334. 13263:(36): E7415–E7424. 13205:2023NatGe..16.1033S 13164:2014NatGe...7..279O 13104:2017NatSR...714855K 12952:10.1144/jgs2014-082 12901:1997JGR...10221645P 12895:(E9): 21645–21664. 12830:2007PPP...255....4K 12793:1999AREPS..27...75S 12710:1992Geo....20...99S 12633:2000Geo....28.1119N 12596:1996SedG..104..189A 12557:2005Geo....33...81L 12474:2017GeoRL..44..419B 12407:1998PNAS...9511028P 12401:(19): 11028–11029. 12359:2013JGRG..118..329R 12198:2009JRASC.103....7M 12142:10.1038/nature06070 12134:2007Natur.449...48B 11957:2004PNAS..101.3753K 11909:2003MarMP..48..251A 11854:2019Sci...364...10B 11706:2019PNAS..116.8190D 11608:1996Geo....24..527P 11507:1988Sci...241..567B 11454:1987Sci...236..705B 11397:1984Sci...224..867B 11304:1981Natur.292...47S 11102:2001Sci...291.1952M 11096:(5510): 1952–1955. 10998:Ouellette, Jennifer 10958:2022Natur.603...17B 10871:2022Natur.603...91D 10814:2021NatSR..1123704D 10756:2022Natur.603...91D 10708:1991Natur.352..420W 10690:Jack Wolfe (1991). 10649:1996PNAS...93.2155V 10577:2021Sci...372...63C 10488:2009PNAS..106.5737F 10341:1996Geo....24..963S 10027:(1677): 4271–4277. 9925:2001Sci...294.1700V 9919:(5547): 1700–1702. 9849:2022Sci...376...80B 9758:1998Sci...280..731A 9635:2003PNAS..100.1056S 9368:2006GSLSP.258..135G 9272:10.1038/nature05634 9264:2007Natur.446..507B 9155:2014Sci...344..898M 9024:10.1038/nature03150 9016:2005Natur.433..305C 8956:1996Sci...274.1164H 8950:(5290): 1164–1167. 8877:2001caev.conf.3139F 8825:1986Sci...232..629S 8780:2001Palai..16..482R 8715:2010PPP...288...82R 8639:2016CrRes..57..368F 8626:Cretaceous Research 8413:2014Pbio...40..288P 8361:2009Pbio...35..432B 8082:2022JVPal..42E3828M 8033:2023Palgy..6612638A 7892:10.1038/ncomms10825 7883:2016NatCo...710825F 7834:2022CrRes.14005339O 7821:Cretaceous Research 7766:1989GSLSP..47..197C 7574:2021NatCo..12.5335K 7523:2023JSPal..2181494X 7466:10.1098/rsos.201961 7458:2021RSOS....801961H 7329:10.1038/nature01995 7321:2003Natur.425..609A 6974:(29): E5864–E5870. 6897:10.1130/spe247-p549 6751:2004GSAB..116..760R 6672:Cretaceous Research 6636:1998JPal...72..556Z 6576:2023Sci...379..802G 6527:2010HBio...22...71N 6465:2004PPP...214..181K 6385:2018PPP...491..161W 6328:2006Sci...313.1112W 6322:(5790): 1112–1115. 6271:2002PNAS...99.2061L 6128:2011Geo....39..483I 6087:2002Geo....30..954H 6047:1991Geo....19.1181W 5833:1996Sci...274.1360M 5827:(5291): 1360–1363. 5783:1994JPal...68.1048M 5738:1993Sci...260..971R 5678:1997Faci...36..123V 5631:Cretaceous Research 5442:1993Palai...8..140B 5353:2002MarMP..44...57G 5305:Sedimentary Geology 5029:Cretaceous Research 4966:1998GSLSP.140..217M 4884:2004GSLSP.230..257G 4842:10.1017/pab.2015.28 4709:2005Geo....33..653B 4672:1996Geo....24..255P 4610:2014GSAB..126..289C 4560:2004Palai..19...96K 4466:1992Geo....20..556S 4426:2007Geo....35..227A 4373:1986Geo....14..868S 4321:1997JGSoc.154..265M 4115:(1688): 1675–1683. 4061:1995Sci...267..637F 3917:2009PNAS..106.5218F 3830:2013PLoSO...876683R 3743:2012PNAS..10921396L 3677:2011PNAS..10815253L 3671:(37): 15253–15257. 3601:2020PNAS..11717084C 3595:(29): 17084–17093. 3520:2020Sci...367..266H 3352:2019PNAS..11622500H 3346:(45): 22500–22504. 3272:1991Geo....19..867H 3212:2014PNAS..111.7537V 3145:1980Sci...208.1095A 3139:(4448): 1095–1108. 2987:2010Sci...327.1214S 2981:(5970): 1214–1218. 2917:2023MarMP.180j2214F 2859:2023PPP...61011334I 2800:2023GSAB..135.2451J 1939:siderophile element 1905:-winning physicist 1862:Evidence for impact 1795:Signor–Lipps effect 1650:organisms, such as 1615:even-toed ungulates 1611:whales and dolphins 1483:Ojo Alamo Sandstone 1392:dinosaur physiology 1369:Non-avian dinosaurs 1241:Sphenodon punctatus 1039:carbonate platforms 1001:(which had already 899:, a class of small 883:Owl Creek Formation 876:Discoscaphites iris 756:Salamanca Formation 411:Extinction patterns 16749:Mesozoic volcanism 16719:Cenozoic volcanism 15775:Rainforest collaps 15605:Alvarez hypothesis 15535:Chicxulub asteroid 15523:. pp. 52–65. 15374:Cowen, R. (2000). 15299:– via JSTOR. 14012:Chatterjee, Sankar 13929:"Multiple impacts" 13576:The New York Times 13378:Scientific Reports 13092:Scientific Reports 12368:10.1002/jgrg.20018 10919:. 23 February 2022 10174:Rethinking Ecology 9690:(1833): 20153026. 8139:10.1017/pab.2024.5 8042:10.1111/pala.12638 7395:(1792): 20140811. 7255:Scientific Reports 7220:10.1111/pala.12486 7065:Journal of Anatomy 6514:Historical Biology 5686:10.1007/BF02536880 4001:Systematic Biology 3476:The New York Times 3303:The New York Times 3178:on 24 August 2019. 2633:' (abbreviated as 2539: 2325: 2302:tropospheric ozone 2200:infrared radiation 2156: 2115:argon–argon dating 2092: 2052: 2024:Chicxulub asteroid 1899: 1887: 1853:Alvarez hypothesis 1741: 1638:Terrestrial plants 1527:hesperornithiforms 1495:dead clade walking 1433:Pachycephalosaurus 1384: 1327:, only the family 1099:cartilaginous fish 1059:Naktodemasis bowni 987: 887: 843:The occurrence of 689:primary production 579:of North America, 556:for more details. 532: 437: 385:adaptive radiation 279:Alvarez hypothesis 16691: 16690: 16643:Extinction symbol 16562: 16561: 16426:Triassic–Jurassic 16396:Extinction events 16272:Extinction vortex 16232:Genetic pollution 16154: 16153: 15873:Triassic–Jurassic 15799:Smithian-Spathian 15727:Toarcian turnover 15672:Extinction events 15638: 15637: 15463:978-0-375-70620-2 15406:(17): 8190–8199. 15270:Micropaleontology 14995:Gondwana Research 14895:(6429): 866–870. 14867:978-0-691-01630-6 14454:on 6 October 2022 14164:(6176): 843–846. 14100:(6176): 841–843. 14029:978-90-6764-254-5 13872:978-0-06-236480-7 13833:10.1029/98JE02496 13500:(21): 7537–7541. 13391:10.1038/srep28427 13199:(11): 1033–1040. 13192:Nature Geoscience 13151:Nature Geoscience 13010:10.1119/1.3192770 12910:10.1029/97JE01743 12667:978-3-319-06133-7 12627:(12): 1119–1122. 12521:978-0-674-03173-9 12221:(12): 1917–1927. 11700:(17): 8190–8199. 11501:(4865): 567–570. 11448:(4802): 705–709. 11188:(6120): 684–687. 11045:978-0-8137-2190-3 11030:Schultz, Peter H. 10482:(14): 5737–5742. 9999:978-0-393-96657-2 9973:978-0-8137-2247-4 9408:978-0-231-11012-9 9258:(7135): 507–512. 9149:(6186): 989–900. 9010:(7023): 305–308. 8819:(4750): 629–633. 8684:978-0-691-05900-6 8565:978-3-540-25735-6 8520:978-0-520-24209-8 7369:978-0-931625-43-5 7358:Lutz, D. (2005). 7315:(6958): 609–612. 7165:978-0-8137-2503-1 7078:10.1111/joa.12414 6906:978-0-8137-2247-4 6793:Geologica Belgica 6570:(6634): 802–806. 6497:978-0-412-39380-8 6488:The Fossil Record 6432:978-0-511-12388-7 6041:(12): 1181–1184. 5732:(5110): 971–973. 5412:978-0-442-31167-4 5188:978-0-393-96657-2 5065:Micropaleontology 5008:978-0-521-58392-3 4781:Nature Geoscience 4434:10.1130/G23197A.1 4207:(10): 1254–1266. 4171:978-0-520-24209-8 4055:(5198): 637–638. 3796:978-0-8137-2361-7 3737:(52): 21396–401. 3579:Morgan, Joanna V. 3514:(6475): 266–272. 3419:978-90-481-3427-4 2762:978-1-55868-522-2 2737:978-0-375-70261-7 2681:978-0-521-78142-8 2589:Explanatory notes 2506:marine regression 2460:continental shelf 2445:mountain building 2290:calcium carbonate 2160:teratonnes of TNT 2145:in what is today 2143:Yucatán Peninsula 2133:Effects of impact 2122:Baptistina family 1569:multituberculates 1481:recovered in the 1225:rhynchocephalians 1025:, as well as the 813:at the boundary. 752:ecological niches 717:freshwater snails 701:Coccolithophorids 465: 291:Yucatán Peninsula 16:(Redirected from 16766: 16681: 16680: 16671: 16670: 16648:Human extinction 16539:Eocene–Oligocene 16421:Permian–Triassic 16401: 16400: 16371:Field of Bullets 16328:Overexploitation 16313:Muller's ratchet 16298:Invasive species 16259: 16247:Pseudoextinction 16242:Local extinction 16181: 16174: 16167: 16158: 16157: 15911: 15906: 15899: 15894: 15887: 15882: 15875: 15870: 15863: 15858: 15851: 15846: 15839: 15834: 15825: 15820: 15813: 15808: 15801: 15796: 15789: 15784: 15777: 15772: 15765: 15760: 15753: 15748: 15741: 15736: 15729: 15724: 15717: 15712: 15705: 15700: 15693: 15688: 15665: 15658: 15651: 15642: 15641: 15630:Silverpit crater 15619:Chicxulub crater 15589: 15582: 15575: 15566: 15565: 15538: 15513:(8 April 2019). 15511:Preston, Douglas 15506: 15504: 15502: 15475: 15443: 15433: 15423: 15390: 15388: 15386: 15360: 15359: 15349: 15307: 15301: 15300: 15298: 15296: 15261: 15255: 15254: 15224: 15218: 15217: 15215: 15213: 15176: 15170: 15169: 15131: 15125: 15124: 15113:10.1130/B31167.1 15088: 15079: 15073: 15072: 15062: 15028: 15022: 15021: 15019: 14985: 14979: 14978: 14976: 14974: 14954:(3–4): 303–332. 14937: 14931: 14930: 14912: 14878: 14872: 14871: 14855: 14845: 14839: 14838: 14836: 14834: 14820:10.1130/G39992.1 14789: 14783: 14782: 14780: 14778: 14751: 14745: 14744: 14742: 14740: 14720:(3–4): 165–196. 14703: 14697: 14696: 14668: 14659: 14653: 14652: 14650: 14648: 14611: 14605: 14604: 14602: 14600: 14580:(6): 3462–3472. 14563: 14557: 14556: 14518: 14512: 14511: 14509: 14507: 14470: 14464: 14463: 14461: 14459: 14453: 14447:. Archived from 14420: 14411: 14405: 14404: 14394: 14361:(40): eadg8284. 14354:Science Advances 14344: 14338: 14337: 14320:(3–4): 293–311. 14307: 14301: 14300: 14298: 14296: 14259: 14253: 14252: 14250: 14248: 14228:(3–4): 361–374. 14211: 14205: 14204: 14202: 14200: 14178:10.1038/333843a0 14147: 14141: 14140: 14138: 14136: 14114:10.1038/333841a0 14083: 14074: 14073: 14071: 14069: 14040: 14034: 14033: 14008: 14002: 14001: 13995: 13987: 13985: 13983: 13965: 13959: 13958: 13952: 13944: 13942: 13940: 13924: 13918: 13917: 13911: 13903: 13901: 13899: 13883: 13877: 13876: 13858: 13852: 13851: 13849: 13847: 13802: 13796: 13795: 13793: 13791: 13754: 13748: 13747: 13745: 13743: 13715:(3–4): 719–725. 13698: 13692: 13691: 13689: 13687: 13650: 13644: 13643: 13641: 13639: 13619:(3–4): 543–559. 13602: 13593: 13592: 13590: 13588: 13567: 13561: 13560: 13544: 13538: 13537: 13527: 13517: 13483: 13477: 13476: 13474: 13472: 13427: 13421: 13420: 13410: 13368: 13362: 13361: 13351: 13333: 13307: 13301: 13300: 13290: 13272: 13246: 13240: 13239: 13237: 13235: 13182: 13176: 13175: 13172:10.1038/ngeo2095 13145: 13134: 13133: 13123: 13083: 13077: 13076: 13074: 13072: 13035: 13029: 13028: 13026: 13024: 12987: 12981: 12980: 12978: 12976: 12963: 12929: 12923: 12922: 12912: 12878: 12872: 12871: 12869: 12867: 12856:www.lpi.usra.edu 12848: 12842: 12841: 12811: 12805: 12804: 12774: 12768: 12767: 12765: 12763: 12757: 12746: 12736: 12730: 12729: 12690: 12684: 12683: 12681: 12679: 12651: 12645: 12644: 12614: 12608: 12607: 12590:(1–4): 189–201. 12575: 12569: 12568: 12565:10.1130/G21057.1 12539: 12533: 12532: 12530: 12528: 12509: 12500: 12494: 12493: 12457: 12448: 12439: 12438: 12428: 12418: 12384: 12373: 12372: 12370: 12336: 12327: 12326: 12324: 12322: 12298: 12287: 12286: 12284: 12282: 12263: 12257: 12256: 12238: 12208: 12202: 12201: 12191: 12168: 12162: 12161: 12115: 12109: 12108: 12106: 12104: 12074: 12068: 12067: 12065: 12063: 12046:Perlman, David. 12043: 12037: 12036: 12034: 12032: 12012:(7): 1127–1144. 11995: 11989: 11988: 11978: 11968: 11934: 11928: 11927: 11925: 11923: 11903:(3–4): 251–279. 11888: 11882: 11881: 11835: 11829: 11828: 11826: 11824: 11818: 11806: 11800: 11789: 11783: 11772: 11766: 11765: 11760: 11758: 11744: 11738: 11737: 11727: 11717: 11682: 11676: 11675: 11673: 11671: 11651:(7): 1035–1067. 11634: 11628: 11627: 11589: 11583: 11582: 11580: 11578: 11541: 11535: 11534: 11488: 11482: 11481: 11431: 11425: 11424: 11378: 11372: 11371: 11369: 11367: 11330: 11324: 11323: 11312:10.1038/292047a0 11285: 11279: 11278: 11256: 11250: 11249: 11247: 11245: 11230: 11221: 11220: 11218: 11216: 11171: 11165: 11164: 11162: 11128: 11122: 11121: 11085: 11076: 11070: 11069: 11067: 11065: 11025: 11019: 11018: 11016: 11014: 10994: 10988: 10987: 10969: 10935: 10929: 10928: 10926: 10924: 10907: 10901: 10900: 10890: 10850: 10844: 10843: 10833: 10792: 10786: 10785: 10775: 10734: 10728: 10727: 10716:10.1038/352420a0 10687: 10681: 10680: 10670: 10660: 10643:(5): 2155–2158. 10626: 10620: 10619: 10617: 10615: 10554: 10548: 10547: 10545: 10543: 10526: 10520: 10519: 10509: 10499: 10465: 10459: 10458: 10456: 10454: 10436: 10430: 10429: 10427: 10425: 10410: 10404: 10403: 10385: 10359: 10353: 10352: 10322: 10316: 10315: 10273: 10264: 10263: 10253: 10213: 10207: 10206: 10204: 10202: 10189: 10165: 10159: 10158: 10156: 10154: 10117: 10111: 10110: 10108: 10106: 10069: 10063: 10062: 10052: 10010: 10004: 10003: 9984: 9978: 9977: 9959: 9953: 9952: 9906: 9895: 9894: 9868: 9832: 9823: 9817: 9816: 9814: 9812: 9795: 9789: 9784: 9778: 9777: 9741: 9732: 9726: 9725: 9715: 9673: 9667: 9666: 9656: 9646: 9629:(3): 1056–1061. 9612: 9603: 9602: 9593: 11286128. 