Knowledge

Magnesite

Source 📝

567: 430: 3253: 681: 985: 993: 36: 796:, a liquid resembling water, have shown how no such dehydration barrier can be involved. The fundamental difficulty to nucleate anhydrous magnesium carbonate remains when using this non-aqueous solution. Not cation dehydration, but rather the spatial configuration of carbonate anions creates the barrier in the low-temperature nucleation of magnesite. 1086:(obducted mantle rocks on crust) where magnesite can be created by letting carbon dioxide react with these rocks. Some progress has been made in ophiolites from Oman. But the major problem is that these artificial processes require sufficient porosity-permeability so that the fluids can flow but this is hardly the case in 624:
To convert clumped isotope data into temperature, a calibration curve is required which expresses the functional form of temperature dependence of clumped isotope composition. No mineral specific calibration exists for magnesite. Based on some experimental data where mineral precipitation temperature
676:
uptake etc. modify clumped isotopic composition of carbonate minerals specifically at low temperatures. They variably enrich or deplete the system in heavy isotopes of C and O. Since clumped isotope abundance depends on abundance of isotopes of C and O, they are also modified. Another very prominent
947:
Often, magnesite records lower clumped isotope temperature than associated dolomite, calcite. The reason might be that calcite, dolomite form earlier at higher temperature (from mantle like fluids) which increases Mg/Ca ratio in the fluid sufficiently so as to precipitate magnesite. As this happens
939:
associated with degassing. Magnesite forms as surface moulds in such conditions but more generally occur as hydrous Mg-carbonates since their precipitation is kinetically favored. Most of the times, they derive C from DIC or nearby ultramafic complexes (e.g., Altin Playa, British Columbia, Canada).
943:
Magnesites in metamorphic rocks, on the other hand, indicate very high temperature of formation. Isotopic composition of parental fluid is also heavy- generally metamorphic fluids. This has been verified by fluid inclusion derived temperature as well as traditional O isotope thermometry involving
1472:
van Dijk, Joep; Fernandez, Alvaro; Storck, Julian C.; White, Timothy S.; Lever, Mark; Müller, Inigo A.; Bishop, Stewart; Seifert, Reto F.; Driese, Steven G.; Krylov, Alexey; Ludvigson, Gregory A. (June 2019). "Experimental calibration of clumped isotopes in siderite between 8.5 and 62 °C and its
693:
Crystalline and cryptocrystalline magnesites have very different mineral structures. While crystalline magnesite has a well developed crystal structure, the cryptocrystalline magnesite is amorphous- mostly aggregate of fine grains. Since clumped isotopic composition depends on specific bonding,
425:
The recent advancement in the field of stable isotope geochemistry is the study of isotopic structure of minerals and molecules. This requires study of molecules with high resolutions looking at bonding scenario (how heavy isotopes are bonded to each other)- leading to knowledge of stability of
878:
Resistant to high temperature and able to withstand high pressure, magnesite has been proposed to be one of the major carbonate bearing phase in Earth's mantle and possible carriers for deep carbon reservoirs. For similar reason, it is found in metamorphosed peridotite rocks in Central Alps,
2292:
Shirokova, Liudmila S.; Mavromatis, Vasileios; Bundeleva, Irina A.; Pokrovsky, Oleg S.; Bénézeth, Pascale; Gérard, Emmanuelle; Pearce, Christopher R.; Oelkers, Eric H. (2013-01-01). "Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes".
2150:
FERRY, JOHN M.; RUMBLE, Douglas; Wing, Boswell A.; Penniston-Dorland, Sarah C. (2005-04-22). "A New Interpretation of Centimetre-scale Variations in the Progress of Infiltration-driven Metamorphic Reactions: Case Study of Carbonated Metaperidotite, Val d'Efra, Central Alps, Switzerland".
799:
Magnesite has been found in modern sediments, caves and soils. Its low-temperature (around 40 °C ) formation is known to require alternations between precipitation and dissolution intervals. The low-temperature formation of magnesite might well be of significance toward large-scale
2595:
Kelemen, Peter B.; Matter, Juerg; Streit, Elisabeth E.; Rudge, John F.; Curry, William B.; Blusztajn, Jerzy (2011-05-30). "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2Capture and Storage".
663:
etc.) form. It is possible to convert these phases into magnesite by changing temperature by mineral dissolution-precipitation or dehydration. While so happens, an isotope effect associated can control the isotopic composition of precipitated magnesite.
694:
difference in crystal structure is very likely to affect the way clumped isotopic signatures are recorded in these different structures. This leads to the fact that their pristine signatures might be modified differently by later thermal events like
563:) during phosphoric acid digestion of carbonates. To account for this additional (analytical artifact), a correction called the 'acid fractionation correction' is added to the magnesite clumped isotope value obtained at temperature of digestion. 625:
and clumped isotope derived temperature doesn't match, a need of mineral specific calibration emerges. The mismatch arises since bonding in magnesite is different from calcite/dolomite and/or acid digestion is conducted at higher temperature.
911:
origin. It is speculated that coarse high temperature magnesites are formed from mantle derived fluids whereas cryptocrystalline ones are precipitated by circulating meteoric water, taking up carbon from dissolved inorganic carbon pool,
2051:
Isshiki, Maiko; Irifune, Tetsuo; Hirose, Kei; Ono, Shigeaki; Ohishi, Yasuo; Watanuki, Tetsu; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto (January 2004). "Stability of magnesite and its high-pressure form in the lowermost mantle".
792:(nesquehonite) will form at room temperature. This very observation led to the postulation of a "dehydration barrier" being involved in the low-temperature formation of anhydrous magnesium carbonate. Laboratory experiments with 641:
is temperature dependent. Reported magnesite-fluid O and C isotope fractionation factors in literature are not in agreement with each other. The fractionation behaviors have not been substantiated by experimental observation.
948:
with increasing time, fluid cools, evolves by mixing with other fluids and when it forms magnesite, it decreases its temperature. So the presence of associated carbonates have a control on magnesite isotopic composition.
1098:
Magnesite can be cut, drilled, and polished to form beads that are used in jewelry-making. Magnesite beads can be dyed into a broad spectrum of bold colors, including a light blue color that mimics the appearance of
468:), it is called a 'singly-substituted' species. Likewise, when two atoms are simultaneously replaced with heavier isotopes (eg., COO), it is called a 'doubly substituted' species. The 'clumped' species (COO) for CO 1901:
Xu, J; Yan, C.; Zhang, F.; Konishi, H., Xu, H. & Teng, H. H. (2013): Testing the cation-hydration effect on the crystallization of Ca – Mg- CO3 systems. Proc. Natl. Acad. Sci. US, vol.110 (44), pp.17750-17755.
550:
from magnesite is complete. Digesting magnesite is hard since it takes a long time and different labs report different digestion times and temperatures (from 12 hours at 100 °C to 1 hour at 90 °C in
2396:
Power, Ian M.; Harrison, Anna L.; Dipple, Gregory M.; Wilson, Siobhan A.; Barker, Shaun L.L.; Fallon, Stewart J. (June 2019). "Magnesite formation in playa environments near Atlin, British Columbia, Canada".
