Knowledge

Line sampling

Source đź“ť

621: 617:
efficient Line Sampling. In general it can be shown that the variance obtained by line sampling is always smaller than that obtained by conventional Monte Carlo simulation, and hence the line sampling algorithm converges more quickly. The rate of convergence is made quicker still by recent advancements which allow the importance direction to be repeatedly updated throughout the simulation, and this is known as adaptive line sampling.
80:. Once the importance direction has been set to point towards the failure region, samples are randomly generated from the standard normal space and lines are drawn parallel to the importance direction in order to compute the distance to the limit state function, which enables the probability of failure to be estimated for each sample. These failure probabilities can then be averaged to obtain an improved estimate. 72:  in the input parameter space, which points towards the region which most strongly contributes to the overall failure probability. The importance direction can be closely related to the center of mass of the failure region, or to the failure point with the highest probability density, which often falls at the closest point to the origin of the limit state function, when the 616:
For problems in which the dependence of the performance function is only moderately non-linear with respect to the parameters modeled as random variables, setting the importance direction as the gradient vector of the performance function in the underlying standard normal space leads to highly
227: 360: 633:
The algorithm is particularly useful for performing reliability analysis on computationally expensive industrial black box models, since the limit state function can be non-linear and the number of samples required is lower than for other reliability analysis techniques such as
430:  is a real number). In practice the roots of a nonlinear function must be found to estimate the partial probabilities of failure along each line. This is either done by interpolation of a few samples along the line, or by using the 543: 123: 267: 384: 70: 115: 50:
function. Conceptually, this is achieved by averaging the result of different FORM simulations. In practice, this is made possible by identifying the importance direction
611: 259: 404: 428: 573: 443: 222:{\displaystyle p_{f}({\boldsymbol {x}})=\int _{-\infty }^{+\infty }I({\boldsymbol {x}}+\beta \cdot {\boldsymbol {\alpha }})\varphi (\beta )\,d\beta } 88:
Firstly the importance direction must be determined. This can be achieved by finding the design point, or the gradient of the limit state function.
27:, in which the performance function exhibits moderate non-linearity with respect to the uncertain parameters The method is suitable for analyzing 692:
Schueller, G. I.; Pradlwarter, H. J.; Koutsourelakis, P. (2004). "A critical appraisal of reliability estimation procedures for high dimensions".
639: 808:
Patelli, E; de Angelis, M (2015). "Line sampling approach for extreme case analysis in presence of aleatory and epistemic uncertainties".
355:{\displaystyle I_{f}({\boldsymbol {x}})={\begin{cases}1&{\text{if }}{\boldsymbol {x}}\in \Omega _{f}\\0&{\text{else}}\end{cases}}} 23:
to compute small (i.e., rare event) failure probabilities encountered in engineering systems. The method is particularly suitable for
719:
de Angelis, Marco; Patelli, Edoardo; Beer, Michael (2015). "Advanced Line Sampling for efficient robust reliability analysis".
858: 825: 775: 841:
Patelli, Edoardo (2016). "COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and Risk Management".
624:
An illustration of the line sampling algorithm. Two line samples are shown approaching the limit state surface.