9560: 9554: 9553: 9543: 9525: 9499: 9493: 9492: 9482: 9448: 9442: 9441: 9439: 9437: 9419: 9413: 9412: 9394: 9388: 9387: 9351: 9345: 9344: 9342: 9325: 9312: 9306: 9305: 9299: 9291: 9245: 9236: 9235: 9225: 9199: 9193: 9192: 9174: 9135: 9129: 9128: 9118: 9084: 9078: 9077: 9075: 9073: 9058: 9052: 9051: 8999: 8990: 8984: 8983: 8937: 8931: 8930: 8928: 8926: 8902: 8896: 8895: 8893: 8891: 8885: 8870: 8859: 8853: 8852: 8806: 8800: 8799: 8760: 8754: 8753: 8733: 8727: 8726: 8695: 8689: 8688: 8672: 8659: 8653: 8652: 8650: 8616: 8610: 8609: 8607: 8605: 8576: 8570: 8569: 8545: 8534: 8525: 8524: 8508: 8499: 8484: 8483: 8473: 8463: 8439: 8433: 8432: 8396: 8387: 8381: 8380: 8341: 8335: 8334: 8306: 8297: 8291: 8290: 8284: 8276: 8266: 8257:(6): 1144–1155. 8240: 8234: 8233: 8231: 8229: 8223: 8208: 8199: 8193: 8192: 8164: 8158: 8157: 8155: 8153: 8116: 8110: 8109: 8061: 8055: 8054: 8044: 8010: 8004: 8003: 7975: 7966: 7960: 7959: 7934:(6): 1375–1382. 7921: 7915: 7914: 7904: 7894: 7860: 7854: 7853: 7811: 7805: 7804: 7792: 7786: 7785: 7749: 7743: 7742: 7740: 7738: 7701: 7695: 7694: 7676: 7650: 7644: 7643: 7641: 7639: 7610: 7604: 7603: 7593: 7551: 7545: 7544: 7534: 7502: 7496: 7495: 7485: 7437: 7431: 7430: 7420: 7380: 7374: 7373: 7355: 7349: 7348: 7304: 7298: 7297: 7287: 7245: 7239: 7238: 7236: 7234: 7197: 7191: 7190: 7184: 7179: 7177: 7169: 7147: 7141: 7140: 7106: 7100: 7099: 7089: 7055: 7049: 7048: 7018: 7012: 7011: 7001: 6983: 6957: 6951: 6950: 6936: 6930: 6929: 6917: 6911: 6910: 6884: 6878: 6877: 6875: 6873: 6828: 6822: 6821: 6819: 6817: 6804: 6784: 6778: 6777: 6775: 6769:. Archived from 6759:10.1130/B25402.1 6745:(5–6): 760–768. 6734: 6725: 6706: 6705: 6703: 6701: 6696: 6662: 6656: 6655: 6617: 6611: 6610: 6608: 6606: 6553: 6547: 6546: 6508: 6502: 6501: 6483: 6477: 6476: 6446: 6437: 6436: 6418: 6412: 6411: 6409: 6407: 6362: 6356: 6355: 6309: 6303: 6302: 6292: 6282: 6265:(4): 2061–2066. 6248: 6239: 6238: 6228: 6210: 6184: 6178: 6177: 6161: 6155: 6154: 6152: 6150: 6136:10.1130/G31724.1 6105: 6099: 6098: 6068: 6059: 6058: 6027: 6018: 6017: 6015: 6013: 5976: 5970: 5969: 5959: 5941: 5932:(5): 2478–2482. 5915: 5909: 5908: 5906: 5904: 5867: 5861: 5860: 5814: 5803: 5802: 5777:(5): 1048–1066. 5764: 5758: 5757: 5719: 5713: 5712: 5704: 5698: 5697: 5661: 5655: 5654: 5652: 5650: 5621: 5615: 5614: 5612: 5610: 5573: 5567: 5566: 5564: 5562: 5557: 5525: 5519: 5518: 5508: 5468: 5462: 5461: 5423: 5417: 5416: 5398: 5392: 5391: 5371: 5365: 5364: 5335: 5329: 5328: 5326: 5324: 5295: 5289: 5288: 5286: 5284: 5247: 5241: 5240: 5238: 5236: 5199: 5193: 5192: 5173: 5167: 5166: 5164: 5162: 5125: 5119: 5118: 5116: 5114: 5087: 5081: 5080: 5059: 5053: 5052: 5050: 5048: 5019: 5013: 5012: 4992: 4986: 4985: 4949: 4943: 4942: 4910: 4904: 4903: 4867: 4861: 4860: 4858: 4856: 4819: 4813: 4812: 4810: 4808: 4771: 4765: 4764: 4736: 4727: 4721: 4720: 4717:10.1130/G21566.1 4690: 4684: 4683: 4653: 4647: 4646: 4644: 4642: 4629: 4618:10.1130/B30915.1 4604:(3–4): 289–306. 4586: 4580: 4579: 4543: 4534: 4528: 4527: 4517: 4500:(49): eadd5040. 4494:Science Advances 4484: 4478: 4477: 4447: 4438: 4437: 4406: 4400: 4399: 4397: 4391:. Archived from 4356: 4347: 4341: 4340: 4301: 4266: 4265: 4235: 4224: 4223: 4221: 4219: 4190: 4184: 4183: 4159: 4149: 4143: 4142: 4132: 4098: 4089: 4088: 4039: 4028: 4027: 4017: 3988: 3979: 3978: 3958: 3949: 3948: 3938: 3928: 3894: 3888: 3887: 3875: 3862: 3861: 3851: 3841: 3807: 3801: 3800: 3781: 3775: 3774: 3764: 3754: 3720: 3709: 3708: 3698: 3688: 3654: 3641: 3640: 3630: 3612: 3574: 3565: 3564: 3562: 3560: 3539: 3497: 3488: 3487: 3485: 3483: 3466: 3457: 3456: 3454: 3452: 3430: 3424: 3423: 3403: 3390: 3384: 3383: 3373: 3363: 3329: 3320: 3319: 3317: 3315: 3293: 3284: 3283: 3253: 3244: 3243: 3233: 3223: 3189: 3180: 3179: 3177: 3171:. Archived from 3128: 3119: 3106: 3105: 3103: 3101: 3079: 3073: 3072: 3070: 3068: 3048: 3042: 3041: 3039: 3037: 3021: 3015: 3014: 2970: 2961: 2944: 2943: 2941: 2939: 2895: 2886: 2885: 2883: 2881: 2836: 2827: 2826: 2824: 2822: 2808:10.1130/B36487.1 2776: 2767: 2766: 2748: 2742: 2741: 2718: 2712: 2711: 2709: 2707: 2692: 2686: 2685: 2667: 2651: 2648: 2642: 2627: 2621: 2598: 2453:mid-ocean ridges 2376: 2374: 2363:Silverpit crater 2360: 2358: 2343:Chicxulub crater 2335:Shoemaker–Levy 9 2165: 2147:Southeast Mexico 2112: 2110: 2108: 2088:Chicxulub crater 2067: 2066: 2060: 2016:Upper Cretaceous 1998:in southwestern 1986:on the coast of 1980:Chicxulub crater 1937:because it is a 1921:discovered that 1877:, right, at the 1857:Chicxulub crater 1843:Chicxulub impact 1834:nearly 2 years. 1828:Chicxulub impact 1581:meridiolestidans 1523:enantiornithines 1499:reworked fossils 1492: 1197: 1051:flowering plants 948:Most species of 781:that formed the 554:Extinction event 509: 502: 495: 488: 481: 474: 467: 463: 458: 453: 452: 446: 283:Chicxulub crater 259:massive asteroid 202:species such as 165:extinction event 87: 78: 67: 58: 47: 32:Extinction event 21: 16774: 16773: 16769: 16768: 16767: 16765: 16764: 16763: 16694: 16693: 16692: 16687: 16659: 16616: 16585: 16568:Extinct species 16558: 16514:Carnian Pluvial 16459:Great Oxidation 16447: 16390: 16356:Extinction debt 16348: 16342: 16293:Genetic erosion 16276: 16260: 16251: 16190: 16185: 16155: 16150: 16149: 16148: 16147: 16146: 16143: 16142: 16141: 16136: 16135: 16130: 16129: 16124: 16123: 16118: 16117: 16112: 16111: 16106: 16105: 16100: 16099: 16094: 16093: 16088: 16087: 16082: 16081: 16076: 16075: 16070: 16069: 16063: 16062: 16061: 16060: 16055: 16054: 16053: 16048: 16047: 16046: 16041: 16040: 16039: 16033: 16032: 16031: 16030: 16023: 16022: 16021: 16014: 16013: 16012: 16005: 16004: 16003: 15996: 15995: 15994: 15987: 15986: 15985: 15978: 15977: 15976: 15969: 15968: 15967: 15960: 15959: 15958: 15951: 15950: 15949: 15942: 15941: 15940: 15933: 15932: 15931: 15924: 15923: 15922: 15914: 15913: 15912: 15907: 15904: 15901: 15900: 15895: 15892: 15889: 15888: 15883: 15880: 15877: 15876: 15871: 15868: 15865: 15864: 15859: 15856: 15853: 15852: 15847: 15844: 15841: 15840: 15835: 15832: 15828: 15827: 15826: 15821: 15818: 15815: 15814: 15809: 15806: 15803: 15802: 15797: 15794: 15791: 15790: 15785: 15782: 15779: 15778: 15773: 15770: 15767: 15766: 15761: 15758: 15755: 15754: 15749: 15746: 15743: 15742: 15737: 15734: 15731: 15730: 15725: 15722: 15719: 15718: 15713: 15710: 15707: 15706: 15701: 15698: 15695: 15694: 15689: 15686: 15674: 15669: 15639: 15634: 15598: 15593: 15546: 15541: 15500: 15498: 15497:on 29 June 2007 15464: 15448:Fortey, Richard 15384: 15382: 15369: 15367:Further reading 15364: 15363: 15308: 15304: 15294: 15292: 15282:10.2307/1485619 15262: 15258: 15251: 15225: 15221: 15211: 15209: 15177: 15173: 15144:(11): 995–998. 15132: 15128: 15086: 15080: 15076: 15045:(6256): 76–78. 15029: 15025: 14986: 14982: 14972: 14970: 14938: 14934: 14879: 14875: 14868: 14846: 14842: 14832: 14830: 14790: 14786: 14776: 14774: 14752: 14748: 14738: 14736: 14704: 14700: 14666: 14660: 14656: 14646: 14644: 14612: 14608: 14598: 14596: 14564: 14560: 14519: 14515: 14505: 14503: 14471: 14467: 14457: 14455: 14451: 14418: 14412: 14408: 14345: 14341: 14308: 14304: 14294: 14292: 14260: 14256: 14246: 14244: 14212: 14208: 14198: 14196: 14148: 14144: 14134: 14132: 14084: 14077: 14067: 14065: 14041: 14037: 14030: 14014:(August 1997). 14009: 14005: 13989: 13988: 13981: 13979: 13966: 13962: 13946: 13945: 13938: 13936: 13925: 13921: 13905: 13904: 13897: 13895: 13884: 13880: 13873: 13859: 13855: 13845: 13843: 13803: 13799: 13789: 13787: 13755: 13751: 13741: 13739: 13699: 13695: 13685: 13683: 13651: 13647: 13637: 13635: 13603: 13596: 13586: 13584: 13569: 13568: 13564: 13545: 13541: 13484: 13480: 13470: 13468: 13428: 13424: 13369: 13365: 13308: 13304: 13247: 13243: 13233: 13231: 13183: 13179: 13146: 13137: 13084: 13080: 13070: 13068: 13036: 13032: 13022: 13020: 12988: 12984: 12974: 12972: 12930: 12926: 12879: 12875: 12865: 12863: 12850: 12849: 12845: 12812: 12808: 12775: 12771: 12761: 12759: 12755: 12744: 12738: 12737: 12733: 12691: 12687: 12677: 12675: 12668: 12652: 12648: 12615: 12611: 12576: 12572: 12540: 12536: 12526: 12524: 12522: 12507: 12501: 12497: 12455: 12449: 12442: 12385: 12376: 12337: 12330: 12320: 12318: 12299: 12290: 12280: 12278: 12265: 12264: 12260: 12236:10.1.1.712.8165 12209: 12205: 12169: 12165: 12128:(7158): 48–53. 12116: 12112: 12102: 12100: 12075: 12071: 12061: 12059: 12044: 12040: 12030: 12028: 11996: 11992: 11935: 11931: 11921: 11919: 11889: 11885: 11848:(6435): 10–11. 11836: 11832: 11822: 11820: 11816: 11807: 11803: 11790: 11786: 11773: 11769: 11756: 11754: 11746: 11745: 11741: 11683: 11679: 11669: 11667: 11635: 11631: 11590: 11586: 11576: 11574: 11542: 11538: 11489: 11485: 11432: 11428: 11391:(4651): 867–9. 11379: 11375: 11365: 11363: 11331: 11327: 11298:(5818): 47–49. 11286: 11282: 11257: 11253: 11243: 11241: 11239:livescience.com 11231: 11224: 11214: 11212: 11172: 11168: 11129: 11125: 11083: 11077: 11073: 11063: 11061: 11046: 11026: 11022: 11012: 11010: 10995: 10991: 10936: 10932: 10922: 10920: 10909: 10908: 10904: 10865:(7899): 91–94. 10851: 10847: 10793: 10789: 10750:(7899): 91–94. 10735: 10731: 10688: 10684: 10627: 10623: 10613: 10611: 10571:(6537): 63–68. 10555: 10551: 10541: 10539: 10528: 10527: 10523: 10466: 10462: 10452: 10450: 10437: 10433: 10423: 10421: 10412: 10411: 10407: 10369:Current Biology 10360: 10356: 10335:(11): 963–967. 10323: 10319: 10274: 10267: 10222:Biology Letters 10214: 10210: 10200: 10198: 10166: 10162: 10152: 10150: 10118: 10114: 10104: 10102: 10070: 10066: 10011: 10007: 10000: 9985: 9981: 9974: 9960: 9956: 9907: 9898: 9843:(6588): 80–85. 9824: 9820: 9810: 9808: 9807:. 31 March 2022 9797: 9796: 9792: 9785: 9781: 9752:(5364): 731–4. 9739: 9733: 9729: 9674: 9670: 9613: 9606: 9561: 9557: 9500: 9496: 9465:(9): 20180458. 9458:Biology Letters 9449: 9445: 9435: 9433: 9420: 9416: 9409: 9395: 9391: 9352: 9348: 9340: 9323: 9313: 9309: 9293: 9292: 9246: 9239: 9209:Current Biology 9200: 9196: 9136: 9132: 9094:Biology Letters 9085: 9081: 9071: 9069: 9060: 9059: 9055: 8997: 8991: 8987: 8938: 8934: 8924: 8922: 8921:on 8 April 2011 8903: 8899: 8889: 8887: 8883: 8868: 8860: 8856: 8807: 8803: 8761: 8757: 8734: 8730: 8696: 8692: 8685: 8660: 8656: 8617: 8613: 8603: 8601: 8577: 8573: 8566: 8535: 8528: 8521: 8506: 8500: 8487: 8454:(3): e2001663. 8440: 8436: 8394: 8388: 8384: 8342: 8338: 8317:(10): 516–522. 8304: 8298: 8294: 8278: 8277: 8241: 8237: 8227: 8225: 8221: 8206: 8200: 8196: 8165: 8161: 8151: 8149: 8117: 8113: 8062: 8058: 8011: 8007: 7973: 7967: 7963: 7922: 7918: 7861: 7857: 7812: 7808: 7793: 7789: 7750: 7746: 7736: 7734: 7702: 7698: 7660:Current Biology 7651: 7647: 7637: 7635: 7611: 7607: 7552: 7548: 7503: 7499: 7438: 7434: 7381: 7377: 7370: 7356: 7352: 7305: 7301: 7246: 7242: 7232: 7230: 7198: 7194: 7182: 7180: 7171: 7170: 7166: 7148: 7144: 7129:10.2307/2666178 7107: 7103: 7056: 7052: 7019: 7015: 6958: 6954: 6937: 6933: 6918: 6914: 6907: 6885: 6881: 6871: 6869: 6829: 6825: 6815: 6813: 6785: 6781: 6773: 6732: 6726: 6709: 6699: 6697: 6663: 6659: 6618: 6614: 6604: 6602: 6554: 6550: 6509: 6505: 6498: 6484: 6480: 6447: 6440: 6433: 6419: 6415: 6405: 6403: 6363: 6359: 6310: 6306: 6249: 6242: 6201:(8): e0288046. 6185: 6181: 6162: 6158: 6148: 6146: 6106: 6102: 6081:(10): 954–955. 6069: 6062: 6028: 6021: 6011: 6009: 5977: 5973: 5916: 5912: 5902: 5900: 5868: 5864: 5815: 5806: 5765: 5761: 5720: 5716: 5705: 5701: 5662: 5658: 5648: 5646: 5622: 5618: 5608: 5606: 5574: 5570: 5560: 5558: 5526: 5522: 5469: 5465: 5450:10.2307/3515168 5424: 5420: 5413: 5399: 5395: 5372: 5368: 5336: 5332: 5322: 5320: 5312:(1–2): 77–109. 5296: 5292: 5282: 5280: 5248: 5244: 5234: 5232: 5200: 5196: 5189: 5174: 5170: 5160: 5158: 5126: 5122: 5112: 5110: 5088: 5084: 5060: 5056: 5046: 5044: 5020: 5016: 5009: 4993: 4989: 4950: 4946: 4939: 4911: 4907: 4868: 4864: 4854: 4852: 4820: 4816: 4806: 4804: 4794:10.1038/ngeo775 4772: 4768: 4734: 4728: 4724: 4691: 4687: 4654: 4650: 4640: 4638: 4587: 4583: 4541: 4535: 4531: 4485: 4481: 4448: 4441: 4407: 4403: 4395: 4367:(10): 868–870. 4354: 4348: 4344: 4302: 4269: 4236: 4227: 4217: 4215: 4191: 4187: 4172: 4150: 4146: 4099: 4092: 4040: 4031: 3989: 3982: 3969:(1307): 11–17. 3959: 3952: 3895: 3891: 3876: 3865: 3808: 3804: 3797: 3782: 3778: 3721: 3712: 3655: 3644: 3575: 3568: 3558: 3556: 3498: 3491: 3481: 3479: 3467: 3460: 3450: 3448: 3431: 3427: 3420: 3391: 3387: 3330: 3323: 3313: 3311: 3294: 3287: 3254: 3247: 3206:(21): 7537–41. 