894:
Clumped isotopes have been used in interpreting conditions of magnesite formation and the isotopic composition of the precipitating fluid. Within ultramafic complexes, magnesites are found within veins and
2041:
Warren, P. H. (1998): Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. Journal of Geophysical Research, vol.103, no.E7, 16759-16773.
1684:
García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M. (November 2016). "Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks".
1938:
Hobbs, F. W. C. and Xu, H. (2020): Magnesite formation through temperature and pH cycling as a proxy for lagoon and playa environments. Geochimica et Cosmochimica Acta, vol.269, pp.101–116.
804:. A major step forward toward the industrial production of magnesite at atmospheric pressure and a temperature of 316 K was described by Vandeginste. In those experiments small additions of 2186:
Zhang, Lifei; Ellis, David J.; Williams, Samantha; Jiang, Wenbo (July 2002). "Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite".
808:
alternated periodically with additions of sodium carbonate solution. New was also the very short duration of only a few hours for the alternating dissolution and precipitation cycles.
907:
form. These cryptocrystalline forms are mostly variably weathered and yield low temperature of formation. On the other hand, coarse magnesites yield very high temperature indicating
637:
Using clumped isotope derived temperature, C and O isotopic composition of the parental fluid can be calculated using known magnesite-fluid isotope fractionation factors, since
2032:
McSween Jr, H. Y and Harvey, R. P.(1998): An evaporation model for formation of carbonates in the ALH84001 Martian meteorite. International Geology Review, vol.49, pp.774–783.
1965:
V. Vandeginste, V.; Snell, O.; Hall, M. R.; Steer, E. and Vandeginste, A. (2019): Acceleration of dolomitization by zinc in saline waters. Nature Communications, vol.10, 1851.
1532:
Stolper, D. A.; Lawson, M.; Davis, C. L.; Ferreira, A. A.; Neto, E. V. Santos; Ellis, G. S.; Lewan, M. D.; Martini, A. M.; Tang, Y.; Schoell, M.; Sessions, A. L. (2014-06-27).
2448:
Streit, Elisabeth; Kelemen, Peter; Eiler, John (2012-06-17). "Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman".
1160: 1956:
V. Vandeginste (2021): Effect of pH cycling and zinc ions on calcium and magnesium carbonate formation in saline fluids at low temperature. Minerals, vol.11, pp.723–734.
677:
effect here is that of pH of precipitating fluid. As pH of precipitating fluid changes, DIC pool is affected and isotopic composition of precipitating carbonate changes.
519:. Depending on the strength of cation-carbonate oxygen (ie, Mg-O, Ca-O) bonds- different carbonate minerals can form or preserve clumped isotopic signatures differently. 1045:' product generally refers to calcination commencing at 450 °C and proceeding to an upper limit of 900 °C – which results in good surface area and reactivity. 830:, Mg-carbonates have been detected and reported to have formed in lacustrine environment prevailing there. Controversy still exists over the temperature of formation of 1595:
Yeung, Laurence Y.; Young, Edward D.; Schauble, Edwin A. (2012). "Measurements of 18O18O and 17O18O in the atmosphere and the role of isotope-exchange reactions".
2237:
Mavromatis, Vasileios; Pearce, Christopher R.; Shirokova, Liudmila S.; Bundeleva, Irina A.; Pokrovsky, Oleg S.; Benezeth, Pascale; Oelkers, Eric H. (2012-01-01).
546:
liberated from magnesite by phosphoric acid digestion is fed into the isotope ratio mass spectrometer. In such scenario, one needs to ensure that liberation of CO
1753:
Sharma, S.Das; Patil, D.J; Gopalan, K (February 2002). "Temperature dependence of oxygen isotope fractionation of CO2 from magnesite-phosphoric acid reaction".
2336:
Quesnel, Benoît; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; John, Cédric M.; Dierick, Malorie; Agrinier, Pierre; Drouillet, Maxime (June 2016).
1417:"The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples" 1135: 578:
gas is liberated from carbonate mineral during acid digestion, leaving one O behind- a fractionation occurs, and the isotopic composition of the analyzed CO
605: 1640:"SIMS Bias on Isotope Ratios in Ca-Mg-Fe Carbonates (Part III): δ18O and δ13C Matrix Effects Along the Magnesite-Siderite Solid-Solution Series" 1638:Śliwiński, Maciej G.; Kitajima, Kouki; Spicuzza, Michael J.; Orland, Ian J.; Ishida, Akizumi; Fournelle, John H.; Valley, John W. (2017-11-22). 1127: 1038:
refer to the surface area and resulting reactivity of the product (this is typically determined by an industry metric of the iodine number).
3203: 1134:) for magnesite exposure in the workplace as 15 mg/m total exposure and 5 mg/m respiratory exposure over an 8-hour workday. The 1264:
Ghosh, Prosenjit; Adkins, Jess; Affek, Hagit; Balta, Brian; Guo, Weifu; Schauble, Edwin A.; Schrag, Dan; Eiler, John M. (2006-03-15).
3233: 2338:"Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe" 3188: 1974:
Ehlmann, B. L. et al. (2008): Orbital identification of carbonate-bearing rocks on Mars. Science, vol.322, no.5909, pp.1828–1832.
491:
The abundances of certain bonds in certain molecules are sensitive to temperature at which it formed (e.g., abundance of COO in
1928: 608:). With internal standards and reference materials, analytical session is routinely monitored. Standard materials are majorly 3297: 1796:
Rosenbaum, J; Sheppard, S.M.F (June 1986). "An isotopic study of siderites, dolomites and ankerites at high temperatures".
1927:
Alves dos Anjos et al. (2011): Synthesis of magnesite at low temperature. Carbonates and Evaporites, vol.26, pp.213–215.
3198: 1034:
Calcination temperatures determine the reactivity of resulting oxide products and the classifications of light burnt and
417:, where it is deposited as a consequence of dissolution of magnesium-bearing minerals by carbon dioxide in groundwaters. 2690: 1252: 3193: 2558: 88: 959:, climatic-hydrologic conditions on Mars could be assessed from these rocks. Recent study has shown (implementing 3223: 2501:"Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment" 2239:"Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria" 536: 2337: 1947:
Oelkers, E. H.; Gislason, S. R. and Matter, J. (2008): Mineral carbonation of CO2. Elements, vol.4, pp.333–337.
2717: 202: 1048:
Above 900 °C, the material loses its reactive crystalline structure and reverts to the chemically inert '
886:
Magnesite can also precipitate in lakes in presence of bacteria either as hydrous Mg-carbonates or magnesite.
3302: 3208: 235: 834:. Low-temperature formation has been suggested for the magnesite from the Mars-derived ALH84001 meteorite. 1984:
Horgan, Briony H.N.; Anderson, Ryan B.; Dromart, Gilles; Amador, Elena S.; Rice, Melissa S. (March 2020).
