Knowledge

Laser guide star

Source 📝

20: 140: 122: 295:(VLT), as a new subsystem of the Adaptive Optics Facility (AOF). The 4LGSF is a complement of the VLT Laser Guide Star Facility (LGSF). Instead of a single laser beam, the 4LGSF propagates four laser beams into the skies of Paranal, in northern Chile, producing four artificial stars by illuminating sodium atoms located in the atmosphere at 90 km altitude. These four stars enable getting a better correction in a specific direction, or widening the field of view corrected by an adaptive optics. Each laser delivers 22 watts in a diameter of 30 cm (12 in). The 4LGSF Laser System is based on a fiber Raman laser technology, developed at ESO and transferred to industry. 311:
vector of the atom), decreases the atomic fluorescence of the laser guide star by changing the angular momentum of the atom before a two-level cycling transition can be established through optical pumping with circularly polarized light. Recoil from spontaneous emission, resulting in a momentum kick to the atom, causes a redshift in the laser light relative to the atom, rendering the atom unable to absorb the laser light and thus unable to fluoresce. Transition saturation is the depopulation of atoms from a state of higher angular momentum (F=2) to a state of lower angular momentum (F=1), resulting in a different absorption wavelength.
32: 208: 195:
applications include sum-frequency-mixed solid-state lasers. New third generation laser systems based on tunable diode lasers with subsequent narrow-band Raman fiber amplification and resonant frequency conversion have been under development since 2005. Since 2014 fully engineered systems are commercially available. Important output features of the
108:. However, this star can be much fainter than is required for natural guide star adaptive optics because it is used to measure only tip and tilt, and all higher-order distortions are measured with the laser guide star. This means that many more stars are suitable, and a correspondingly larger fraction of the sky is accessible. 307:, which will have a similar system to support the adaptive optics of the telescope. Given its power, the 4LGSF operations follow a protocol to avoid any risk. The laser system is equipped with an automatic aircraft avoidance system that shuts down the lasers if an aircraft ventures too close to the beams. 298:
The upgrade to four lasers with fiber Raman laser technology is necessary to support the new instruments at Paranal Observatory, like HAWK-I (with GRAAL) and MUSE (with GALACSI). Also with the 4LGSF the stability is increased, the amount of preventative maintenance support and the preparation of an
182:
of light by the molecules in the lower atmosphere. In contrast to sodium beacons, Rayleigh beacons are much simpler and less costly, but do not provide as good a wavefront reference, since the artificial beacon is generated much lower in the atmosphere. The lasers are often pulsed, with measurement
194:
were the first laser sources used in laser guide star applications. These tunable lasers have continued to play a significant role in this field. However, the use of fluid gain media has been considered by some researchers as disadvantageous. Second generation laser sources for sodium guide star
310:
For sodium laser guide stars, there are three main challenges to overcome: Larmor precession, recoil, and transition saturation. Larmor precession, which is the precession of the sodium atom in the geomagnetic field (precisely, it is the precession of the quantized total atomic angular momentum
211: 210: 215: 214: 209: 216: 183:
of the atmosphere being time-gated (taking place several microseconds after the pulse has been launched, so that scattered light at ground level is ignored and only light that has traveled for several microseconds high up into the atmosphere and back is actually detected).
239:
Laser guide star adaptive optics is still a very young field, with much effort currently invested in technology development. As of 2006, only two laser guide star AO systems were regularly used for science observations and have contributed to published results in
