Knowledge

Magnetic refrigeration

Source 📝

1219:
inside the probe, water flows and is used directly as a regenerating fluid for a magnetic refrigerator operating with gadolinium. The GeoThermag system showed the ability to produce cold water even at 281.8 K in the presence of a heat load of 60 W. In addition, the system has shown the existence of an optimal frequency f AMR, 0.26 Hz, for which it was possible to produce cold water at 287.9 K with a thermal load equal to 190 W with a COP of 2.20. Observing the temperature of the cold water that was obtained in the tests, the GeoThermag system showed a good ability to feed the cooling radiant floors and a reduced capacity for feeding the fan coil systems.
802:
released by the refrigerant due to its loss of entropy. Thermal contact with the heat sink is then broken so that the system is insulated, and the magnetic field is switched off, increasing the heat capacity of the refrigerant, thus decreasing its temperature below the temperature of the heat sink. In practice, the magnetic field is decreased slowly in order to provide continuous cooling and keep the sample at an approximately constant low temperature. Once the field falls to zero or to some low limiting value determined by the properties of the refrigerant, the cooling power of the ADR vanishes, and heat leaks will cause the refrigerant to warm up.
20: 4227: 639: 124:) present in the material. If the material is isolated so that no energy is allowed to (re)migrate into the material during this time, (i.e., an adiabatic process) the temperature drops as the domains absorb the thermal energy to perform their reorientation. The randomization of the domains occurs in a similar fashion to the randomization at the 1153:
One year later, in September 2018, at the 8th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VIII]), Cooltech Applications presented a paper on a magnetocaloric prototype designed as a 15 kW proof-of-concept unit. This has been considered by the community as the
1142:
In November 2015, at the Medica 2015 fair, Cooltech Applications presented, in collaboration with Kirsch medical GmbH, the world's first magnetocaloric medical cabinet. One year later, in September 2016, at the 7th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VII)]
1009:
The development of this technology is very material-dependent and will likely not replace vapor-compression refrigeration without significantly improved materials that are cheap, abundant, and exhibit much larger magnetocaloric effects over a larger range of temperatures. Such materials need to show
1218:
presented a new refrigeration concept, GeoThermag, which is a combination of magnetic refrigeration technology with that of low-temperature geothermal energy. To demonstrate the applicability of the GeoThermag technology, they developed a pilot system that consists of a 100-m deep geothermal probe;
1005:
effect and can also be used as actuators, energy harvesting devices, and sensors. When the martensitic transformation temperature and the Curie temperature are the same (based on composition) the magnitude of the magnetic entropy change is the largest. In February 2014, GE announced the development
1122:
applications available for decades. Magnetocaloric refrigeration systems are composed of pumps, motors, secondary fluids, heat exchangers of different types, magnets and magnetic materials. These processes are greatly affected by irreversibilities and should be adequately considered. At year-end,
755:
The basic operating principle of an adiabatic demagnetization refrigerator (ADR) is the use of a strong magnetic field to control the entropy of a sample of material, often called the "refrigerant". Magnetic field constrains the orientation of magnetic dipoles in the refrigerant. The stronger the
731:
The substance is returned to another adiabatic (insulated) condition so the total entropy remains constant. However, this time the magnetic field is decreased, the thermal energy causes the magnetic moments to overcome the field, and thus the sample cools, i.e., an adiabatic temperature change.
810:
The magnetocaloric effect (MCE) is an intrinsic property of a magnetic solid. This thermal response of a solid to the application or removal of magnetic fields is maximized when the solid is near its magnetic ordering temperature. Thus, the materials considered for magnetic refrigeration devices
48:
A magnetocaloric material warms up when a magnetic field is applied. The warming is due to changes in the internal state of the material releasing heat. When the magnetic field is removed, the material returns to its original state, reabsorbing the heat, and returning to original temperature. To
1092:
of the refrigerant atoms, rather than their electron configurations. Since these dipoles are of much smaller magnitude, they are less prone to self-alignment and have lower intrinsic minimum fields. This allows NDR to cool the nuclear spin system to very low temperatures, often 1 μK or below.
865:
that was about 50% larger than that reported for Gd metal, which had the largest known magnetic entropy change at the time. This giant magnetocaloric effect (GMCE) occurred at 270 K, which is lower than that of Gd (294 K). Since the MCE occurs below room temperature these materials would not be
801:
The operation of a standard ADR proceeds roughly as follows. First, a strong magnetic field is applied to the refrigerant, forcing its various magnetic dipoles to align and putting these degrees of freedom of the refrigerant into a state of lowered entropy. The heat sink then absorbs the heat
830:
systems but can be much larger for ferromagnets that undergo a magnetic phase transition. First order phase transitions are characterized by a discontinuity in the magnetization changes with temperature, resulting in a latent heat. Second order phase transitions do not have this latent heat
738:
The magnetic field is held constant to prevent the material from reheating. The material is placed in thermal contact with the environment to be refrigerated. Because the working material is cooler than the refrigerated environment (by design), heat energy migrates into the working material
1157:
At the same conference, Dr. Sergiu Lionte announced that, due to financial issues, Cooltech Applications declared bankruptcy. Later on, in 2019 Ubiblue company, today named Magnoric, is formed by some of the old Cooltech Application's team members. The entire patent portfolio form Cooltech
385: 1001:(X = Ga, Co, In, Al, Sb) Heusler alloys are also promising candidates for magnetic cooling applications because they have Curie temperatures near room temperature and, depending on composition, can have martensitic phase transformations near room temperature. These materials exhibit the 76:(1927). The first working magnetic refrigerators were constructed by several groups beginning in 1933. Magnetic refrigeration was the first method developed for cooling below about 0.3 K (the lowest temperature attainable before magnetic refrigeration, by pumping on 120:. In that part of the refrigeration process, a decrease in the strength of an externally applied magnetic field allows the magnetic domains of a magnetocaloric material to become disoriented from the magnetic field by the agitating action of the thermal energy ( 811:
should be magnetic materials with a magnetic phase transition temperature near the temperature region of interest. For refrigerators that could be used in the home, this temperature is room temperature. The temperature change can be further increased when the
4034:
Liu, Danmin; Yue, Ming; Zhang, Jiuxing; McQueen, T. M.; Lynn, Jeffrey W.; Wang, Xiaolu; Chen, Ying; Li, Jiying; Cava, R. J.; Liu, Xubo; Altounian, Zaven; Huang, Q. (26 January 2009). "Origin and tuning of the magnetocaloric effect in the magnetic refrigerant
1161:
In 2019, at the 5th Delft Days Conference on Magnetocalorics, Dr. Sergiu Lionte presented Ubiblue's (former Cooltech Application) last prototype. Later, the magnetocaloric community acknowledged that Ubiblue had the most developed magnetocalorics prototypes.
1068:. An easily attainable 1 T magnetic field is generally required for initial magnetization. The minimum temperature attainable is determined by the self-magnetization tendencies of the refrigerant salt, but temperatures from 1 to 100 mK are accessible. 626: 1285:
Refrigerators based on the magnetocaloric effect have been demonstrated in laboratories, using magnetic fields starting at 0.6 T up to 10 T. Magnetic fields above 2 T are difficult to produce with permanent magnets and are produced by a
776:
with the heat sink. When the magnetic field is subsequently switched off, the heat capacity of the refrigerant rises again because the degrees of freedom associated with orientation of the dipoles are once again liberated, pulling their share of
2980: 1123:
Cooltech Applications announced that its first commercial refrigeration equipment would enter the market in 2014. Cooltech Applications launched their first commercially available magnetic refrigeration system on 20 June 2016. At the 2015
3058:. Annual meeting of the American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. (ASHRAE), San Diego, CA (United States), 24-28 Jun 1995. US Department of Energy, Office of Scientific and Technical Information. 222: 797:
when the magnetic field is switched off, the process is adiabatic, i.e., the system can no longer exchange energy with its surroundings (the heat sink), and its temperature decreases below its initial value, that of the heat sink.
1087:
One variant of adiabatic demagnetization that continues to find substantial research application is nuclear demagnetization refrigeration (NDR). NDR follows the same principles, but in this case the cooling power arises from the
1210:
at 10 K. The anisotropy of the magnetic entropy change gives rise to a large rotating MCE offering the possibility to build simplified, compact, and efficient magnetic cooling systems by rotating it in a constant magnetic field.
1093:
Unfortunately, the small magnitudes of nuclear magnetic dipoles also makes them less inclined to align to external fields. Magnetic fields of 3 teslas or greater are often needed for the initial magnetization step of NDR.
1115:, claimed to have reached a milestone in their magnetic cooling research when they reported a temperature span of 8.7 K. They hoped to introduce the first commercial applications of the technology by 2010. 673:, but with increases and decreases in magnetic field strength instead of increases and decreases in pressure. It can be described at a starting point whereby the chosen working substance is introduced into a 2067:
Khovaylo, V. V.; Rodionova, V. V.; Shevyrtalov, S. N.; Novosad, V. (2014). "Magnetocaloric effect in "reduced" dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds".
422:
is the adiabatic change in temperature of the magnetic system around temperature T, H is the applied external magnetic field, C is the heat capacity of the working magnet (refrigerant) and M is the
1104:
Research and a demonstration proof of concept device in 2001 succeeded in applying commercial-grade materials and permanent magnets at room temperatures to construct a magnetocaloric refrigerator.