43: 669: 880: 367: 53: 885: 98: 300: 664: 578: 24: 20: 650:. A numerical implementation of the method is available in the open source software OpenCOSSAN. 235: 389: 413: 117:, the probability of failure in the line parallel to the important direction is defined as: 551: 437:
The global probability of failure is the mean of the probability of failure on the lines:
8: 755: 659: 407: 77: 32: 794:
Efficient Random Set Uncertainty Quantification by means of Advanced Sampling Techniques
647: 431: 92: 47: 36: 705: 854: 821: 771: 736: 635: 850: 846: 813: 763: 756:"Subset simulation and line sampling for advanced Monte Carlo reliability analysis" 732: 728: 701: 261:  is equal to one for samples contributing to failure, and is zero otherwise: 792: 643: 538:{\displaystyle {\tilde {p}}_{f}={\frac {1}{N_{L}}}\sum _{i=1}^{N_{L}}p_{f}^{(i)}} 73: 613:  are the partial probabilities of failure estimated along all the lines. 767: 874: 740: 691: 42:
The basic idea behind line sampling is to refine estimates obtained from the
817: 620: 28: 575:  is the total number of lines used in the analysis and the 46:(FORM), which may be incorrect due to the non-linearity of the 348: 638:. The algorithm can also be used to efficiently propagate 76:
of the problem have been transformed into the standard
718: 581: 554: 446: 416: 392: 370: 270: 238: 126: 101: 56: 39:, does not require detailed knowledge of the system. 810:
Safety and Reliability of Complex Engineered Systems
801: 712: 605: 567: 537: 422: 398: 378: 354: 253: 221: 109: 64: 807: 872: 406:  is the probability density function of a 95:in the standard normal space. For each sample 747: 687: 685: 834: 790: 753: 628: 212: 682: 619: 83: 840: 379:{\displaystyle {\boldsymbol {\alpha }}} 372: 314: 285: 193: 179: 141: 103: 65:{\displaystyle {\boldsymbol {\alpha }}} 58: 873: 843:Handbook of Uncertainty Quantification 25:high-dimensional reliability problems 91:A set of samples is generated using 694:Probabilistic Engineering Mechanics 386:  is the important direction, 13: 322: 167: 159: 14: 897: 797:(Ph.D.). University of Liverpool. 706:10.1016/j.probengmech.2004.05.004 110:{\displaystyle {\boldsymbol {x}}} 851:10.1007/978-3-319-11259-6_59-1 784: 733:10.1016/j.strusafe.2014.10.002 598: 592: 530: 524: 454: 289: 281: 248: 242: 209: 203: 197: 175: 145: 137: 44:first-order reliability method 1: 760:Reliability, Risk, and Safety 675: 670:Quantitative risk assessment 7: 754:Zio, E; Pedroni, N (2009). 653: 606:{\displaystyle p_{f}^{(i)}} 10: 902: 791:De Angelis, Marco (2015). 768:10.1201/9780203859759.ch94 254:{\displaystyle I(\cdot )} 399:{\displaystyle \varphi } 31:systems, and unlike the 665:Curse of dimensionality 21:reliability engineering 812:. pp. 2585–2593. 629:Industrial application 625: 607: 569: 539: 513: 424: 423:{\displaystyle \beta } 400: 380: 356: 255: 223: 111: 93:Monte Carlo simulation 66: 640:epistemic uncertainty 623: 608: 570: 568:{\displaystyle N_{L}} 540: 486: 432:Newton–Raphson method 425: 408:Gaussian distribution 401: 381: 357: 256: 224: 112: 84:Mathematical approach 67: 881:Reliability analysis 579: 552: 444: 414: 390: 368: 268: 236: 124: 99: 54: 19:is a method used in 660:Rare event sampling 602: 534: 171: 33:importance sampling 886:Variance reduction 818:10.1201/b19094-339 626: 603: 582: 565: 535: 514: 420: 396: 376: 352: 347: 251: 219: 151: 107: 62: 37:variance reduction 860:978-3-319-11259-6 845:. pp. 1–69. 