213: 103:
does not move around in the sky as astronomical sources do. In order to keep astronomical images steady, a natural star nearby in the sky must be monitored in order that the motion of the laser guide star can be subtracted using a
76:. Natural stars can serve as point sources for this purpose, but sufficiently bright stars are not available in all parts of the sky, which greatly limits the usefulness of natural guide star adaptive 212: 416:
Primmerman, Charles A.; Murphy, Daniel V.; Page, Daniel A.; Zollars, Byron G.; Barclay, Herbert T. (1991). "Compensation of atmospheric optical distortion using a synthetic beacon".
167:
at an altitude of around 90 km (56 mi). The sodium atoms then re-emit the laser light, producing a glowing artificial star. The same atomic transition of sodium is used in
967:
D. Bonaccini Calia D. Budker J. M. Higbie W. Hackenberg R. Holzlohner, S. M. Rochester. Optimization of CW sodium laser guide star efficiency. Astronomy and Astrophysics, 510, 2010.
590:
Wizinowich, Peter L.; Le Mignant, David; Bouchez, Antonin H.; Campbell, Randy D.; Chin, Jason C. Y.; Contos, Adam R.; Van Dam, Marcos A.; Hartman, Scott K.; et al. (2006).
459:
Bass, Isaac L.; Bonanno, Regina E.; Hackel, Richard P.; Hammond, Peter R. (1992). "High-average-power dye laser at Lawrence Livermore National Laboratory".
224:
The sodium laser guide star for use in adaptive optics to correct for atmospheric distortions is believed to have been invented by Princeton physicist
299:
observing run time will be considerably reduced compared to the LGSF, which currently still uses its original dye laser (planned to be replaced by a
19: 698: 276:
having tested lasers on the sky but not yet achieved regular operations. Other observatories developing laser AO systems as of 2006 include the
88:. Light from the beam is reflected by components in the upper atmosphere back into the telescope. This star can be positioned anywhere the 760: 139: 682: 121: 1010: 659:
Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness
229: 995: 1015: 635:
High average power laser gain medium with low optical distortion using a transverse flowing liquid host
591: 265: 152:
There are two main types of laser guide star system, known as sodium and Rayleigh beacon guide stars.
277: 857: 786:"Free from the Atmosphere – Laser Guide Star System on ESO's VLT Starts Regular Science Operations" 783: 281: 654: 264:. However, laser guide star systems were under development at most major telescopes, with the 233: 911: 929: 728: 740: 662: 606: 564: 517: 468: 425: 382: 292: 285: 269: 784:
Markus Kasper; Stefan Stroebele; Richard Davies; Domenico Bonaccini Calia (13 June 2007).
291:
Since April 2016, the 4 Laser Guide Star Facility (4LGSF) has been installed at the ESO's
199:
mentioned here include diffraction-limited beam divergence and narrow-linewidth emission.
8: 840:"Very Large Telescope – The world's most advanced visible-light astronomical observatory" 249: 179: 64: 24: 744: 666: 610: 568: 521: 472: 429: 386: 766: 441: 273: 35:
The actual laser guide star is the small spot above the apparent end of the laser beam.
770: 756: 678: 533: 484: 398: 390: 168: 990: 893: 352: 327: 875: 748: 670: 614: 572: 525: 476: 445: 433: 257: 245: 31: 633: 839: 752: 105: 92:
desires to point, opening up much greater amounts of the sky to adaptive optics.
51: 552: 985: 947: 592:"The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview" 377:
Everett, Patrick N. (1989). "300-Watt dye laser for field experimental site".
1004: 979: 948:"The European Extremely Large Telescope – The world's biggest eye on the sky" 196: 576: 394: 537: 508:(2001). "Multiple-Return-Pass Beam Divergence and the Linewidth Equation". 505: 488: 172: 160: 48: 811: 785: 529: 480: 300: 241: 225: 100: 59: 145:
One of the launch telescopes for the VLT Four Laser Guide Star Facility.
674: 253: 164: 96: 85: 73: 402: 437: 191: 156: 89: 69: 55: 553:"Efficient modeless laser for a mesospheric sodium laser guide star" 618: 589: 996:
Gemini's Laser Vision Reveals Striking New Details in Orion Nebula
128: 99:
is deflected by astronomical seeing on the way up, the returning
80:. Instead, one can create an artificial guide star by shining a 261: 77: 304: 81: 963: 961: 415: 155:
Sodium beacons are created by using a laser tuned to 589.2
44: 699:"SodiumStar 20/2 – High Power CW Tunable Guide Star Laser" 632:
Comaskey, Brian; Ault, Earl; Kuklo, Thomas (Nov 6, 2003),
958: 379:
Proceedings of the International Conference on Lasers '88
726: 458: 599:
Publications of the Astronomical Society of the Pacific
303:). The 4LGSF helps astronomers to test devices for the 894:"Laser Guide Star Units Accepted and Shipped to Chile" 729:"Laser Guide Star Adaptive Optics: Present and Future" 653: 288:
started regular scientific operations in June 2007.
661:. Adaptive Optics Systems V. Vol. 9909. SPIE. 631: 1002: 912:"HAWK-I – High Acuity Wide-field K-band Imager" 551:Pique, Jean-Paul; Farinotti, Sébastien (2003). 991:ESO’s New Compact Laser Guide Star Unit Tested 550: 504: 131:sodium laser of the Adaptive Optics Facility 557:Journal of the Optical Society of America B 68:). Adaptive optics (AO) systems require a 930:"MUSE – Multi Unit Spectroscopic Explorer" 834: 832: 353:"VLT's New Laser Launchers Arrive at ESO" 986:ESOcast 34: How To Stop a Star's Twinkle 220:Example of an artificial reference star. 206: 30: 23:Powerful laser guide star system at the 18: 16:Artificial star image used by telescopes 829: 376: 1003: 284:. The laser guide star system at the 244:scientific literature: those at the 54:systems, which are employed in large 876:"ESO Signs Technology Transfer Deal" 733:Very High Angular Resolution Imaging 500: 498: 328:"Powerful New Laser Passes Key Test" 186: 727:Olivier, S. S.; Max, C. E. (1994). 72:reference source of light called a 13: 14: 1027: 973: 495: 980:Laser Guide Star Adaptive Optics 138: 120: 940: 922: 904: 886: 868: 850: 804: 777: 720: 691: 647: 625: 583: 544: 452: 409: 370: 345: 320: 1: 952:European Southern Observatory 934:European Southern Observatory 916:European Southern Observatory 862:European Southern Observatory 844:European Southern Observatory 816:European Southern Observatory 657:; Fetzer, Gregory J. (2016). 314: 178:Rayleigh beacons rely on the 753:10.1007/978-94-011-0880-5_48 230:Strategic Defense Initiative 62:distortion of light (called 7: 202: 10: 1032: 812:"Four Lasers Over Paranal" 266:William Herschel Telescope 278:Large Binocular Telescope 159:to energize atoms in the 47:image created for use in 282:Gran Telescopio Canarias 228:in 1982, as part of the 111: 577:10.1364/JOSAB.20.002093 708:. TOPTICA Photonics AG 221: 36: 28: 219: 34: 22: 1011:Astronomical imaging 530:10.1364/AO.40.003038 481:10.1364/AO.31.006993 293:Very Large Telescope 286:Very Large Telescope 270:Very Large Telescope 58:in order to correct 745:1994IAUS..158..283O 667:2016SPIE.9909E..0RD 655:D'Orgeville, Céline 611:2006PASP..118..297W 569:2003OSAJB..20.2093P 522:2001ApOpt..40.3038D 473:1992ApOpt..31.6993B 430:1991Natur.353..141P 387:1989lase.conf..404E 65:astronomical seeing 25:Paranal Observatory 1016:Laser applications 790:ESO for the public 675:10.1117/12.2234298 222: 169:sodium-vapor lamps 127:The first 22-watt 37: 29: 982:@ keck.hawaii.edu 858:"Adaptive Optics" 762:978-0-7923-2633-5 467:(33): 6993–7006. 252:Observatories in 217: 187:Laser development 43:is an artificial 1023: 968: 965: 956: 955: 944: 938: 937: 926: 920: 919: 908: 902: 901: 898:ESO announcement 890: 884: 883: 880:ESO announcement 872: 866: 865: 854: 848: 847: 836: 827: 826: 824: 822: 808: 802: 801: 799: 797: 781: 775: 774: 724: 718: 717: 715: 713: 703: 695: 689: 688: 651: 645: 644: 643: 642: 629: 623: 622: 605:(840): 297–309. 596: 587: 581: 580: 563:(10): 2093–101. 548: 542: 541: 502: 493: 492: 456: 450: 449: 438:10.1038/353141a0 413: 407: 406: 374: 368: 367: 365: 363: 357:ESO Announcement 349: 343: 342: 340: 338: 324: 258:Keck Observatory 218: 142: 124: 41:laser guide star 1031: 1030: 1026: 1025: 1024: 1022: 1021: 1020: 1001: 1000: 976: 971: 966: 959: 946: 945: 941: 928: 927: 923: 910: 909: 905: 892: 891: 887: 874: 873: 869: 856: 855: 851: 838: 837: 830: 820: 818: 810: 809: 805: 795: 793: 782: 778: 763: 725: 721: 711: 709: 706:www.toptica.com 701: 697: 696: 692: 685: 652: 648: 640: 638: 630: 626: 594: 588: 584: 549: 545: 516:(18): 3038–41. 