931:
degassing. This reflects in the clumped isotope derived temperature being very low. These are affected by
3282: 3277: 2113:"Carbonates at high pressures: Possible carriers for deep carbon reservoirs in the Earth's lower mantle" 1911: 3292: 2571: 1841:"Kinetic clumped isotope fractionation in the DIC-H2O-CO2 system: Patterns, controls, and implications" 1139: 1131: 721:
in the presence of water and carbon dioxide at elevated temperatures and high pressures typical of the
604:
While measuring samples of unknown composition, it is required to measure some standard materials (see
967:
indicate formation at low temperature evaporative condition from subsurface water and derivation of CO
2238: 1367: 1312: 1265: 596:
Different researchers have also used other fractionation factors like dolomite fractionation factor.
2726: 1118:
People can be exposed to magnesite in the workplace by inhaling it, skin contact, and eye contact.
908: 2695: 1879:
Leitmeier, H.(1916): Einige Bemerkungen über die Entstehung von Magnesit und Sideritlagerstätten,
1142:(REL) of 10 mg/m total exposure and 5 mg/m respiratory exposure over an 8-hour workday. 1003:
Similar to the production of lime, magnesite can be burned in the presence of charcoal to produce
3218: 78: 3287: 936: 485: 464:' species. When only one atom is replaced with heavy isotope of any constituent element (ie, CO 314:
May exhibit pale green to pale blue fluorescence and phosphorescence under UV; triboluminescent
1366:
Winkelstern, Ian Z.; Kaczmarek, Stephen E.; Lohmann, Kyger C; Humphrey, John D. (2016-12-02).
3238: 3183: 1986:"The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars" 1035: 823: 638: 192: 182: 722: 2605: 2457: 2406: 2352: 2250: 2195: 2124: 2061: 1997: 1852: 1805: 1762: 1693: 1604: 1545: 1482: 1428: 1379: 1324: 1277: 1172: 927:
settings are in general enriched in heavy isotopes of C and O because of evaporation and CO
801: 733: 582:
gas needs to be corrected for this. For magnesite, the most reliable fractionation factor(
460:
molecule (composed only with most abundant isotopes of constituent elements) is called a '
8: 3213: 789: 477: 355: 225: 215: 2617: 2609: 2461: 2410: 2356: 2254: 2199: 2128: 2065: 2001: 1856: 1809: 1766: 1697: 1608: 1549: 1486: 1432: 1383: 1328: 1281: 1207: 1176: 3307: 3049: 2710: 2535: 2500: 2481: 2430: 2318: 2274: 2219: 2093: 1735: 1577: 1514: 1454: 1348: 1190: 1052:' product- which is preferred for use in refractory materials such as furnace linings. 952: 857: 831: 566: 555:). Due to digestion at this high temperature, some of the C-O bonds in the liberated CO 500: 172: 2112: 1774: 1533: 570:
Calibration curve expressing clumped isotope composition as a function of temperature.
429: 2957: 2686: 2621: 2540: 2522: 2473: 2434: 2422: 2378: 2322: 2310: 2266: 2223: 2211: 2168: 2085: 2077: 2015: 1892:
Lippmann, F. (1973): Sedimentary carbonate minerals. Springer Verlag, Berlin, 228 p.
1821: 1817: 1778: 1739: 1727: 1719: 1661: 1620: 1569: 1561: 1518: 1506: 1458: 1446: 1397: 1352: 1340: 1293: 1248: 1194: 997: 964: 900: 805: 481: 461: 395: 54: 2485: 2278: 1581: 2613: 2530: 2512: 2465: 2414: 2368: 2360: 2302: 2258: 2203: 2160: 2132: 2097: 2069: 2005: 1860: 1813: 1770: 1709: 1701: 1651: 1612: 1553: 1498: 1490: 1436: 1387: 1332: 1285: 1180: 1082:
carbon dioxide in magnesite on a large scale. This has focused on peridotites from
1072: 1068: 960: 729: 496: 391: 383: 263: 245: 61: 1392: 788:
However, when performing this reaction in the laboratory, the trihydrated form of
628: 3257: 2639: 2010: 1985: 1012: 924: 827: 552: 499:. Clumped isotope thermometers have been established for carbonate minerals like 476:
molecule. Isotopically substituted molecules have higher mass. As a consequence,
2164: 2136: 1079: 1071:). Furthermore, it is being used as a catalyst and filler in the production of 880: 707: 656: 540: 98: 2663: 2469: 2418: 2364: 2306: 2262: 1865: 1840: 1705: 1494: 1336: 1289: 3271: 2703: 2625: 2526: 2477: 2426: 2382: 2314: 2270: 2215: 2172: 2081: 2019: 1825: 1782: 1723: 1665: 1624: 1565: 1510: 1450: 1401: 1344: 1297: 1231: 1107: 1020: 281: 162: 110: 2517: 1557: 1416: 955:
can be deconvolved with the application of clumped isotope. Source of the CO
495:
as C-O bond). This information has been exploited to form the foundation of
2928: 2544: 2373: 2089: 1714: 1573: 1028: 864: 710: 660: 387: 2572:"Scientists find way to make mineral which can remove CO2 from atmosphere" 3228: 3012: 2988: 2755: 2207: 1616: 1056: 913: 680: 133: 2073: 1185: 1078:
Research is proceeding to evaluate the practicality of sequestering the
530: 3156: 3132: 3024: 2993: 2940: 2843: 1502: 1441: 1087: 1016: 984: 842: 714: 695: 301: 291: 121: 2730: 1731: 1656: 1639: 1219: 645: 3144: 3125: 3113: 3073: 3066: 3054: 3041: 2964: 2904: 2892: 2867: 2855: 2848: 2831: 2795: 2291: 1266:"13C–18O bonds in carbonate minerals: A new kind of paleothermometer" 1100: 1083: 1059:, as the magnesite cupel will resist the high temperatures involved. 1008: 992: 896: 868: 860: 845:) favors production of magnesite from peridotite. Iron-rich olivine ( 812: 793: 650: 492: 363: 336: 20: 1313:"Experimental calibration of clumped isotope reordering in dolomite" 3161: 3149: 3137: 2952: 2860: 2824: 2819: 2807: 2788: 2772: 2767: 2725: 1365: 846: 815: 717:
and other ultramafic rocks. Magnesite is formed via carbonation of
508: 410: 157:
Colorless, white, pale yellow, pale brown, faintly pink, lilac-rose
103: 35: 2236: 1110:
used magnesite as a sculptural material for some of his artworks.
3108: 2916: 2884: 2872: 2800: 2784: 2499:
Halevy, Itay; Fischer, Woodward W.; Eiler, John M. (2011-10-11).
2335: 904: 838: 718: 609: 512: 504: 414: 390:
and other magnesium rich rock types in both contact and regional
331: 2149: 849:) favors production of magnetite-magnesite-silica compositions. 527:
Clumped isotopic analysis has certain aspects to it. These are:
413:
above ultramafic rocks as a secondary carbonate within soil and
3101: 3096: 3078: 3017: 3000: 2976: 2969: 2945: 2933: 2921: 2909: 2897: 2779: 2111:
Marcondes, M. L.; Justo, J. F.; Assali, L. V. C. (2016-09-23).
1637: 1075:
and in the preparation of magnesium chemicals and fertilizers.
684:
Difference between cryptocrystalline and crystalline magnesite.