1096:
In NDR systems, the initial heat sink must sit at very low temperatures (10–100 mK). This precooling is often provided by the mixing chamber of a dilution refrigerator or a paramagnetic salt.
1072:
had for many years supplanted paramagnetic salt ADRs, but interest in space-based and simple to use lab-ADRs has remained, due to the complexity and unreliability of the dilution refrigerator.
630:
This implies that the absolute change in the magnet's entropy determines the possible magnitude of the adiabatic temperature change under a thermodynamic cycle of magnetic field variation. T
151:. Gadolinium's temperature increases when it enters certain magnetic fields. When it leaves the magnetic field, the temperature drops. The effect is considerably stronger for the gadolinium 721:, for example. The magnetic field is held constant to prevent the dipoles from reabsorbing the heat. Once sufficiently cooled, the magnetocaloric substance and the coolant are separated ( 508: 1146:
In 2017, Cooltech Applications presented a fully functional 500 liters' magnetocaloric cooled cabinet with a 30 kg (66 lb) load and an air temperature inside the cabinet of +2
3357:
Zimm, C.; Jastrab, A.; Sternberg, A.; Pecharsky, V.; Gschneidner, K.; Osborne, M.; Anderson, I. (1998). "Description and Performance of a Near-Room Temperature Magnetic Refrigerator".
113:
phenomenon in which a temperature change of a suitable material is caused by exposing the material to a changing magnetic field. This is also known by low temperature physicists as
1282:
A major breakthrough came 2002 when a group at the University of Amsterdam demonstrated the giant magnetocaloric effect in MnFe(P,As) alloys that are based on abundant materials.
818:
The magnitudes of the magnetic entropy and the adiabatic temperature changes are strongly dependent upon the magnetic ordering process. The magnitude is generally small in
474: 420: 2375:
Smith, A.; Bahl, C. R. H.; Bjørk, R.; Engelbrecht, K.; Nielsen, K. K.; Pryds, N. (2012). "Materials Challenges for High Performance Magnetocaloric Refrigeration Devices".
1279:. This event attracted interest from scientists and companies worldwide who started developing new kinds of room temperature materials and magnetic refrigerator designs. 3077:
Balli, M.; Jandl, S.; Fournier, P.; Gospodinov, M. M. (9 June 2014). "Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals".
1268: 696:. Since overall energy is not lost (yet) and therefore total entropy is not reduced (according to thermodynamic laws), the net result is that the substance is heated ( 501: 2907:
Lionte, Sergiu; Risser, Michel; Muller, Christian (February 2021). "A 15kW magnetocaloric proof-of-concept unit: Initial development and first experimental results".
3662:
Clot, P.; Viallet, D.; Allab, F.; Kedous-Lebouc, A.; Fournier, J. M.; Yonnet, J. P. (2003). "A magnet-based device for active magnetic regenerative refrigeration".
677:, i.e., the magnetic flux density is increased. The working material is the refrigerant, and starts in thermal equilibrium with the refrigerated environment. 49:
achieve refrigeration, the material is allowed to radiate away its heat while in the magnetized hot state. Removing the magnetism, the material then cools to
1848: 866:
suitable for refrigerators operating at room temperature. Since then other alloys have also demonstrated the giant magnetocaloric effect. These include
1257: 2814: 1010:
significant temperature changes under a field of two tesla or less, so that permanent magnets can be used for the production of the magnetic field.
26:
alloy heats up inside the magnetic field and loses thermal energy to the environment, so it exits the field and becomes cooler than when it entered.
2285:
Balli, M.; Jandl, S.; Fournier, P.; Kedous-Lebouc, A. (2017-05-24). "Advanced materials for magnetic cooling: Fundamentals and practical aspects".
3304:
Tegus, O.; Brück, E.; de Boer, F. R.; Buschow, K. H. J. (2002). "Transition-metal-based magnetic refrigerants for room-temperature applications".
380:{\displaystyle \Delta T_{ad}=-\int _{H_{0}}^{H_{1}}\left({\frac {T}{C(T,H)}}\right)_{H}{\left({\frac {\partial M(T,H)}{\partial T}}\right)}_{H}dH} 4131: 2893: 2227: 205:) has such a strong magnetocaloric effect that it has allowed scientists to approach to within one millikelvin, one thousandth of a degree of 4014: 2831: 2894:"7th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VII). Proceedings: Turin, Italy, September 11-14, 2016" 2511:"Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7" 1927:
on June 9, 1997. Since then, hundreds of peer-reviewed articles have been written describing materials exhibiting magnetocaloric effects.
2460: 3791:
Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. (2016). "The energy performances of a rotary permanent magnet magnetic refrigerator".
3750: 3648: 3605: 3565: 761: 136:
overcome a decreasing external magnetic field while energy remains constant, instead of magnetic domains being disrupted from internal
4008: 3390:
Bohigas, X.; Molins, E.; Roig, A.; Tejada, J.; Zhang, X. X. (2000). "Room-temperature magnetic refrigerator using permanent magnets".
2617: 1242:
Major advances first appeared in the late 1920s when cooling via adiabatic demagnetization was independently proposed by chemistry
3697:
Shir, F.; Mavriplis, C.; Bennett, L. H.; Torre, E. D. (2005). "Analysis of room temperature magnetic regenerative refrigeration".
1981:
França, E.L.T.; dos Santos, A.O.; Coelho, A.A. (2016). "Magnetocaloric effect of the ternary Dy, Ho and Er platinum gallides".
1302:
Recent research has focused on near room temperature. Constructed examples of room temperature magnetic refrigerators include:
2790:"Magnetic Refrigerator Successfully Tested: Ames Laboratory developments help push boundaries of new refrigeration technology" 2789: 1150:°C. That proved that magnetic refrigeration is a mature technology, capable of replacing the classic refrigeration solutions. 3374: 2349: 4002: 1887:=0); L.B. = layered bed; P = permanent magnet; S = superconducting magnet; COP values under different operating conditions 3725: 3623: 3580: 3540: 4124: 1132: 732:
Energy (and entropy) transfers from thermal entropy to magnetic entropy, measuring the disorder of the magnetic dipoles.
4089: 2857: 1260:
in 1933 for cryogenic purposes when they reached 0.25 K. Between 1933 and 1997, advances in MCE cooling occurred.
3888:
Bouhani, H (2020). "Engineering the magnetocaloric properties of PrVO3 epitaxial oxide thin films by strain effects".
3426: 4268: 2269: 2207: 3496:
Richard, M. -A. (2004). "Magnetic refrigeration: Single and multimaterial active magnetic regenerator experiments".
3764:
Rowe, A.; Tura, A. (2006). "Experimental investigation of a three-material layered active magnetic regenerator".
3104:
Aprea, Ciro; Greco, Adriana; Maiorino, Angelo (November 2015). "GeoThermag: A geothermal magnetic refrigerator".
1897:
magnetic refrigerator near room temperature on February 20, 1997. He also announced the discovery of the GMCE in
1179: 1112: 3170:
Giauque, W. F.; MacDougall, D. P. (1933). "Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd
1139:
presented the first cooling appliance. BASF claim of their technology a 35% improvement over using compressors.
4263: 4117: 3849:
Lucia, U (2008). "General approach to obtain the magnetic refrigeration ideal Coefficient of Performance COP".
1143:
held in Torino, Italy, Cooltech Applications presented the world's first magnetocaloric frozen heat exchanger.
4253: 4231: 684:
A magnetocaloric substance is placed in an insulated environment. The increasing external magnetic field (+
3937:"Elastocaloric-effect-induced adiabatic magnetization in paramagnetic salts due to the mutual interactions" 2811: 1962: 1158:
Applications was taken over by Magnoric since then, while publishing additional patents at the same time.
982:
alloys. Gadolinium and its alloys undergo second-order phase transitions that have no magnetic or thermal
4258: 4193: 2566:
Dunand, D. C.; Müllner, P. (2011). "Size Effects on Magnetic Actuation in Ni-Mn-Ga Shape-Memory Alloys".
2421:
Pecharsky, V. K.; Gschneidner, Jr., K. A. (1997). "Giant Magnetocaloric Effect in Gd_{5}(Si_{2}Ge_{2})".
1186:, much higher than current MR technology. Small domestic refrigerators are however much less efficient. 1108: 4208: 1936: 621:{\displaystyle \Delta S(T)=\int _{H_{0}}^{H_{1}}\left({\frac {\partial M(T,H')}{\partial T}}\right)dH'} 3229:
Pecharsky, V. K.; Gschneidner, K. A. Jr. (1999). "Magnetocaloric Effect and Magnetic Refrigeration".
1291: 1124: 773: 747:
Once the refrigerant and refrigerated environment are in thermal equilibrium, the cycle can restart.
2710:
Pecharsky, V. K.; Gschneidner Jr, K. A. (1999). "Magnetocaloric effect and magnetic refrigeration".
2235: 812: 4181: 4176: 446: 392: 2261: 2115:"Thirty years of near room temperature magnetic cooling: Where we are today and future prospects" 778: 4003:
Ames Laboratory news release, May 25, 1999, Work begins on prototype magnetic-refrigeration unit
2745:
Zu, H.; Dai, W.; de Waele, A.T.A.M. (2022). "Development of Dilution refrigerators – A review".