503: 496: 457: 453: 424:(6340): 141–3. 414: 410: 375: 371: 361: 359: 351: 350: 346: 336: 334: 326: 325: 321: 317: 207: 205: 189: 173:street lighting 150: 149: 148: 147: 146: 143: 134: 133: 132: 125: 114: 106:tip-tilt mirror 52:adaptive optics 17: 12: 11: 5: 1029: 1019: 1018: 1013: 999: 998: 993: 988: 983: 975: 974:External links 972: 970: 969: 957: 939: 921: 903: 885: 867: 849: 828: 803: 776: 761: 719: 690: 683: 646: 624: 619:10.1086/499290 582: 543: 510:Applied Optics 494: 461:Applied Optics 451: 408: 369: 344: 318: 316: 313: 204: 201: 197:tunable lasers 188: 185: 144: 137: 136: 135: 126: 119: 118: 117: 116: 115: 113: 110: 15: 9: 6: 4: 3: 2: 1028: 1017: 1014: 1012: 1009: 1008: 1006: 997: 994: 992: 989: 987: 984: 981: 978: 977: 964: 962: 953: 949: 943: 935: 931: 925: 917: 913: 907: 899: 895: 889: 881: 877: 871: 863: 859: 853: 845: 841: 835: 833: 817: 813: 807: 791: 787: 780: 772: 768: 764: 758: 754: 750: 746: 742: 738: 734: 730: 723: 707: 700: 694: 686: 684:9781510601970 680: 676: 672: 668: 664: 660: 656: 650: 637: 636: 628: 620: 616: 612: 608: 604: 600: 593: 586: 578: 574: 570: 566: 562: 558: 554: 547: 539: 535: 531: 527: 523: 519: 515: 511: 507: 501: 499: 490: 486: 482: 478: 474: 470: 466: 462: 455: 447: 443: 439: 435: 431: 427: 423: 419: 412: 404: 400: 396: 392: 388: 384: 380: 373: 358: 354: 348: 333: 329: 323: 319: 312: 308: 306: 302: 296: 294: 289: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 242:peer-reviewed 237: 236:at the time. 235: 232:, but it was 231: 227: 200: 198: 193: 184: 181: 176: 174: 170: 166: 162: 158: 153: 141: 130: 123: 109: 107: 102: 98: 93: 91: 87: 83: 79: 75: 71: 67: 66: 61: 57: 53: 50: 46: 42: 33: 26: 21: 951: 942: 933: 924: 915: 906: 897: 888: 879: 870: 861: 852: 843: 819:. Retrieved 815: 806: 794:. Retrieved 789: 779: 736: 732: 722: 710:. Retrieved 705: 693: 658: 649: 639:, retrieved 634: 627: 602: 598: 585: 560: 556: 546: 513: 509: 506:Duarte F. J. 464: 460: 454: 421: 417: 411: 378: 372: 360:. Retrieved 356: 347: 335:. Retrieved 331: 322: 309: 297: 290: 274:Gemini North 238: 223: 190: 177: 161:sodium layer 154: 151: 95:Because the 94: 63: 49:astronomical 40: 38: 362:22 February 301:fiber laser 226:Will Happer 101:laser light 60:atmospheric 1005:Categories 641:2016-03-19 315:References 256:, and the 254:California 234:classified 192:Dye lasers 180:scattering 165:mesosphere 157:nanometers 97:laser beam 86:atmosphere 74:guide star 56:telescopes 771:115762227 381:: 404–9. 90:telescope 84:into the 70:wavefront 821:27 April 538:18357323 489:20802559 395:20243203 203:Progress 741:Bibcode 739:: 283. 663:Bibcode 607:Bibcode 565:Bibcode 518:Bibcode 469:Bibcode 446:4281137 426:Bibcode 403:5416850 383:Bibcode 337:2 April 250:Palomar 163:of the 129:TOPTICA 796:2 June 769:  759:  712:28 May 681:  536:  487:  444:  418:Nature 401:  393:  262:Hawaii 78:optics 792:. ESO 767:S2CID 702:(PDF) 595:(PDF) 442:S2CID 305:E-ELT 112:Types 82:laser 823:2016 798:2011 757:ISBN 714:2019 679:ISBN 534:PMID 485:PMID 399:OSTI 391:OCLC 364:2012 339:2014 280:and 272:and 248:and 246:Lick 171:for 45:star 749:doi 737:158 671:doi 615:doi 603:118 573:doi 526:doi 477:doi 434:doi 422:353 332:ESO 260:in 1007:: 960:^ 950:. 932:. 914:. 896:. 878:. 860:. 842:. 831:^ 814:. 788:. 765:. 755:. 747:. 735:. 731:. 704:. 677:. 669:. 613:. 601:. 597:. 571:. 561:20 559:. 555:. 532:. 524:. 514:40 512:. 497:^ 483:. 475:. 465:31 463:. 440:. 432:. 420:. 397:. 389:. 355:. 330:. 268:, 175:. 39:A 954:. 936:. 918:. 900:. 882:. 864:. 846:. 825:. 800:. 773:. 751:: 743:: 716:. 687:. 673:: 665:: 621:. 617:: 609:: 579:. 575:: 567:: 540:. 528:: 520:: 491:. 479:: 471:: 448:. 436:: 428:: 405:. 385:: 366:. 341:. 27:.

Index


Paranal Observatory

star
astronomical
adaptive optics
telescopes
atmospheric
astronomical seeing
wavefront
guide star
optics
laser
atmosphere
telescope
laser beam
laser light
tip-tilt mirror

TOPTICA

nanometers
sodium layer
mesosphere
sodium-vapor lamps
street lighting
scattering
Dye lasers
tunable lasers
Will Happer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.