3190: 3183: 3175: 3126: 3120: 3109: 3099: 3097: 3089:BBC News Online 3080: 3076: 3066: 3064: 3049: 3045: 3035: 3033: 3032:. PBS-WGBH/Nova 3022: 3018: 2968: 2962: 2947: 2937: 2935: 2896: 2889: 2879: 2877: 2837: 2830: 2820: 2818: 2777: 2770: 2763: 2749: 2745: 2738: 2722:Fortey, Richard 2719: 2715: 2705: 2703: 2694: 2693: 2689: 2682: 2668: 2664: 2659: 2654: 2649: 2645: 2628: 2624: 2599: 2595: 2591: 2544: 2501: 2499:Multiple causes 2436: 2401: 2395: 2372: 2370: 2356: 2354: 2330: 2309:mass extinction 2206:. This is the " 2163: 2151:mass extinction 2135: 2106: 2104: 2103: 2080: 2079: 2078: 2076: 2070: 2069: 2068: 1982:, buried under 1913:, and chemists 1864: 1859: 1847:Main articles: 1845: 1840: 1790: 1772:inferences and 1766:palaeobotanical 1746: 1712: 1640: 1589:deltatheroidans 1560: 1515:Origin of birds 1511:paleontologists 1507: 1490: 1371: 1350:ornithocheirids 1338: 1321:marine reptiles 1304: 1276: 1274:Marine reptiles 1221: 1204: 1195: 1179: 1174: 1161:albanerpetontid 1146: 1079: 1063:Lilliput effect 1047: 869: 802:microbial cysts 798:dinoflagellates 764: 673:lake ecosystems 566: 565: 564: 534: 533: 529: 511: 510: 505: 503: 498: 496: 491: 489: 484: 482: 477: 475: 470: 468: 461: 459: 456: 454: 449: 447: 441: 438: 434: 413: 363:and devastated 334:asteroid impact 295:asteroid impact 224:geologic record 173:mass extinction 153: 152: 151: 150: 90: 89: 88: 80: 79: 70: 69: 68: 60: 59: 50: 49: 48: 35: 28: 23: 22: 15: 12: 11: 5: 16772: 16762: 16761: 16756: 16751: 16746: 16741: 16736: 16731: 16726: 16721: 16716: 16711: 16706: 16689: 16688: 16686: 16685: 16675: 16664: 16661: 16660: 16658: 16657: 16650: 16645: 16640: 16635: 16630: 16624: 16622: 16618: 16617: 16615: 16614: 16609: 16604: 16599: 16593: 16591: 16587: 16586: 16584: 16583: 16578: 16572: 16570: 16564: 16563: 16560: 16559: 16557: 16556: 16551: 16546: 16544:Middle Miocene 16541: 16536: 16531: 16526: 16521: 16516: 16511: 16509:End-Capitanian 16506: 16501: 16496: 16491: 16486: 16481: 16476: 16471: 16466: 16461: 16455: 16453: 16449: 16448: 16446: 16445: 16444: 16443: 16433: 16428: 16423: 16418: 16413: 16407: 16405: 16398: 16392: 16391: 16389: 16388: 16383: 16378: 16373: 16368: 16363: 16358: 16352: 16350: 16344: 16343: 16341: 16340: 16335: 16330: 16325: 16320: 16315: 16310: 16305: 16300: 16295: 16290: 16284: 16282: 16278: 16277: 16275: 16274: 16268: 16266: 16262: 16261: 16254: 16252: 16250: 16249: 16244: 16239: 16234: 16229: 16224: 16219: 16214: 16209: 16204: 16198: 16196: 16192: 16191: 16184: 16183: 16176: 16169: 16161: 16152: 16151: 16144: 16139: 16137: 16133: 16131: 16127: 16125: 16121: 16119: 16115: 16113: 16109: 16107: 16103: 16101: 16097: 16095: 16091: 16089: 16085: 16083: 16079: 16077: 16073: 16071: 16067: 16065: 16058: 16057: 16056: 16051: 16050: 16049: 16044: 16043: 16042: 16038:Neoproterozoic 16037: 16036: 16035: 16034: 16026: 16025: 16024: 16017: 16016: 16015: 16008: 16007: 16006: 15999: 15998: 15997: 15990: 15989: 15988: 15981: 15980: 15979: 15972: 15971: 15970: 15963: 15962: 15961: 15954: 15953: 15952: 15945: 15944: 15943: 15936: 15935: 15934: 15927: 15926: 15925: 15918: 15917: 15916: 15915: 15903: 15902: 15891: 15890: 15879: 15878: 15867: 15866: 15861:Permo-Triassic 15855: 15854: 15843: 15842: 15831: 15830: 15829: 15817: 15816: 15805: 15804: 15793: 15792: 15781: 15780: 15769: 15768: 15763:Middle Miocene 15757: 15756: 15745: 15744: 15733: 15732: 15721: 15720: 15709: 15708: 15703:End-Ediacaran? 15697: 15696: 15685: 15684: 15683: 15682: 15681: 15680: 15679: 15676: 15675: 15668: 15667: 15660: 15653: 15645: 15636: 15635: 15633: 15632: 15627: 15622: 15616: 15614:Boltysh crater 15610: 15608: 15600: 15599: 15592: 15591: 15584: 15577: 15569: 15563: 15562: 15553: 15545: 15544:External links 15542: 15540: 15539: 15520:The New Yorker 15507: 15486: 15476: 15462: 15444: 15391: 15370: 15368: 15365: 15362: 15361: 15302: 15256: 15249: 15219: 15193:(3): 287–332. 15171: 15126: 15074: 15023: 14980: 14932: 14873: 14866: 14840: 14806:(3): 271–274. 14784: 14766:(3): 239–263. 14746: 14698: 14679:(8): 817–830. 14654: 14606: 14558: 14513: 14465: 14406: 14339: 14302: 14276:(3): 291–299. 14254: 14206: 14142: 14075: 14057:(2): 233–243. 14035: 14028: 14003: 13960: 13919: 13878: 13871: 13853: 13797: 13771:(1–4): 56–64. 13749: 13693: 13645: 13594: 13562: 13539: 13478: 13422: 13363: 13302: 13241: 13177: 13158:(4): 279–282. 13135: 13078: 13052:(5): 338–354. 13030: 13004:(6): 567–573. 12982: 12946:(2): 175–185. 12924: 12873: 12843: 12806: 12769: 12731: 12685: 12666: 12646: 12609: 12570: 12534: 12520: 12495: 12468:(1): 419–427. 12440: 12374: 12353:(1): 329–336. 12328: 12288: 12258: 12203: 12163: 12110: 12069: 12038: 11990: 11929: 11883: 11830: 11801: 11784: 11767: 11739: 11677: 11629: 11602:(6): 527–530. 11584: 11536: 11483: 11426: 11373: 11325: 11280: 11269:(1): 207–218. 11251: 11222: 11166: 11123: 11071: 11044: 11020: 10989: 10930: 10902: 10845: 10787: 10729: 10682: 10621: 10549: 10538:. 2 April 2021 10521: 10460: 10431: 10405: 10354: 10317: 10290:(5663): 1489. 10265: 10208: 10160: 10134:(7): 689–747. 10112: 10064: 10005: 9998: 9992:. W W Norton. 9979: 9972: 9954: 9896: 9818: 9790: 9779: 9727: 9668: 9604: 9555: 9494: 9443: 9414: 9407: 9389: 9362:(1): 135–144. 9346: 9307: 9237: 9194: 9130: 9079: 9053: 8985: 8932: 8897: 8854: 8801: 8774:(5): 482–506. 8755: 8744:(6): 547–559. 8728: 8709:(1–4): 82–92. 8690: 8683: 8654: 8611: 8593:(3): 225–231. 8571: 8564: 8526: 8519: 8511:The Dinosauria 8485: 8434: 8407:(2): 288–321. 8382: 8355:(3): 432–446. 8336: 8292: 8235: 8194: 8175:(3): 319–333. 8159: 8133:(2): 285–307. 8111: 8056: 8005: 7986:(2): 409–421. 7961: 7940:10.1554/03-509 7916: 7855: 7806: 7787: 7760:(1): 197–215. 7744: 7696: 7645: 7605: 7546: 7497: 7432: 7375: 7368: 7362:. DIMI Press. 7350: 7299: 7240: 7214:(5): 753–774. 7192: 7183:|author2= 7164: 7142: 7123:(2): 230–258. 7101: 7072:(3): 414–429. 7050: 7031:(1): 171–184. 7013: 6952: 6931: 6912: 6905: 6879: 6845:(4): 688–696. 6823: 6779: 6776:on 7 May 2019. 6707: 6657: 6630:(3): 556–571. 6612: 6548: 6521:(1–3): 71–77. 6503: 6496: 6478: 6459:(3): 181–194. 6438: 6431: 6413: 6357: 6304: 6240: 6179: 6156: 6122:(5): 483–486. 6100: 6060: 6019: 5993:(4): 507–521. 5971: 5910: 5884:(2): 251–265. 5862: 5804: 5759: 5714: 5699: 5672:(1): 123–139. 5656: 5616: 5568: 5520: 5463: 5436:(2): 140–154. 5418: 5411: 5393: 5366: 5347:(1–2): 57–76. 5330: 5290: 5264:(2): 143–177. 5242: 5216:(3): 221–254. 5194: 5187: 5168: 5120: 5082: 5054: 5036:(3): 229–252. 5014: 5007: 4987: 4960:(1): 217–246. 4944: 4937: 4905: 4878:(1): 257–273. 4862: 4836:(4): 661–679. 4814: 4788:(4): 280–285. 4766: 4747:(4): 522–542. 4722: 4703:(8): 653–656. 4685: 4666:(3): 255–258. 4648: 4581: 4529: 4479: 4460:(6): 556–560. 4439: 4420:(3): 227–230. 4401: 4342: 4315:(2): 265–292. 4267: 4248:(3): 347–368. 4225: 4185: 4170: 4156:The Dinosauria 4144: 4090: 4043:Feduccia, Alan 4029: 4008:(1): 107–118. 3980: 3950: 3889: 3863: 3824:(10): e76683. 3802: 3795: 3776: 3710: 3642: 3566: 3489: 3458: 3425: 3418: 3385: 3321: 3285: 3266:(9): 867–871. 3245: 3181: 3107: 3074: 3043: 3016: 2945: 2887: 2828: 2794:(9–10): 2451. 2768: 2761: 2743: 2736: 2713: 2702:on 30 May 2014 2687: 2680: 2661: 2660: 2658: 2655: 2653: 2652: 2643: 2622: 2592: 2590: 2587: 2586: 2585: 2579: 2573: 2567: 2561: 2556: 2550: 2543: 2540: 2534:Thescelosaurus 2518:Seymour Island 2500: 2497: 2477:coastal plains 2471:, such as the 2435: 2432: 2397:Main article: 2394: 2391: 2347:Boltysh crater 2329: 2326: 2212:nuclear winter 2134: 2131: 2072: 2071: 2062: 2061: 2055: 2054: 2053: 1971:Shocked quartz 1911:Walter Alvarez 1875:Walter Alvarez 1863: 1860: 1844: 1841: 1839: 1836: 1789: 1786: 1762:acipenseriform 1758:stable isotope 1745: 1742: 1711: 1708: 1639: 1636: 1624:evolutionarily 1585:gondwanatheres 1559: 1556: 1543:enantiornithes 1506: 1503: 1487:San Juan River 1460:Red Deer River 1410:(Montana) and 1370: 1367: 1362:thalassodromid 1354:pteranodontids 1337: 1334: 1309:crocodyliforms 1303: 1302:Crocodyliforms 1300: 1288:Elasmosauridae 1275: 1272: 1220: 1217: 1203: 1200: 1178: 1175: 1173: 1170: 1145: 1142: 1134:Seymour Island 1088:apex predators 1078: 1075: 1046: 1043: 868: 865: 763: 760: 677:crocodyliforms 616:photosynthesis 535: 512: 439: 417: 416: 415: 414: 412: 409: 330:climate change 287:Gulf of Mexico 267:photosynthesis 169:Pulse of Akito 149: 148: 138: 128: 121: 103: 92: 91: 82: 81: 73: 72: 71: 62: 61: 53: 52: 51: 42: 41: 40: 39: 38: 26: 9: 6: 4: 3: 2: 16771: 16760: 16757: 16755: 16752: 16750: 16747: 16745: 16742: 16740: 16737: 16735: 16732: 16730: 16727: 16725: 16722: 16720: 16717: 16715: 16712: 16710: 16707: 16705: 16702: 16701: 16699: 16684: 16676: 16674: 16666: 16665: 16662: 16656: 16655: 16651: 16649: 16646: 16644: 16641: 16639: 16636: 16634: 16631: 16629: 16626: 16625: 16623: 16619: 16613: 16610: 16608: 16605: 16603: 16600: 16598: 16595: 16594: 16592: 16590:Organizations 16588: 16582: 16579: 16577: 16574: 16573: 16571: 16569: 16565: 16555: 16552: 16550: 16547: 16545: 16542: 16540: 16537: 16535: 16532: 16530: 16527: 16525: 16522: 16520: 16517: 16515: 16512: 16510: 16507: 16505: 16502: 16500: 16499:Carboniferous 16497: 16495: 16492: 16490: 16487: 16485: 16482: 16480: 16477: 16475: 16472: 16470: 16467: 16465: 16464:End-Ediacaran 16462: 16460: 16457: 16456: 16454: 16450: 16442: 16439: 16438: 16437: 16434: 16432: 16429: 16427: 16424: 16422: 16419: 16417: 16416:Late Devonian 16414: 16412: 16409: 16408: 16406: 16402: 16399: 16397: 16393: 16387: 16386:Living fossil 16384: 16382: 16379: 16377: 16374: 16372: 16369: 16367: 16364: 16362: 16359: 16357: 16354: 16353: 16351: 16345: 16339: 16336: 16334: 16331: 16329: 16326: 16324: 16321: 16319: 16316: 16314: 16311: 16309: 16306: 16304: 16301: 16299: 16296: 16294: 16291: 16289: 16286: 16285: 16283: 16279: 16273: 16270: 16269: 16267: 16263: 16258: 16248: 16245: 16243: 16240: 16238: 16237:Lazarus taxon 16235: 16233: 16230: 16228: 16225: 16223: 16220: 16218: 16215: 16213: 16212:De-extinction 16210: 16208: 16205: 16203: 16200: 16199: 16197: 16193: 16189: 16182: 16177: 16175: 16170: 16168: 16163: 16162: 16159: 16029: 16020: 16011: 16002: 15993: 15984: 15975: 15966: 15965:Carboniferous 15957: 15948: 15939: 15930: 15921: 15910: 15898: 15886: 15874: 15862: 15850: 15849:Late Devonian 15838: 15824: 15812: 15800: 15788: 15776: 15764: 15752: 15740: 15728: 15716: 15704: 15692: 15677: 15673: 15666: 15661: 15659: 15654: 15652: 15647: 15646: 15643: 15631: 15628: 15626: 15623: 15620: 15617: 15615: 15612: 15611: 15609: 15606: 15601: 15597: 15590: 15585: 15583: 15578: 15576: 15571: 15570: 15567: 15561: 15557: 15554: 15551: 15548: 15547: 15537: 15536: 15532: 15528: 15522: 15521: 15516: 15512: 15508: 15496: 15492: 15487: 15484: 15480: 15477: 15473: 15469: 15465: 15459: 15455: 15454: 15449: 15445: 15441: 15437: 15432: 15427: 15422: 15417: 15413: 15409: 15405: 15401: 15397: 15392: 15381: 15377: 15372: 15371: 15357: 15353: 15348: 15343: 15339: 15335: 15331: 15327: 15323: 15319: 15318: 15313: 15306: 15291: 15287: 15283: 15279: 15275: 15271: 15267: 15260: 15252: 15250:9780813722474 15246: 15242: 15238: 15234: 15230: 15223: 15208: 15204: 15200: 15196: 15192: 15188: 15187: 15182: 15175: 15167: 15163: 15159: 15155: 15151: 15147: 15143: 15139: 15138: 15130: 15122: 15118: 15114: 15110: 15106: 15102: 15098: 15094: 15093: 15085: 15078: 15070: 15066: 15061: 15056: 15052: 15048: 15044: 15040: 15039: 15034: 15027: 15018: 15013: 15009: 15005: 15001: 14997: 14996: 14991: 14984: 14969: 14965: 14961: 14957: 14953: 14949: 14948: 14943: 14936: 14928: 14924: 14920: 14916: 14911: 14906: 14902: 14898: 14894: 14890: 14889: 14884: 14877: 14869: 14863: 14859: 14854: 14853: 14844: 14829: 14825: 14821: 14817: 14813: 14809: 14805: 14801: 14800: 14795: 14788: 14773: 14769: 14765: 14761: 14757: 14750: 14735: 14731: 14727: 14723: 14719: 14715: 14714: 14709: 14702: 14694: 14690: 14686: 14682: 14678: 14674: 14673: 14665: 14658: 14643: 14639: 14635: 14631: 14627: 14623: 14622: 14617: 14610: 14595: 14591: 14587: 14583: 14579: 14575: 14574: 14569: 14562: 14554: 14550: 14546: 14542: 14538: 14534: 14530: 14526: 14525: 14517: 14502: 14498: 14494: 14490: 14487:(1–2): 1–51. 14486: 14482: 14481: 14476: 14469: 14450: 14446: 14442: 14438: 14434: 14430: 14426: 14425: 14417: 14410: 14402: 14398: 14393: 14388: 14384: 14380: 14376: 14372: 14368: 14364: 14360: 14356: 14355: 14350: 14343: 14335: 14331: 14327: 14323: 14319: 14315: 14314: 14306: 14291: 14287: 14283: 14279: 14275: 14271: 14270: 14265: 14258: 14243: 14239: 14235: 14231: 14227: 14223: 14222: 14217: 14210: 14195: 14191: 14187: 14183: 14179: 14175: 14171: 14167: 14163: 14159: 14158: 14153: 14146: 14131: 14127: 14123: 14119: 14115: 14111: 14107: 14103: 14099: 14095: 14094: 14089: 14082: 14080: 14064: 14060: 14056: 14052: 14051: 14046: 14039: 14031: 14025: 14021: 14017: 14013: 14007: 13999: 13993: 13977: 13976: 13971: 13964: 13956: 13950: 13934: 13930: 13923: 13915: 13909: 13893: 13889: 13882: 13874: 13868: 13864: 13857: 13842: 13838: 13834: 13830: 13826: 13822: 13818: 13814: 13813: 13808: 13801: 13786: 13782: 13778: 13774: 13770: 13766: 13765: 13760: 13753: 13738: 13734: 13730: 13726: 13722: 13718: 13714: 13710: 13709: 13704: 13697: 13682: 13678: 13674: 13670: 13667:(1–4): 1–15. 13666: 13662: 13661: 13656: 13649: 13634: 13630: 13626: 13622: 13618: 13614: 13613: 13608: 13601: 13599: 13582: 13578: 13577: 13572: 13566: 13558: 13554: 13550: 13543: 13535: 13531: 13526: 13521: 13516: 13511: 13507: 13503: 13499: 13495: 13494: 13489: 13482: 13467: 13463: 13459: 13455: 13451: 13447: 13444:(1): 99–118. 