2509:
Song, N. N.; Ke, Y. J.; Yang, H. T.; Zhang, H.; Zhang, X. Q.; Shen, B. G.; Cheng, Z. H. (2013).
1089: 688:) causes the magnetic dipoles of the atoms to align, thereby decreasing the material's magnetic 1287: 1169:
problems remain to be solved for first-order phase transition materials that exhibit the GMCE.
772:) while the magnetic field is switched on, the refrigerant must lose some energy because it is 757: 2642: 483: 4171: 4140: 3992: 2356: 1957: 1952: 1272: 1069: 1002: 3464:
Hirano, N. (2002). "Development of magnetic refrigerator for room temperature application".
439:
a magnet with large changes in net magnetization vs. temperature, at constant magnetic field
4070: 3948: 3907: 3868: 3671: 3505: 3438: 3399: 3315: 3270: 3238: 3195: 3144: 3018: 2943: 2881: 2719: 2676: 2575: 2522: 2475: 2430: 2384: 2304: 2164: 2076: 2030: 1990: 3997: 2621: 8: 4203: 4161: 1118:
As of 2013 this technology had proven commercially viable only for ultra-low temperature
1079:
or ferromagnetic, limiting the lowest temperature that can be reached using this method.
666: 143:
One of the most notable examples of the magnetocaloric effect is in the chemical element
4074: 3952: 3911: 3872: 3675: 3509: 3442: 3403: 3319: 3274: 3242: 3199: 3148: 3022: 2947: 2723: 2680: 2579: 2526: 2479: 2434: 2388: 2308: 2168: 2080: 2034: 1994: 4273: 4096: 4060: 3969: 3936: 3923: 3897: 3858: 3521: 3339: 3036: 2770: 2692: 2599: 2543: 2510: 2400: 2320: 2294: 2180: 2092: 2046: 1250: 1182:
units typically achieve performance coefficients of 60% of that of a theoretical ideal
794: 3289:
Gschneidner, K. A. Jr.; Pecharsky, V. K. (2002). Chandra, D.; Bautista, R. G. (eds.).
3250: 3221:
Gschneidner, K. A. Jr.; Pecharsky, V. K. (1997). Bautista, R. G.; et al. (eds.).
2731: 2042: 764:. If the refrigerant is kept at a constant temperature through thermal contact with a 756:
magnetic field, the more aligned the dipoles are, corresponding to lower entropy and
642:
Analogy between magnetic refrigeration and vapor cycle or conventional refrigeration.
3974: 3927: 3744: 3642: 3599: 3559: 3525: 3370: 3331: 3059: 3040: 2968: 2774: 2762: 2758: 2688: 2591: 2548: 2491: 2345: 2324: 2265: 2203: 2096: 2050: 125: 115: 3343: 3282: 2934:
Kitanovski, Andrej (March 2020). "Energy Applications of Magnetocaloric Materials".
2696: 2404: 2184: 4078: 3964: 3956: 3915: 3876: 3804: 3800: 3777: 3773: 3710: 3706: 3679: 3513: 3469: 3446: 3407: 3362: 3323: 3306: 3278: 3246: 3203: 3152: 3117: 3113: 3086: 3026: 2951: 2920: 2916: 2797: 2754: 2727: 2684: 2603: 2583: 2538: 2530: 2483: 2438: 2392: 2312: 2172: 2130: 2126: 2084: 2038: 1998: 1894: 1264: 1022: 815:
of the phase transition changes strongly within the temperature range of interest.
3366: 834:
In the late 1990s Pecharksy and Gschneidner reported a magnetic entropy change in
16:
Phenomenon in which a suitable material can be cooled by a changing magnetic field
4027: 4019: 2818: 2339: 2176: 1347: 1276: 1243: 1236: 819: 133: 73: 65: 3880: 2442: 986:. However, the use of rare earth elements makes these materials very expensive. 429:
From the equation we can see that the magnetocaloric effect can be enhanced by:
4082: 3960: 3729: 3723:
Zimm C, Paper No. K7.003 Am. Phys. Soc. Meeting, March 4, Austin, Texas (2003)
3627: 3584: 3544: 2002: 1947: 1036: 782: 674: 137: 3998:
What is magnetocaloric effect and what materials exhibit this effect the most?
3578:
Wu W., Paper No. K7.004 Am. Phys. Soc. Meeting, March 4, Austin, Texas (2003)
3538:
Zimm C, Paper No K7.003 Am. Phys. Soc. Meeting, March 4, Austin, Texas (2003)
2835: 4247: 4186: 4095:
Lucia, Umberto (2010). Exergy analysis of magnetic refrigeration (Preprint).
3683: 3156: 2766: 1189:
In 2014 giant anisotropic behavior of the magnetocaloric effect was found in
1019: 693: 423: 206: 129: 110: 4011:
Terry Heppenstall's notes, University of Newcastle upon Tyne (November 2000)
4166: 3978: 3621:
Hirano N., Paper No. K7.002 Am. Phys. Soc. Meeting March 4, Austin, Texas,
3335: 3207: 3031: 3006: 2955: 2595: 2587: 2552: 2495: 2396: 2088: 1232: 1228: 1183: 1076: 670: 186: 61: 57: 42: 3225:. Warrendale, PA: The Minerals, Metals and Materials Society. p. 209. 1042:
In a paramagnetic salt ADR, the heat sink is usually provided by a pumped
2147:
Weiss, Pierre; Piccard, Auguste (1917). "Le phénomène magnétocalorique".
1246: 823: 217:
The magnetocaloric effect can be quantified with the following equation:
69: 38: 4109: 3293:. Warrendale, PA: The Minerals, Metals and Materials Society. p. 9. 2969:
Dr. Sergiu Lionte's speech at Thermag VIII conference as invited speaker
3843:
Experimental Techniques in Condensed Matter Physics at Low Temperatures
1173: 1166: 983: 827: 144: 23: 19: 4020:
Executive Summary: A Continuous Adiabatic Demagnetization Refrigerator
3993:
Cooling by adiabatic demagnetization - The Feynman Lectures on Physics
3919: 3517: 3473: 3450: 3411: 3090: 2534: 2316: 1256:
It was first demonstrated experimentally by Giauque and his colleague
3819:"Российские инженеры создали высокоэффективный магнитный холодильник" 2487: 1119: 1029: 3327: 3258: 3132: 3063: 2664: 2114: 3902: 2299: 2155:
Smith, Anders (2013). "Who discovered the magnetocaloric effect?".
2066: 1942: 1065: 786: 77: 4101: 4065: 3863: 3425:
Lee, S. J.; Kenkel, J. M.; Pecharsky, V. K.; Jiles, D. C. (2002).
2021:
Brück, E. (2005). "Developments in magnetocaloric refrigeration".
2643:"Your next fridge could keep cold more efficiently using magnets" 1032: 760:
because the material has (effectively) lost some of its internal
689: 638: 477: 105: 2344:(illustrated ed.). Cambridge University Press. p. 99. 2225: 2284: 2016: 2014: 2012: 1026: 790: 769: 718: 476:, can be seen to be related to the magnet's change in magnetic 190: 148: 121: 99: 2663:
Gschneidnerjr, K. A.; Pecharsky, V. K.; Tsokol, A. O. (2005).
1075:
At a low enough temperature, paramagnetic salts become either
3661: 3356: 1227:
The effect was discovered first observed by German physicist
1128: 1035:. The active magnetic dipoles in this case are those of the 152: 3076: 2662: 2370: 2368: 2366: 2364: 2226:
Karl Gschneidner Jr. & Kerry Gibson (December 7, 2001).
2009: 56:
The effect was first observed in 1881 by a German physicist
4023: 3818: 3486:
Rowe A.M. and Barclay J.A., Adv. Cryog. Eng. 47 995 (2002).
3054:
Sand, J. R.; Vineyard, E. A.; Bohman, R. H. (2012-08-31) .
2832:"Premiere of cutting-edge magnetocaloric cooling appliance" 1853: 1136: 765: 3790: 2338:
Casquilho, João Paulo; Teixeira, Paulo Ivo Cortez (2014).
