Knowledge

Low-temperature polycrystalline silicon

Source 📝

79:(LCD) flat panels because they can be assembled into complex high-current driver circuits. Amorphous Si-TFT electrodes drive the alignment of crystals in LCDs. The evolution of LTPS-TFTs can have many benefits such as higher device resolution, lower synthesis temperature, and reduced price of essential substrates. However, LTPS-TFTs also have several drawbacks. For example, the area of TFTs in traditional a-Si devices is large, resulting in a small aperture ratio (the amount of area which is not blocked by the opaque TFT and thus admits light). The incompatibility of different aperture ratios prevents LTPS-based complex circuits and drivers from being integrated into a-Si material. Additionally, the quality of LTPS decreases over time due to an increase in temperature upon turning on the transistor, which degrades the film by breaking the Si-H bonds in the material. This would cause the device to suffer from drain breakdown and current leakage, most notably in small and thin transistors, which dissipate heat poorly. 58:(a-Si) is an excellent precursor for forming p-Si films with stable structures and low surface roughness. Silicon film is synthesized by low-pressure chemical vapor deposition (LPCVD) to minimize surface roughness. First, amorphous silicon is deposited at 560–640 °C. Then it is thermally annealed (recrystallized) at 950–1000 °C. Starting with the amorphous film, rather than directly depositing crystals, produces a product with a superior structure and a desired smoothness. In 1988, researchers discovered that further lowering the temperature during annealing, together with advanced plasma-enhanced chemical vapor deposition (PECVD), could facilitate even higher degrees of conductivity. These techniques have profoundly impacted the microelectronics, photovoltaic, and display enhancement industries. 88: 67: 130: 137:
Apart from the improvement of the TFTs themselves, the successful application of LTPS to graphic display also depends on innovative circuits. One recent technique involves a pixel circuit in which the outgoing current from the transistor is independent of the threshold voltage, thus producing uniform
150:
TFT, a capacitor, and a control element to control the image resolution. Enhancing the performance and microlithography for TFTs is important for advancing LTPS active-matrix OLEDs. These many important techniques have allowed the mobility of crystalline film to reach up to 13 cm2/Vs, and they
117:
XeCl-ELA succeeds in crystallizing a-Si (thickness ranges from 500-10000Å) into p-Si without heating the substrates. The polycrystalline form has larger grains that yield better mobility for TFTs due to reduced scattering from grain boundaries. This technique leads to the successful integration of
601:
Tai, Y.-H., B.-T. Chen, Y.-J. Kuo, C.-C. Tsai, K.-Y. Chiang, Y.-J. Wei, and H.-C. Cheng. "A New Pixel Circuit for Driving Organic Light-Emitting Diode With Low Temperature Polycrystalline Silicon Thin-Film Transistors." Journal of Display Technology 01.01 (2015): 100-104. IEEE Xplore. Web. 2 Mar.
259:
of the screen based on the content being displayed. This means that the screen can operate at a low refresh rate when displaying static images or text, but can ramp up to a higher refresh rate when displaying dynamic content like videos or games. LTPO displays are known for their improved battery
588:
Banger, K. K., Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus. "Low-temperature, High-performance Solution-processed Metal Oxide Thin-film Transistors Formed by a ‘sol–gel on Chip’ Process." Nature Materials (2010): 45–50. Nature Materials. Web. 2 Mar.
