Knowledge

Kleene–Brouwer order

Source 📝

753:, in descriptive set theory, is defined as a set of finite sequences that is closed under prefix operations. The parent in the tree of any sequence is the shorter sequence formed by removing its final element. Thus, any set of finite sequences can be augmented to form a tree, and the Kleene–Brouwer order is a natural ordering that may be given to this tree. It is a generalization to potentially-infinite trees of the 757:
of a finite tree: at every node of the tree, the child subtrees are given their left to right ordering, and the node itself comes after all its children. The fact that the Kleene–Brouwer order is a linear ordering (that is, that it is transitive as well as being total) follows immediately from this,
981:
in the tree. In this way, the total recursive functionals themselves can be classified into a hierarchy, according to the minimum value of the ordinal at the root of a computation tree, minimized over all computation trees that implement the functional. The Kleene–Brouwer order of a well-founded
79:
from finite trees to trees that are not necessarily finite. For trees over a well-ordered set, the Kleene–Brouwer order is itself a well-ordering if and only if the tree has no infinite branch. It is named after
500: 259: 982:
computation tree is itself a recursive well-ordering, and at least as large as the ordinal assigned to the tree, from which it follows that the levels of this hierarchy are indexed by
530: 462: 619: 198: 62: 939: 758:
as any three sequences on which transitivity is to be tested form (with their prefixes) a finite tree on which the Kleene–Brouwer order coincides with the postorder.
893: 583: 418: 389: 317: 288: 979: 959: 850: 803: 779: 739: 719: 699: 679: 659: 639: 554: 357: 337: 218: 162: 142: 122: 809:(having no infinitely long branches) if and only if the Kleene–Brouwer ordering is a well-ordering of the elements of the tree. 1072: 1045: 72:
of the other. In the Kleene–Brouwer order, the prefix is later than the longer sequence containing it, rather than earlier.
467: 226: 832:. A computation tree is well-founded if and only if the computation performed by it is total recursive. Each state 1210: 750: 1131: 85: 509: 1220: 1194:. See in particular section 26, "A digression concerning recursive linear orderings", pp. 419–422. 1104: 423: 588: 167: 1010:, or have been influenced by earlier work of the same authors leading to this work. Much later, 1100: 1003: 93: 17: 35: 1215: 1060: 898: 829: 806: 1190: 1082: 858: 559: 394: 365: 293: 264: 8: 1158: 826: 754: 81: 76: 65: 1040:(2nd ed.), Rhode Island: American Mathematical Society, pp. 148–149, 203–204, 1178: 964: 944: 835: 788: 764: 724: 704: 684: 664: 644: 624: 539: 342: 322: 203: 147: 127: 107: 1063:; Wainer, Stanley S. (2012), "2.8 Recursive type-2 functionals and well-foundedness", 1161:(1955), "On the forms of the predicates in the theory of constructive ordinals. II", 1068: 1041: 983: 1170: 822: 818: 1186: 1078: 1067:, Perspectives in Logic, Cambridge: Cambridge University Press, pp. 98–101, 853: 1204: 1136:
Koninklijke Nederlandse Akademie van Wetenschappen, Proc. Section of Sciences
1096: 89: 761:
The significance of the Kleene–Brouwer ordering comes from the fact that if
782: 29: 1182: 533: 69: 1174: 1134:(1924), "Beweis, dass jede volle Funktion gleichmässig stetig ist", 1116: 1014:
studied the same ordering, and credited it to Brouwer.
967: 947: 901: 861: 838: 791: 767: 727: 707: 687: 667: 647: 627: 591: 562: 542: 512: 495:{\displaystyle t\upharpoonright n=s\upharpoonright n} 470: 426: 397: 368: 345: 325: 296: 267: 254:{\displaystyle t\upharpoonright n=s\upharpoonright n} 229: 206: 170: 150: 130: 110: 75:
The Kleene–Brouwer order generalizes the notion of a
38: 1059: 32:on finite sequences over some linearly ordered set 973: 953: 933: 887: 844: 797: 773: 733: 713: 693: 673: 653: 633: 613: 577: 548: 524: 494: 456: 412: 383: 351: 331: 311: 282: 253: 212: 192: 156: 136: 116: 68:in how it handles the case when one sequence is a 56: 821:, the Kleene–Brouwer order may be applied to the 1202: 1095: 1007: 995: 1031: 1029: 1027: 1109:Journal de Mathématiques Pures et Appliquées 1002:. Brouwer does not cite any references, but 1035: 64:, that differs from the more commonly used 1024: 701:, and they are equal up to that point) or 852:in a computation tree may be assigned an 1130: 999: 1203: 1157: 1145: 1011: 895:, the supremum of the ordinal numbers 744: 144:are finite sequences of elements from 1006:argues that he may either have seen 812: 13: 1105:"Sur un ensemble non measurable B" 525:{\displaystyle t\upharpoonright n} 14: 1232: 741:on the first place they differ. 1163:American Journal of Mathematics 1151: 1124: 1089: 1053: 927: 922: 914: 909: 881: 876: 868: 863: 572: 566: 516: 486: 474: 451: 445: 436: 430: 407: 401: 378: 372: 306: 300: 277: 271: 245: 233: 51: 39: 1: 1036:Moschovakis, Yiannis (2009), 1017: 1008:Lusin & Sierpinski (1923) 996:Lusin & Sierpinski (1923) 99: 961:ranges over the children of 457:{\displaystyle t(n)<s(n)} 86:Luitzen Egbertus Jan Brouwer 7: 614:{\displaystyle t<_{KB}s} 193:{\displaystyle t<_{KB}s} 10: 1237: 1115:(2): 53–72, archived from 994:This ordering was used by 989: 556:up to but not including 57:{\displaystyle (X,<)} 1065:Proofs and computations 934:{\displaystyle 1+||y||} 1211:Descriptive set theory 1061:Schwichtenberg, Helmut 1038:Descriptive Set Theory 975: 955: 935: 889: 846: 825:of implementations of 799: 775: 735: 715: 695: 675: 655: 635: 615: 579: 550: 526: 496: 458: 414: 385: 353: 333: 313: 284: 255: 214: 194: 158: 138: 118: 58: 26:Lusin–Sierpiński order 18:descriptive set theory 976: 956: 936: 890: 888:{\displaystyle ||x||} 847: 800: 776: 736: 716: 696: 676: 656: 636: 616: 580: 551: 527: 497: 459: 415: 386: 354: 334: 314: 285: 256: 215: 195: 159: 139: 119: 59: 998:, and then again by 965: 945: 899: 859: 836: 789: 785:, then a tree over 765: 725: 721:is to the "left" of 705: 685: 665: 645: 625: 589: 578:{\displaystyle t(n)} 560: 540: 510: 468: 424: 413:{\displaystyle t(n)} 395: 384:{\displaystyle s(n)} 366: 343: 323: 312:{\displaystyle s(n)} 294: 283:{\displaystyle t(n)} 