13443: 13439: 13438: 13433: 13426: 13418: 13414: 13409: 13404: 13400: 13396: 13392: 13388: 13384: 13380: 13379: 13374: 13367: 13359: 13355: 13350: 13345: 13341: 13337: 13332: 13327: 13323: 13319: 13318: 13313: 13306: 13298: 13294: 13289: 13284: 13280: 13276: 13271: 13266: 13262: 13258: 13257: 13252: 13245: 13230: 13226: 13222: 13218: 13214: 13210: 13206: 13202: 13198: 13194: 13193: 13188: 13181: 13173: 13169: 13165: 13161: 13157: 13153: 13152: 13144: 13142: 13140: 13131: 13127: 13122: 13117: 13113: 13109: 13105: 13101: 13097: 13093: 13089: 13082: 13067: 13063: 13059: 13055: 13051: 13047: 13046: 13041: 13034: 13019: 13015: 13011: 13007: 13003: 12999: 12998: 12993: 12986: 12971: 12967: 12962: 12961:10044/1/18936 12957: 12953: 12949: 12945: 12941: 12940: 12935: 12928: 12920: 12916: 12911: 12906: 12902: 12898: 12894: 12890: 12889: 12884: 12877: 12861: 12857: 12853: 12847: 12839: 12835: 12831: 12827: 12824:(1–2): 4–21. 12823: 12819: 12818: 12810: 12802: 12798: 12794: 12790: 12786: 12782: 12781: 12773: 12754: 12750: 12743: 12742: 12735: 12727: 12723: 12719: 12715: 12711: 12707: 12704:(2): 99–103. 12703: 12699: 12698: 12689: 12673: 12669: 12663: 12659: 12658: 12650: 12642: 12638: 12634: 12630: 12626: 12622: 12621: 12613: 12605: 12601: 12597: 12593: 12589: 12585: 12581: 12574: 12566: 12562: 12558: 12554: 12550: 12546: 12538: 12523: 12517: 12513: 12506: 12499: 12491: 12487: 12483: 12479: 12475: 12471: 12467: 12463: 12462: 12454: 12447: 12445: 12436: 12432: 12427: 12422: 12417: 12412: 12408: 12404: 12400: 12396: 12395: 12390: 12383: 12381: 12379: 12369: 12364: 12360: 12356: 12352: 12348: 12347: 12342: 12335: 12333: 12316: 12312: 12308: 12304: 12297: 12295: 12293: 12276: 12272: 12268: 12262: 12254: 12250: 12246: 12242: 12237: 12232: 12228: 12224: 12220: 12216: 12215: 12207: 12199: 12195: 12190: 12185: 12181: 12177: 12176: 12167: 12159: 12155: 12151: 12147: 12143: 12139: 12135: 12131: 12127: 12123: 12122: 12114: 12099: 12095: 12091: 12087: 12086: 12081: 12073: 12057: 12053: 12049: 12042: 12027: 12023: 12019: 12015: 12011: 12007: 12006: 12001: 11994: 11986: 11982: 11977: 11972: 11967: 11962: 11958: 11954: 11950: 11946: 11945: 11940: 11933: 11918: 11914: 11910: 11906: 11902: 11898: 11894: 11887: 11879: 11875: 11871: 11867: 11863: 11859: 11855: 11851: 11847: 11843: 11842: 11834: 11815: 11814: 11805: 11798: 11794: 11788: 11781: 11777: 11771: 11764: 11753: 11749: 11743: 11735: 11731: 11726: 11721: 11716: 11711: 11707: 11703: 11699: 11695: 11694: 11689: 11681: 11666: 11662: 11658: 11654: 11650: 11646: 11645: 11640: 11633: 11625: 11621: 11617: 11613: 11609: 11605: 11601: 11597: 11596: 11588: 11573: 11569: 11565: 11561: 11557: 11553: 11552: 11547: 11540: 11532: 11528: 11524: 11520: 11516: 11512: 11508: 11504: 11500: 11496: 11495: 11487: 11479: 11475: 11471: 11467: 11463: 11459: 11455: 11451: 11447: 11443: 11442: 11437: 11430: 11422: 11418: 11414: 11410: 11406: 11402: 11398: 11394: 11390: 11386: 11385: 11377: 11362: 11358: 11354: 11350: 11346: 11342: 11341: 11336: 11329: 11321: 11317: 11313: 11309: 11305: 11301: 11297: 11293: 11292: 11284: 11276: 11272: 11268: 11264: 11263: 11255: 11240: 11236: 11229: 11227: 11211: 11207: 11203: 11199: 11195: 11191: 11187: 11183: 11182: 11177: 11170: 11161: 11156: 11152: 11148: 11144: 11140: 11139: 11134: 11127: 11119: 11115: 11111: 11107: 11103: 11099: 11095: 11091: 11090: 11082: 11075: 11059: 11055: 11051: 11047: 11041: 11037: 11036: 11031: 11024: 11009: 11008: 11003: 10999: 10993: 10985: 10981: 10977: 10973: 10968: 10963: 10959: 10955: 10951: 10947: 10946: 10941: 10934: 10918: 10917: 10912: 10906: 10898: 10894: 10889: 10884: 10880: 10876: 10872: 10868: 10864: 10860: 10856: 10849: 10841: 10837: 10832: 10827: 10823: 10819: 10815: 10811: 10807: 10803: 10799: 10791: 10783: 10779: 10774: 10769: 10765: 10761: 10757: 10753: 10749: 10745: 10741: 10733: 10725: 10721: 10717: 10713: 10709: 10705: 10702:(6334): 420. 10701: 10697: 10693: 10686: 10678: 10674: 10669: 10664: 10659: 10654: 10650: 10646: 10642: 10638: 10637: 10632: 10625: 10610: 10606: 10602: 10598: 10594: 10590: 10586: 10582: 10578: 10574: 10570: 10566: 10565: 10560: 10553: 10537: 10536: 10531: 10525: 10517: 10513: 10508: 10503: 10498: 10493: 10489: 10485: 10481: 10477: 10476: 10471: 10464: 10448: 10444: 10443: 10435: 10419: 10415: 10409: 10401: 10397: 10393: 10389: 10384: 10379: 10375: 10371: 10370: 10365: 10358: 10350: 10346: 10342: 10338: 10334: 10330: 10329: 10321: 10313: 10309: 10305: 10301: 10297: 10293: 10289: 10285: 10284: 10279: 10272: 10270: 10261: 10257: 10252: 10247: 10243: 10239: 10235: 10231: 10227: 10223: 10219: 10212: 10197: 10193: 10188: 10183: 10179: 10175: 10171: 10164: 10149: 10145: 10141: 10137: 10133: 10129: 10128: 10123: 10116: 10101: 10097: 10093: 10089: 10085: 10081: 10080: 10075: 10068: 10060: 10056: 10051: 10046: 10042: 10038: 10034: 10030: 10026: 10022: 10021: 10016: 10009: 10001: 9995: 9991: 9983: 9975: 9969: 9965: 9958: 9950: 9946: 9942: 9938: 9934: 9930: 9926: 9922: 9918: 9914: 9913: 9905: 9903: 9901: 9892: 9888: 9884: 9880: 9876: 9872: 9867: 9862: 9858: 9854: 9850: 9846: 9842: 9838: 9837: 9831: 9822: 9806: 9805: 9800: 9794: 9788: 9783: 9775: 9771: 9767: 9763: 9759: 9755: 9751: 9747: 9746: 9738: 9731: 9723: 9719: 9714: 9709: 9705: 9701: 9697: 9693: 9689: 9685: 9684: 9679: 9672: 9664: 9660: 9655: 9650: 9645: 9640: 9636: 9632: 9628: 9624: 9623: 9618: 9611: 9609: 9600: 9596: 9592: 9588: 9584: 9580: 9576: 9572: 9568: 9567: 9559: 9551: 9547: 9542: 9537: 9533: 9529: 9524: 9519: 9515: 9511: 9510: 9505: 9498: 9490: 9486: 9481: 9476: 9472: 9468: 9464: 9460: 9459: 9454: 9447: 9431: 9427: 9426: 9418: 9410: 9404: 9400: 9393: 9385: 9381: 9377: 9373: 9369: 9365: 9361: 9357: 9350: 9339: 9335: 9331: 9330: 9329:Geodiversitas 9322: 9320: 9311: 9303: 9297: 9289: 9285: 9281: 9277: 9273: 9269: 9265: 9261: 9257: 9253: 9252: 9244: 9242: 9233: 9229: 9224: 9219: 9215: 9211: 9210: 9205: 9198: 9190: 9186: 9182: 9178: 9173: 9168: 9164: 9160: 9156: 9152: 9148: 9144: 9143: 9134: 9126: 9122: 9117: 9112: 9108: 9104: 9100: 9096: 9095: 9090: 9083: 9067: 9063: 9057: 9049: 9045: 9041: 9037: 9033: 9029: 9025: 9021: 9017: 9013: 9009: 9005: 9004: 8996: 8989: 8981: 8977: 8973: 8969: 8965: 8961: 8957: 8953: 8949: 8945: 8944: 8936: 8920: 8916: 8912: 8908: 8901: 8882: 8878: 8874: 8867: 8866: 8858: 8850: 8846: 8842: 8838: 8834: 8830: 8826: 8822: 8818: 8814: 8813: 8805: 8797: 8793: 8789: 8785: 8781: 8777: 8773: 8769: 8768: 8759: 8751: 8747: 8743: 8739: 8732: 8724: 8720: 8716: 8712: 8708: 8704: 8703: 8694: 8686: 8680: 8676: 8671: 8670: 8664: 8663:Dodson, Peter 8658: 8649: 8644: 8640: 8636: 8632: 8628: 8627: 8622: 8615: 8600: 8596: 8592: 8588: 8587: 8582: 8575: 8567: 8561: 8557: 8553: 8549: 8544: 8543: 8533: 8531: 8522: 8516: 8512: 8505: 8498: 8496: 8494: 8492: 8490: 8481: 8477: 8472: 8467: 8462: 8457: 8453: 8449: 8445: 8438: 8430: 8426: 8422: 8421:10.1666/13030 8418: 8414: 8410: 8406: 8402: 8401: 8393: 8386: 8378: 8374: 8370: 8366: 8362: 8358: 8354: 8350: 8349: 8340: 8332: 8328: 8324: 8320: 8316: 8312: 8311: 8303: 8296: 8288: 8282: 8274: 8270: 8265: 8260: 8256: 8252: 8251: 8246: 8239: 8220: 8216: 8212: 8205: 8198: 8190: 8186: 8182: 8178: 8174: 8170: 8163: 8148: 8144: 8140: 8136: 8132: 8128: 8127: 8122: 8115: 8107: 8103: 8099: 8095: 8091: 8087: 8083: 8079: 8075: 8071: 8067: 8060: 8052: 8048: 8043: 8038: 8034: 8030: 8026: 8022: 8021: 8020:Palaeontology 8016: 8009: 8001: 7997: 7993: 7989: 7985: 7981: 7980: 7972: 7965: 7957: 7953: 7949: 7945: 7941: 7937: 7933: 7929: 7928: 7920: 7912: 7908: 7903: 7898: 7893: 7888: 7884: 7880: 7876: 7872: 7871: 7866: 7859: 7851: 7847: 7843: 7839: 7835: 7831: 7827: 7823: 7822: 7817: 7810: 7802: 7798: 7791: 7783: 7779: 7775: 7771: 7767: 7763: 7759: 7755: 7748: 7733: 7729: 7725: 7721: 7717: 7713: 7712: 7707: 7700: 7692: 7688: 7684: 7680: 7675: 7670: 7666: 7662: 7661: 7656: 7649: 7634: 7630: 7626: 7622: 7621: 7616: 7609: 7601: 7597: 7592: 7587: 7583: 7579: 7575: 7571: 7567: 7563: 7562: 7557: 7550: 7542: 7538: 7533: 7528: 7524: 7520: 7516: 7512: 7508: 7501: 7493: 7489: 7484: 7479: 7475: 7471: 7467: 7463: 7459: 7455: 7451: 7447: 7443: 7436: 7428: 7424: 7419: 7414: 7410: 7406: 7402: 7398: 7394: 7390: 7386: 7379: 7371: 7365: 7361: 7354: 7346: 7342: 7338: 7334: 7330: 7326: 7322: 7318: 7314: 7310: 7303: 7295: 7291: 7286: 7281: 7277: 7273: 7269: 7265: 7261: 7257: 7256: 7251: 7244: 7229: 7225: 7221: 7217: 7213: 7209: 7208: 7207:Palaeontology 7203: 7196: 7188: 7175: 7167: 7161: 7157: 7153: 7146: 7138: 7134: 7130: 7126: 7122: 7118: 7117: 7112: 7105: 7097: 7093: 7088: 7083: 7079: 7075: 7071: 7067: 7066: 7061: 7054: 7046: 7042: 7038: 7034: 7030: 7026: 7025: 7017: 7009: 7005: 7000: 6995: 6991: 6987: 6982: 6977: 6973: 6969: 6968: 6963: 6956: 6949:(3): 349–388. 6948: 6944: 6943: 6942:Geodiversitas 6935: 6927: 6923: 6916: 6908: 6902: 6898: 6894: 6890: 6883: 6868: 6864: 6860: 6856: 6852: 6848: 6844: 6840: 6839: 6834: 6827: 6812: 6808: 6803: 6798: 6794: 6790: 6783: 6772: 6768: 6764: 6760: 6756: 6752: 6748: 6744: 6740: 6739: 6731: 6724: 6722: 6720: 6718: 6716: 6714: 6712: 6695: 6690: 6686: 6682: 6678: 6674: 6673: 6668: 6661: 6653: 6649: 6645: 6641: 6637: 6633: 6629: 6625: 6624: 6616: 6601: 6597: 6593: 6589: 6585: 6581: 6577: 6573: 6569: 6565: 6564: 6559: 6552: 6544: 6540: 6536: 6532: 6528: 6524: 6520: 6516: 6515: 6507: 6499: 6493: 6489: 6482: 6474: 6470: 6466: 6462: 6458: 6454: 6453: 6445: 6443: 6434: 6428: 6424: 6417: 6402: 6398: 6394: 6390: 6386: 6382: 6378: 6374: 6373: 6368: 6361: 6353: 6349: 6345: 6341: 6337: 6333: 6329: 6325: 6321: 6317: 6316: 6308: 6300: 6296: 6291: 6286: 6281: 6276: 6272: 6268: 6264: 6260: 6259: 6254: 6247: 6245: 6236: 6232: 6227: 6222: 6218: 6214: 6209: 6204: 6200: 6196: 6195: 6190: 6183: 6175: 6171: 6167: 6160: 6145: 6141: 6137: 6133: 6129: 6125: 6121: 6117: 6116: 6111: 6104: 6096: 6092: 6088: 6084: 6080: 6076: 6075: 6067: 6065: 6056: 6052: 6048: 6044: 6040: 6036: 6035: 6026: 6024: 6008: 6004: 6000: 5996: 5992: 5988: 5987: 5982: 5975: 5967: 5963: 5958: 5953: 5949: 5945: 5940: 5935: 5931: 5927: 5926: 5921: 5914: 5899: 5895: 5891: 5887: 5883: 5879: 5878: 5873: 5866: 5858: 5854: 5850: 5846: 5842: 5838: 5834: 5830: 5826: 5822: 5821: 5813: 5811: 5809: 5800: 5796: 5792: 5788: 5784: 5780: 5776: 5772: 5771: 5763: 5755: 5751: 5747: 5743: 5739: 5735: 5731: 5727: 5726: 5718: 5710: 5703: 5695: 5691: 5687: 5683: 5679: 5675: 5671: 5667: 5660: 5645: 5641: 5637: 5633: 5632: 5627: 5620: 5605: 5601: 5597: 5593: 5589: 5585: 5584: 5579: 5572: 5556: 5555:10400.1/18610 5551: 5547: 5543: 5539: 5535: 5531: 5524: 5516: 5512: 5507: 5502: 5498: 5494: 5490: 5486: 5482: 5478: 5474: 5467: 5459: 5455: 5451: 5447: 5443: 5439: 5435: 5431: 5430: 5422: 5414: 5408: 5404: 5397: 5389: 5385: 5381: 5377: 5370: 5362: 5358: 5354: 5350: 5346: 5342: 5334: 5319: 5315: 5311: 5307: 5306: 5301: 5294: 5279: 5275: 5271: 5267: 5263: 5259: 5258: 5253: 5246: 5231: 5227: 5223: 5219: 5215: 5211: 5210: 5205: 5198: 5190: 5184: 5180: 5172: 5157: 5153: 5149: 5145: 5141: 5137: 5136: 5131: 5124: 5109: 5105: 5102:(1–3): 1–45. 5101: 5097: 5093: 5086: 5078: 5074: 5070: 5066: 5058: 5043: 5039: 5035: 5031: 5030: 5025: 5018: 5010: 5004: 5000: 4999: 4991: 4983: 4979: 4975: 4971: 4967: 4963: 4959: 4955: 4948: 4940: 4938:9781565763098 4934: 4930: 4926: 4922: 4921: 4916: 4909: 4901: 4897: 4893: 4889: 4885: 4881: 4877: 4873: 4866: 4851: 4847: 4843: 4839: 4835: 4831: 4830: 4825: 4818: 4803: 4799: 4795: 4791: 4787: 4783: 4782: 4777: 4770: 4762: 4758: 4754: 4750: 4746: 4742: 4741: 4733: 4726: 4718: 4714: 4710: 4706: 4702: 4698: 4697: 4689: 4681: 4677: 4673: 4669: 4665: 4661: 4660: 4652: 4637: 4633: 4628: 4623: 4619: 4615: 4611: 4607: 4603: 4599: 4598: 4593: 4585: 4577: 4573: 4569: 4565: 4561: 4557: 4554:(1): 96–100. 