395:
Inoue, Satoshi, Hiroyuki Ohshima, and Tatsuya Shimoda. "Analysis of Degradation Phenomenon Caused by Self-Heating in Low-Temperature-Processed Polycrystalline Silicon Thin Film Transistors." Japanese Journal of Applied Physics 41 (2002): 6313-319. IOP Sciences. Web. 2 Mar.
142:(OLED) displays because it has high resolution and accommodation for large panels. However, variations in LTPS structure would result in non-uniform threshold voltage for signals and non-uniform brightness using traditional circuits. The new pixel circuit includes four 385:
Zhiguo, Meng, Mingxiang Wang, and Man Wong. "High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin Film Transistors for System-on-Panel Application." IEEE Transactions On Electron Devices 47.02 (2000).
70:
Diagram of liquid-crystal display. When current is applied to the transistor, the liquid crystals become aligned and no longer rotate the incident polarized light. This results in no transmission through the second polarizer, creating a dark
362:
Hatalis, Miltiadis K., and David W. Greve. "Large Grain Polycrystalline Silicon By Low-Temperature Annealing Of Low-Pressure Chemical Vapor Deposited Amorphous Silicon Films." Applied Physics 63.07 (1988): 2266.
579:
Uchikoga, Shuichi. "Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technologies for System-on-Glass Displays." MRS Bulletin (2002): 881-86. Google Scholar. MRS Bulletin. Web. 2 Mar. 2015.
353:
Harbeke, G., L. Krausbauer, E.F. Steigmerier, and A.E. Widmer. "Growth and Physical Properties of LPCVD Polycrystalline Silicon Films." Journal of the Electrochemical Society (1984): 675. Print.
465:
Sameshima, T., S. Usui, and M. Sekiya. "XeClExcimer Laser Annealing Used in the Fabrication of Poly-Si TFT's." IEEE Electron Device Letters 07.05 (1986): 276-78. IEEE Xplore. Web. 2 Mar. 2015.
444:
G. A. Bhat, Z. Jin, H. S. Kwok, and M. Wong, “Effect of MIC/MILC Interface On The Performance Of MILC-TFT’s,” in Dig. 56th Annu. Device Research Conf., June 22–24, 1998, pp. 110–111.
99:
irradiation. The counterpart of a-Si, polycrystalline silicon, which can be synthesized from amorphous silicon by certain procedures, has several advantages over widely used a-Si TFT:
453:
Kuo, Yue. "Thin Film Transistor Technology—Past, Present, and Future." The Electrochemical Society Interface (2013). Electrochemical Society Interface. Web. 1 Mar. 2015.
344:
Fonash, Stephen. "Low Temperature Crystallization and Patterning of Amorphous Silicon Film On Electrically Insulating Substrates." United States Patent (1994). Print.
34:
industries, since the use of large glass panels prohibits exposure to deformative high temperatures. More specifically, the use of polycrystalline silicon in
30:
that has been synthesized at relatively low temperatures (~650 °C and lower) compared to traditional methods (above 900 °C). LTPS is important for
91:
While amorphous silicon lacks crystal structure, polycrystalline silicon consists of various crystallites or grains, each of which has an organized lattice.
255:, or IGZO). In LTPO, the switching circuits use LTPS while the driving TFTs use IGZO materials. LTPO allows for more efficient use of power by 477:"Extraction of trap states in laser-crystallized polycrystalline-silicon thin-film transistors and analysis of degradation by self-heating" 372:
Hatalis, M.K., and D.W. Greve. "High-Performance Thin-Film Transistors In Low-Temperature Crystallized LPCVD Amorphous Silicon Films."
50:
Polycrystalline silicon (p-Si) is a pure and conductive form of the element composed of many crystallites, or grains of highly ordered
475:
Kimura, Mutsumi; Inoue, Satoshi; Shimoda, Tatsuya; Tam, Simon W.-B.; Lui, Basil; Migliorato, Piero; Nozawa, Ryoichi (2002-03-15).