265: 227: 204: 168: 148: 128: 108: 36: 22:Kleene–Brouwer order 755:postorder traversal 745:Tree interpretation 585:. In simple terms, 506:Here, the notation 319:is undefined (i.e. 82:Stephen Cole Kleene 77:postorder traversal 66:lexicographic order 1101:Sierpinski, Waclaw 984:recursive ordinals 971: 951: 931: 885: 842: 795: 771: 731: 711: 691: 681:terminates before 671: 651: 631: 611: 575: 546: 522: 492: 454: 410: 381: 349: 329: 309: 280: 251: 220:such that either: 210: 190: 154: 134: 114: 54: 1132:Brouwer, L. E. J. 1074:978-0-521-51769-0 1047:978-0-8218-4813-5 974:{\displaystyle x} 954:{\displaystyle y} 845:{\displaystyle x} 823:computation trees 798:{\displaystyle X} 774:{\displaystyle X} 734:{\displaystyle s} 714:{\displaystyle t} 694:{\displaystyle t} 674:{\displaystyle s} 654:{\displaystyle t} 634:{\displaystyle s} 549:{\displaystyle t} 352:{\displaystyle s} 339:properly extends 332:{\displaystyle t} 213:{\displaystyle n} 200:when there is an 157:{\displaystyle X} 137:{\displaystyle s} 117:{\displaystyle t} 94:Wacław Sierpiński 1228: 1195: 1193: 1155: 1149: 1143: 1128: 1122: 1120: 1093: 1087: 1085: 1057: 1051: 1050: 1033: 980: 978: 977: 972: 960: 958: 957: 952: 940: 938: 937: 932: 930: 925: 917: 912: 894: 892: 891: 886: 884: 879: 871: 866: 851: 849: 848: 843: 819:recursion theory 813:Recursion theory 804: 802: 801: 796: 780: 778: 777: 772: 740: 738: 737: 732: 720: 718: 717: 712: 700: 698: 697: 692: 680: 678: 677: 672: 660: 658: 657: 652: 640: 638: 637: 632: 620: 618: 617: 612: 607: 606: 584: 582: 581: 576: 555: 553: 552: 547: 531: 529: 528: 523: 501: 499: 498: 493: 463: 461: 460: 455: 419: 417: 416: 411: 390: 388: 387: 382: 358: 356: 355: 350: 338: 336: 335: 330: 318: 316: 315: 310: 289: 287: 286: 281: 260: 258: 257: 252: 219: 217: 216: 211: 199: 197: 196: 191: 186: 185: 163: 161: 160: 155: 143: 141: 140: 135: 123: 121: 120: 115: 63: 61: 60: 55: 1236: 1235: 1231: 1230: 1229: 1227: 1226: 1225: 1221:Wellfoundedness 1201: 1200: 1199: 1198: 1175:10.2307/2372632 1156: 1152: 1129: 1125: 1094: 1090: 1075: 1058: 1054: 1048: 1034: 1025: 1020: 992: 966: 963: 962: 946: 943: 942: 926: 921: 913: 908: 900: 897: 896: 880: 875: 867: 862: 860: 857: 856: 837: 834: 833: 827:total recursive 815: 790: 787: 786: 766: 763: 762: 747: 726: 723: 722: 706: 703: 702: 686: 683: 682: 666: 663: 662: 646: 643: 642: 641:is a prefix of 626: 623: 622: 599: 595: 590: 587: 586: 561: 558: 557: 541: 538: 537: 511: 508: 507: 469: 466: 465: 425: 422: 421: 396: 393: 392: 367: 364: 363: 344: 341: 340: 324: 321: 320: 295: 292: 291: 290:is defined but 266: 263: 262: 228: 225: 224: 205: 202: 201: 178: 174: 169: 166: 165: 149: 146: 145: 129: 126: 125: 109: 106: 105: 102: 37: 34: 33: 12: 11: 5: 1234: 1224: 1223: 1218: 1213: 1197: 1196: 1150: 1144:. As cited by 1123: 1097:Lusin, Nicolas 1088: 1073: 1052: 1046: 1022: 1021: 1019: 1016: 1000:Brouwer (1924) 991: 988: 970: 950: 929: 924: 920: 916: 911: 907: 904: 883: 878: 874: 870: 865: 854:ordinal number 841: 814: 811: 794: 770: 746: 743: 730: 710: 690: 670: 650: 630: 610: 605: 602: 598: 594: 574: 571: 568: 565: 545: 