4553: 4549: 4548: 4540: 4533: 4525: 4521: 4516: 4511: 4507: 4503: 4499: 4495: 4491: 4483: 4475: 4471: 4467: 4463: 4459: 4455: 4454: 4446: 4444: 4435: 4431: 4427: 4423: 4419: 4415: 4414: 4405: 4394: 4390: 4386: 4382: 4378: 4374: 4370: 4366: 4362: 4361: 4353: 4346: 4338: 4334: 4330: 4326: 4322: 4318: 4314: 4310: 4309: 4300: 4298: 4296: 4294: 4292: 4290: 4288: 4286: 4284: 4282: 4280: 4278: 4276: 4274: 4272: 4263: 4259: 4255: 4251: 4247: 4243: 4242: 4234: 4232: 4230: 4214: 4210: 4206: 4202: 4201: 4196: 4189: 4181: 4177: 4173: 4167: 4163: 4158: 4157: 4148: 4140: 4136: 4131: 4126: 4122: 4118: 4114: 4110: 4109: 4104: 4097: 4095: 4086: 4082: 4078: 4074: 4070: 4066: 4062: 4058: 4054: 4050: 4049: 4044: 4038: 4036: 4034: 4025: 4021: 4016: 4011: 4007: 4003: 4002: 3997: 3993: 3987: 3985: 3976: 3972: 3968: 3964: 3957: 3955: 3946: 3942: 3937: 3932: 3927: 3922: 3918: 3914: 3910: 3906: 3905: 3900: 3893: 3885: 3881: 3874: 3872: 3870: 3868: 3859: 3855: 3850: 3845: 3840: 3835: 3831: 3827: 3823: 3819: 3818: 3813: 3806: 3798: 3792: 3788: 3780: 3772: 3768: 3763: 3758: 3753: 3748: 3744: 3740: 3736: 3732: 3731: 3726: 3719: 3717: 3715: 3706: 3702: 3697: 3692: 3687: 3682: 3678: 3674: 3670: 3666: 3665: 3660: 3653: 3651: 3649: 3647: 3638: 3634: 3629: 3624: 3620: 3616: 3611: 3606: 3602: 3598: 3594: 3590: 3589: 3584: 3580: 3573: 3571: 3555: 3551: 3547: 3543: 3538: 3533: 3529: 3525: 3521: 3517: 3513: 3509: 3508: 3503: 3496: 3494: 3478: 3477: 3472: 3465: 3463: 3446: 3442: 3441: 3436: 3429: 3421: 3415: 3411: 3407: 3402: 3401: 3395: 3394:Keller, Gerta 3389: 3381: 3377: 3372: 3367: 3362: 3357: 3353: 3349: 3345: 3341: 3340: 3335: 3328: 3326: 3309: 3305: 3304: 3299: 3292: 3290: 3281: 3277: 3273: 3269: 3265: 3261: 3260: 3252: 3250: 3241: 3237: 3232: 3227: 3222: 3217: 3213: 3209: 3205: 3201: 3200: 3195: 3188: 3186: 3174: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3142: 3138: 3134: 3133: 3125: 3118: 3116: 3114: 3112: 3095: 3091: 3090: 3085: 3078: 3062: 3058: 3054: 3047: 3031: 3027: 3020: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2975: 2967: 2960: 2958: 2956: 2954: 2952: 2950: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2894: 2892: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2847: 2842: 2835: 2833: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2788: 2783: 2775: 2773: 2764: 2758: 2754: 2753:Primal Forces 2747: 2739: 2733: 2729: 2728: 2723: 2717: 2701: 2697: 2691: 2683: 2677: 2673: 2666: 2662: 2647: 2640: 2636: 2632: 2626: 2619: 2615: 2611: 2607: 2603: 2597: 2593: 2583: 2580: 2577: 2574: 2571: 2568: 2565: 2562: 2560: 2557: 2554: 2551: 2549: 2546: 2545: 2536: 2535: 2529: 2525: 2523: 2519: 2514: 2511: 2507: 2496: 2492: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2461: 2456: 2454: 2450: 2446: 2441: 2431: 2427: 2425: 2420: 2416: 2412: 2409: 2408:flood basalts 2406: 2400: 2390: 2388: 2384: 2380: 2368: 2364: 2352: 2348: 2344: 2340: 2336: 2320: 2316: 2314: 2310: 2305: 2303: 2297: 2295: 2291: 2285: 2283: 2279: 2274: 2270: 2266: 2262: 2257: 2253: 2249: 2245: 2241: 2238: 2237:sulfuric acid 2234: 2230: 2224: 2221: 2220:impact winter 2217: 2213: 2209: 2205: 2201: 2196: 2194: 2189: 2185: 2180: 2175: 2173: 2169: 2161: 2152: 2148: 2144: 2139: 2130: 2128: 2123: 2118: 2116: 2101: 2097: 2089: 2084: 2075: 2059: 2049: 2045: 2041: 2036: 2032: 2029: 2028:microtektites 2025: 2021: 2017: 2013: 2009: 2005: 2004:United States 2001: 1997: 1993: 1989: 1985: 1981: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1935:Earth's crust 1932: 1928: 1927:concentration 1924: 1920: 1916: 1912: 1908: 1904: 1896: 1891: 1885:, Italy, 1981 1884: 1880: 1876: 1872: 1868: 1858: 1854: 1850: 1835: 1833: 1829: 1825: 1820: 1816: 1812: 1808: 1803: 1800: 1796: 1785: 1783: 1779: 1775: 1774:stratigraphic 1771: 1767: 1763: 1759: 1756:evidence and 1755: 1751: 1739: 1735: 1731: 1729: 1724: 1722: 1718: 1707: 1705: 1701: 1697: 1693: 1690: 1687: 1682: 1679: 1675: 1673: 1668: 1664: 1660: 1655: 1653: 1649: 1644: 1635: 1633: 1629: 1625: 1620: 1616: 1612: 1608: 1602: 1600: 1596: 1595: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1555: 1553: 1548: 1544: 1540: 1535: 1532: 1528: 1524: 1520: 1516: 1512: 1502: 1500: 1496: 1488: 1484: 1480: 1477: 1473: 1469: 1464: 1461: 1456: 1451: 1447: 1446: 1441: 1440: 1435: 1434: 1429: 1428: 1423: 1422: 1421:Tyrannosaurus 1417: 1413: 1409: 1405: 1401: 1395: 1393: 1388: 1381: 1380: 1379:Tyrannosaurus 1375: 1366: 1363: 1360:, a possible 1359: 1356:, a possible 1355: 1351: 1347: 1346:Nyctosauridae 1343: 1333: 1330: 1326: 1322: 1318: 1314: 1310: 1299: 1297: 1293: 1292:Polycotylidae 1289: 1285: 1280: 1271: 1269: 1265: 1260: 1255: 1253: 1251: 1246: 1242: 1238: 1234: 1233:South America 1230: 1226: 1216: 1213: 1209: 1199: 1194: 1193: 1192:Champsosaurus 1188: 1184: 1183:choristoderes 1177:Choristoderes 1169: 1167: 1166: 1162: 1158: 1157: 1151: 1141: 1139: 1135: 1131: 1126: 1123: 1118: 1116: 1112: 1108: 1104: 1103:neoselachians 1100: 1096: 1093: 1089: 1084: 1074: 1072: 1066: 1064: 1060: 1057: 1052: 1042: 1040: 1035: 1030: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 984: 980: 976: 974: 970: 966: 962: 957: 955: 951: 946: 944: 940: 936: 932: 928: 925: 924:scleractinian 920: 918: 914: 909: 907: 902: 898: 894: 892: 884: 880: 877: 873: 864: 861: 857: 852: 849: 846: 841: 839: 835: 831: 827: 822: 818: 814: 812: 808: 803: 799: 794: 792: 788: 784: 780: 777: 773: 772:fossil record 769: 768:K–Pg boundary 759: 757: 753: 749: 745: 740: 738: 734: 730: 726: 722: 718: 714: 710: 706: 702: 698: 694: 693:phytoplankton 690: 686: 682: 678: 674: 670: 667: 662: 660: 656: 652: 648: 644: 641: 638:nor strictly 637: 633: 629: 625: 621: 617: 613: 608: 606: 602: 598: 594: 590: 586: 582: 578: 577:Maastrichtian 574: 569: 563: 561: 555: 551: 546: 543: 539: 516: 508: 501: 494: 487: 480: 473: 466: 445: 421: 408: 406: 402: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 354: 350: 346: 341: 339: 335: 331: 327: 322: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 265:which halted 264: 263:impact winter 260: 256: 252: 247: 245: 244:Earth's crust 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 194:. Most other 193: 189: 185: 182: 178: 174: 170: 166: 162: 158: 146: 142: 139: 136: 132: 129: 126: 122: 119: 118:K–Pg boundary 115: 111: 107: 104: 101: 97: 96: 95: 86: 77: 66: 57: 46: 37: 33: 19: 16744:Megatsunamis 16652: 16628:Anthropocene 16469:End-Botomian 16430: 16349:and concepts 16207:Coextinction 15909:Major events 15908: 15884: 15691:Minor events 15690: 15625:Shiva crater 15595: 15524: 15518: 15499:. Retrieved 15495:the original 15452: 15403: 15399: 15383:. Retrieved 15321: 15315: 15305: 15293:. Retrieved 15273: 15269: 15259: 15232: 15222: 15210:. Retrieved 15190: 15184: 15174: 15141: 15135: 15129: 15096: 15090: 15077: 15042: 15036: 15026: 14999: 14993: 14983: 14971:. Retrieved 14951: 14945: 14935: 14892: 14886: 14876: 14851: 14843: 14831:. Retrieved 14803: 14797: 14787: 14775:. Retrieved 14763: 14759: 14749: 14737:. Retrieved 14717: 14711: 14701: 14676: 14670: 14657: 14645:. Retrieved 14625: 14619: 14609: 14597:. Retrieved 14577: 14571: 14561: 14531:(4): 85–92. 14528: 14522: 14516: 14504:. Retrieved 14484: 14478: 14468: 14456:. Retrieved 14449:the original 14428: 14422: 14409: 14358: 14352: 14342: 14317: 14311: 14305: 14293:. Retrieved 14273: 14267: 14257: 14245:. Retrieved 14225: 14219: 14209: 14197:. Retrieved 14161: 14155: 14145: 14133:. Retrieved 14097: 14091: 14066:. Retrieved 14054: 14048: 14038: 14019: 14006: 13992:cite journal 13980:. Retrieved 13973: 13963: 13949:cite journal 13937:. Retrieved 13932: 13922: 13908:cite journal 13896:. Retrieved 13891: 13881: 13862: 13856: 13844:. Retrieved 13816: 13810: 13800: 13788:. Retrieved 13768: 13762: 13752: 13740:. Retrieved 13712: 13706: 13696: 13684:. Retrieved 13664: 13658: 13648: 13636:. Retrieved 13616: 13610: 13585:. Retrieved 13574: 13565: 13548: 13542: 13497: 13491: 13481: 13469:. Retrieved 13441: 13437:Astrobiology 13435: 13425: 13385:(1): 28427. 13382: 13376: 13366: 13321: 13315: 13305: 13260: 13254: 13244: 13232:. Retrieved 13196: 13190: 13180: 13155: 13149: 13095: 13091: 13081: 13069:. Retrieved 13049: 13043: 13033: 13021:. Retrieved 13001: 12995: 12985: 12973:. Retrieved 12943: 12937: 12927: 12892: 12886: 12876: 12864:. Retrieved 12855: 12846: 12821: 12815: 12809: 12784: 12778: 12772: 12760:. Retrieved 12740: 12734: 12701: 12695: 12688: 12676:. Retrieved 12656: 12649: 12624: 12618: 12612: 12587: 12583: 12573: 12551:(2): 81–84. 12548: 12544: 12537: 12525:. Retrieved 12511: 12498: 12465: 12459: 12398: 12392: 12350: 12344: 12319:. Retrieved 12281:21 September 12279:. Retrieved 12271:ScienceDaily 12270: 12261: 12218: 12212: 12206: 12179: 12173: 12166: 12125: 12119: 12113: 12101:. Retrieved 12089: 12083: 12072: 12060:. Retrieved 12051: 12041: 12029:. Retrieved 12009: 12003: 11993: 11948: 11942: 11932: 11920:. Retrieved 11900: 11896: 11886: 11845: 11839: 11833: 11821:. Retrieved 11812: 11804: 11792: 11791:DePalma, R. 11787: 11775: 11770: 11762: 11755:. Retrieved 11751: 11742: 11697: 11691: 11680: 11668:. Retrieved 11648: 11642: 11632: 11599: 11593: 11587: 11575:. Retrieved 11555: 11549: 11539: 11498: 11492: 11486: 11445: 11439: 11429: 11388: 11382: 11376: 11364:. Retrieved 11344: 11338: 11328: 11295: 11289: 11283: 11266: 11260: 11254: 11242:. Retrieved 11238: 11213:. Retrieved 11185: 11179: 11169: 11142: 11136: 11126: 11093: 11087: 11074: 11062:. Retrieved 11034: 11023: 11011:. Retrieved 11007:Ars Technica 11005: 10992: 10952:(7899): 17. 10949: 10943: 10933: 10921:. Retrieved 10914: 10905: 10862: 10858: 10848: 10808:(1): 23704. 10805: 10801: 10790: 10747: 10743: 10732: 10699: 10695: 10685: 10640: 10634: 10624: 10612:. Retrieved 10568: 10562: 10552: 10540:. Retrieved 10533: 10524: 10479: 10473: 10463: 10451:. Retrieved 10441: 10434: 10422:. Retrieved 10418:the original 10408: 10373: 10367: 10357: 10332: 10326: 10320: 10287: 10281: 10225: 10221: 10211: 10199:. Retrieved 10177: 10173: 10163: 10151:. Retrieved 10131: 10125: 10115: 10103:. Retrieved 10086:(1): 79–97. 10083: 10077: 10067: 10024: 10018: 10008: 9989: 9982: 9963: 9957: 9916: 9910: 9840: 9834: 9821: 9809:. Retrieved 9804:Science News 9802: 9793: 9782: 9749: 9743: 9730: 9687: 9681: 9671: 9626: 9620: 9570: 9564: 9558: 9513: 9507: 9497: 9462: 9456: 9446: 9434:. Retrieved 9424: 9417: 9398: 9392: 9359: 9355: 9349: 9338:the original 9333: 9327: 9318: 9310: 9296:cite journal 9255: 9249: 9216:(1): 68–77. 9213: 9207: 9197: 9146: 9140: 9133: 9101:(4): 543–7. 9098: 9092: 9082: 9072:20 September 9070:. Retrieved 9056: 9007: 9001: 8988: 8947: 8941: 8935: 8923:. Retrieved 8919:the original 8914: 8910: 8900: 8888:. Retrieved 8864: 8857: 8816: 8810: 8804: 8771: 8765: 8758: 8741: 8737: 8731: 8706: 8700: 8693: 8668: 8657: 8630: 8624: 8614: 8602:. Retrieved 8590: 8584: 8574: 8541: 8510: 8451: 8448:PLOS Biology 8447: 8437: 8404: 8400:Paleobiology 8398: 8385: 8352: 8348:Paleobiology 8346: 8339: 8314: 8308: 8295: 8281:cite journal 8254: 8248: 8238: 8226:. Retrieved 8214: 8210: 8197: 8172: 8168: 8162: 8150:. Retrieved 8130: 8126:Paleobiology 8124: 8114: 8073: 8069: 8059: 8027:(1): 12638. 8024: 8018: 8008: 7983: 7977: 7964: 7931: 7925: 7919: 7877:(1): 10825. 7874: 7868: 7858: 7825: 7819: 7809: 7800: 7796: 7790: 7757: 7753: 7747: 7735:. Retrieved 7715: 7709: 7699: 7664: 7658: 7648: 7636:. Retrieved 7624: 7618: 7608: 7565: 7559: 7549: 7514: 7510: 7500: 7449: 7445: 7435: 7392: 7388: 7378: 7359: 7353: 7312: 7308: 7302: 7259: 7253: 7243: 7231:. Retrieved 7211: 7205: 7195: 7155: 7145: 7120: 7114: 7104: 7069: 7063: 7053: 7028: 7022: 7016: 6971: 6965: 6955: 6946: 6940: 6934: 6925: 6921: 6915: 6888: 6882: 6870:. Retrieved 6842: 6836: 6826: 6814:. Retrieved 6792: 6782: 6771:the original 6742: 6736: 6698:. Retrieved 6676: 6670: 6660: 6627: 6621: 6615: 6603:. Retrieved 6567: 6561: 6551: 6518: 6512: 6506: 6487: 6481: 6456: 6450: 6422: 6416: 6404:. Retrieved 6376: 6370: 6360: 6319: 6313: 6307: 6262: 6256: 6198: 6192: 6182: 6173: 6169: 6159: 6147:. Retrieved 6119: 6113: 6103: 6078: 6072: 6038: 6032: 6010:. Retrieved 5990: 5986:Paleobiology 5984: 5974: 5929: 5923: 5913: 5901:. Retrieved 5881: 5877:Paleobiology 5875: 5865: 5824: 5818: 5774: 5768: 5762: 5729: 5723: 5717: 5708: 5702: 5669: 5665: 5659: 5647:. Retrieved 5635: 5629: 5619: 5607:. Retrieved 5587: 5581: 5571: 5559:. Retrieved 5537: 5533: 5523: 5480: 5476: 5466: 5433: 5427: 5421: 5402: 5396: 5379: 5375: 5369: 5344: 5340: 5333: 5321:. Retrieved 5309: 5303: 5293: 5281:. Retrieved 5261: 5257:Paleobiology 5255: 5245: 5233:. Retrieved 5213: 5207: 5197: 5178: 5171: 5159:. Retrieved 5142:(11): 1439. 5139: 5133: 5123: 5111:. Retrieved 5099: 5095: 5085: 5071:(1): 31–49. 