1893:
In one example, Prof. Karl A. Gschneidner, Jr. unveiled a
3696: 3056:
Improving the energy efficiency of refrigerators in India
2812:
Milestone in magnetic cooling, Risø News, August 20, 2007
2420: 2374: 2361: 3303: 3291:
Fundamentals of Advanced Materials for Energy Conversion
3124: 1883:=0); maximum temperature span at zero cooling capacity ( 3424: 3389: 2709: 1879:
maximum cooling power at zero temperature difference (Δ
3427:"Permanent magnet array for the magnetic refrigerator" 2454: 2452: 1980: 37:. This technique can be used to attain extremely low 3851:
Physica A: Statistical Mechanics and Its Applications
3223:
Rare Earths: Science, Technology and Applications III
2458: 511: 486: 449: 395: 225: 3288: 3256: 3228: 3220: 2112: 68:
in 1917. The fundamental principle was suggested by
2794:
INSIDER Newsletter for employees of Ames Laboratory
2449: 1006:of a functional Ni-Mn-based magnetic refrigerator. 4033: 3836:Experimental Principles and Methods Below 1 K 3103: 3053: 2906: 2461:"Caloric materials near ferroic phase transitions" 620: 495: 468: 414: 379: 4091:Magnetic technology revolutionizes refrigeration] 3257:Gschneidner, K. A. Jr.; Pecharsky, V. K. (2000). 3169: 3007:"Energy Applications of Magnetocaloric Materials" 2665:"Recent developments in magnetocaloric materials" 2459:Moya, X.; Kar-Narayan, S.; Mathur, N. D. (2014). 2337: 4245: 789:, thereby lowering the overall temperature of a 2508: 2142: 2140: 1154:largest magnetocaloric prototype ever created. 793:with decreased energy. Since the system is now 4125: 2781: 2744: 2658: 2656: 2565: 2113:Gschneidner, K. A.; Pecharsky, V. K. (2008). 717:) by a fluid or gas — gaseous or liquid 2146: 2137: 436:a magnet material with a small heat capacity 2712:Journal of Magnetism and Magnetic Materials 2228:"Magnetic Refrigerator Successfully Tested" 1983:Journal of Magnetism and Magnetic Materials 1297: 4226: 4132: 4118: 4015:XRS Adiabatic Demagnetization Refrigerator 3617: 3615: 3004: 2933: 2653: 1267:magnetic refrigerator was demonstrated by 1082: 4139: 4100: 4064: 3968: 3901: 3862: 3030: 2542: 2298: 1263:In 1997, the first near room-temperature 1231:in 1881 Subsequently by French physicist 1099: 3934: 3763: 2416: 2414: 2197: 1306:Room temperature magnetic refrigerators 1018:The original proposed refrigerant was a 637: 92: 18: 3887: 3612: 3495: 3130: 2108: 2106: 1501:Sichuan Inst. Tech./Nanjing University 41:, as well as the ranges used in common 4246: 3793:International Journal of Refrigeration 3766:International Journal of Refrigeration 3749:: CS1 maint: archived copy as title ( 3699:International Journal of Refrigeration 3647:: CS1 maint: archived copy as title ( 3604:: CS1 maint: archived copy as title ( 3564:: CS1 maint: archived copy as title ( 3463: 3106:International Journal of Refrigeration 2909:International Journal of Refrigeration 2787: 2255: 2221: 2219: 2119:International Journal of Refrigeration 2062: 2060: 831:associated with the phase transition. 713:This added heat can then be removed (- 633: 4113: 4094: 3848: 3468:. Vol. 613. pp. 1027–1034. 2411: 2154: 2023:Journal of Physics D: Applied Physics 2020: 1013: 646:= externally applied magnetic field; 443:The adiabatic change in temperature, 97:The magnetocaloric effect (MCE, from 33:is a cooling technology based on the 2882:first magnetocaloric medical cabinet 2103: 1837:Gd 0.600 mm spherical particles 1290:(1 T is about 20.000 times the 805: 750: 2341:Introduction to Statistical Physics 2216: 2200:Temperatures very low and very high 2057: 1376:Mater. Science Institute Barcelona 1133:Astronautics Corporation of America 13: 3828: 594: 566: 512: 487: 450: 396: 351: 328: 226: 14: 4285: 3986: 3359:Advances in Cryogenic Engineering 2234:. Ames Laboratory. Archived from 1874:Gd bricks of two types, cascaded 1748:Victoria, British Columbia Canada 1638:Lab. d’Electrotechnique Grenoble 1431:Victoria, British Columbia Canada 1353:Ames, Iowa/Madison, Wisconsin, US 661:= adiabatic temperature variation 4225: 2759:10.1016/j.cryogenics.2021.103390 1172:One potential application is in 3811: 3784: 3757: 3717: 3690: 3655: 3572: 3532: 3489: 3480: 3457: 3418: 3383: 3350: 3297: 3283:10.1146/annurev.matsci.30.1.387 3214: 3163: 3097: 3070: 3047: 2998: 2973: 2962: 2927: 2900: 2886: 2875: 2850: 2824: 2805: 2788:Gibson, Kerry (November 2001). 2738: 2703: 2635: 2610: 2559: 2502: 2331: 2202:. New York: Dover. p. 50. 2157:The European Physical Journal H 1180:Vapor-compression refrigeration 1113:Technical University of Denmark 711:Isomagnetic enthalpic transfer: 60:, followed by French physicist 3805:10.1016/j.ijrefrig.2015.09.005 3778:10.1016/j.ijrefrig.2006.07.012 3711:10.1016/j.ijrefrig.2004.08.015 3664:IEEE Transactions on Magnetics 3392:IEEE Transactions on Magnetics 3118:10.1016/j.ijrefrig.2015.07.014 2921:10.1016/j.ijrefrig.2020.09.019 2669:Reports on Progress in Physics 2278: 2249: 2191: 2131:10.1016/j.ijrefrig.2008.01.004 1974: 1127:in Las Vegas, a consortium of 1090:magnetic dipoles of the nuclei 736:Isomagnetic entropic transfer: 589: 572: 524: 518: 346: 334: 303: 291: 1: 3367:10.1007/978-1-4757-9047-4_222 3251:10.1016/S0304-8853(99)00397-2 2732:10.1016/S0304-8853(99)00397-2 1968: 1664:George Washington University 469:{\displaystyle \Delta T_{ad}} 415:{\displaystyle \Delta T_{ad}} 3133:"Magnetische Untersuchungen" 2821:. Retrieved August 28, 2007. 2232:Ames Laboratory News Release 1963:Thermoacoustic refrigeration 665:The cycle is performed as a 7: 3881:10.1016/j.physa.2008.02.026 3005:Kitanovski, Andrej (2020). 2443:10.1103/PhysRevLett.78.4494 2043:10.1088/0022-3727/38/23/R01 1930: 1039:of the paramagnetic atoms. 212: 10: 4290: 4209:Thermoacoustic heat engine 4083:10.1103/PhysRevB.79.014435 3961:10.1038/s41598-021-88778-4 3498:Journal of Applied Physics 3466:AIP Conference Proceedings 3431:Journal of Applied Physics 3259:"Magnetocaloric Materials" 2817:September 5, 2007, at the 2689:10.1088/0034-4885/68/6/R04 2198:Zemansky, Mark W. (1981). 2177:10.1140/epjh/e2013-40001-9 2003:10.1016/j.jmmm.2015.10.138 1937:Coefficient of performance 1222: 729:Adiabatic demagnetization: 671:Carnot refrigeration cycle 53:its original temperature. 4221: 4194:Immersive virtual reality 4154: 4147: 3011:Advanced Energy Materials 2936:Advanced Energy Materials 2618:"GE Global Research Live" 2377:Advanced Energy Materials 1878: 1125:Consumer Electronics Show 669:that is analogous to the 4269:Condensed matter physics 4177:Digital scent technology 3845:, Addison Wesley (1988). 3838:, Academic Press (1974). 3684:10.1109/TMAG.2003.816253 3157:10.1002/andp.18812490510 2258:Nature's Building Blocks 2151:. 5th Ser. (7): 103–109. 