638: 553:
Kimura, Mutsumi; Inoue, Satoshi; Shimoda, Tatsuya; Lui, Basil; French, William; Kamohara, Itaru; Migliorato, Piero (2001).
693: 703: 698: 718: 555:"Development of poly-Si TFT models for device simulation: In-plane trap model and thermionic emission model" 95:
XeCl Excimer-Laser Annealing (ELA) is the first key method to produce p-Si by melting a-Si material through
713: 373: 294: 252: 554: 319: 309: 147: 143: 27: 516:"Method for the determination of bulk and interface density of states in thin-film transistors" 304: 76: 38:(LTPS-TFT) has high potential for large-scale production of electronic devices like flat panel 256: 35: 279:
panels using a combination of LTPS TFTs and hybrid-oxide and polycrystalline silicon (HOP).
299: 139: 87: 8: 324: 406:
Lui, Basil; Quinn, M.J.; Tam, S.W.-B.; Brown, T.M.; Migliorato, P.; Ohshima, H. (1998).
407: 515: 476: 708: 662: 562: 535: 496: 427: 289: 104: 55: 51: 527: 488: 419: 272: 408:"Investigation of the low field leakage current mechanism in polysilicon TFT's" 31: 687: 566: 539: 500: 431: 314: 151:
have helped to mass-produce LEDs and LCDs over 500 ppi in resolution.
66: 265: 261: 248: 559:
SID Conference Record of the International Display Research Conference
531: 492: 423: 514:
Lui, Basil; Tam, S. W.-B.; Migliorato, P.; Shimoda, T. (2001-06-01).
613: 276: 129: 247:) is a type of OLED display backplane technology developed by 96: 639:"What is LTPO? How this tech delivers killer phone displays" 271:
Although the core technology in LTPO is developed by Apple,
45: 39: 138:
brightness. LTPS-TFT is commonly used to drive organic
513: 16:
Transistor type used in the flat-panel display industry
552: 474: 614:"LTPO backplane technology - introduction and news" 124: 133:Schematic of LTPS-TFT being used to drive an OLED 685: 405: 82: 75:Amorphous silicon TFTs have been widely used in 61: 275:also has its proprietary technology for LTPO 251:that combines both LTPS TFTs and oxide TFTs ( 636: 663:"Samsung Display's LTPO tech is called HOP" 597: 595: 113:Available for high integration of circuits. 667:THE ELEC, Korea Electronics Industry Media 461: 459: 592: 128: 86: 65: 611: 456: 20:Low-temperature polycrystalline silicon 686: 257:dynamically adjusting the refresh rate 118:complicated circuits in LCD displays. 46:Development of polycrystalline silicon 412:IEEE Transactions on Electron Devices 241:Low-temperature polycrystalline oxide 637:Moore-Colyer, Roland (2021-04-02). 110:High resolution and aperture ratio; 13: 14: 730: 655: 630: 605: 582: 573: 546: 507: 468: 125:Development of LTPS-TFT devices 54:. In 1984, studies showed that 447: 438: 399: 389: 379: 366: 356: 347: 338: 260:life and can be found in some 1: 331: 83:Processing by laser annealing 62:Use in liquid-crystal display 374:IEEE Electron Device Letters 268:, and other mobile devices. 7: 612:Mertens, Ron (2019-02-10). 282: 42:displays or image sensors. 10: 735: 520:Journal of Applied Physics 481:Journal of Applied Physics 694:Electronics manufacturing 376:08 (1987): 361–64. Print. 295:Indium gallium zinc oxide 253:indium gallium zinc oxide 561:(in Japanese): 423–426. 704:Group IV semiconductors 699:Liquid crystal displays 320:Polycrystalline silicon 310:Monocrystalline silicon 235: 28:polycrystalline silicon 305:Liquid-crystal display 190:Deposition Temperature 168:Mobility (cm^2 /(V*s)) 134: 92: 77:liquid-crystal display 72: 719:Allotropes of silicon 132: 90: 69: 36:thin-film transistors 300:Light-emitting diode 140:light-emitting diode 714:Silicon solar cells 325:Wafer (electronics) 163:Polycrystalline Si 229:Relatively higher 201:Driver Integration 135: 93: 73: 532:10.1063/1.1361244 526:(11): 6453–6458. 