5068: 5064: 5057: 5045:. Retrieved 5033: 5027: 5017: 4997: 4990: 4957: 4953: 4947: 4919: 4908: 4875: 4871: 4865: 4853:. Retrieved 4833: 4829:Paleobiology 4827: 4817: 4805:. Retrieved 4785: 4779: 4769: 4744: 4740:Paleobiology 4738: 4725: 4700: 4694: 4688: 4663: 4657: 4651: 4639:. Retrieved 4601: 4595: 4584: 4551: 4545: 4532: 4497: 4493: 4482: 4457: 4451: 4417: 4411: 4404: 4393:the original 4364: 4358: 4345: 4312: 4306: 4245: 4241:Paleobiology 4239: 4216:. Retrieved 4204: 4198: 4188: 4155: 4147: 4112: 4106: 4052: 4046: 4005: 3999: 3966: 3962: 3908: 3902: 3892: 3879: 3821: 3815: 3805: 3786: 3779: 3734: 3728: 3668: 3662: 3592: 3586: 3557:. Retrieved 3511: 3505: 3480:. Retrieved 3474: 3449:. Retrieved 3438: 3428: 3399: 3388: 3343: 3337: 3312:. Retrieved 3301: 3263: 3257: 3203: 3197: 3173:the original 3136: 3130: 3098:. Retrieved 3087: 3077: 3065:. Retrieved 3046: 3034:. Retrieved 3029: 3019: 2978: 2972: 2936:. Retrieved 2908: 2904: 2878:. Retrieved 2850: 2844: 2819:. Retrieved 2791: 2785: 2752: 2746: 2726: 2716: 2704:. Retrieved 2700:the original 2690: 2671: 2665: 2646: 2634: 2625: 2613: 2609: 2601: 2596: 2532: 2515: 2502: 2493: 2469:epeiric seas 2457: 2448: 2437: 2428: 2421: 2417: 2413: 2405:Deccan Traps 2402: 2399:Deccan Traps 2393:Deccan Traps 2387:Tethys Ocean 2383:Shiva crater 2375:14.5 Ma 2359:0.64 Ma 2337:impact with 2331: 2306: 2298: 2286: 2269:core samples 2244:stratosphere 2225: 2197: 2176: 2157: 2119: 2093: 2000:North Dakota 1975:tsunami beds 1963:impact event 1947:Earth's core 1919:Helen Michel 1907:Luis Alvarez 1900: 1879:K-T boundary 1807:Denver Basin 1804: 1791: 1782:North Dakota 1768:identities, 1754:osteological 1747: 1725: 1713: 1683: 1676: 1656: 1648:saprotrophic 1645: 1641: 1603: 1594:Gurbanodelta 1592: 1573:metatherians 1561: 1536: 1508: 1491:64.5 Ma 1465: 1443: 1437: 1431: 1427:Ankylosaurus 1425: 1419: 1396: 1389: 1385: 1377: 1342:Azhdarchidae 1339: 1313:Dyrosauridae 1305: 1296:ichthyosaurs 1278: 1277: 1256: 1248: 1240: 1222: 1219:Lepidosauria 1205: 1190: 1180: 1163: 1154: 1147: 1127: 1119: 1115:teleost fish 1083:jawed fishes 1080: 1067: 1058: 1048: 1031: 1005:into modern 988: 959:The numbers 958: 947: 921: 917:Costacopluma 916: 910: 895: 888: 875: 853: 848:foraminifera 842: 815: 810: 806: 795: 779:nanoplankton 774:for various 765: 741: 691:from living 685:water column 681:champsosaurs 663: 628:insectivores 620:solar energy 609: 570: 567: 557: 537: 471: 381:evolutionary 375:(especially 342: 326:Deccan Traps 323: 253:and his son 251:Luis Alvarez 248: 242:than in the 208:crocodilians 168: 164: 160: 156: 154: 145:Deccan Traps 93: 36: 16474:Dresbachian 14973:18 November 14833:18 November 14739:18 November 14647:23 November 14628:: 153–164. 14506:18 November 14458:18 November 14295:18 November 14247:18 November 14199:18 November 14135:18 November 14068:18 November 13846:18 November 13790:18 November 13742:18 November 13686:18 November 13638:18 November 13471:18 November 13234:18 November 12182:(1): 7–10. 11922:18 November 11752:www.nps.gov 11244:17 November 11145:: 272–280. 11013:26 February 10923:24 February 9032:11336/80763 8633:: 368–390. 7737:21 December 7718:: 295–317. 7568:(1): 5335. 7262:(1): 1489. 6694:11336/99687 6679:: 250–265. 6406:18 November 6379:: 161–169. 6176:(1): 51–61. 6149:18 November 5638:: 142–156. 5609:18 November 5382:: 203–216. 4641:21 December 4627:11336/80135 3992:Alroy, John 3408:. pp.  3067:30 December 2510:particulate 2489:vertebrates 2424:sparse data 2294:nitric acid 2188:megatsunami 2179:megatsunami 2044:Raton Basin 1923:sedimentary 1915:Frank Asaro 1903:Nobel Prize 1721:saprophytes 1686:neotropical 1628:brain sizes 1439:Triceratops 1284:plesiosaurs 1245:New Zealand 1243:) found in 1130:bony fishes 1092:durophagous 989:Except for 969:inoceramids 950:brachiopods 935:photic zone 901:crustaceans 707:(including 697:ocean floor 669:communities 640:carnivorous 636:herbivorous 605:New Zealand 444:Phanerozoic 357:plesiosaurs 230:called the 204:sea turtles 200:ectothermic 141:Rajgad Fort 16698:Categories 16554:Quaternary 16188:Extinction 16028:Quaternary 16001:Cretaceous 15938:Ordovician 15787:Capitanian 15276:(3): 232. 13587:14 October 12787:: 75–113. 12062:8 February 12052:sfgate.com 11774:Smit, J., 11558:(4): 331. 11347:(8): 759. 11064:25 October 11054:4434434112 10180:: 89–101. 9172:2328/35953 8217:: 61–107. 8211:Zitteliana 7828:: 105339. 5540:: 101959. 3559:17 January 3482:17 January 3451:30 January 3314:24 October 2911:: 102214. 2853:: 111334. 2606:Cretaceous 2522:Antarctica 2481:freshwater 2449:regression 2204:firestorms 2096:Paul Renne 2018:and lower 1996:Tanis site 1815:fern spike 1770:taphonomic 1689:rainforest 1678:Polyploidy 1667:angiosperm 1659:fern spike 1577:eutherians 1565:monotremes 1463:research. 1455:taphonomic 1445:Torosaurus 1336:Pterosaurs 1325:Notosuchia 1257:The order 1144:Amphibians 1138:Antarctica 1071:Termitidae 1056:ichnotaxon 1023:belemnoids 1015:cuttlefish 991:nautiloids 952:, a small 845:planktonic 838:Cretaceous 821:Ordovician 817:Radiolaria 791:speciation 776:calcareous 762:Microbiota 725:food chain 593:New Mexico 589:Antarctica 538:percentage 353:pterosaurs 315:food chain 212:Cretaceous 171:, was the 110:Drumheller 16759:Dinosaurs 16333:Overshoot 16195:Phenomena 16045:Palæozoic 16010:Paleogene 15920:Ediacaran 15715:Lau event 15621:(primary) 15603:Proposed 15527:dinosaurs 15324:: 12079. 15295:22 August 15212:22 August 15207:0883-8305 15166:115136793 15002:: 19–31. 14919:0036-8075 14828:0091-7613 14777:22 August 14599:22 August 14594:0094-8276 14445:1052-5173 14431:(12): 4. 14383:2375-2548 14186:0028-0836 14122:0028-0836 13841:0148-0227 13458:1531-1074 13399:2045-2322 13340:0027-8424 13279:0027-8424 13229:264805571 13221:1752-0894 13071:22 August 13066:2662-138X 13023:22 August 13018:0002-9505 12975:22 August 12970:0016-7649 12678:30 August 12584:Sed. Geol 12231:CiteSeerX 12189:0811.0171 12103:22 August 12092:: 12–30. 12031:22 August 12026:1086-9379 11670:22 August 11665:1086-9379 11577:22 August 11572:0091-7613 11366:22 August 11361:0091-7613 11215:22 August 11202:0036-8075 10984:247083600 10609:232484243 10593:0036-8075 10242:1744-957X 10196:196664424 10153:22 August 10148:0869-5938 10105:22 August 10100:0869-5938 10041:0962-8452 9891:247853831 9875:0036-8075 9704:0962-8452 9587:1471-2954 9532:1664-8021 9384:129493664 9189:206555952 8796:130116586 8604:22 August 8228:31 August 8152:22 August 8147:0094-8373 8106:258361595 8098:0272-4634 8051:0031-0239 7956:198156470 7927:Evolution 7850:251749728 7782:140639013 7683:0960-9822 7638:22 August 7541:1477-2019 7474:2054-5703 7409:0962-8452 7276:2045-2322 7233:22 August 7228:0031-0239 7174:cite book 6990:0027-8424 6872:22 August 6859:2397-334X 6816:22 August 6811:1374-8505 6700:22 August 6652:132206016 6600:257103123 6543:129579498 6401:0031-0182 6217:1932-6203 6144:1943-2682 6012:22 August 6007:0094-8373 5948:0027-8424 5903:22 August 5898:0094-8373 5799:132641572 5694:129296658 5649:22 August 5604:0278-0372 5561:22 August 5497:0962-8452 5323:22 August 5283:22 August 5278:0094-8373 5235:22 August 5230:0031-0182 5161:22 August 5156:0016-7606 5113:22 August 5047:22 August 4982:129875020 4900:128771186 4855:22 August 4850:0094-8373 4807:22 August 4802:1752-0908 4636:129962470 4576:130690035 4337:129654916 4218:22 August 4180:441742117 3619:0027-8424 3554:210698721 2933:256834649 2875:254345541 2816:256021543 2657:Citations 2618:Paleogene 2367:North Sea 2273:peak ring 2271:from the 2261:predators 2242:into the 2233:anhydrite 2216:biosphere 2042:, in the 2020:Paleocene 1992:volcanism 1984:Chicxulub 1967:spherules 1959:asteroids 1704:diversity 1694:like the 1619:marsupial 1519:theropods 1476:hadrosaur 1358:tapejarid 1329:Sebecidae 1317:crocodile 1268:mosasaurs 1212:Paleogene 1027:ammonoids 1019:molluscan 1007:octopodes 995:Nautilida 939:symbiosis 897:Ostracods 881:from the 830:Paleocene 733:mosasaurs 729:ammonites 709:ammonites 624:Omnivores 573:dinosaurs 389:Paleogene 377:ammonites 361:mosasaurs 345:dinosaurs 338:volcanism 299:peak ring 240:asteroids 222:. In the 196:tetrapods 192:dinosaurs 16673:Category 16621:See also 16519:Toarcian 16484:Ireviken 16441:Timeline 16436:Holocene 16347:Theories 16059:Cenozoic 16052:Mesozoic 15992:Jurassic 15983:Triassic 15956:Devonian 15947:Silurian 15929:Cambrian 15897:Holocene 15501:2 August 15472:54537112 15450:(2005). 15440:30936306 15385:2 August 15356:27377632 15069:26430116 14927:30792301 14553:11536474 14401:37792933 14392:10550224 13982:29 March 13939:29 March 13898:29 March 13737:11539442 13581:Archived 13534:24821785 13466:12804368 13417:27414998 13358:32989138 13297:28827324 13130:29123110 12919:11541145 12860:Archived 12753:Archived 12751:. 1994. 12726:11537752 12672:Archived 12527:29 March 12490:53631053 12315:Archived 12275:Archived 12253:39644763 12150:17805288 12056:Archived 11985:15004276 11878:96434764 11870:30948530 11823:11 April 11757:22 March 11734:30936306 11624:11539331 11523:17774578 11478:31383614 11470:17748309 11421:25887801 11413:17743194 11210:23393261 11118:11239153 11058:Archived 11032:(eds.). 10976:35197589 10897:35197634 10840:34880389 10782:35197634 10677:11607638 10601:33795451 10535:BBC News 10516:19325131 10447:Archived 10400:44075214 10392:29804807 10312:44720346 10304:15001770 10260:37700701 10251:10498348 10201:23 March 10059:19776074 9949:40364945 9941:11721051 9883:35357913 9722:27358361 9663:12552136 9599:38955231 9573:(2026). 9550:31850081 9516:: 1241. 9489:30258031 9430:Archived 9280:17392779 9232:27989673 9181:24855267 9125:17148284 9066:Archived 9040:15662422 8980:30639866 8881:Archived 8849:31638639 8841:17781415 8665:(1996). 8480:29534059 8429:85673254 8377:84324007 8331:16701316 8273:16533822 8219:Archived 8189:73638590 8000:86503283 7948:15266985 7911:26953824 7732:86073650 7691:28552352 7600:34521829 7492:33959350 7427:25143041 7337:14534584 7294:32001765 7181:Missing 7096:26573112 7045:84097919 7008:28673970 6928:: 1–180. 6867:29531346 6767:44010682 6605:23 March 6592:36821692 6352:52801127 6344:16931760 6299:11854501 6235:37556403 6226:10411753 6194:PLOS ONE 5966:12601147 5754:11537491 5515:32811315 5483:(1933). 4761:17279135 4524:36475805 4389:54860261 4262:33880578 4139:20133356 4085:42829066 4077:17745839 4024:12078635 3994:(1999). 3945:19276106 3858:24194843 3817:PLOS ONE 3771:23236177 3705:21914849 3637:32601204 3546:31949074 3445:Archived 3406:Springer 3380:31636204 3308:Archived 3240:24821785 3169:16017767 3161:17783054 3100:16 March 3094:Archived 3061:Archived 3003:20203042 2938:23 March 2880:23 March 2821:23 March 2724:(1999). 2706:29 April 2631:Tertiary 2542:See also 2265:detritus 2240:aerosols 2193:mangrove 2184:Atlantic 2048:Colorado 1895:Turonian 1819:Cenozoic 1811:Colorado 1788:Duration 1696:Amazonia 1539:avialans 1450:Pyrenees 1259:Squamata 1229:Mesozoic 1172:Reptiles 1159:and the 1105:(modern 1095:demersal 1090:and the 1003:diverged 999:coleoids 973:scallops 931:tropical 913:decapods 906:Cenozoic 879:ammonite 737:reptiles 705:mollusks 659:detritus 583:, Asia, 405:primates 373:mollusks 336:and not 275:plankton 228:sediment 220:Cenozoic 216:Mesozoic 106:Badlands 100:asteroid 18:KT event 16683:Commons 16504:Olson's 16019:Neogene 15974:Permian 15823:Olson's 15607:craters 15431:6486721 15408:Bibcode 15347:4935969 15326:Bibcode 15290:1485619 15146:Bibcode 15137:Geology 15121:3463018 15101:Bibcode 15047:Bibcode 15038:Science 15004:Bibcode 14956:Bibcode 14897:Bibcode 14888:Science 14808:Bibcode 14799:Geology 14722:Bibcode 14681:Bibcode 14630:Bibcode 14533:Bibcode 14489:Bibcode 14363:Bibcode 14322:Bibcode 14278:Bibcode 14230:Bibcode 14194:4326163 14166:Bibcode 14130:4351454 14102:Bibcode 13821:Bibcode 13773:Bibcode 13717:Bibcode 13669:Bibcode 13621:Bibcode 13549:Science 13525:4040585 13502:Bibcode 13408:4944614 13349:7568312 13288:5594694 13201:Bibcode 13160:Bibcode 13121:5680197 13100:Bibcode 12897:Bibcode 12866:25 June 12826:Bibcode 12789:Bibcode 12762:25 June 12706:Bibcode 12697:Geology 12629:Bibcode 12620:Geology 12592:Bibcode 12553:Bibcode 12545:Geology 12470:Bibcode 12435:9736679 12403:Bibcode 12355:Bibcode 12223:Bibcode 12194:Bibcode 12158:4322622 12130:Bibcode 11953:Bibcode 11905:Bibcode 11850:Bibcode 11841:Science 11795:(2017) 11778:(2017) 11725:6486721 11702:Bibcode 11604:Bibcode 11595:Geology 11551:Geology 11531:7447635 11503:Bibcode 11494:Science 11450:Bibcode 11441:Science 11393:Bibcode 11384:Science 11340:Geology 11320:4331801 11300:Bibcode 11275:1300393 11181:Science 11147:Bibcode 11098:Bibcode 11089:Science 10954:Bibcode 10916:Science 10888:8891016 10867:Bibcode 10831:8655067 10810:Bibcode 10773:8891016 10752:Bibcode 10724:4242454 10704:Bibcode 10645:Bibcode 10573:Bibcode 10564:Science 10507:2667025 10484:Bibcode 10337:Bibcode 10328:Geology 10283:Science 10050:2817104 9921:Bibcode 9912:Science 9845:Bibcode 9836:Science 9774:9563948 9754:Bibcode 9745:Science 9713:4936024 9631:Bibcode 9541:6896846 9480:6170748 9436:3 April 9364:Bibcode 9288:4314965 9260:Bibcode 9151:Bibcode 9142:Science 9116:1834003 9048:4354309 9012:Bibcode 8972:8895459 8952:Bibcode 8943:Science 8873:Bibcode 8821:Bibcode 8812:Science 8776:Bibcode 8767:PALAIOS 8711:Bibcode 8675:279–281 8635:Bibcode 8471:5849296 8409:Bibcode 8357:Bibcode 8078:Bibcode 8029:Bibcode 7902:4786747 7879:Bibcode 7830:Bibcode 7803:: 1–63. 7762:Bibcode 7591:8440539 7570:Bibcode 7519:Bibcode 7483:8074880 7454:Bibcode 7418:4150314 7345:4425130 7317:Bibcode 7285:6992736 7137:2666178 7087:5341546 6999:5530686 6747:Bibcode 6632:Bibcode 6572:Bibcode 6563:Science 6523:Bibcode 6461:Bibcode 6381:Bibcode 6324:Bibcode 6315:Science 6267:Bibcode 6124:Bibcode 6115:Geology 6083:Bibcode 6074:Geology 6043:Bibcode 6034:Geology 5857:1837900 5849:8910273 5829:Bibcode 5820:Science 5779:Bibcode 5734:Bibcode 5725:Science 5674:Bibcode 5506:7482269 5458:3515168 5438:Bibcode 5429:PALAIOS 5349:Bibcode 5077:1486024 4962:Bibcode 4880:Bibcode 4705:Bibcode 4696:Geology 4668:Bibcode 4659:Geology 4606:Bibcode 4556:Bibcode 4547:PALAIOS 4515:9728968 4462:Bibcode 4453:Geology 4422:Bibcode 4413:Geology 4369:Bibcode 4360:Geology 4317:Bibcode 4130:2871855 4057:Bibcode 4048:Science 3936:2664034 3913:Bibcode 3849:3806776 3826:Bibcode 3762:3535637 3739:Bibcode 3696:3174646 3673:Bibcode 3628:7382232 3597:Bibcode 3516:Bibcode 3507:Science 3371:6842625 3348:Bibcode 3268:Bibcode 3259:Geology 3231:4040585 3208:Bibcode 3141:Bibcode 3132:Science 3036:12 June 3011:2659741 2983:Bibcode 2974:Science 2913:Bibcode 2855:Bibcode 2796:Bibcode 2365:in the 2351:Ukraine 2339:Jupiter 2282:sulfate 2154:decade. 