1298:Room temperature devices 1269:Karl A. Gschneidner, Jr. 1109:Risø National Laboratory 1107:On August 20, 2007, the 682:Adiabatic magnetization: 496:{\displaystyle \Delta S} 3890:Applied Physics Letters 3131:Warburg, E. G. (1881). 3079:Applied Physics Letters 2423:Physical Review Letters 2287:Applied Physics Reviews 2262:Oxford University Press 2069:Physica Status Solidi B 1745:University of Victoria 1589:Chubu Electric/Toshiba 1543:Chubu Electric/Toshiba 1428:University of Victoria 1402:Chubu Electric/Toshiba 1083:Nuclear demagnetization 433:a large field variation 4199:Magnetic refrigeration 3841:Richardson and Smith, 3361:. pp. 1759–1766. 3208:10.1103/PhysRev.43.768 3032:10.1002/aenm.201903741 2956:10.1002/aenm.201903741 2862:BASF New Business GmbH 2834:. BASF. Archived from 2588:10.1002/adma.201002753 2397:10.1002/aenm.201200167 2089:10.1002/pssb.201451217 1816:University of Salerno 1711:Gd and GdEr spheres / 1693:Madison, Wisconsin, US 1478:Madison, Wisconsin, US 1323:Max. cooling power (W) 1292:Earth's magnetic field 1288:superconducting magnet 1100:Commercial development 1070:Dilution refrigerators 1053:(about 1.2 K) or 662: 622: 497: 470: 416: 381: 132:material, except that 31:Magnetic refrigeration 27: 4264:Statistical mechanics 4172:Cloak of invisibility 4141:Emerging technologies 4009:Refrigeration Systems 3935:de Souza, M. (2021). 3263:Annu. Rev. Mater. Sci 2858:"Solid state cooling" 2256:Emsley, John (2001). 1958:Electrocaloric effect 1953:Dilution refrigerator 1273:Iowa State University 1165:Thermal and magnetic 1003:magnetic shape memory 768:sink (usually liquid 641: 623: 498: 471: 417: 382: 93:Magnetocaloric effect 35:magnetocaloric effect 22: 4254:Thermodynamic cycles 3231:J. Magn. Magn. Mater 2896:. 11 September 2016. 1235:and Swiss physicist 509: 484: 447: 426:of the refrigerant. 393: 223: 140:as energy is added. 64:and Swiss physicist 4204:Phased-array optics 4162:Acoustic levitation 4075:2009PhRvB..79a4435L 3953:2021NatSR..11.9431S 3912:2020ApPhL.117g2402B 3873:2008PhyA..387.3477L 3676:2003ITM....39.3349C 3510:2004JAP....95.2146R 3443:2002JAP....91.8894L 3404:2000ITM....36..538B 3320:2002Natur.415..150T 3275:2000AnRMS..30..387G 3243:1999JMMM..200...44P 3200:1933PhRv...43..768G 3149:1881AnP...249..141W 3023:2020AdEnM..1003741K 2948:2020AdEnM..1003741K 2724:1999JMMM..200...44P 2681:2005RPPh...68.1479G 2580:2011AdM....23..216D 2527:2013NatSR...3E2291S 2480:2014NatMa..13..439M 2435:1997PhRvL..78.4494P 2389:2012AdEnM...2.1288S 2309:2017ApPRv...4b1305B 2169:2013EPJH...38..507S 2081:2014PSSBR.251.2104K 2035:2005JPhD...38R.381B 1995:2016JMMM..401.1088F 1307: 1064:(about 0.3 K) 667:refrigeration cycle 634:Thermodynamic cycle 558: 276: 4259:Cooling technology 3941:Scientific Reports 3137:Annalen der Physik 2802:(Vol. 112, No.10 ) 2568:Advanced Materials 2515:Scientific Reports 2357:Extract of page 99 1856:and Moscow, Russia 1481:September 18, 2001 1333:Magnetic field (T) 1305: 1251:William F. Giauque 1014:Paramagnetic salts 762:degrees of freedom 663: 618: 530: 493: 466: 412: 377: 248: 28: 4241: 4240: 4217: 4216: 4053:Physical Review B 3920:10.1063/5.0021031 3857:(14): 3477–3479. 3518:10.1063/1.1643200 3474:10.1063/1.1472125 3451:10.1063/1.1451906 3412:10.1109/20.846216 3376:978-1-4757-9049-8 3314:(6868): 150–152. 3091:10.1063/1.4880818 2535:10.1038/srep02291 2351:978-1-107-05378-6 2317:10.1063/1.4983612 2238:on March 23, 2010 2029:(23): R381–R391. 1891: 1890: 1862:High speed rotary 1522:Gd spheres and Gd 1356:February 20, 1997 1336:Solid refrigerant 1317:Announcement date 1111:(Denmark) at the 806:Working materials 751:Applied technique 650:= heat quantity; 601: 358: 307: 126:curie temperature 4281: 4229: 4228: 4152: 4151: 4134: 4127: 4120: 4111: 4110: 4106: 4104: 4086: 4068: 3982: 3972: 3931: 3905: 3884: 3866: 3823: 3822: 3815: 3809: 3808: 3788: 3782: 3781: 3761: 3755: 3754: 3748: 3740: 3738: 3737: 3728:. Archived from 3721: 3715: 3714: 3694: 3688: 3687: 3659: 3653: 3652: 3646: 3638: 3636: 3635: 3626:. Archived from 3619: 3610: 3609: 3603: 3595: 3593: 3592: 3583:. Archived from 3576: 3570: 3569: 3563: 3555: 3553: 3552: 3543:. Archived from 3536: 3530: 3529: 3504:(4): 2146–2150. 3493: 3487: 3484: 3478: 3477: 3461: 3455: 3454: 3422: 3416: 3415: 3387: 3381: 3380: 3354: 3348: 3347: 3301: 3295: 3294: 3286: 3254: 3226: 3218: 3212: 3211: 3167: 3161: 3160: 3128: 3122: 3121: 3101: 3095: 3094: 3074: 3068: 3067: 3051: 3045: 3044: 3034: 3002: 2996: 2995: 2993: 2992: 2977: 2971: 2966: 2960: 2959: 2931: 2925: 2924: 2904: 2898: 2897: 2890: 2884: 2879: 2873: 2872: 2870: 2868: 2854: 2848: 2847: 2845: 2843: 2828: 2822: 2809: 2803: 2801: 2796:. Archived from 2785: 2779: 2778: 2742: 2736: 2735: 2707: 2701: 2700: 2660: 2651: 2650: 2639: 2633: 2632: 2630: 2629: 2620:. Archived from 2614: 2608: 2607: 2563: 2557: 2556: 2546: 2506: 2500: 2499: 2488:10.1038/NMAT3951 2468:Nature Materials 2465: 2456: 2447: 2446: 2418: 2409: 2408: 2372: 2359: 2355: 2335: 2329: 2328: 2302: 2282: 2276: 2275: 2253: 2247: 2246: 2244: 2243: 2223: 2214: 2213: 2195: 2189: 2188: 2152: 2149:J. Phys. (Paris) 2144: 2135: 2134: 2110: 2101: 2100: 2064: 2055: 2054: 2018: 2007: 2006: 1978: 1926: 1925: 1924: 1916: 1915: 1907: 1906: 1895:proof of concept 1807: 1806: 1805: 1797: 1796: 1786: 1785: 1784: 1776: 1775: 1740: 1739: 1738: 1730: 1729: 1721: 1720: 1641:Grenoble, France 1629: 1628: 1627: 1619: 1618: 1583: 1582: 1581: 1573: 1572: 1469: 1468: 1467: 1459: 1458: 1379:Barcelona, Spain 1308: 1304: 1265:proof of concept 1258:D. P. MacDougall 1209: 1208: 1207: 1199: 1198: 1149: 1063: 1061: 1060: 1052: 1050: 1049: 1000: 998: 997: 981: 980: 979: 969: 968: 955: 954: 953: 943: 942: 934: 933: 922: 921: 909: 908: 907: 899: 898: 887: 886: 876: 875: 864: 862: 861: 853: 852: 844: 843: 820:antiferromagnets 781:energy from the 627: 625: 624: 619: 617: 606: 602: 600: 592: 588: 564: 557: 556: 555: 545: 544: 543: 502: 500: 499: 494: 475: 473: 472: 467: 465: 464: 421: 419: 418: 413: 411: 410: 386: 384: 383: 378: 370: 369: 364: 363: 359: 357: 349: 326: 318: 317: 312: 308: 306: 283: 275: 274: 273: 263: 262: 261: 241: 240: 204: 203: 202: 184: 182: 181: 173: 172: 164: 163: 147:and some of its 134:magnetic dipoles 87: 85: 84: 4289: 4288: 4284: 4283: 4282: 4280: 4279: 4278: 4244: 4243: 4242: 4237: 4213: 4143: 4138: 4050: 4046: 4042: 4038: 3989: 3831: 3829:Further reading 3826: 3817: 3816: 3812: 3789: 3785: 3762: 3758: 3742: 3741: 3735: 3733: 3726:"Archived copy" 3724: 3722: 3718: 3695: 3691: 3660: 3656: 3640: 3639: 3633: 3631: 3624:"Archived copy" 3622: 3620: 3613: 3597: 3596: 3590: 3588: 3581:"Archived copy" 3579: 3577: 3573: 3557: 3556: 3550: 3548: 3541:"Archived copy" 3539: 3537: 3533: 3494: 3490: 3485: 3481: 3462: 3458: 3423: 3419: 3388: 3384: 3377: 3355: 3351: 3328:10.1038/415150a 3302: 3298: 3287: 3255: 3227: 3219: 3215: 3185: 3181: 3177: 3173: 3168: 3164: 3129: 3125: 3102: 3098: 3075: 3071: 3052: 3048: 3003: 2999: 2990: 2988: 2979: 2978: 2974: 2967: 2963: 2932: 2928: 2905: 2901: 2892: 2891: 2887: 2880: 2876: 2866: 2864: 2856: 2855: 2851: 2841: 2839: 2830: 2829: 2825: 2819:Wayback Machine 2810: 2806: 2786: 2782: 2743: 2739: 2708: 2704: 2661: 2654: 2641: 2640: 2636: 2627: 2625: 2616: 2615: 2611: 2564: 2560: 2507: 2503: 2463: 2457: 2450: 2419: 2412: 2373: 2362: 2352: 2336: 2332: 2283: 2279: 2272: 2264:. p. 342. 