516: 453: 449: 371: 367: 342: 339: 728:
Magnesite can also be formed via the carbonation of magnesium
688: 3120: 2747: 1683: 1067:
Magnesite can also be used as a binder in flooring material (
853: 559:
are broken (leading to reduction in abundance of 'clumped' CO
403: 1534:"Formation temperatures of thermogenic and biogenic methane" 1471: 167:
Usually massive, rarely as rhombohedrons or hexagonal prisms
3029: 3005: 2981: 2836: 2812: 1983: 1024: 920: 872: 819: 399: 359: 2664:"CDC – NIOSH Pocket Guide to Chemical Hazards – Magnesite" 1531: 382:
Magnesite occurs as veins in and an alteration product of
2760: 2738: 2395: 1004: 2594: 441:
illustrating singly and doubly substituted species of CO
2185: 2050: 1679: 1677: 1675: 932: 852:
Magnesite can also be formed by way of metasomatism in
1912:"Low-temperature nucleation of magnesite and dolomite" 1311:
Lloyd, Max K.; Ryb, Uri; Eiler, John M. (2018-12-01).
903:
form as well as within carbonated peridotite units in
889: 420: 1368:"Calibration of dolomite clumped isotope thermometry" 1263: 1208:
http://rruff.geo.arizona.edu/doclib/hom/magnesite.pdf
1136:
National Institute for Occupational Safety and Health
531:
Digestion, analysis and acid fractionation correction
2110: 1672: 374:
may occur as admixtures, but only in small amounts.
40:
Magnesite crystals from Brazil (11.4 × 9.2 × 3.6 cm)
646:
Factors controlling isotopic structure in magnesite
2498: 2447: 1881:Mitteilungen der Geologischen Gesellschaft in Wien 1752: 1594: 1011:. Large quantities of magnesite are burnt to make 651:Conversion from hydrous Mg-carbonates to magnesite 1795: 1113: 672:Disequilibrium processes like degassing, rapid CO 655:In low temperature, thus, hydrous Mg-carbonates ( 3269: 1473:application as paleo-thermometer in paleosols". 1055:In fire assay, magnesite cupels can be used for 916:and affected by disequilibrium isotope effects. 615: 2505:Proceedings of the National Academy of Sciences 1359: 1243:Klein, Cornelis and Cornelius S. Hurlbut, Jr., 1007:, which, in the form of a mineral, is known as 822:itself. Magnesite was identified on Mars using 606:Reference materials for stable isotope analysis 426:molecule depending on its isotopic structure. 1019:(heat-resistant) material used as a lining in 2711: 2640:"Ford Fountain for the New York World's Fair" 2598:Annual Review of Earth and Planetary Sciences 1310: 1128:Occupational Safety and Health Administration 535:Clumped isotopic analysis is usually done by 522: 1597:Journal of Geophysical Research: Atmospheres 1465: 1414: 2492: 1415:Stolper, D. A.; Eiler, J. M. (2015-05-01). 689:Mineral structure and later thermal effects 452:has three stable isotopes (O, O and O) and 2718: 2704: 1232:http://webmineral.com/data/Magnesite.shtml 480:reduces and the molecule develops a lower 2534: 2516: 2450:Contributions to Mineralogy and Petrology 2372: 2009: 1864: 1713: 1655: 1440: 1391: 1257: 1184: 991: 983: 679: 633:-magnesite isotope fractionation factors 565: 428: 1644:Geostandards and Geoanalytical Research 1201: 935:effect, biological activity as well as 3270: 979: 2699: 1225: 1213: 511:etc and non-carbonate compounds like 409:Magnesite is also present within the 394:terrains. These magnesites are often 1237: 1161:"IMA–CNMNC approved mineral symbols" 1158: 2618:10.1146/annurev-earth-092010-152509 1838: 1220:http://www.mindat.org/min-2482.html 944:co-precipitating quartz-magnesite. 890:Information from isotopic structure 421:Isotopic structure: clumped isotope 13: 3234:Volcanogenic massive sulfide (VMS) 591:10ln(α) = + (4.22 ± 0.08); T in K 398:and contain silica in the form of 14: 3319: 988:Polished and Dyed magnesite beads 667: 3251: 2561:, West Coast Deck Water Proofing 1130:(OSHA) has set the legal limit ( 1121: 34: 3214:Magmatic nickel-copper-iron-PGE 3204:Kambalda-type komatiitic nickel 2656: 2632: 2588: 2564: 2551: 2441: 2399:Geochimica et Cosmochimica Acta 2389: 2345:Geochimica et Cosmochimica Acta 2329: 2285: 2243:Geochimica et Cosmochimica Acta 2230: 2179: 2143: 2104: 2044: 2035: 2026: 1977: 1968: 1959: 1950: 1941: 1932: 1921: 1904: 1895: 1886: 1873: 1845:Geochimica et Cosmochimica Acta 1832: 1798:Geochimica et Cosmochimica Acta 1789: 1755:Geochimica et Cosmochimica Acta 1746: 1686:Geochimica et Cosmochimica Acta 1631: 1588: 1525: 1475:Geochimica et Cosmochimica Acta 1317:Geochimica et Cosmochimica Acta 1270:Geochimica et Cosmochimica Acta 3224:Sedimentary exhalative (SedEx) 1916:Neues Jahrbuch für Mineralogie 1408: 1304: 1152: 1114:Occupational safety and health 879:Switzerland and high pressure 732:(lizardite) via the following 1: 3199:Iron oxide copper gold (IOCG) 1775:10.1016/s0016-7037(01)00833-x 1393:10.1016/j.chemgeo.2016.09.021 1145: 1106:The Japanese-American artist 1062: 377: 2011:10.1016/j.icarus.2019.113526 1818:10.1016/0016-7037(86)90396-0 883:rocks from Tianshan, China. 706:Magnesite can be formed via 701: 599: 537:gas source mass spectrometry 497:clumped isotope geochemistry 7: 3298:Minerals in space group 167 1918:, Monatshefte, pp. 289–302. 1839:Guo, Weifu (January 2020). 