Knowledge

London penetration depth

Source 📝

468:, the penetration depth at 0 K depends on magnetic field because superfluid density is changed by magnetic field and vice versa. So, accurate and precise measurements of the absolute value of penetration depth at 0 K are very important to understand the mechanism of high-temperature superconductivity. 233: 375: 499:) is different with the kind of superconducting energy gap in temperature, so that this immediately indicates the shape of energy gap and gives some clues about the origin of superconductivity. 475:
when the superconductor does not have an intrinsic magnetic constitution. The penetration depth is directly converted from the depolarization rate of muon spin in relation which
471:
There are various experimental techniques to determine the London penetration depth, and in particular its temperature dependence. London penetration depth can be measured by
308: 259: 72: 45: 106: 448: 425: 402: 280: 157: 313: 915: 585: 648: 538: 1007: 745: 623: 525: 855: 943: 664: 860: 578: 643: 613: 984: 836: 780: 755: 886: 815: 132: 831: 750: 1038: 938: 933: 618: 571: 113: 891: 638: 286: 237: 50: 1017: 876: 808: 725: 928: 901: 881: 803: 472: 30: 798: 136: 81: 1002: 958: 530: 108:
times that of the magnetic field at the surface of the superconductor. Typical values of Îť
8: 989: 740: 700: 433: 410: 387: 265: 765: 594: 534: 464:
in high-temperature superconductors. If some superconductors have some node in their
974: 948: 720: 695: 628: 125: 997: 730: 428: 20: 735: 679: 669: 633: 405: 378: 75: 131:
The London penetration depth results from considering the London equation and
1032: 770: 760: 715: 710: 121: 117: 896: 705: 608: 465: 454: 261:
can be seen as the distance across in which the magnetic field becomes
228:{\displaystyle B(x)=B_{0}\exp \left(-{\frac {x}{\lambda _{L}}}\right),} 154:<0, then inside the superconductor the magnetic field is given by 563: 139:, i.e. superconducting for x>0, and weak external magnetic field 923: 262: 16:
Distance to which a magnetic field penetrates into a superconductor
370:{\displaystyle \lambda _{L}={\sqrt {\frac {m}{\mu _{0}nq^{2}}}},} 979: 953: 1012: 382: 457:
density, which is an important quantity that determines
112:
range from 50 to 500 nm. It was first derived by
78:
penetrates into a superconductor and becomes equal to
436: 413: 390: 316: 289: 268: 240: 160: 84: 53: 33: 442: 419: 396: 369: 302: 274: 253: 227: 100: 66: 39: 1030: 579: 518: 516: 514: 512: 555:Superconductivity: physics and applications 453:The penetration depth is determined by the 586: 572: 509: 74:) characterizes the distance to which a 1031: 522: 593: 567: 135:. If one considers a superconducting 553:Fossheim, Kristian, and Asle Sudbø. 526:Introduction to Solid State Physics 13: 529:. John Wiley & Sons. pp.  14: 1050: 557:. John Wiley & Sons, 2005. 547: 310:is found by this method to be 170: 164: 1: 502: 150:direction in the empty space 303:{\displaystyle \lambda _{L}} 254:{\displaystyle \lambda _{L}} 67:{\displaystyle \lambda _{L}} 7: 10: 1055: 916:Technological applications 283:times weaker. The form of 114:Geertruida de Haas-Lorentz 967: 914: 869: 845: 824: 788: 779: 688: 658:Characteristic parameters 657: 601: 675:London penetration depth 523:Kittel, Charles (2004). 40:{\displaystyle \lambda } 25:London penetration depth 968:List of superconductors 846:By critical temperature 473:muon spin spectroscopy 444: 421: 398: 371: 304: 276: 255: 229: 133:Ampère's circuital law 116:in 1925, and later by 102: 101:{\displaystyle e^{-1}} 68: 41: 614:Bean's critical state 483:) is proportional to 445: 422: 399: 372: 305: 277: 256: 230: 103: 69: 42: 789:By magnetic response 434: 411: 388: 314: 287: 266: 238: 158: 82: 51: 31: 27:(usually denoted as 741:persistent currents 726:Little–Parks effect 701:Andreev reflection 696:Abrikosov vortices 440: 417: 394: 367: 300: 272: 251: 225: 98: 64: 37: 1039:Superconductivity 1026: 1025: 944:quantum computing 910: 909: 766:superdiamagnetism 595:Superconductivity 540:978-0-471-41526-8 443:{\displaystyle q} 420:{\displaystyle n} 397:{\displaystyle m} 362: 361: 275:{\displaystyle e} 215: 1046: 975:bilayer graphene 949:Rutherford cable 861:room temperature 856:high temperature 786: 785: 746:proximity effect 721:Josephson effect 665:coherence length 588: 581: 574: 565: 564: 558: 551: 545: 544: 520: 491:). The shape of 449: 447: 446: 441: 426: 424: 423: 418: 403: 401: 400: 395: 376: 374: 373: 368: 363: 360: 359: 358: 346: 345: 332: 331: 326: 325: 309: 307: 306: 301: 299: 298: 281: 279: 278: 273: 