2254: 2250: 2241: 2239: 2224: 2217: 2210: 2196: 2192: 2153: 2145: 2138: 2111: 2104: 2065: 2058: 2019: 2010: 1979: 1975: 1971: 1933: 1923: 1920: 1919: 1918: 1914: 1911: 1910: 1909: 1905: 1902: 1901: 1900: 1898: 1804: 1801: 1800: 1799: 1795: 1792: 1791: 1790: 1788: 1783: 1780: 1779: 1778: 1774: 1771: 1770: 1769: 1767: 1737: 1734: 1733: 1732: 1728: 1725: 1724: 1723: 1719: 1716: 1715: 1714: 1712: 1626: 1623: 1622: 1621: 1617: 1614: 1613: 1612: 1610: 1592:Yokohama, Japan 1580: 1577: 1576: 1575: 1571: 1568: 1567: 1566: 1564: 1549:October 5, 2002 1546:Yokohama, Japan 1537: 1533: 1529: 1525: 1466: 1463: 1462: 1461: 1457: 1454: 1453: 1452: 1450: 1405:Yokohama, Japan 1348:Ames Laboratory 1300: 1277:Ames Laboratory 1244:Nobel Laureates 1237:Auguste Piccard 1225: 1206: 1203: 1202: 1201: 1197: 1194: 1193: 1192: 1190: 1147: 1102: 1085: 1059: 1057: 1056: 1055: 1054: 1048: 1046: 1045: 1044: 1043: 1037:electron shells 1016: 996: 993: 992: 991: 989: 978: 973: 972: 971: 967: 961: 960: 959: 957: 952: 947: 946: 945: 941: 938: 937: 936: 932: 926: 925: 924: 920: 915: 914: 913: 911: 906: 903: 902: 901: 897: 891: 890: 889: 885: 880: 879: 878: 874: 871: 870: 869: 867: 860: 857: 856: 855: 851: 848: 847: 846: 842: 839: 838: 837: 835: 813:order-parameter 808: 779:equipartitioned 753: 706: 660: 636: 610: 593: 581: 565: 563: 559: 551: 547: 546: 539: 535: 534: 510: 507: 506: 485: 482: 481: 457: 453: 448: 445: 444: 403: 399: 394: 391: 390: 365: 350: 327: 325: 321: 320: 319: 313: 287: 282: 278: 277: 269: 265: 264: 257: 253: 252: 233: 229: 224: 221: 220: 215: 201: 198: 197: 196: 194: 180: 177: 176: 175: 171: 168: 167: 166: 162: 159: 158: 157: 155: 118:demagnetization 109:) is a magneto- 95: 83: 81: 80: 79: 78: 17: 12: 11: 5: 4287: 4277: 4276: 4271: 4266: 4261: 4256: 4239: 4238: 4236: 4235: 4222: 4219: 4218: 4215: 4214: 4212: 4211: 4206: 4201: 4196: 4191: 4190: 4189: 4179: 4174: 4169: 4164: 4158: 4156: 4149: 4145: 4144: 4137: 4136: 4129: 4122: 4114: 4108: 4107: 4092: 4087: 4048: 4044: 4040: 4036: 4031: 4017: 4012: 4006: 4000: 3995: 3988: 3987:External links 3985: 3984: 3983: 3947:(9461): 9431. 3932: 3885: 3846: 3839: 3830: 3827: 3825: 3824: 3810: 3783: 3756: 3716: 3689: 3654: 3611: 3571: 3531: 3488: 3479: 3456: 3417: 3382: 3375: 3349: 3296: 3269:(1): 387–429. 3237:(1–3): 44–56. 3213: 3183: 3179: 3175: 3171: 3162: 3143:(5): 141–164. 3123: 3096: 3069: 3046: 2997: 2972: 2961: 2926: 2899: 2885: 2874: 2849: 2823: 2804: 2800:on 2010-05-27. 2780: 2737: 2718:(1–3): 44–56. 2702: 2652: 2634: 2609: 2558: 2501: 2448: 2410: 2360: 2350: 2330: 2277: 2270: 2248: 2215: 2208: 2190: 2163:(4): 507–517. 2136: 2102: 2056: 2008: 1972: 1970: 1967: 1966: 1965: 1960: 1955: 1950: 1945: 1940: 1932: 1929: 1921: 1912: 1903: 1889: 1888: 1876: 1875: 1872: 1869: 1866: 1863: 1860: 1857: 1851: 1845: 1844: 1841: 1838: 1835: 1832: 1829: 1826: 1823: 1820: 1819:Salerno, Italy 1817: 1813: 1812: 1809: 1802: 1793: 1781: 1772: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1742: 1741: 1735: 1726: 1717: 1709: 1706: 1703: 1700: 1697: 1694: 1691: 1687: 1686: 1683: 1680: 1677: 1674: 1671: 1668: 1665: 1661: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1635: 1634: 1631: 1624: 1615: 1608: 1605: 1602: 1599: 1596: 1593: 1590: 1586: 1585: 1578: 1569: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1540: 1539: 1535: 1531: 1527: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1504:Nanjing, China 1502: 1498: 1497: 1494: 1491: 1488: 1485: 1482: 1479: 1476: 1472: 1471: 1464: 1455: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1425: 1424: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1399: 1398: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1373: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1350:/Astronautics 1344: 1343: 1340: 1337: 1334: 1331: 1324: 1321: 1318: 1315: 1312: 1299: 1296: 1249:in 1926 and 1224: 1221: 1214:In 2015 Aprea 1204: 1195: 1101: 1098: 1084: 1081: 1058: 1047: 1015: 1012: 994: 974: 962: 948: 939: 927: 916: 904: 892: 881: 872: 858: 849: 840: 807: 804: 752: 749: 745: 744: 733: 726: 708: 704: 675:magnetic field 658: 635: 632: 616: 613: 609: 605: 599: 596: 591: 587: 584: 580: 577: 574: 571: 568: 562: 554: 550: 542: 538: 533: 529: 526: 523: 520: 517: 514: 492: 489: 463: 460: 456: 452: 441: 440: 437: 434: 409: 406: 402: 398: 376: 373: 368: 362: 356: 353: 348: 345: 342: 339: 336: 333: 330: 324: 316: 311: 305: 302: 299: 296: 293: 290: 286: 281: 272: 268: 260: 256: 251: 247: 244: 239: 236: 232: 228: 214: 211: 199: 178: 169: 160: 138:ferromagnetism 94: 91: 82: 15: 9: 6: 4: 3: 2: 4286: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4251: 4249: 4234: 4233: 4224: 4223: 4220: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4188: 4187:Plasma window 4185: 4184: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4159: 4157: 4153: 4150: 4146: 4142: 4135: 4130: 4128: 4123: 4121: 4116: 4115: 4112: 4103: 4098: 4093: 4090: 4088: 4084: 4080: 4076: 4072: 4067: 4062: 4059:(1): 014435. 4058: 4054: 4032: 4029: 4025: 4021: 4018: 4016: 4013: 4010: 4007: 4004: 4001: 3999: 3996: 3994: 3991: 3990: 3980: 3976: 3971: 3966: 3962: 3958: 3954: 3950: 3946: 3942: 3938: 3933: 3929: 3925: 3921: 3917: 3913: 3909: 3904: 3899: 3896:(7): 072402. 3895: 3891: 3886: 3882: 3878: 3874: 3870: 3865: 3860: 3856: 3852: 3847: 3844: 3840: 3837: 3833: 3832: 3820: 3814: 3806: 3802: 3798: 3794: 3787: 3779: 3775: 3771: 3767: 3760: 3752: 3746: 3732:on 2004-02-29 3731: 3727: 3720: 3712: 3708: 3704: 3700: 3693: 3685: 3681: 3677: 3673: 3669: 3665: 3658: 3650: 3644: 3630:on 2004-02-29 3629: 3625: 3618: 3616: 3607: 3601: 3587:on 2004-02-29 3586: 3582: 3575: 3567: 3561: 3547:on 2004-02-29 3546: 3542: 3535: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3492: 3483: 3475: 3471: 3467: 3460: 3452: 3448: 3444: 3440: 3436: 3432: 3428: 3421: 3413: 3409: 3405: 3401: 3397: 3393: 3386: 3378: 3372: 3368: 3364: 3360: 3353: 3345: 3341: 3337: 3333: 3329: 3325: 3321: 3317: 3313: 3309: 3308: 3300: 3292: 3284: 3280: 3276: 3272: 3268: 3264: 3260: 3252: 3248: 3244: 3240: 3236: 3232: 3224: 3217: 3209: 3205: 3201: 3197: 3193: 3189: 3166: 3158: 3154: 3150: 3146: 3142: 3138: 3134: 3127: 3119: 3115: 3111: 3107: 3100: 3092: 3088: 3084: 3080: 3073: 3065: 3061: 3057: 3050: 3042: 3038: 3033: 3028: 3024: 3020: 3016: 3012: 3008: 3001: 2986: 2982: 2976: 2970: 2965: 2957: 2953: 2949: 2945: 2941: 2937: 2930: 2922: 2918: 2914: 2910: 2903: 2895: 2889: 2883: 2878: 2863: 2859: 2853: 2838:on 2015-01-06 2837: 2833: 2827: 2820: 2816: 2813: 2808: 2799: 2795: 2791: 2784: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2741: 2733: 2729: 2725: 2721: 2717: 2713: 2706: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2659: 2657: 2649:. 