827:978-1-138-02879-1 777:978-0-415-55509-8 721:Structural Safety 644:probability boxes 636:subset simulation 484: 457: 343: 311: 893: 865: 864: 838: 832: 831: 805: 799: 798: 788: 782: 781: 751: 745: 744: 716: 710: 709: 689: 612: 610: 609: 604: 601: 590: 574: 572: 571: 566: 564: 563: 544: 542: 541: 536: 533: 522: 512: 511: 510: 500: 485: 483: 482: 470: 465: 464: 459: 458: 450: 429: 427: 426: 421: 405: 403: 402: 397: 385: 383: 382: 377: 375: 361: 359: 358: 353: 351: 350: 344: 341: 330: 329: 317: 312: 309: 288: 280: 279: 260: 258: 257: 252: 228: 226: 225: 220: 196: 182: 170: 162: 144: 136: 135: 116: 114: 113: 108: 106: 74:random variables 71: 69: 68: 63: 61: 901: 900: 896: 895: 894: 892: 891: 890: 871: 870: 869: 868: 861: 839: 835: 828: 806: 802: 789: 785: 778: 752: 748: 717: 713: 690: 683: 678: 656: 642:in the form of 631: 591: 586: 580: 577: 576: 559: 555: 553: 550: 549: 523: 518: 506: 502: 501: 490: 478: 474: 469: 460: 449: 448: 447: 445: 442: 441: 415: 412: 411: 391: 388: 387: 371: 369: 366: 365: 346: 345: 340: 338: 332: 331: 325: 321: 313: 308: 306: 296: 295: 284: 275: 271: 269: 266: 265: 237: 234: 233: 192: 178: 163: 155: 140: 131: 127: 125: 122: 121: 102: 100: 97: 96: 86: 57: 55: 52: 51: 12: 11: 5: 899: 889: 888: 883: 867: 866: 859: 833: 826: 800: 783: 776: 746: 711: 700:(4): 463–474. 680: 679: 677: 674: 673: 672: 667: 662: 655: 652: 630: 627: 600: 597: 594: 589: 585: 562: 558: 546: 545: 532: 529: 526: 521: 517: 509: 505: 499: 496: 493: 489: 481: 477: 473: 468: 463: 456: 453: 419: 395: 374: 363: 362: 349: 339: 337: 334: 333: 328: 324: 320: 316: 307: 305: 302: 301: 299: 294: 291: 287: 283: 278: 274: 250: 247: 244: 241: 230: 229: 218: 215: 211: 208: 205: 202: 199: 195: 191: 188: 185: 181: 177: 174: 169: 166: 161: 158: 154: 150: 147: 143: 139: 134: 130: 105: 85: 82: 60: 9: 6: 4: 3: 2: 898: 887: 884: 882: 879: 878: 876: 862: 856: 852: 848: 844: 837: 829: 823: 819: 815: 811: 804: 796: 795: 787: 779: 773: 769: 765: 761: 757: 750: 742: 738: 734: 730: 726: 722: 715: 707: 703: 699: 695: 688: 686: 681: 671: 668: 666: 663: 661: 658: 657: 651: 649: 645: 641: 637: 622: 618: 614: 595: 587: 583: 560: 556: 527: 519: 515: 507: 503: 497: 494: 491: 487: 479: 475: 471: 466: 461: 451: 440: 439: 438: 435: 433: 417: 409: 393: 335: 326: 318: 303: 297: 292: 276: 272: 264: 263: 262: 245: 239: 216: 213: 206: 200: 189: 186: 183: 172: 164: 156: 152: 148: 132: 128: 120: 119: 118: 94: 89: 81: 79: 75: 49: 45: 40: 38: 34: 30: 26: 22: 18: 17:Line sampling 842: 836: 809: 803: 793: 786: 759: 749: 724: 720: 714: 697: 693: 632: 615: 547: 436: 364: 231: 90: 87: 78:normal space 41: 16: 15: 727:: 170–182. 648:random sets 48:limit state 875:Categories 676:References 35:method of 741:0167-4730 488:∑ 455:~ 418:β 394:φ 373:α 323:Ω 319:∈ 246:⋅ 217:β 207:β 201:φ 194:α 190:⋅ 187:β 168:∞ 160:∞ 157:− 153:∫ 59:α 29:black box 654:See also 310:if  857:  824:  774:  739:  548:where 232:where 646:, or 410:(and 855:ISBN 822:ISBN 772:ISBN 737:ISSN 342:else 847:doi 814:doi 764:doi 729:doi 702:doi 877:: 853:. 820:. 770:. 762:. 758:. 735:. 725:52 723:. 698:19 696:. 684:^ 434:. 863:. 849:: 830:. 816:: 780:. 766:: 743:. 731:: 708:. 704:: 599:) 596:i 593:( 588:f 584:p 561:L 557:N 531:) 528:i 525:( 520:f 516:p 508:L 504:N 498:1 495:= 492:i 480:L 476:N 472:1 467:= 462:f 452:p 336:0 327:f 315:x 304:1 298:{ 293:= 290:) 286:x 282:( 277:f 273:I 249:) 243:( 240:I 214:d 210:) 204:( 198:) 184:+ 180:x 176:( 173:I 165:+ 149:= 146:) 142:x 138:( 133:f 129:p 104:x

Index

reliability engineering
high-dimensional reliability problems
black box
importance sampling
variance reduction
first-order reliability method
limit state
random variables
normal space
Monte Carlo simulation
Gaussian distribution
Newton–Raphson method

subset simulation
epistemic uncertainty
probability boxes
random sets
Rare event sampling
Curse of dimensionality
Quantitative risk assessment


doi
10.1016/j.probengmech.2004.05.004
doi
10.1016/j.strusafe.2014.10.002
ISSN
0167-4730
"Subset simulation and line sampling for advanced Monte Carlo reliability analysis"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