493:10.1063/1.1446238 424:10.1109/16.658833 290:Amorphous silicon 233: 232: 179:Deposition Method 105:electron mobility 56:amorphous silicon 726: 678: 677: 675: 674: 659: 653: 652: 650: 649: 634: 628: 627: 625: 624: 609: 603: 599: 590: 586: 580: 577: 571: 570: 550: 544: 543: 511: 505: 504: 487:(6): 3855–3858. 472: 466: 463: 454: 451: 445: 442: 436: 435: 403: 397: 393: 387: 383: 377: 370: 364: 360: 354: 351: 345: 342: 207:System-on-glass 154: 153: 734: 733: 729: 728: 727: 725: 724: 723: 684: 683: 682: 681: 672: 670: 661: 660: 656: 647: 645: 635: 631: 622: 620: 610: 606: 600: 593: 587: 583: 578: 574: 551: 547: 512: 508: 473: 469: 464: 457: 452: 448: 443: 439: 404: 400: 394: 390: 384: 380: 371: 367: 361: 357: 352: 348: 343: 339: 334: 329: 285: 238: 127: 121: 85: 64: 52:crystal lattice 48: 17: 12: 11: 5: 732: 722: 721: 716: 711: 706: 701: 696: 680: 679: 654: 629: 604: 591: 581: 572: 545: 506: 467: 455: 446: 437: 418:(1): 213–217. 398: 388: 378: 365: 355: 346: 336: 335: 333: 330: 328: 327: 322: 317: 312: 307: 302: 297: 292: 286: 284: 281: 237: 234: 231: 230: 227: 224: 220: 219: 216: 213: 209: 208: 205: 202: 198: 197: 194: 191: 187: 186: 183: 180: 176: 175: 172: 169: 165: 164: 161: 158: 157:Characteristic 126: 123: 115: 114: 111: 108: 84: 81: 63: 60: 47: 44: 15: 9: 6: 4: 3: 2: 731: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 691: 689: 668: 664: 658: 644: 640: 633: 619: 615: 608: 598: 596: 585: 576: 568: 564: 560: 556: 549: 541: 537: 533: 529: 525: 521: 517: 510: 502: 498: 494: 490: 486: 482: 478: 471: 462: 460: 450: 441: 433: 429: 425: 421: 417: 413: 409: 402: 392: 382: 375: 369: 359: 350: 341: 337: 326: 323: 321: 318: 316: 315:Photovoltaics 313: 311: 308: 306: 303: 301: 298: 296: 293: 291: 288: 287: 280: 278: 274: 269: 267: 263: 258: 254: 250: 246: 242: 228: 225: 222: 221: 217: 214: 211: 210: 206: 203: 200: 199: 195: 192: 189: 188: 184: 181: 178: 177: 173: 170: 167: 166: 162: 159: 156: 155: 152: 149: 145: 141: 131: 122: 119: 112: 109: 106: 102: 101: 100: 98: 89: 80: 78: 68: 59: 57: 53: 43: 41: 37: 33: 29: 25: 21: 671:. Retrieved 669:. 2020-06-16 666: 657: 646:. Retrieved 642: 632: 621:. Retrieved 617: 607: 584: 575: 558: 548: 523: 519: 509: 484: 480: 470: 449: 440: 415: 411: 401: 391: 381: 368: 358: 349: 340: 270: 266:smartwatches 244: 240: 239: 218:>500 ppi 204:Only partial 196:600 °C 160:Amorphous Si 136: 120: 116: 94: 74: 49: 23: 19: 18: 643:Tom's Guide 262:smartphones 193:350 °C 688:Categories 673:2023-02-24 648:2023-02-24 623:2023-02-24 332:References 212:Resolution 146:TFTs, one 618:OLED Info 567:1083-1312 540:0021-8979 501:0021-8979 432:1557-9646 709:Crystals 283:See also 174:>500 273:Samsung 32:display 565:  538:  499:  430:  386:Print. 363:Print. 277:AMOLED 148:p-type 144:n-type 71:pixel. 602:2015. 589:2015. 396:2015. 249:Apple 182:PECVD 107:rate; 103:High 97:laser 26:) is 563:ISSN 536:ISSN 497:ISSN 428:ISSN 245:LTPO 236:LTPO 223:Cost 185:ELA 24:LTPS 528:doi 489:doi 420:doi 226:Low 215:Low 171:0.5 40:LCD 690:: 665:. 641:. 616:. 594:^ 557:. 534:. 524:89 522:. 518:. 495:. 485:91 483:. 479:. 458:^ 426:. 416:45 414:. 410:. 264:, 676:. 651:. 626:. 569:. 542:. 530:: 503:. 491:: 434:. 422:: 243:( 22:(

Index

polycrystalline silicon
display
thin-film transistors
LCD
crystal lattice
amorphous silicon

liquid-crystal display

laser
electron mobility

light-emitting diode
n-type
p-type
Apple
indium gallium zinc oxide
dynamically adjusting the refresh rate
smartphones
smartwatches
Samsung
AMOLED
Amorphous silicon
Indium gallium zinc oxide
Light-emitting diode
Liquid-crystal display
Monocrystalline silicon
Photovoltaics
Polycrystalline silicon
Wafer (electronics)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.