2014-02-14. 2648: 2644: 2638: 2624:on 2015-02-18 2623: 2619: 2613: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2577: 2574:(2): 216–32. 2573: 2569: 2562: 2554: 2550: 2545: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2505: 2497: 2493: 2489: 2485: 2481: 2477: 2474:(5): 439–50. 2473: 2469: 2462: 2455: 2453: 2444: 2440: 2436: 2432: 2428: 2424: 2417: 2415: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2371: 2369: 2367: 2365: 2358: 2353: 2347: 2343: 2342: 2334: 2326: 2322: 2318: 2314: 2310: 2306: 2301: 2296: 2293:(2): 021305. 2292: 2288: 2281: 2273: 2271:0-19-850341-5 2267: 2263: 2259: 2252: 2237: 2233: 2229: 2222: 2220: 2211: 2209:0-486-24072-X 2205: 2201: 2194: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2150: 2143: 2141: 2132: 2128: 2124: 2120: 2116: 2109: 2107: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2061: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2017: 2015: 2013: 2004: 2000: 1996: 1992: 1989:: 1088–1092. 1988: 1984: 1977: 1973: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1938: 1935: 1934: 1928: 1896: 1886: 1882: 1877: 1873: 1870: 1867: 1864: 1861: 1858: 1855: 1852: 1850: 1847: 1846: 1842: 1839: 1836: 1833: 1830: 1827: 1824: 1821: 1818: 1815: 1814: 1810: 1765: 1762: 1759: 1756: 1754:Reciprocating 1753: 1750: 1747: 1744: 1743: 1710: 1707: 1704: 1701: 1698: 1695: 1692: 1690:Astronautics 1689: 1688: 1684: 1681: 1678: 1675: 1673:Reciprocating 1672: 1669: 1666: 1663: 1662: 1658: 1655: 1652: 1649: 1647:Reciprocating 1646: 1643: 1640: 1637: 1636: 1632: 1609: 1606: 1603: 1600: 1597: 1595:March 4, 2003 1594: 1591: 1588: 1587: 1563: 1560: 1557: 1554: 1552:Reciprocating 1551: 1548: 1545: 1542: 1541: 1521: 1518: 1515: 1512: 1510:Reciprocating 1509: 1507:23 April 2002 1506: 1503: 1500: 1499: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1475:Astronautics 1474: 1473: 1448: 1445: 1442: 1439: 1437:Reciprocating 1436: 1433: 1430: 1427: 1426: 1422: 1419: 1416: 1413: 1411:Reciprocating 1410: 1407: 1404: 1401: 1400: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1374: 1370: 1367: 1364: 1361: 1359:Reciprocating 1358: 1355: 1352: 1349: 1346: 1345: 1341: 1339:Quantity (kg) 1338: 1335: 1332: 1329: 1325: 1322: 1319: 1316: 1313: 1310: 1309: 1303: 1295: 1293: 1289: 1283: 1280: 1278: 1274: 1270: 1266: 1261: 1259: 1254: 1252: 1248: 1245: 1240: 1238: 1234: 1230: 1220: 1217: 1212: 1187: 1185: 1181: 1177: 1175: 1170: 1168: 1163: 1159: 1155: 1151: 1144: 1140: 1138: 1134: 1130: 1126: 1121: 1116: 1114: 1110: 1105: 1097: 1094: 1091: 1080: 1078: 1073: 1071: 1067: 1040: 1038: 1034: 1031: 1028: 1024: 1021: 1011: 1007: 1004: 987: 985: 977: 966: 951: 931: 919: 896: 884: 832: 829: 825: 821: 816: 814: 803: 799: 796: 792: 788: 784: 780: 775: 771: 767: 763: 759: 758:heat capacity 748: 742: 737: 734: 730: 727: 724: 720: 716: 712: 709: 703: 699: 695: 694:heat capacity 691: 687: 683: 680: 679: 678: 676: 672: 668: 657: 654:= pressure; Δ 653: 649: 645: 640: 631: 628: 614: 611: 607: 603: 597: 585: 582: 578: 575: 569: 560: 552: 548: 540: 536: 531: 527: 521: 515: 504: 490: 479: 461: 458: 454: 438: 435: 432: 431: 430: 427: 425: 424:magnetization 407: 404: 400: 387: 374: 371: 366: 360: 354: 343: 340: 337: 331: 322: 314: 309: 300: 297: 294: 288: 284: 279: 270: 266: 258: 254: 249: 245: 242: 237: 234: 230: 218: 210: 208: 207:absolute zero 192: 189:alloyed with 188: 154: 150: 146: 141: 139: 135: 131: 130:ferromagnetic 127: 123: 119: 117: 112: 111:thermodynamic 108: 107: 102: 101: 90: 88: 75: 71: 67: 63: 59: 54: 52: 46: 44: 43:refrigerators 40: 36: 32: 25: 21: 4230: 4198: 4167:Anti-gravity 4056: 4052: 4028:Google cache 3944: 3940: 3893: 3889: 3854: 3850: 3842: 3835: 3813: 3796: 3792: 3786: 3769: 3765: 3759: 3734:. Retrieved 3730:the original 3719: 3702: 3698: 3692: 3667: 3663: 3657: 3632:. Retrieved 3628:the original 3589:. Retrieved 3585:the original 3574: 3549:. Retrieved 3545:the original 3534: 3501: 3497: 3491: 3482: 3465: 3459: 3437:(10): 8894. 3434: 3430: 3420: 3395: 3391: 3385: 3358: 3352: 3311: 3305: 3299: 3290: 3266: 3262: 3234: 3230: 3222: 3216: 3191: 3187: 3165: 3140: 3136: 3126: 3109: 3105: 3099: 3082: 3078: 3072: 3055: 3049: 3014: 3010: 3000: 2989:. Retrieved 2984: 2975: 2964: 2939: 2935: 2929: 2912: 2908: 2902: 2888: 2877: 2865:. Retrieved 2861: 2852: 2840:. Retrieved 2836:the original 2826: 2807: 2798:the original 2793: 2783: 2750: 2746: 2740: 2715: 2711: 2705: 2672: 2668: 2646: 2637: 2626:. Retrieved 2622:the original 2612: 2571: 2567: 2561: 2518: 2514: 2504: 2471: 2467: 2429:(23): 4494. 2426: 2422: 2383:(11): 1288. 2380: 2376: 2340: 2333: 2290: 2286: 2280: 2257: 2251: 2240:. Retrieved 2236:the original 2231: 2199: 2193: 2160: 2156: 2148: 2122: 2118: 2075:(10): 2104. 2072: 2068: 2026: 2022: 1986: 1982: 1976: 1892: 1884: 1880: 1327: 1301: 1284: 1281: 1262: 1255: 1241: 1233:Pierre Weiss 1229:Emil Warburg 1226: 1215: 1213: 1188: 1184:Carnot cycle 1178: 1171: 1164: 1160: 1156: 1152: 1145: 1141: 1117: 1106: 1103: 1095: 1086: 1074: 1041: 1020:paramagnetic 1017: 1008: 988: 975: 964: 949: 929: 917: 894: 882: 833: 824:ferrimagnets 817: 809: 800: 774:equilibrated 754: 746: 740: 735: 728: 722: 714: 710: 701: 697: 685: 681: 664: 655: 651: 647: 643: 629: 505: 442: 428: 388: 219: 216: 187:Praseodymium 142: 114: 104: 98: 96: 58:Emil Warburg 55: 50: 47: 39:temperatures 34: 30: 29: 4182:Force field 3834:Lounasmaa, 3799:(1): 1–11. 3772:(8): 1286. 3670:(5): 3349. 2981:"DDMC 2019" 2915:: 256–265. 2675:(6): 1479. 1948:Curie's law 1496:Gd spheres 1423:Gd spheres 1408:Summer 2000 1371:Gd spheres 1247:Peter Debye 1077:diamagnetic 72:(1926) and 4248:Categories 3903:2008.09193 3736:2006-06-12 3705:(4): 616. 3634:2006-06-12 3591:2006-06-12 3551:2006-06-12 3398:(3): 538. 3194:(9): 768. 2991:2021-11-07 2987:(in Dutch) 2747:Cryogenics 2647:gizmag.com 2628:2015-02-18 2300:2012.08176 2242:2006-12-17 2125:(6): 945. 1969:References 1843:0.5 - 2.5 1644:April 2003 1174:spacecraft 1167:hysteresis 1025:, such as 984:hysteresis 828:spin glass 145:gadolinium 74:W. Giauque 66:A. Piccard 24:Gadolinium 4274:Magnetism 4102:1011.1684 4066:0807.3707 4026:format) ( 3928:225378969 3864:1011.1684 3526:122081896 3188:Phys. Rev 3112:: 75–83. 3041:213786208 2775:244005391 2767:0011-2275 2325:136263783 2097:196706851 2051:122788079 1670:July 2004 1449:Gd & 1434:July 2001 1253:in 1927. 1239:in 1917. 