1421:American Journal of Science 1093: 961:clumped isotope thermometry 826:from satellite orbit. Near 10: 3324: 3189:Carbonate-hosted lead-zinc 2137:10.1103/PhysRevB.94.104112 1140:recommended exposure limit 1132:permissible exposure limit 811:Magnesite was detected in 523:Measurements and reporting 472:is a doubly substituted CO 334:with the chemical formula 240:Transparent to translucent 18: 3247: 3176: 3089: 3040: 2883: 2746: 2737: 2685:Smithsonian Rock and Gem 2470:10.1007/s00410-012-0775-z 2419:10.1016/j.gca.2019.04.008 2365:10.1016/j.gca.2016.03.021 2307:10.1007/s10498-012-9174-3 2263:10.1016/j.gca.2011.10.019 1866:10.1016/j.gca.2019.07.055 1706:10.1016/j.gca.2016.08.003 1495:10.1016/j.gca.2019.03.018 1337:10.1016/j.gca.2018.08.036 1290:10.1016/j.gca.2005.11.014 971:from Martian atmosphere. 620:– Temperature calibration 318: 310: 300: 290: 280: 262: 254: 244: 234: 224: 214: 201: 191: 181: 171: 161: 153: 148: 132: 115:Hexagonal scalenohedral ( 109: 97: 87: 77: 60: 50: 45: 33: 28: 2165:10.1093/petrology/egi034 1247:Wiley, 20th ed., p. 332 433:Isotopic structure of CO 19:Not to be confused with 2729:, mineral mixtures and 2518:10.1073/pnas.1109444108 1558:10.1126/science.1254509 974: 1910:Deelman, J.C. (1999): 1210:Handbook of Mineralogy 1165:Mineralogical Magazine 1000: 989: 937:kinetic isotope effect 919:Magnesites forming in 685: 629:Magnesite-water and CO 586:equation is given as: 571: 486:Kinetic isotope effect 446: 306:Effervesces in hot HCl 3239:Orogenic gold deposit 3184:Banded iron formation 2188:American Mineralogist 1883:, vol.9, pp. 159–166. 1245:Manual of Mineralogy, 995: 987: 963:) that carbonates in 824:infrared spectroscopy 698:/burial heating etc. 683: 569: 432: 311:Other characteristics 89:Strunz classification 3303:Luminescent minerals 2295:Aquatic Geochemistry 2208:10.2138/am-2002-0708 2153:Journal of Petrology 1617:10.1029/2012JD017992 802:carbon sequestration 456:has two (C, C). A CO 3258:Minerals portal 3194:Heavy mineral sands 2610:2011AREPS..39..545K 2511:(41): 16895–16899. 2462:2012CoMP..164..821S 2411:2019GeCoA.255....1P 2357:2016GeCoA.183..234Q 2255:2012GeCoA..76..161M 2200:2002AmMin..87..861Z 2129:2016PhRvB..94j4112M 2074:10.1038/nature02181 2066:2004Natur.427...60I 2002:2020Icar..33913526H 1857:2020GeCoA.268..230G 1810:1986GeCoA..50.1147R 1767:2002GeCoA..66..589D 1698:2016GeCoA.193..222G 1609:2012JGRD..11718306Y 1550:2014Sci...344.1500S 1544:(6191): 1500–1503. 1487:2019GeCoA.254....1V 1433:2015AmJS..315..363S 1384:2016ChGeo.443...32W 1329:2018GeCoA.242....1L 1282:2006GeCoA..70.1439G 1186:10.1180/mgm.2021.43 1177:2021MinM...85..291W 1159:Warr, L.N. (2021). 980:Refractory material 790:magnesium carbonate 478:molecular vibration 356:magnesium carbonate 3283:Carbonate minerals 3278:Magnesium minerals 2644:The Noguchi Museum 2559:magnesite flooring 2557:Information about 1442:10.2475/05.2015.01 1138:(NIOSH) has set a 1001: 990: 953:Martian carbonates 863:, associated with 723:greenschist facies 686: 572: 447: 255:Optical properties 3293:Trigonal minerals 3265: 3264: 3172: 3171: 2117:Physical Review B 1657:10.1111/ggr.12194 901:cryptocrystalline 806:hydrochloric acid 585: 482:zero point energy 396:cryptocrystalline 325: 324: 55:Carbonate mineral 3315: 3256: 3255: 3254: 3209:Lateritic nickel 3165: 3153: 3141: 3129: 3117: 3105: 3082: 3070: 3058: 3033: 3021: 3009: 2997: 2985: 2973: 2961: 2949: 2937: 2925: 2913: 2901: 2876: 2864: 2852: 2840: 2828: 2816: 2804: 2792: 2776: 2764: 2744: 2743: 2720: 2713: 2706: 2697: 2696: 2678: 2677: 2675: 2674: 2660: 2654: 2653: 2651: 2650: 2636: 2630: 2629: 2592: 2586: 2585: 2583: 2582: 2568: 2562: 2555: 2549: 2548: 2538: 2520: 2496: 2490: 2489: 2445: 2439: 2438: 2393: 2387: 2386: 2376: 2342: 2333: 2327: 2326: 2289: 2283: 2282: 2234: 2228: 2227: 2183: 2177: 2176: 2159:(8): 1725–1746. 2147: 2141: 2140: 2108: 2102: 2101: 2048: 2042: 2039: 2033: 2030: 2024: 2023: 2013: 1981: 1975: 1972: 1966: 1963: 1957: 1954: 1948: 1945: 1939: 1936: 1930: 1925: 1919: 1908: 1902: 1899: 1893: 1890: 1884: 1877: 1871: 1870: 1868: 1836: 1830: 1829: 1804:(6): 1147–1150. 1793: 1787: 1786: 1750: 1744: 1743: 1717: 1681: 1670: 1669: 1659: 1635: 1629: 1628: 1592: 1586: 1585: 1529: 1523: 1522: 1469: 1463: 1462: 1444: 1412: 1406: 1405: 1395: 1372:Chemical Geology 1363: 1357: 1356: 1308: 1302: 1301: 1276:(6): 1439–1456. 1261: 1255: 1241: 1235: 1229: 1223: 1217: 1211: 1205: 1199: 1198: 1188: 1156: 1073:synthetic rubber 1069:magnesite screed 832:these carbonates 583: 384:ultramafic rocks 353: 352: 351: 272:=1.508 – 1.510 n 264:Refractive index 246:Specific gravity 207: 143: 127: 118: 67: 66:(repeating unit) 38: 26: 25: 3323: 3322: 3318: 3317: 3316: 3314: 3313: 3312: 3268: 3267: 3266: 3261: 3252: 3250: 3243: 3219:Porphyry copper 3168: 3159: 3147: 3135: 3123: 3111: 3099: 3085: 3076: 3064: 3052: 3036: 3027: 3015: 3003: 2991: 2979: 2967: 2955: 2943: 2931: 2919: 2907: 2895: 2879: 2870: 2858: 2846: 2834: 2822: 2810: 2798: 2782: 2770: 2758: 2733: 2724: 2682: 2681: 2672: 2670: 2662: 2661: 2657: 2648: 2646: 2638: 2637: 2633: 2593: 2589: 2580: 2578: 2570: 2569: 2565: 2556: 2552: 2497: 2493: 2446: 2442: 2394: 2390: 2340: 2334: 2330: 2290: 2286: 2235: 2231: 2184: 2180: 2148: 2144: 2109: 2105: 2060:(6969): 60–63. 