2111:million 2098:of the 1988:Yucatán 1949:during 1931:iridium 1799:species 1558:Mammals 1552:Ratites 1547:Neoaves 1485:at the 1416:Alberta 1404:Montana 1237:tuatara 1202:Turtles 1187:Miocene 1150:Montana 1111:batoids 965:rudists 961:bivalve 860:biomass 856:benthic 783:calcium 721:mussels 713:rudists 647:insects 643:mammals 632:carrion 365:teleost 349:insects 311:aerosol 303:granite 285:in the 236:iridium 184:species 135:iridium 131:Wyoming 125:Geulhem 114:Alberta 16529:Aptian 16281:Causes 16265:Models 15905:  15739:Aptian 15687:  15470:  15460:  15438:  15428:  15354:  15344:  15288:  15247:  15205:  15164:  15119:  15067:  14925:  14917:  14864:  14860:–146. 14826:  14592:  14551:  14443:  14399:  14389:  14381:  14192:  14184:  14157:Nature 14128:  14120:  14093:Nature 14026:  13869:  13839:  13735:  13532:  13522:  13464:  13456:  13415:  13405:  13397:  13356:  13346:  13338:  13295:  13285:  13277:  13227:  13219:  13128:  13118:  13064:  13016:  12968:  12917:  12724:  12664:  12518:  12488:  12433:  12423:  12321:18 May 12307:London 12251:  12233:  12156:  12148:  12121:Nature 12024:  11983:  11976:374316 11973:  11876:  11868:  11793:et al. 11776:et al. 11732:  11722:  11663:  11622:  11570:  11529:  11521:  11476:  11468:  11419:  11411:  11359:  11318:  11291:Nature 11273:  11208:  11200:  11116:  11052:  11042:  10982:  10974:  10945:Nature 10895:  10885:  10859:Nature 10838:  10828:  10802:Nature 10780:  10770:  10744:Nature 10722:  10696:Nature 10675:  10665:  10607:  10599:  10591:  10514:  10504:  10453:9 July 10424:8 July 10398:  10390:  10310:  10302:  10258:  10248:  10240:  10194:  10146:  10098:  10057:  10047:  10039:  9996:  9970:  9947:  9939:  9889:  9881:  9873:  9811:14 May 9772:  9720:  9710:  9702:  9661:  9654:298725 9651:  9597:  9585:  9548:  9538:  9530:  9487:  9477:  9405:  9382:  9286:  9278:  9251:Nature 9230:  9187:  9179:  9123:  9113:  9046:  9038:  9003:Nature 8978:  8970:  8925:2 July 8890:18 May 8847:  8839:  8794:  8681:  8562:  8550:–219. 8517:  8478:  8468:  8427:  8375:  8329:  8271:  8187:  8145:  8104:  8096:  8049:  7998:  7954:  7946:  7909:  7899:  7848:  7780:  7730:  7689:  7681:  7598:  7588:  7539:  7490:  7480:  7472:  7425:  7415:  7407:  7366:  7343:  7335:  7309:Nature 7292:  7282:  7274:  7226:  7162:  7135:  7094:  7084:  7043:  7006:  6996:  6988:  6903:  6865:  6857:  6809:  6765:  6650:  6598:  6590:  6541:  6494:  6429:  6399:  6350:  6342:  6297:  6290:122319 6287:  6233:  6223:  6215:  6142:  6005:  5964:  5957:151366 5954:  5946:  5896:  5855:  5847:  5797:  5752:  5692:  5666:Facies 5602:  5513:  5503:  5495:  5456:  5409:  5276:  5228:  5185:  5154:  5075:  5005:  4980:  4935:  4898:  4848:  4800:  4759:  4634:  4574:  4522:  4512:  4387:  4335:  4260:  4178:  4168:  4164:–606. 4137:  4127:  4083:  4075:  4022:  3943:  3933:  3856:  3846:  3793:  3769:  3759:  3703:  3693:  3635:  3625:  3617:  3552:  3544:  3416:  3412:–793. 3378:  3368:  3238:  3228:  3167:  3159:  3009:  3001:  2931:  2873:  2814:  2759:  2734:  2678:  2612:, and 2610:Kreide 2485:oceans 2465:albedo 2379:bolide 2323:event. 2278:Gypsum 2229:gypsum 2168:joules 2105:66.043 2012:fossil 1955:comets 1883:Gubbio 1855:, and 1838:Causes 1744:Dating 1692:biomes 1672:pollen 1632:Eocene 1583:, and 1531:ratite 1442:, and 1208:turtle 1107:sharks 1013:, and 1011:squids 997:) and 983:Rudist 954:phylum 911:Among 834:diatom 787:marine 719:, and 666:stream 655:snails 653:, and 630:, and 612:clades 603:, and 597:Alaska 585:Africa 581:Europe 545:genera 542:animal 500:Late D 403:, and 397:whales 393:horses 369:sharks 367:fish, 307:gypsum 271:plants 255:Walter 181:animal 16489:Mulde 16452:Other 16404:Major 15531:Earth 15481:—The 15286:JSTOR 15162:S2CID 15117:S2CID 15087:(PDF) 14667:(PDF) 14452:(PDF) 14419:(PDF) 14190:S2CID 14126:S2CID 13225:S2CID 12756:(PDF) 12745:(PDF) 12508:(PDF) 12486:S2CID 12456:(PDF) 12426:33889 12249:S2CID 12184:arXiv 12154:S2CID 11874:S2CID 11817:(PDF) 11527:S2CID 11474:S2CID 11417:S2CID 11316:S2CID 11271:JSTOR 11084:(PDF) 10980:S2CID 10720:S2CID 10668:39926 10614:9 May 10605:S2CID 10542:9 May 10396:S2CID 10308:S2CID 10228:(9). 10192:S2CID 9945:S2CID 9887:S2CID 9740:(PDF) 9380:S2CID 9341:(PDF) 9324:(PDF) 9284:S2CID 9185:S2CID 9044:S2CID 8998:(PDF) 8976:S2CID 8884:(PDF) 8869:(PDF) 8845:S2CID 8792:S2CID 8507:(PDF) 8425:S2CID 8395:(PDF) 8373:S2CID 8305:(PDF) 8222:(PDF) 8207:(PDF) 8185:S2CID 8102:S2CID 8076:(4). 7996:S2CID 7974:(PDF) 7952:S2CID 7846:S2CID 7778:S2CID 7728:S2CID 7517:(1). 7341:S2CID 7133:JSTOR 7041:S2CID 6774:(PDF) 6763:S2CID 6733:(PDF) 6648:S2CID 6596:S2CID 6539:S2CID 6348:S2CID 5853:S2CID 5795:S2CID 5690:S2CID 5590:(2). 5454:JSTOR 5073:JSTOR 4978:S2CID 4896:S2CID 4757:S2CID 4735:(PDF) 4632:S2CID 4572:S2CID 4542:(PDF) 4396:(PDF) 4385:S2CID 4355:(PDF) 4333:S2CID 4258:S2CID 4081:S2CID 3550:S2CID 3176:(PDF) 3165:S2CID 3127:(PDF) 3007:S2CID 2969:(PDF) 2929:S2CID 2871:S2CID 2812:S2CID 2440:stage 2355:65.17 2280:is a 2109:0.011 1945:into 1778:Tanis 1750:dated 1717:hypha 1710:Fungi 1652:fungi 1509:Most 1505:Birds 1479:femur 1196:' 1136:near 1122:shark 943:algae 927:coral 651:worms 601:China 188:Earth 177:plant 108:near 16128:−100 16122:−150 16116:−200 16110:−250 16104:−300 16098:−350 16092:−400 16086:−450 16080:−500 16074:−550 16068:−600 15503:2007 15468:OCLC 15458:ISBN 15436:PMID 15400:PNAS 15387:2007 15352:PMID 15297:2024 15245:ISBN 15214:2024 15203:ISSN 15065:PMID 14975:2023 14923:PMID 14915:ISSN 14862:ISBN 14835:2023 14824:ISSN 14779:2024 14741:2023 14649:2022 14601:2024 14590:ISSN 14549:PMID 14508:2023 14460:2023 14441:ISSN 14397:PMID 14379:ISSN 14297:2023 14249:2023 14201:2023 14182:ISSN 14137:2023 14118:ISSN 14070:2023 14024:ISBN 13998:link 13984:2012 13955:link 13941:2012 13914:link 13900:2012 13867:ISBN 13848:2023 13837:ISSN 13792:2023 13744:2023 13733:PMID 13688:2023 13640:2023 13589:2017 13530:PMID 13473:2023 13462:PMID 13454:ISSN 13413:PMID 13395:ISSN 13354:PMID 13336:ISSN 13293:PMID 13275:ISSN 13236:2023 13217:ISSN 13126:PMID 13073:2024 13062:ISSN 13025:2024 13014:ISSN 12977:2024 12966:ISSN 12915:PMID 12868:2019 12764:2019 12722:PMID 12680:2017 12662:ISBN 12529:2012 12516:ISBN 12431:PMID 12323:2022 12283:2011 12146:PMID 12105:2024 12064:2013 12033:2024 12022:ISSN 11981:PMID 11924:2023 11866:PMID 11825:2021 11759:2019 11730:PMID 11672:2024 11661:ISSN 11620:PMID 11579:2024 11568:ISSN 11519:PMID 11466:PMID 11409:PMID 11368:2024 11357:ISSN 11246:2022 11217:2024 11206:PMID 11198:ISSN 11114:PMID 11066:2015 11050:OCLC 11040:ISBN 11015:2022 10972:PMID 10925:2022 10893:PMID 10836:PMID 10778:PMID 10673:PMID 10616:2021 10597:PMID 10589:ISSN 10544:2021 10512:PMID 10455:2007 10426:2007 10388:PMID 10300:PMID 10256:PMID 10238:ISSN 10203:2023 10155:2024 10144:ISSN 10107:2024 10096:ISSN 10055:PMID 10037:ISSN 9994:ISBN 9968:ISBN 9937:PMID 9879:PMID 9871:ISSN 9813:2022 9770:PMID 9718:PMID 9700:ISSN 9659:PMID 9595:PMID 9583:ISSN 9546:PMID 9528:ISSN 9485:PMID 9438:2015 9403:ISBN 9302:link 9276:PMID 9228:PMID 9177:PMID 9121:PMID 9074:2011 9036:PMID 8968:PMID 8927:2007 8892:2007 8837:PMID 8679:ISBN 8606:2024 8560:ISBN 8515:ISBN 8476:PMID 8327:PMID 8287:link 8269:PMID 8230:2015 8154:2024 8143:ISSN 8094:ISSN 8047:ISSN 7944:PMID 7907:PMID 7739:2022 7687:PMID 7679:ISSN 7640:2024 7596:PMID 7537:ISSN 7488:PMID 7470:ISSN 7423:PMID 7405:ISSN 7364:ISBN 7333:PMID 7290:PMID 7272:ISSN 7235:2024 7224:ISSN 7187:help 7160:ISBN 7092:PMID 7004:PMID 6986:ISSN 6901:ISBN 6874:2024 6863:PMID 6855:ISSN 6818:2024 6807:ISSN 6702:2024 6607:2023 6588:PMID 6492:ISBN 6427:ISBN 6408:2023 6397:ISSN 6340:PMID 6295:PMID 6231:PMID 6213:ISSN 6151:2023 6140:ISSN 6014:2024 6003:ISSN 5962:PMID 5944:ISSN 5905:2024 5894:ISSN 5845:PMID 5750:PMID 5651:2024 5611:2023 5600:ISSN 5563:2024 5511:PMID 5493:ISSN 5407:ISBN 5325:2024 5285:2024 5274:ISSN 5237:2024 5226:ISSN 5183:ISBN 5163:2024 5152:ISSN 5115:2024 5049:2024 5003:ISBN 4933:ISBN 4857:2024 4846:ISSN 4809:2024 4798:ISSN 4643:2022 4520:PMID 4220:2024 4176:OCLC 4166:ISBN 4135:PMID 4073:PMID 4020:PMID 3941:PMID 3854:PMID 3791:ISBN 3767:PMID 3701:PMID 3633:PMID 3615:ISSN 3561:2020 3542:PMID 3484:2020 3453:2019 3414:ISBN 3376:PMID 3316:2019 3236:PMID 3157:PMID 3102:2018 3069:2016 3038:2020 3030:IMDB 2999:PMID 2940:2023 2882:2023 2823:2023 2757:ISBN 2732:ISBN 2708:2015 2676:ISBN 2371:59.5 2231:and 2162:(4.2 1957:and 1943:iron 1917:and 1871:Luis 1613:and 1607:bats 1599:rats 1525:and 1344:and 1290:and 1223:The 1181:The 1077:Fish 1034:taxa 809:and 766:The 703:and 679:and 671:and 486:P–Tr 479:Tr–J 472:K–Pg 401:bats 359:and 273:and 206:and 179:and 161:K–Pg 155:The 16494:Lau 16134:−50 15426:PMC 15416:doi 15404:116 15342:PMC 15334:doi 15278:doi 15237:doi 15195:doi 15154:doi 15109:doi 15097:127 15055:doi 15043:350 15012:doi 14964:doi 14952:216 14905:doi 14893:363 14858:130 14816:doi 14768:doi 14730:doi 14718:178 14689:doi 14638:doi 14626:387 14582:doi 14541:doi 14529:263 14497:doi 14485:159 14433:doi 14387:PMC 14371:doi 14330:doi 14318:268 14286:doi 14238:doi 14174:doi 14162:333 14110:doi 14098:333 14059:doi 13829:doi 13817:103 13781:doi 13769:282 13725:doi 13713:128 13677:doi 13629:doi 13617:109 13553:doi 13520:PMC 13510:doi 13498:111 13446:doi 13403:PMC 13387:doi 13344:PMC 13326:doi 13322:117 13283:PMC 13265:doi 13261:114 13209:doi 13168:doi 13116:PMC 13108:doi 13054:doi 13006:doi 12956:hdl 12948:doi 12944:172 12905:doi 12893:102 12834:doi 12822:255 12797:doi 12714:doi 12637:doi 12600:doi 12588:104 12561:doi 12478:doi 12421:PMC 12411:doi 12363:doi 12351:118 12241:doi 12180:103 12138:doi 12126:449 12094:doi 12090:281 12014:doi 11971:PMC 11961:doi 11949:101 11913:doi 11858:doi 11846:364 11720:PMC 11710:doi 11698:116 11653:doi 11612:doi 11560:doi 11511:doi 11499:241 11458:doi 11446:236 11401:doi 11389:224 11349:doi 11308:doi 11296:292 11190:doi 11186:339 11155:doi 11143:452 11106:doi 11094:291 10962:doi 10950:603 10883:PMC 10875:doi 10863:603 10826:PMC 10818:doi 10768:PMC 10760:doi 10748:603 10712:doi 10700:352 10663:PMC 10653:doi 10581:doi 10569:372 10502:PMC 10492:doi 10480:106 10378:doi 10345:doi 10292:doi 10288:303 10246:PMC 10230:doi 10182:doi 10136:doi 10088:doi 10045:PMC 10029:doi 10025:276 9929:doi 9917:294 9861:hdl 9853:doi 9841:376 9762:doi 9750:280 9708:PMC 9692:doi 9688:283 9649:PMC 9639:doi 9627:100 9591:PMC 9575:doi 9571:291 9536:PMC 9518:doi 9475:PMC 9467:doi 9372:doi 9360:258 9268:doi 9256:446 9218:doi 9167:hdl 9159:doi 9147:344 9111:PMC 9103:doi 9028:hdl 9020:doi 9008:433 8960:doi 8948:274 8829:doi 8817:232 8784:doi 8746:doi 8742:183 8719:doi 8707:288 8643:doi 8595:doi 8591:214 8552:doi 8548:197 8466:PMC 8456:doi 8417:doi 8365:doi 8319:doi 8259:doi 8177:doi 8135:doi 8086:doi 8037:doi 7988:doi 7936:doi 7897:PMC 7887:doi 7838:doi 7826:140 7801:213 7770:doi 7720:doi 7669:doi 7629:doi 7586:PMC 7578:doi 7527:doi 7478:PMC 7462:doi 7413:PMC 7397:doi 7393:281 7325:doi 7313:425 7280:PMC 7264:doi 7216:doi 7125:doi 7082:PMC 7074:doi 7070:228 7033:doi 6994:PMC 6976:doi 6972:114 6893:doi 6847:doi 6797:doi 6755:doi 6743:116 6689:hdl 6681:doi 6640:doi 6580:doi 6568:379 6531:doi 6469:doi 6457:214 6389:doi 6377:491 6332:doi 6320:313 6285:PMC 6275:doi 6221:PMC 6203:doi 6174:168 6132:doi 6091:doi 6051:doi 5995:doi 5952:PMC 5934:doi 5930:100 5886:doi 5837:doi 5825:274 5787:doi 5742:doi 5730:260 5682:doi 5640:doi 5592:doi 5550:hdl 5542:doi 5538:174 5501:PMC 5485:doi 5481:287 5446:doi 5384:doi 5380:149 5357:doi 5314:doi 5310:184 5266:doi 5218:doi 5214:119 5144:doi 5140:103 5104:doi 5038:doi 4970:doi 4958:140 4925:doi 4888:doi 4876:230 4838:doi 4790:doi 4749:doi 4713:doi 4676:doi 4622:hdl 4614:doi 4602:126 4564:doi 4510:PMC 4502:doi 4470:doi 4430:doi 4377:doi 4325:doi 4313:154 4250:doi 4209:doi 4205:106 4162:517 4125:PMC 4117:doi 4113:277 4065:doi 4053:267 4010:doi 3971:doi 3967:344 3931:PMC 3921:doi 3909:106 3844:PMC 3834:doi 3757:PMC 3747:doi 3735:109 3691:PMC 3681:doi 3669:108 3623:PMC 3605:doi 3593:117 3532:hdl 3524:doi 3512:367 3410:759 3366:PMC 3356:doi 3344:116 3276:doi 3226:PMC 3216:doi 3204:111 3149:doi 3137:208 2991:doi 2979:327 2921:doi 2909:180 2863:doi 2851:610 2804:doi 2792:135 2520:in 2349:in 2166:10 2046:of 1929:of 1881:in 1809:of 1780:in 1501:). 1402:of 664:In 507:O–S 493:Cap 464:(H) 289:'s 269:in 186:on 16700:: 15517:. 15466:. 15434:. 15424:. 15414:. 15402:. 15398:. 15378:. 15350:. 15340:. 15332:. 15320:. 15314:. 15284:. 15274:32 15272:. 15268:. 15243:. 15201:. 15189:. 15183:. 15160:. 