1120:cryogenic 1030:magnesium 795:insulated 787:molecules 595:∂ 567:∂ 532:∫ 513:Δ 488:Δ 451:Δ 397:Δ 352:∂ 329:∂ 250:∫ 246:− 227:Δ 116:adiabatic 89:vapors). 3979:33941810 3745:cite web 3643:cite web 3600:cite web 3560:cite web 3344:52855399 3336:11805828 2985:TU Delft 2867:23 March 2815:Archived 2697:56381721 2596:20957766 2553:23887357 2521:: 2291. 2496:24751772 2405:98040294 2185:18956148 1943:Cryostat 1931:See also 1685:Gd foil 1659:Gd foil 1607:0.76 (P) 1397:Gd foil 1394:0.95 (P) 1382:May 2000 1342:COP (-) 1314:Location 1066:cryostat 615:′ 586:′ 503:) since 213:Equation 70:P. Debye 62:P. Weiss 4071:Bibcode 3970:8093207 3949:Bibcode 3908:Bibcode 3869:Bibcode 3672:Bibcode 3506:Bibcode 3439:Bibcode 3400:Bibcode 3316:Bibcode 3271:Bibcode 3239:Bibcode 3196:Bibcode 3145:Bibcode 3019:Bibcode 2944:Bibcode 2842:16 July 2720:Bibcode 2677:Bibcode 2604:4646639 2576:Bibcode 2544:3724178 2523:Bibcode 2476:Bibcode 2431:Bibcode 2385:Bibcode 2305:Bibcode 2165:Bibcode 2077:Bibcode 2031:Bibcode 1991:Bibcode 1834:1.2 (P) 1708:1.5 (P) 1656:0.8 (P) 1561:0.6 (P) 1538:powder 1519:1.4 (P) 1493:1.5 (P) 1311:Sponsor 1271:by the 1223:History 1033:nitrate 785:of the 690:entropy 478:entropy 122:phonons 106:calorie 4148:Fields 3977:  3967:  3926:  3524:  3373:  3342:  3334:  3307:Nature 3085:(23). 3062:  3039:  3017:(10). 2942:(10). 2773:  2765:  2695:  2602:  2594:  2551:  2541:  2494:  2403:  2348:  2323:  2268:  2206:  2183:  2095:  2049:  1825:Rotary 1699:Rotary 1598:Rotary 1484:Rotary 1385:Rotary 1216:et al. 1148:  1027:cerium 791:system 783:motion 770:helium 719:helium 389:where 191:nickel 149:alloys 100:magnet 4155:Other 4097:arXiv 4061:arXiv 3924:S2CID 3898:arXiv 3859:arXiv 3522:S2CID 3340:S2CID 3064:40784 3037:S2CID 2771:S2CID 2693:S2CID 2600:S2CID 2464:(PDF) 2401:S2CID 2321:S2CID 2295:arXiv 2181:S2CID 2093:S2CID 2047:S2CID 1939:(COP) 1849:MISiS 1811:0.12 1808:pucks 1763:2 (S) 1713:La(Fe 1682:2 (P) 1584:L.B. 1532:1.985 1528:1.985 1470:L.B. 1446:2 (S) 1420:4 (S) 1368:5 (S) 1326:Max Δ 1129:Haier 958:MnFeP 912:La(Fe 153:alloy 128:of a 51:below 4232:List 4051:)". 4024:.doc 3975:PMID 3751:link 3649:link 3606:link 3566:link 3371:ISBN 3332:PMID 3186:O". 3060:OSTI 2869:2018 2844:2015 2763:ISSN 2592:PMID 2549:PMID 2492:PMID 2346:ISBN 2266:ISBN 2204:ISBN 1859:2019 1854:Tver 1840:1.20 1822:2016 1803:0.15 1794:0.85 1787:and 1782:0.26 1773:0.74 1766:Gd, 1751:2006 1727:0.12 1718:0.88 1696:2004 1630:L.B. 1536:0.03 1320:Type 1191:HoMn 1137:BASF 1135:and 1023:salt 999:Mn-X 956:and 826:and 766:heat 725:=0). 692:and 195:PrNi 103:and 4079:doi 4049:0.2 4045:0.8 4041:0.9 4037:1.1 3965:PMC 3957:doi 3916:doi 3894:117 3877:doi 3855:387 3801:doi 3774:doi 3707:doi 3680:doi 3514:doi 3470:doi 3447:doi 3408:doi 3363:doi 3324:doi 3312:415 3279:doi 3247:doi 3235:200 3204:doi 3182:·8H 3174:(SO 3153:doi 3141:249 3114:doi 3087:doi 3083:104 3027:doi 2952:doi 2917:doi 2913:122 2755:doi 2751:121 2728:doi 2716:200 2685:doi 2584:doi 2539:PMC 2531:doi 2484:doi 2439:doi 2393:doi 2313:doi 2173:doi 2127:doi 2085:doi 2073:251 2039:doi 1999:doi 1987:401 1828:250 1736:1.0 1650:8.8 1616:1−x 1570:1−x 1456:1−x 1414:100 1362:600 1330:(K) 1294:). 1275:at 877:(Si 845:(Si 700:+ Δ 165:(Si 4250:: 4077:. 4069:. 4057:79 4055:. 4047:Ge 4043:(P 4039:Fe 4035:Mn 3973:. 3963:. 3955:. 3945:11 3943:. 3939:. 3922:. 3914:. 3906:. 3892:. 3875:. 3867:. 3853:. 3797:61 3795:. 3770:29 3768:. 3747:}} 3743:{{ 3703:28 3701:. 3678:. 3668:39 3666:. 3645:}} 3641:{{ 3614:^ 3602:}} 3598:{{ 3562:}} 3558:{{ 3520:. 3512:. 3502:95 3500:. 3445:. 3435:91 3433:. 3429:. 3406:. 3396:36 3394:. 3369:. 3338:. 3330:. 3322:. 3310:. 3277:. 3267:30 3265:. 3261:. 3245:. 3233:. 3202:. 3192:43 3190:. 3151:. 3139:. 3135:. 3110:59 3108:. 3081:. 3035:. 3025:. 3015:10 3013:. 3009:. 2983:. 2950:. 2940:10 2938:. 2911:. 2860:. 2792:. 2769:. 2761:. 2753:. 2749:. 2726:. 2714:. 2691:. 2683:. 2673:68 2671:. 2667:. 2655:^ 2645:. 2598:. 2590:. 2582:. 2572:23 2570:. 2547:. 2537:. 2529:. 2517:. 2513:. 2490:. 2482:. 2472:13 2470:. 2466:. 2451:^ 2437:. 2427:78 2425:. 2413:^ 2399:. 2391:. 2379:. 2363:^ 2319:. 2311:. 2303:. 2289:. 2260:. 2230:. 2218:^ 2179:. 2171:. 2161:38 2159:. 2139:^ 2123:31 2121:. 2117:. 2105:^ 2091:. 2083:. 2071:. 2059:^ 2045:. 2037:. 2027:38 2025:. 2011:^ 1997:. 1985:. 1917:Ge 1908:Si 1899:Gd 1831:12 1798:Er 1789:Gd 1777:Tb 1768:Gd 1760:50 1757:15 1722:Si 1705:25 1702:95 1667:US 1633:1 1620:Dy 1611:Gd 1604:10 1601:60 1574:Dy 1565:Gd 1558:27 1555:40 1534:Ga 1530:Ge 1526:Si 1516:23 1490:25 1487:95 1460:Tb 1451:Gd 1443:14 1417:21 1365:10 1328:T 1176:. 1131:, 1062:He 1051:He 990:Ni 970:As 963:1− 940:13 928:1− 923:Si 910:, 893:1− 888:Ge 868:Gd 854:Ge 836:Gd 822:, 743:). 739:(+ 707:). 705:ad 659:ad 209:. 185:. 174:Ge 156:Gd 86:He 45:. 4133:e 4126:t 4119:v 4105:. 4099:: 4085:. 4081:: 4073:: 4063:: 4030:) 4022:( 4005:. 3981:. 3959:: 3951:: 3930:. 3918:: 3910:: 3900:: 3883:. 3879:: 3871:: 3861:: 3821:. 3807:. 3803:: 3780:. 3776:: 3753:) 3739:. 3713:. 3709:: 3686:. 3682:: 3674:: 3651:) 3637:. 3608:) 3594:. 3568:) 3554:. 3528:. 3516:: 3508:: 3476:. 3472:: 3453:. 3449:: 3441:: 3414:. 3410:: 3402:: 3379:. 3365:: 3346:. 3326:: 3318:: 3285:. 3281:: 3273:: 3253:. 3249:: 3241:: 3210:. 3206:: 3198:: 3184:2 3180:3 3178:) 3176:4 3172:2 3159:. 3155:: 3147:: 3120:. 3116:: 3093:. 3089:: 3066:. 3043:. 3029:: 3021:: 2994:. 2958:. 2954:: 2946:: 2923:. 2919:: 2871:. 2846:. 2777:. 2757:: 2734:. 2730:: 2722:: 2699:. 2687:: 2679:: 2631:. 2606:. 2586:: 2578:: 2555:. 2533:: 2525:: 2519:3 2498:. 2486:: 2478:: 2445:. 2441:: 2433:: 2407:. 2395:: 2387:: 2381:2 2354:. 2327:. 2315:: 2307:: 2297:: 2291:4 2274:. 2245:. 2212:. 2187:. 2175:: 2167:: 2133:. 2129:: 2099:. 2087:: 2079:: 2053:. 2041:: 2033:: 2005:. 2001:: 1993:: 1922:2 1913:2 1904:5 1885:W 1881:T 1871:? 1868:? 1865:? 1731:H 1679:5 1676:? 1653:4 1625:x 1579:x 1524:5 1513:? 1465:x 1440:2 1391:5 1388:? 1205:5 1200:O 1196:2 995:2 976:x 965:x 950:x 944:H 935:) 930:x 918:x 905:4 900:) 895:x 883:x 873:5 863:) 859:2 850:2 841:5 741:Q 723:H 715:Q 702:T 698:T 686:H 656:T 652:P 648:Q 644:H 612:H 608:d 604:) 598:T 590:) 583:H 579:, 576:T 573:( 570:M 561:( 553:1 549:H 541:0 537:H 528:= 525:) 522:T 519:( 516:S 491:S 480:( 462:d 459:a 455:T 408:d 405:a 401:T 375:H 372:d 367:H 361:) 355:T 347:) 344:H 341:, 338:T 335:( 332:M 323:( 315:H 310:) 304:) 301:H 298:, 295:T 292:( 289:C 285:T 280:( 271:1 267:H 259:0 255:H 243:= 238:d 235:a 231:T 200:5 193:( 183:) 179:2 170:2 161:5

Index


Gadolinium
temperatures
refrigerators
Emil Warburg
P. Weiss
A. Piccard
P. Debye
W. Giauque

He

magnet
calorie
thermodynamic
adiabatic
phonons
curie temperature
ferromagnetic
magnetic dipoles
ferromagnetism
gadolinium
alloys
alloy
Praseodymium
nickel
absolute zero
magnetization
entropy

refrigeration cycle
Carnot refrigeration cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.