532:refers to the 521: 518: 515: 504: 503: 491: 488: 485: 482: 479: 476: 473: 453: 450: 447: 444: 441: 438: 435: 432: 429: 409: 406: 403: 400: 380: 377: 374: 371: 360: 348: 328: 308: 305: 302: 299: 279: 276: 273: 270: 250: 247: 244: 241: 238: 235: 232: 209: 189: 184: 181: 177: 173: 164:, we say that 153: 133: 113: 101: 98: 53: 50: 47: 44: 41: 9: 6: 4: 3: 2: 1233: 1222: 1219: 1217: 1214: 1212: 1209: 1208: 1206: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1159:Kleene, S. C. 1154: 1147: 1146:Kleene (1955) 1141: 1137: 1133: 1127: 1119:on 2013-04-14 1118: 1114: 1110: 1106: 1102: 1098: 1092: 1084: 1080: 1076: 1070: 1066: 1062: 1056: 1049: 1043: 1039: 1032: 1030: 1028: 1023: 1015: 1013: 1012:Kleene (1955) 1009: 1005: 1001: 997: 987: 985: 968: 948: 918: 905: 902: 872: 855: 839: 831: 828: 824: 820: 810: 808: 792: 784: 768: 759: 756: 752: 742: 728: 708: 688: 668: 648: 628: 608: 603: 600: 596: 592: 569: 563: 543: 535: 519: 513: 489: 483: 480: 477: 471: 448: 442: 439: 433: 427: 420:are defined, 404: 398: 375: 369: 361: 346: 326: 303: 297: 274: 268: 248: 242: 239: 236: 230: 223: 222: 221: 207: 187: 182: 179: 175: 171: 151: 131: 111: 97: 95: 91: 90:Nikolai Luzin 87: 83: 78: 73: 71: 67: 48: 45: 42: 31: 27: 23: 19: 1216:Order theory 1166: 1162: 1153: 1139: 1135: 1126: 1117:the original 1112: 1108: 1091: 1064: 1055: 1037: 993: 816: 807:well-founded 783:well-ordered 760: 748: 505: 103: 74: 30:linear order 25: 21: 15: 1169:: 405–428, 1004:Moschovakis 830:functionals 1205:Categories 1018:References 100:Definition 1142:: 189–193 621:whenever 517:↾ 487:↾ 475:↾ 246:↾ 234:↾ 1103:(1923), 1191:0070595 1183:2372632 1083:2893891 990:History 1189:  1181:  1081:  1071:  1044:  941:where 661:(i.e. 534:prefix 464:, and 92:, and 70:prefix 20:, the 1179:JSTOR 362:both 359:), or 28:is a 1069:ISBN 1042:ISBN 751:tree 597:< 440:< 391:and 261:and 176:< 124:and 49:< 1171:doi 817:In 805:is 781:is 536:of 104:If 24:or 16:In 1207:: 1187:MR 1185:, 1177:, 1167:77 1165:, 1140:27 1138:, 1111:, 1107:, 1099:; 1079:MR 1077:, 1026:^ 986:. 749:A 96:. 88:, 84:, 1173:: 1148:. 1121:. 1113:9 1086:. 969:x 949:y 928:| 923:| 919:y 915:| 910:| 906:+ 903:1 882:| 877:| 873:x 869:| 864:| 840:x 793:X 769:X 729:s 709:t 689:t 669:s 649:t 629:s 609:s 604:B 601:K 593:t 573:) 570:n 567:( 564:t 544:t 520:n 514:t 502:. 490:n 484:s 481:= 478:n 472:t 452:) 449:n 446:( 443:s 437:) 434:n 431:( 428:t 408:) 405:n 402:( 399:t 379:) 376:n 373:( 370:s 347:s 327:t 307:) 304:n 301:( 298:s 278:) 275:n 272:( 269:t 249:n 243:s 240:= 237:n 231:t 208:n 188:s 183:B 180:K 172:t 152:X 132:s 112:t 52:) 46:, 43:X 40:(

Index

descriptive set theory
linear order
lexicographic order
prefix
postorder traversal
Stephen Cole Kleene
Luitzen Egbertus Jan Brouwer
Nikolai Luzin
Wacław Sierpiński
prefix
tree
postorder traversal
well-ordered
well-founded
recursion theory
computation trees
total recursive
functionals
ordinal number
recursive ordinals
Lusin & Sierpinski (1923)
Brouwer (1924)
Moschovakis
Lusin & Sierpinski (1923)
Kleene (1955)



ISBN
978-0-8218-4813-5

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.