2049: 2045: 2040: 2036: 2031: 2027: 1982: 1978: 1973: 1969: 1964: 1960: 1955: 1951: 1946: 1942: 1937: 1933: 1926: 1922: 1909: 1905: 1900: 1896: 1891: 1887: 1878: 1874: 1837: 1833: 1794: 1790: 1751: 1747: 1682: 1673: 1636: 1632: 1593: 1589: 1530: 1526: 1470: 1466: 1413: 1409: 1364: 1360: 1309: 1305: 1262: 1258: 1242: 1238: 1234:Webmineral data 1230: 1226: 1218: 1214: 1206: 1202: 1157: 1153: 1148: 1124: 1116: 1096: 1065: 1015:: an important 1013:magnesium oxide 982: 977: 970: 958: 930: 892: 837:Magnesium-rich 783: 779: 775: 771: 767: 763: 759: 755: 751: 747: 743: 704: 691: 675: 670: 653: 648: 635: 632: 622: 619: 602: 593: 581: 577: 562: 558: 553:phosphoric acid 549: 544: 533: 525: 475: 471: 467: 459: 444: 440: 436: 423: 380: 350: 347: 346: 345: 335: 275: 271: 205: 141: 125: 120: 116: 73: 65: 64: 41: 24: 17: 16:Type of mineral 12: 11: 5: 3321: 3311: 3310: 3305: 3300: 3295: 3290: 3285: 3280: 3263: 3262: 3248: 3245: 3244: 3242: 3241: 3236: 3231: 3226: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3180: 3178: 3174: 3173: 3170: 3169: 3167: 3166: 3154: 3142: 3130: 3118: 3106: 3093: 3091: 3087: 3086: 3084: 3083: 3071: 3059: 3046: 3044: 3038: 3037: 3035: 3034: 3022: 3010: 2998: 2986: 2974: 2962: 2950: 2938: 2926: 2914: 2902: 2889: 2887: 2881: 2880: 2878: 2877: 2865: 2853: 2841: 2829: 2817: 2805: 2793: 2777: 2765: 2752: 2750: 2741: 2735: 2734: 2723: 2722: 2715: 2708: 2700: 2694: 2693: 2680: 2679: 2655: 2631: 2604:(1): 545–576. 2587: 2563: 2550: 2491: 2456:(5): 821–837. 2440: 2388: 2328: 2284: 2229: 2194:(7): 861–866. 2178: 2142: 2123:(10): 104112. 2103: 2043: 2034: 2025: 1976: 1967: 1958: 1949: 1940: 1931: 1920: 1903: 1894: 1885: 1872: 1831: 1788: 1761:(4): 589–593. 1745: 1671: 1630: 1587: 1524: 1464: 1427:(5): 363–411. 1407: 1358: 1303: 1256: 1236: 1224: 1212: 1200: 1171:(3): 291–320. 1150: 1149: 1147: 1144: 1123: 1120: 1115: 1112: 1095: 1092: 1080:greenhouse gas 1064: 1061: 1021:blast furnaces 981: 978: 976: 973: 968: 956: 928: 891: 888: 818:and on planet 786: 785: 781: 777: 773: 769: 765: 761: 757: 753: 749: 745: 741: 708:talc carbonate 703: 700: 690: 687: 673: 669: 668:Disequilibrium 666: 657:hydromagnesite 652: 649: 647: 644: 634: 630: 627: 621: 617: 614: 601: 598: 589: 579: 575: 560: 556: 547: 542: 532: 529: 524: 521: 473: 469: 465: 457: 442: 438: 434: 422: 419: 379: 376: 348: 323: 322: 320: 316: 315: 312: 308: 307: 304: 298: 297: 294: 288: 287: 284: 278: 277: 273: 269: 266: 260: 259: 256: 252: 251: 248: 242: 241: 238: 232: 231: 228: 222: 221: 218: 212: 211: 208: 199: 198: 195: 189: 188: 185: 179: 178: 175: 169: 168: 165: 159: 158: 155: 151: 150: 149:Identification 146: 145: 136: 130: 129: 113: 107: 106: 101: 99:Crystal system 95: 94: 91: 85: 84: 81: 75: 74: 71: 68: 58: 57: 52: 48: 47: 43: 42: 39: 31: 30: 15: 9: 6: 4: 3: 2: 3320: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3288:Calcite group 3286: 3284: 3281: 3279: 3276: 3275: 3273: 3260: 3259: 3246: 3240: 3237: 3235: 3232: 3230: 3227: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3181: 3179: 3177:Deposit types 3175: 3163: 3158: 3155: 3151: 3146: 3143: 3139: 3134: 3131: 3127: 3122: 3119: 3115: 3110: 3107: 3103: 3098: 3095: 3094: 3092: 3088: 3080: 3075: 3072: 3068: 3063: 3060: 3056: 3051: 3048: 3047: 3045: 3043: 3039: 3031: 3026: 3023: 3019: 3014: 3011: 3007: 3002: 2999: 2995: 2990: 2987: 2983: 2978: 2975: 2971: 2966: 2963: 2959: 2954: 2951: 2947: 2942: 2939: 2935: 2930: 2927: 2923: 2918: 2915: 2911: 2906: 2903: 2899: 2894: 2891: 2890: 2888: 2886: 2882: 2874: 2869: 2866: 2862: 2857: 2854: 2850: 2845: 2842: 2838: 2833: 2830: 2826: 2821: 2818: 2814: 2809: 2806: 2802: 2797: 2794: 2790: 2786: 2781: 2778: 2774: 2769: 2766: 2762: 2757: 2754: 2753: 2751: 2749: 2745: 2742: 2740: 2736: 2732: 2728: 2721: 2716: 2714: 2709: 2707: 2702: 2701: 2698: 2692: 2691:0-7566-0962-3 2688: 2684: 2683: 2669: 2665: 2659: 2645: 2641: 2635: 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2599: 2591: 2577: 2576:phys.org/news 2573: 2567: 2560: 2554: 2546: 2542: 2537: 2532: 2528: 2524: 2519: 2514: 2510: 2506: 2502: 2495: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2436: 2432: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2392: 2384: 2380: 2375: 2374:10044/1/33108 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2339: 2332: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2288: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2233: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2182: 2174: 2170: 2166: 2162: 2158: 2154: 2146: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2107: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2047: 2038: 2029: 2021: 2017: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1980: 1971: 1962: 1953: 1944: 1935: 1929: 1924: 1917: 1913: 1907: 1898: 1889: 1882: 1876: 1867: 1862: 1858: 1854: 1850: 1846: 1842: 1835: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1792: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1749: 1741: 1737: 1733: 1729: 1725: 1721: 1716: 1715:10044/1/40256 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1680: 1678: 1676: 1667: 1663: 1658: 1653: 1649: 1645: 1641: 