260: 258: 257: 252: 250: 249: 234: 232: 231: 226: 221: 217: 216: 214: 213: 201: 185: 184: 126:London equations 107: 105: 104: 99: 97: 96: 73: 71: 70: 65: 63: 62: 46: 44: 43: 38: 1054: 1053: 1049: 1048: 1047: 1045: 1044: 1043: 1029: 1028: 1027: 1022: 993: 963: 906: 865: 852:low temperature 841: 820: 775: 731:Meissner effect 684: 680:Silsbee current 653: 619:Ginzburg–Landau 597: 592: 562: 561: 552: 548: 541: 521: 510: 505: 463: 435: 432: 431: 412: 409: 408: 389: 386: 385: 379:charge carriers 354: 350: 341: 337: 336: 330: 321: 317: 315: 312: 311: 294: 290: 288: 285: 284: 267: 264: 263: 245: 241: 239: 236: 235: 209: 205: 200: 196: 192: 180: 176: 159: 156: 155: 145: 111: 89: 85: 83: 80: 79: 58: 54: 52: 49: 48: 32: 29: 28: 21:superconductors 17: 12: 11: 5: 1052: 1042: 1041: 1024: 1023: 1021: 1020: 1015: 1010: 1005: 1000: 995: 991: 987: 982: 977: 971: 969: 965: 964: 962: 961: 956: 951: 946: 941: 936: 931: 929:electromagnets 926: 920: 918: 912: 911: 908: 907: 905: 904: 899: 894: 889: 884: 879: 873: 871: 870:By composition 867: 866: 864: 863: 858: 853: 849: 847: 843: 842: 840: 839: 837:unconventional 834: 828: 826: 825:By explanation 822: 821: 819: 818: 813: 812: 811: 806: 801: 792: 790: 783: 781:Classification 777: 776: 774: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 692: 690: 686: 685: 683: 682: 677: 672: 670:critical field 667: 661: 659: 655: 654: 652: 651: 646: 641: 639:Mattis–Bardeen 636: 631: 626: 624:Kohn–Luttinger 621: 616: 611: 605: 603: 599: 598: 591: 590: 583: 576: 568: 560: 559: 546: 539: 507: 506: 504: 501: 461: 439: 416: 406:number density 393: 366: 357: 353: 349: 344: 340: 335: 329: 324: 320: 297: 293: 271: 248: 244: 224: 220: 212: 208: 204: 199: 195: 191: 188: 183: 179: 175: 172: 169: 166: 163: 146:applied along 143: 109: 95: 92: 88: 76:magnetic field 61: 57: 36: 15: 9: 6: 4: 3: 2: 1051: 1040: 1037: 1036: 1034: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 988: 986: 983: 981: 978: 976: 973: 972: 970: 966: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 921: 919: 917: 913: 903: 900: 898: 895: 893: 890: 888: 887:heavy fermion 885: 883: 880: 878: 875: 874: 872: 868: 862: 859: 857: 854: 851: 850: 848: 844: 838: 835: 833: 830: 829: 827: 823: 817: 816:ferromagnetic 814: 810: 807: 805: 802: 800: 797: 796: 794: 793: 791: 787: 784: 782: 778: 772: 769: 767: 764: 762: 761:supercurrents 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 693: 691: 687: 681: 678: 676: 673: 671: 668: 666: 663: 662: 660: 656: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 606: 604: 600: 596: 589: 584: 582: 577: 575: 570: 569: 566: 556: 550: 542: 536: 532: 528: 527: 519: 517: 515: 513: 508: 500: 498: 494: 490: 486: 482: 478: 474: 469: 467: 460: 456: 451: 437: 430: 414: 407: 391: 384: 380: 364: 355: 351: 347: 342: 338: 333: 327: 322: 318: 295: 291: 282: 269: 246: 242: 222: 218: 210: 206: 202: 197: 193: 189: 186: 181: 177: 173: 167: 161: 153: 149: 142: 138: 134: 129: 127: 123: 119: 115: 93: 90: 86: 77: 59: 55: 34: 26: 22: 897:oxypnictides 832:conventional 771:superstripes 716:flux pumping 711:flux pinning 706:Cooper pairs 674: 554: 549: 524: 496: 492: 488: 484: 480: 476: 470: 458: 452: 151: 147: 140: 130: 122:Heinz London 24: 18: 756:SU(2) color 736:Homes's law 892:iron-based 751:reentrance 503:References 466:energy gap 455:superfluid 137:half-space 689:Phenomena 339:μ 319:λ 292:λ 243:λ 207:λ 198:− 190:⁡ 124:in their 91:− 56:λ 35:λ 1033:Category 924:cryotron 882:cuprates 877:covalent 634:Matthias 602:Theories 128:(1935). 1018:more... 902:organic 531:273–278 795:Types 629:London 537:  429:charge 23:, the 1008:TBCCO 980:BSCCO 959:wires 954:SQUID 118:Fritz 1013:YBCO 1003:NbTi 998:NbSn 985:LBCO 535:ISBN 427:and 383:mass 377:for 120:and 990:MgB 939:NMR 934:MRI 809:1.5 649:WHH 644:RVB 609:BCS 381:of 187:exp 47:or 19:In 1035:: 804:II 533:. 511:^ 450:. 404:, 992:2 799:I 587:e 580:t 573:v 543:. 497:T 495:( 493:σ 489:T 487:( 485:Îť 481:T 479:( 477:σ 462:c 459:T 438:q 415:n 392:m 365:, 356:2 352:q 348:n 343:0 334:m 328:= 323:L 296:L 270:e 247:L 223:, 219:) 211:L 203:x 194:( 182:0 178:B 174:= 171:) 168:x 165:( 162:B 152:x 148:z 144:0 141:B 110:L 94:1 87:e 60:L

Index

superconductors
magnetic field
Geertruida de Haas-Lorentz
Fritz
Heinz London
London equations
Ampère's circuital law
half-space
e {\displaystyle e}
charge carriers
mass
number density
charge
superfluid
energy gap
muon spin spectroscopy




Introduction to Solid State Physics
273–278
ISBN
978-0-471-41526-8
v
t
e
Superconductivity
BCS
Bean's critical state

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