15152:. 15142:26 15140:. 15115:. 15107:. 15095:. 15089:. 15063:. 15053:. 15041:. 15035:. 15010:. 15000:85 14998:. 14992:. 14962:. 14950:. 14944:. 14921:. 14913:. 14903:. 14891:. 14885:. 14822:. 14814:. 14804:46 14802:. 14796:. 14764:13 14762:. 14758:. 14728:. 14716:. 14710:. 14687:. 14677:49 14675:. 14669:. 14636:. 14624:. 14618:. 14588:. 14578:46 14576:. 14570:. 14547:. 14539:. 14527:. 14495:. 14483:. 14477:. 14439:. 14429:13 14427:. 14421:. 14395:. 14385:. 14377:. 14369:. 14357:. 14351:. 14328:. 14316:. 14284:. 14274:89 14272:. 14266:. 14236:. 14226:80 14224:. 14218:. 14188:. 14180:. 14172:. 14160:. 14154:. 14124:. 14116:. 14108:. 14096:. 14090:. 14078:^ 14055:46 14053:. 14047:. 14018:. 13994:}} 13990:{{ 13972:. 13951:}} 13947:{{ 13931:. 13910:}} 13906:{{ 13890:. 13835:. 13827:. 13815:. 13809:. 13779:. 13767:. 13761:. 13731:. 13723:. 13711:. 13705:. 13675:. 13665:83 13663:. 13657:. 13627:. 13615:. 13609:. 13597:^ 13573:. 13551:. 13528:. 13518:. 13508:. 13496:. 13490:. 13460:. 13452:. 13440:. 13434:. 13411:. 13401:. 13393:. 13381:. 13375:. 13352:. 13342:. 13334:. 13320:. 13314:. 13291:. 13281:. 13273:. 13259:. 13253:. 13223:. 13215:. 13207:. 13197:16 13195:. 13189:. 13166:. 13154:. 13138:^ 13124:. 13114:. 13106:. 13094:. 13090:. 13060:. 13048:. 13042:. 13012:. 13002:78 13000:. 12994:. 12964:. 12954:. 12942:. 12936:. 12913:. 12903:. 12891:. 12885:. 12858:. 12854:. 12832:. 12820:. 12795:. 12785:27 12783:. 12747:. 12720:. 12712:. 12702:20 12700:. 12670:. 12635:. 12625:28 12623:. 12598:. 12586:. 12582:. 12559:. 12549:33 12547:. 12484:. 12476:. 12466:44 12464:. 12458:. 12443:^ 12429:. 12419:. 12409:. 12399:95 12397:. 12391:. 12377:^ 12361:. 12349:. 12343:. 12331:^ 12313:. 12309:: 12305:. 12291:^ 12269:. 12247:. 12239:. 12229:. 12219:44 12217:. 12192:. 12178:. 12152:. 12144:. 12136:. 12124:. 12088:. 12082:. 12054:. 12050:. 12020:. 12010:39 12008:. 12002:. 11979:. 11969:. 11959:. 11947:. 11941:. 11911:. 11901:48 11899:. 11895:. 11872:. 11864:. 11856:. 11844:. 11761:. 11750:. 11728:. 11718:. 11708:. 11696:. 11690:. 11659:. 11649:39 11647:. 11641:. 11618:. 11610:. 11600:24 11598:. 11566:. 11556:26 11554:. 11548:. 11525:. 11517:. 11509:. 11497:. 11472:. 11464:. 11456:. 11444:. 11438:. 11415:. 11407:. 11399:. 11387:. 11355:. 11345:25 11343:. 11337:. 11314:. 11306:. 11294:. 11267:30 11265:. 11237:. 11225:^ 11204:. 11196:. 11184:. 11178:. 11153:. 11141:. 11135:. 11112:. 11104:. 11092:. 11086:. 11056:. 11048:. 11004:. 10978:. 10970:. 10960:. 10948:. 10942:. 10913:. 10891:. 10881:. 10873:. 10861:. 10857:. 10834:. 10824:. 10816:. 10806:11 10804:. 10800:. 10776:. 10766:. 10758:. 10746:. 10742:. 10718:. 10710:. 10698:. 10694:. 10671:. 10661:. 10651:. 10641:93 10639:. 10633:. 10603:. 10595:. 10587:. 10579:. 10567:. 10561:. 10532:. 10510:. 10500:. 10490:. 10478:. 10472:. 10394:. 10386:. 10374:28 10372:. 10366:. 10343:. 10333:24 10331:. 10306:. 10298:. 10286:. 10280:. 10268:^ 10254:. 10244:. 10236:. 10226:19 10224:. 10220:. 10190:. 10176:. 10172:. 10142:. 10132:21 10130:. 10124:. 10094:. 10084:17 10082:. 10076:. 10053:. 10043:. 10035:. 10023:. 10017:. 9943:. 9935:. 9927:. 9915:. 9899:^ 9885:. 9877:. 9869:. 9859:. 9851:. 9839:. 9833:. 9801:. 9768:. 9760:. 9748:. 9742:. 9716:. 9706:. 9698:. 9686:. 9680:. 9657:. 9647:. 9637:. 9625:. 9619:. 9607:^ 9589:. 9581:. 9569:. 9544:. 9534:. 9526:. 9514:10 9512:. 9506:. 9483:. 9473:. 9463:14 9461:. 9455:. 9378:. 9370:. 9334:23 9332:. 9326:. 9298:}} 9294:{{ 9282:. 9274:. 9266:. 9254:. 9240:^ 9226:. 9214:27 9212:. 9206:. 9183:. 9175:. 9165:. 9157:. 9145:. 9119:. 9109:. 9097:. 9091:. 9042:. 9034:. 9026:. 9018:. 9006:. 9000:. 8974:. 8966:. 8958:. 8946:. 8915:35 8913:. 8909:. 8879:. 8843:. 8835:. 8827:. 8815:. 8790:. 8782:. 8772:16 8770:. 8740:. 8717:. 8705:. 8677:. 8641:. 8631:57 8629:. 8623:. 8589:. 8583:. 8558:. 8529:^ 8488:^ 8474:. 8464:. 8452:16 8450:. 8446:. 8423:. 8415:. 8405:40 8403:. 8397:. 8371:. 8363:. 8353:35 8351:. 8325:. 8315:19 8313:. 8307:. 8283:}} 8279:{{ 8267:. 8255:23 8253:. 8247:. 8215:28 8213:. 8209:. 8183:. 8173:78 8171:. 8141:. 8131:50 8129:. 8123:. 8100:. 8092:. 8084:. 8074:42 8072:. 8068:. 8045:. 8035:. 8025:66 8023:. 8017:. 7994:. 7984:28 7982:. 7976:. 7950:. 7942:. 7932:58 7930:. 7905:. 7895:. 7885:. 7873:. 7867:. 7844:. 7836:. 7824:. 7818:. 7799:. 7776:. 7768:. 7758:47 7726:. 7716:36 7714:. 7708:. 7685:. 7677:. 7665:27 7663:. 7657:. 7627:. 7625:68 7623:. 7617:. 7594:. 7584:. 7576:. 7566:12 7564:. 7558:. 7535:. 7525:. 7515:21 7513:. 7509:. 7486:. 7476:. 7468:. 7460:. 7448:. 7444:. 7421:. 7411:. 7403:. 7391:. 7387:. 7339:. 7331:. 7323:. 7311:. 7288:. 7278:. 7270:. 7260:10 7258:. 7252:. 7222:. 7212:63 7210:. 7204:. 7178:: 7176:}} 7172:{{ 7131:. 7121:86 7119:. 7113:. 7090:. 7080:. 7068:. 7062:. 7039:. 7029:25 7027:. 7002:. 6992:. 6984:. 6970:. 6964:. 6947:22 6945:. 6926:49 6924:. 6899:. 6861:. 6853:. 6841:. 6835:. 6805:. 6795:. 6791:. 6761:. 6753:. 6741:. 6735:. 6710:^ 6687:. 6677:85 6675:. 6669:. 6646:. 6638:. 6628:72 6626:. 6594:. 6586:. 6578:. 6566:. 6560:. 6537:. 6529:. 6519:22 6517:. 6467:. 6455:. 6441:^ 6395:. 6387:. 6375:. 6369:. 6346:. 6338:. 6330:. 6318:. 6293:. 6283:. 6273:. 6263:99 6261:. 6255:. 6243:^ 6229:. 6219:. 6211:. 6199:18 6197:. 6191:. 6172:. 6168:. 6138:. 6130:. 6120:39 6118:. 6112:. 6089:. 6079:30 6077:. 6063:^ 6049:. 6039:19 6037:. 6022:^ 6001:. 5991:30 5989:. 5983:. 5960:. 5950:. 5942:. 5928:. 5922:. 5892:. 5882:19 5880:. 5874:. 5851:. 5843:. 5835:. 5823:. 5807:^ 5793:. 5785:. 5775:68 5773:. 5748:. 5740:. 5728:. 5688:. 5680:. 5670:36 5668:. 5636:57 5634:. 5628:. 5598:. 5588:43 5586:. 5580:. 5548:. 5536:. 5532:. 5509:. 5499:. 5491:. 5479:. 5475:. 5452:. 5444:. 5432:. 5355:. 5345:44 5343:. 5308:. 5302:. 5272:. 5262:20 5260:. 5254:. 5224:. 5212:. 5206:. 5150:. 5138:. 5132:. 5100:21 5098:. 5094:. 5069:46 5067:. 5032:. 5026:. 4976:. 4968:. 4956:. 4931:. 4894:. 4886:. 4874:. 4844:. 4834:41 4832:. 4826:. 4796:. 4784:. 4778:. 4755:. 4745:30 4743:. 4737:. 4711:. 4701:33 4699:. 4674:. 4664:24 4662:. 4630:. 4620:. 4612:. 4600:. 4594:. 4570:. 4562:. 4552:19 4550:. 4544:. 4518:. 4508:. 4496:. 4492:. 4468:. 4458:20 4456:. 4442:^ 4428:. 4418:35 4416:. 4383:. 4375:. 4365:14 4363:. 4357:. 4331:. 4323:. 4311:. 4270:^ 4256:. 4246:30 4244:. 4228:^ 4203:. 4197:. 4174:. 4133:. 4123:. 4111:. 4105:. 4093:^ 4079:. 4071:. 4063:. 4051:. 4032:^ 4018:. 4006:48 4004:. 3998:. 3983:^ 3965:. 3953:^ 3939:. 3929:. 3919:. 3907:. 3901:. 3866:^ 3852:. 3842:. 3832:. 3820:. 3814:. 3765:. 3755:. 3745:. 3733:. 3727:. 3713:^ 3699:. 3689:. 3679:. 3667:. 3661:. 3645:^ 3631:. 3621:. 3613:. 3603:. 3591:. 3585:. 3569:^ 3548:. 3540:. 3530:. 3522:. 3510:. 3504:. 3492:^ 3473:. 3461:^ 3443:. 3437:. 3404:. 3374:. 3364:. 3354:. 3342:. 3336:. 3324:^ 3306:. 3300:. 3288:^ 3274:. 3264:19 3262:. 3248:^ 3234:. 3224:. 3214:. 3202:. 3196:. 3184:^ 3163:. 3155:. 3147:. 3135:. 3129:. 3110:^ 3092:. 3086:. 3059:. 3055:. 3028:. 3005:. 2997:. 2989:. 2977:. 2971:. 2948:^ 2927:. 2919:. 2907:. 2903:. 2890:^ 2869:. 2861:. 2849:. 2843:. 2831:^ 2810:. 2802:. 2790:. 2784:. 2771:^ 2614:Pg 2002:, 1851:, 1706:. 1634:. 1571:, 1541:, 1436:, 1430:, 1424:, 1352:, 1009:, 715:, 711:, 649:, 626:, 599:, 595:, 399:, 395:, 371:, 340:. 246:. 163:) 112:, 16180:e 16173:t 16166:v 16140:0 16138:│ 16132:│ 16126:│ 16120:│ 16114:│ 16108:│ 16102:│ 16096:│ 16090:│ 16084:│ 16078:│ 16072:│ 16066:│ 15893:↓ 15881:↓ 15869:↓ 15857:↓ 15845:↓ 15833:↓ 15819:↓ 15807:↓ 15795:↓ 15783:↓ 15771:↓ 15759:↓ 15747:↓ 15735:↓ 15723:↓ 15711:↓ 15699:↓ 15664:e 15657:t 15650:v 15588:e 15581:t 15574:v 15558:— 15505:. 15474:. 15442:. 15418:: 15410:: 15389:. 15358:. 15336:: 15328:: 15322:7 15280:: 15253:. 15239:: 15216:. 15197:: 15191:4 15168:. 15156:: 15148:: 15123:. 15111:: 15103:: 15071:. 15057:: 15049:: 15020:. 15014:: 15006:: 14977:. 14966:: 14958:: 14929:. 14907:: 14899:: 14870:. 14837:. 14818:: 14810:: 14770:: 14743:. 14732:: 14724:: 14695:. 14691:: 14683:: 14651:. 14640:: 14632:: 14603:. 14584:: 14555:. 14543:: 14535:: 14510:. 14499:: 14491:: 14462:. 14435:: 14403:. 14373:: 14365:: 14359:9 14336:. 14332:: 14324:: 14299:. 14288:: 14280:: 14251:. 14240:: 14232:: 14203:. 14176:: 14168:: 14139:. 14112:: 14104:: 14072:. 14061:: 14032:. 14000:) 13986:. 13957:) 13943:. 13916:) 13902:. 13875:. 13850:. 13831:: 13823:: 13794:. 13783:: 13775:: 13746:. 13727:: 13719:: 13690:. 13679:: 13671:: 13642:. 13631:: 13623:: 13591:. 13559:. 13555:: 13536:. 13512:: 13504:: 13475:. 13448:: 13442:3 13419:. 13389:: 13383:6 13360:. 13328:: 13299:. 13267:: 13238:. 13211:: 13203:: 13174:. 13170:: 13162:: 13156:7 13132:. 13110:: 13102:: 13096:7 13075:. 13056:: 13050:3 13027:. 13008:: 12958:: 12950:: 12921:. 12907:: 12899:: 12870:. 12840:. 12836:: 12828:: 12803:. 12799:: 12791:: 12766:. 12728:. 12716:: 12708:: 12682:. 12643:. 12639:: 12631:: 12606:. 12602:: 12594:: 12567:. 12563:: 12555:: 12531:. 12492:. 12480:: 12472:: 12437:. 12413:: 12405:: 12371:. 12365:: 12357:: 12325:. 12285:. 12255:. 12243:: 12225:: 12200:. 12196:: 12186:: 12160:. 12140:: 12132:: 12096:: 12066:. 12016:: 11987:. 11963:: 11955:: 11926:. 11915:: 11907:: 11880:. 11860:: 11852:: 11827:. 11736:. 11712:: 11704:: 11655:: 11626:. 11614:: 11606:: 11562:: 11533:. 11513:: 11505:: 11480:. 11460:: 11452:: 11423:. 11403:: 11395:: 11351:: 11322:. 11310:: 11302:: 11277:. 11248:. 11219:. 11192:: 11163:. 11157:: 11149:: 11120:. 11108:: 11100:: 11068:. 11017:. 10986:. 10964:: 10956:: 10927:. 10899:. 10877:: 10869:: 10842:. 10820:: 10812:: 10784:. 10762:: 10754:: 10726:. 10714:: 10706:: 10679:. 10655:: 10647:: 10618:. 10583:: 10575:: 10546:. 10518:. 10494:: 10486:: 10457:. 10428:. 10402:. 10380:: 10351:. 10347:: 10339:: 10314:. 10294:: 10262:. 10232:: 10205:. 10184:: 10178:4 10138:: 10090:: 10061:. 10031:: 10002:. 9976:. 9951:. 9931:: 9923:: 9893:. 9863:: 9855:: 9847:: 9815:. 9776:. 9764:: 9756:: 9724:. 9694:: 9665:. 9641:: 9633:: 9601:. 9577:: 9552:. 9520:: 9491:. 9469:: 9440:. 9411:. 9386:. 9374:: 9366:: 9317:" 9304:) 9290:. 9270:: 9262:: 9234:. 9220:: 9169:: 9161:: 9153:: 9127:. 9105:: 9099:2 9076:. 9050:. 9030:: 9022:: 9014:: 8982:. 8962:: 8954:: 8929:. 8894:. 8875:: 8851:. 8831:: 8823:: 8798:. 8786:: 8778:: 8752:. 8748:: 8725:. 8721:: 8713:: 8687:. 8651:. 8645:: 8637:: 8597:: 8568:. 8554:: 8523:. 8482:. 8458:: 8431:. 8419:: 8411:: 8379:. 8367:: 8359:: 8333:. 8321:: 8289:) 8275:. 8261:: 8232:. 8191:. 8179:: 8137:: 8108:. 8088:: 8080:: 8053:. 8039:: 8031:: 8002:. 7990:: 7958:. 7938:: 7913:. 7889:: 7881:: 7875:7 7852:. 7840:: 7832:: 7784:. 7772:: 7764:: 7741:. 7722:: 7693:. 7671:: 7642:. 7631:: 7602:. 7580:: 7572:: 7543:. 7529:: 7521:: 7494:. 7464:: 7456:: 7450:8 7429:. 7399:: 7372:. 7347:. 7327:: 7319:: 7296:. 7266:: 7218:: 7189:) 7185:( 7168:. 7139:. 7127:: 7098:. 7076:: 7047:. 7035:: 7010:. 6978:: 6909:. 6895:: 6876:. 6849:: 6843:2 6820:. 6799:: 6757:: 6749:: 6691:: 6683:: 6654:. 6642:: 6634:: 6609:. 6582:: 6574:: 6545:. 6533:: 6525:: 6500:. 6475:. 6471:: 6463:: 6435:. 6410:. 6391:: 6383:: 6354:. 6334:: 6326:: 6301:. 6277:: 6269:: 6237:. 6205:: 6153:. 6134:: 6126:: 6097:. 6093:: 6085:: 6057:. 6053:: 6045:: 5997:: 5968:. 5936:: 5888:: 5859:. 5839:: 5831:: 5801:. 5789:: 5781:: 5756:. 5744:: 5736:: 5696:. 5684:: 5676:: 5642:: 5613:. 5594:: 5552:: 5544:: 5517:. 5487:: 5460:. 5448:: 5440:: 5434:8 5415:. 5390:. 5386:: 5363:. 5359:: 5351:: 5316:: 5268:: 5220:: 5191:. 5146:: 5106:: 5079:. 5040:: 5034:8 5011:. 4984:. 4972:: 4964:: 4941:. 4927:: 4902:. 4890:: 4882:: 4840:: 4811:. 4792:: 4786:3 4763:. 4751:: 4719:. 4715:: 4707:: 4682:. 4678:: 4670:: 4645:. 4624:: 4616:: 4608:: 4578:. 4566:: 4558:: 4526:. 4504:: 4498:8 4476:. 4472:: 4464:: 4436:. 4432:: 4424:: 4379:: 4371:: 4339:. 4327:: 4319:: 4264:. 4252:: 4211:: 4182:. 4141:. 4119:: 4087:. 4067:: 4059:: 4026:. 4012:: 3977:. 3973:: 3947:. 3923:: 3915:: 3886:. 3860:. 3836:: 3828:: 3822:8 3799:. 3773:. 3749:: 3741:: 3707:. 3683:: 3675:: 3639:. 3607:: 3599:: 3563:. 3534:: 3526:: 3518:: 3486:. 3455:. 3422:. 3382:. 3358:: 3350:: 3318:. 3282:. 3278:: 3270:: 3242:. 3218:: 3210:: 3151:: 3143:: 3104:. 3071:. 3040:. 3013:. 2993:: 2985:: 2942:. 2923:: 2915:: 2884:. 2865:: 2857:: 2825:. 2806:: 2798:: 2765:. 2740:. 2710:. 2684:. 2641:. 2635:T 2620:. 2602:K 2373:± 2369:( 2357:± 2353:( 2164:× 2107:± 2090:. 1897:) 1414:( 1279:∆ 1252:, 1239:( 562:) 558:( 451:% 159:( 120:; 34:. 20:)

Index

KT event
Extinction event
Meteoroid entering the atmosphere with fireball
dark rocky hill sourrounded by a small semi-desert plateau and deep cliffs
rock hillside with rock striations
rock in museum with layering
Cretaceous Paleogene clay layer with finger just below the boundary
asteroid
Badlands
Drumheller
Alberta
K–Pg boundary
Geulhem
Wyoming
iridium
Rajgad Fort
Deccan Traps
mass extinction
plant
animal
species
Earth
dinosaurs
tetrapods
ectothermic
sea turtles
crocodilians
Cretaceous
Mesozoic
Cenozoic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.