1634: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1591: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1528: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1468: 1460: 1456: 1452: 1448: 1443: 1438: 1434: 1430: 1426: 1422: 1418: 1411: 1403: 1399: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1307: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1260: 1254: 1253:0-471-80580-7 1250: 1246: 1240: 1233: 1228: 1221: 1216: 1209: 1204: 1196: 1192: 1187: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1151: 1143: 1141: 1137: 1133: 1129: 1122:United States 1119: 1111: 1109: 1108:Isamu Noguchi 1104: 1102: 1091: 1089: 1085: 1081: 1076: 1074: 1070: 1060: 1058: 1053: 1051: 1046: 1044: 1039: 1037: 1032: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 999: 996:Magnesite of 994: 986: 972: 966: 962: 954: 949: 945: 941: 938: 934: 926: 922: 917: 915: 910: 906: 902: 898: 887: 884: 882: 876: 874: 870: 866: 862: 859: 856:deposits, in 855: 850: 848: 844: 840: 835: 833: 829: 828:Jezero Crater 825: 821: 817: 814: 809: 807: 803: 797: 795: 791: 739: 738: 737: 735: 731: 726: 724: 720: 716: 712: 709: 699: 697: 682: 678: 665: 662: 658: 643: 640: 639:fractionation 626: 613: 611: 607: 597: 594: 592: 587: 568: 564: 554: 545: 538: 528: 520: 518: 514: 510: 506: 502: 498: 494: 489: 487: 483: 479: 463: 455: 451: 431: 427: 418: 416: 412: 407: 405: 401: 397: 393: 389: 385: 375: 373: 369: 365: 361: 357: 344: 341: 338: 333: 329: 321: 317: 313: 309: 305: 303: 299: 295: 293: 289: 285: 283: 282:Birefringence 279: 267: 265: 261: 257: 253: 249: 247: 243: 239: 237: 233: 229: 227: 223: 219: 217: 213: 209: 204: 200: 196: 194: 190: 186: 184: 180: 176: 174: 170: 166: 164: 163:Crystal habit 160: 156: 152: 147: 140: 137: 135: 131: 123: 114: 112: 111:Crystal class 108: 105: 102: 100: 96: 92: 90: 86: 82: 80: 76: 69: 63: 59: 56: 53: 49: 44: 37: 32: 27: 22: 3249: 3061: 2929:Chalcopyrite 2731:ore deposits 2727:Ore minerals 2671:. Retrieved 2667: 2658: 2647:. Retrieved 2643: 2634: 2601: 2597: 2590: 2579:. Retrieved 2575: 2566: 2553: 2508: 2504: 2494: 2453: 2449: 2443: 2402: 2398: 2391: 2348: 2344: 2331: 2298: 2294: 2287: 2246: 2242: 2232: 2191: 2187: 2181: 2156: 2152: 2145: 2120: 2116: 2106: 2057: 2053: 2046: 2037: 2028: 1993: 1989: 1979: 1970: 1961: 1952: 1943: 1934: 1923: 1915: 1906: 1897: 1888: 1880: 1875: 1848: 1844: 1834: 1801: 1797: 1791: 1758: 1754: 1748: 1689: 1685: 1650:(1): 49–76. 1647: 1643: 1633: 1603:(D18): n/a. 1600: 1596: 1590: 1541: 1537: 1527: 1478: 1474: 1467: 1424: 1420: 1410: 1375: 1371: 1361: 1320: 1316: 1306: 1273: 1269: 1259: 1244: 1239: 1227: 1215: 1203: 1168: 1164: 1154: 1125: 1117: 1105: 1097: 1077: 1066: 1054: 1049: 1047: 1042: 1040: 1033: 1029:incinerators 1002: 950: 946: 942: 918: 909:hydrothermal 893: 885: 877: 865:wollastonite 851: 836: 810: 798: 787: 727: 711:metasomatism 705: 692: 671: 661:nesquehonite 654: 636: 623: 612:and marble. 603: 595: 590: 588: 574:Since the CO 573: 534: 526: 490: 462:monoisotopic 448: 424: 408: 388:serpentinite 381: 327: 326: 258:Uniaxial (−) 138: 3013:Pentlandite 2989:Molybdenite 2756:Cassiterite 2668:www.cdc.gov 2351:: 234–249. 2301:(1): 1–24. 2249:: 161–174. 1851:: 230–257. 1692:: 222–250. 1503:1874/387681 1088:peridotites 1057:cupellation 1043:Light burnt 914:soil carbon 905:crystalline 392:metamorphic 236:Diaphaneity 134:Space group 3272:Categories 3157:Wolframite 3133:Sperrylite 3042:Carbonates 3025:Sphalerite 2994:molybdenum 2941:Chalcocite 2844:Pyrolusite 2673:2015-11-19 2649:2022-01-02 2581:2018-08-15 1996:: 113526. 1222:Mindat.org 1146:References 1084:ophiolites 1063:Other uses 1050:dead-burnt 1036:dead burnt 1017:refractory 951:Origin of 897:stockworks 861:limestones 843:forsterite 730:serpentine 715:peridotite 696:diagenesis 539:where the 493:carbonates 378:Occurrence 319:References 302:Solubility 292:Fusibility 203:Mohs scale 187:Conchoidal 122:H-M symbol 79:IMA symbol 3308:Evaporite 3145:Scheelite 3126:beryllium 3114:aluminium 3074:Malachite 3067:magnesium 3062:Magnesite 3055:magnesium 2965:Cobaltite 2905:Argentite 2893:Acanthite 2868:Uraninite 2856:Tantalite 2849:manganese 2832:Magnetite 2796:Columbite 2626:0084-6597 2527:0027-8424 2478:0010-7999 2435:146307705 2427:0016-7037 2383:0016-7037 2323:129854388 2315:1573-1421 2271:0016-7037 2224:101814149 2216:0003-004X 2173:1460-2415 2082:0028-0836 2020:0019-1035 1826:0016-7037 1783:0016-7037 1740:132651895 1724:0016-7037 1666:1639-4488 1625:2156-2202 1566:0036-8075 1519:134142123 1511:0016-7037 1459:131728569 1451:0002-9599 1402:0009-2541 1378:: 32–38. 1353:134613845 1345:0016-7037 1298:0016-7037 1195:235729616 1101:turquoise 1009:periclase 881:eclogitic 869:periclase 858:dolomitic 813:meteorite 794:formamide 702:Formation 600:Standards 364:manganese 328:Magnesite 296:infusible 29:Magnesite 21:magnetite 3162:tungsten 3150:tungsten 3138:platinum 3050:Dolomite 2953:Cinnabar 2885:Sulfides 2861:tantalum 2825:titanium 2820:Ilmenite 2808:Hematite 2789:tantalum 2773:chromium 2768:Chromite 2545:21969543 2486:12595278 2405:: 1–24. 2279:15405751 2090:14702083 1582:31569235 1574:24970083 1481:: 1–20. 1323:: 1–20. 1094:Artworks 965:ALH84001 847:fayalite 816:ALH84001 776:+ 3 MgCO 734:reaction 509:siderite 501:dolomite 437:and MgCO 411:regolith 220:Vitreous 206:hardness 193:Tenacity 183:Fracture 173:Cleavage 104:Trigonal 51:Category 3229:Uranium 3109:Bauxite 2958:mercury 2917:Bornite 2873:uranium 2801:niobium 2785:niobium 2606:Bibcode 2536:3193235 2458:Bibcode 2407:Bibcode 2353:Bibcode 2251:Bibcode 2196:Bibcode 2125:Bibcode 2098:4351925 2062:Bibcode 1998:Bibcode 1853:Bibcode 1806:Bibcode 1763:Bibcode 1732:1360188 1694:Bibcode 1605:Bibcode 1546:Bibcode 1538:Science 1483:Bibcode 1429:Bibcode 1380:Bibcode 1325:Bibcode 1278:Bibcode 1173:Bibcode 839:olivine 719:olivine 610:calcite 513:methane 505:calcite 415:subsoil 332:mineral 250:3.0–3.2 210:3.5–4.5 197:Brittle 177:perfect 93:5.AB.05 62:Formula 46:General 3102:barium 3097:Baryte 3079:copper 3018:nickel 3001:Pyrite 2977:Galena 2970:cobalt 2946:copper 2934:copper 2922:copper 2910:silver 2898:silver 2780:Coltan 2748:Oxides 2689:  2624:  2543:  2533:  2525:  2484:  2476:  2433:  2425:  2381:  2321:  2313:  2277:  2269:  2222:  2214:  2171:  2096:  2088:  2080:  2054:Nature 2018:  1990:Icarus 1824:  1781:  1738:  1730:  1722:  1664:  1623:  1580:  1572:  1564:  1517:  1509:  1457:  1449:  1400:  1351:  1343:  1296:  1251:  1193:  871:, and 756:+ 3 CO 517:oxygen 454:Carbon 450:Oxygen 372:nickel 370:, and 368:cobalt 276:=1.700 226:Streak 216:Luster 3121:Beryl 3090:Other 2482:S2CID 2431:S2CID 2341:(PDF) 2319:S2CID 2275:S2CID 2220:S2CID 2094:S2CID 1736:S2CID 1578:S2CID 1515:S2CID 1455:S2CID 1349:S2CID 1191:S2CID 1025:kilns 998:Salem 925:playa 921:lakes 854:skarn 780:+ 3 H 484:(see 404:chert 330:is a 286:0.191 230:white 154:Color 3030:zinc 3006:iron 2982:lead 2837:iron 2813:iron 2787:and 2739:Ores 2687:ISBN 2622:ISSN 2541:PMID 2523:ISSN 2474:ISSN 2423:ISSN 2379:ISSN 2311:ISSN 2267:ISSN 2212:ISSN 2169:ISSN 2086:PMID 2078:ISSN 2016:ISSN 1822:ISSN 1779:ISSN 1728:OSTI 1720:ISSN 1662:ISSN 1621:ISSN 1570:PMID 1562:ISSN 1507:ISSN 1447:ISSN 1398:ISSN 1341:ISSN 1294:ISSN 1249:ISBN 1126:The 1027:and 975:Uses 923:and 873:talc 820:Mars 772:(OH) 760:→ Mg 752:(OH) 740:2 Mg 515:and 400:opal 360:Iron 128:2/m) 70:MgCO 2761:tin 2614:doi 2531:PMC 2513:doi 2509:108 2466:doi 2454:164 2415:doi 2403:255 2369:hdl 2361:doi 2349:183 2303:doi 2259:doi 2204:doi 2161:doi 2133:doi 2070:doi 2058:427 2006:doi 1994:339 1861:doi 1849:268 1814:doi 1771:doi 1710:hdl 1702:doi 1690:193 1652:doi 1613:doi 1601:117 1554:doi 1542:344 1499:hdl 1491:doi 1479:254 1437:doi 1425:315 1388:doi 1376:443 1333:doi 1321:242 1286:doi 1181:doi 1005:MgO 899:in 713:of 488:). 402:or 358:). 124:: ( 83:Mgs 3274:: 2666:. 2642:. 2620:. 2612:. 2602:39 2600:. 2574:. 2539:. 2529:. 2521:. 2507:. 2503:. 2480:. 2472:. 2464:. 2452:. 2429:. 2421:. 2413:. 2401:. 2377:. 2367:. 2359:. 2347:. 2343:. 2317:. 2309:. 2299:19 2297:. 2273:. 2265:. 2257:. 2247:76 2245:. 2241:. 2218:. 2210:. 2202:. 2192:87 2190:. 2167:. 2157:46 2155:. 2131:. 2121:94 2119:. 2115:. 2092:. 2084:. 2076:. 2068:. 2056:. 2014:. 2004:. 1992:. 1988:. 1914:, 1859:. 1847:. 1843:. 1820:. 1812:. 1802:50 1800:. 1777:. 1769:. 1759:66 1757:. 1734:. 1726:. 1718:. 1708:. 1700:. 1688:. 1674:^ 1660:. 1648:42 1646:. 1642:. 1619:. 1611:. 1599:. 1576:. 1568:. 1560:. 1552:. 1540:. 1536:. 1513:. 1505:. 1497:. 1489:. 1477:. 1453:. 1445:. 1435:. 1423:. 1419:. 1396:. 1386:. 1374:. 1370:. 1347:. 1339:. 1331:. 1319:. 1315:. 1292:. 1284:. 1274:70 1272:. 1268:. 1189:. 1179:. 1169:85 1167:. 1163:. 1103:. 1090:. 1031:. 1023:, 933:pH 875:. 867:, 770:10 764:Si 744:Si 736:: 725:. 659:, 618:47 584:α) 541:CO 507:, 503:, 406:. 386:, 366:, 362:, 337:Mg 119:m) 3164:) 3160:( 3152:) 3148:( 3140:) 3136:( 3128:) 3124:( 3116:) 3112:( 3104:) 3100:( 3081:) 3077:( 3069:) 3065:( 3057:) 3053:( 3032:) 3028:( 3020:) 3016:( 3008:) 3004:( 2996:) 2992:( 2984:) 2980:( 2972:) 2968:( 2960:) 2956:( 2948:) 2944:( 2936:) 2932:( 2924:) 2920:( 2912:) 2908:( 2900:) 2896:( 2875:) 2871:( 2863:) 2859:( 2851:) 2847:( 2839:) 2835:( 2827:) 2823:( 2815:) 2811:( 2803:) 2799:( 2791:) 2783:( 2775:) 2771:( 2763:) 2759:( 2719:e 2712:t 2705:v 2676:. 2652:. 2628:. 2616:: 2608:: 2584:. 2547:. 2515:: 2488:. 2468:: 2460:: 2437:. 2417:: 2409:: 2385:. 2371:: 2363:: 2355:: 2325:. 2305:: 2281:. 2261:: 2253:: 2226:. 2206:: 2198:: 2175:. 2163:: 2139:. 2135:: 2127:: 2100:. 2072:: 2064:: 2022:. 2008:: 2000:: 1869:. 1863:: 1855:: 1828:. 1816:: 1808:: 1785:. 1773:: 1765:: 1742:. 1712:: 1704:: 1696:: 1668:. 1654:: 1627:. 1615:: 1607:: 1584:. 1556:: 1548:: 1521:. 1501:: 1493:: 1485:: 1461:. 1439:: 1431:: 1404:. 1390:: 1382:: 1355:. 1335:: 1327:: 1300:. 1288:: 1280:: 1197:. 1183:: 1175:: 1041:' 969:2 957:2 929:2 841:( 784:O 782:2 778:3 774:2 768:O 766:4 762:3 758:2 754:4 750:5 748:O 746:2 742:3 674:2 631:2 616:Δ 580:2 576:2 561:2 557:2 548:2 543:2 474:2 470:2 466:2 458:2 445:. 443:2 439:3 435:2 354:( 349:3 343:O 340:C 274:ε 270:ω 268:n 144:c 142:3 139:R 126:3 117:3 72:3 23:.

Index

magnetite

Carbonate mineral
Formula
IMA symbol
Strunz classification
Crystal system
Trigonal
Crystal class
H-M symbol
Space group
Crystal habit
Cleavage
Fracture
Tenacity
Mohs scale
Luster
Streak
Diaphaneity
Specific gravity
Refractive index
Birefringence
Fusibility
Solubility
mineral
Mg
C
O
magnesium carbonate
Iron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.