Knowledge

Magnetic separation

Source 📝

587: 530:. Unwanted metals can be removed from goods with this technique. It keeps all materials pure. Recycling centres use magnetic separation often to separate components from recycling, isolate metals, and purify ores. Overhead magnets, magnetic pulleys, and the magnetic drums were the methods used in the recycling industry. 602:. In this case, binding molecules and antibodies are used in order to isolate specific viable organisms, nucleic acids, or antigens. This technology helps isolating bacterial species to identify and give diagnostics of genes targeting certain organisms. When magnetic separation techniques are combined with PCR ( 706:
It can be shown that magnetic force per unit volume on a permeable particle with relative permeability mu sub (pr) is proportional to the spatial gradient of the square of the magnetic flux density. The formula can be used in magnetic finite element analysis software to compute force densities on a
38:
A large diversity of mechanical means are used to separate magnetic materials. During magnetic separation, magnets are situated inside two separator drums which bear liquids. Due to the magnets, magnetic particles are being drifted by the movement of the drums. This can create a magnetic concentrate
697:
Weak magnetic separation is used to create cleaner iron-rich products that can be reused. These products have low levels of impurities and a high iron load. This technique is used as a recycling technology. It is coupled with steelmaking slag fines as well as a selection of particle size screening.
517:
under which further belts ran at right angles to the feed belt. The first pair of balls was weakly magnetized and served to draw off any iron ore present. The second pair were strongly magnetized and attracted the wolframite, which is weakly magnetic. These machines were capable of treating 10 tons
688:
Magnetic filters are fitted on the boiler's pipework to collect magnetite from the circulating water before it has a chance to build up and lower the efficiency of the heating system. The water circulating around the heating system picks up bits of sludge (or magnetite) which can build up. The
573:
researches. Magnetic cell separation took a turn when, Zborowski, an Immunomagnetic Cell Separation (IMCS) pioneer, analyzed commercial magnetic cell separation. Zborowski uncovered crucial revelations that were then used, and are still used today, in the human understanding of
478:. The technique was used in scrap yards. Magnetic separation was developed again in the late 1970s with new technologies being inaugurated. The new forms of magnetic separation included magnetic pulleys, overhead magnets and magnetic drums. 54:
discovered that when a substance is put in a magnetic environment, the intensity of the environment is modified by it. With this information, he discovered that different materials can be separated with their
26:
to attract magnetic substances. The process that is used for magnetic separation separates non-magnetic substances from those which are magnetic. This technique is useful for the select few minerals which are
458:
In the 1860s, magnetic separation started to become commercialized. It was used to separate iron from brass. After the 1880s, ferromagnetic materials started to be magnetically separated. Among others,
972:
Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A. (2006-11-10). "Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals".
544:
Another application, not widely known but very important, is to use magnets in process industries to remove metal contaminants from product streams. This takes a lot of importance in food or
526:
Magnetic separation can also be used in electromagnetic cranes that separate magnetic material from scraps and unwanted substances. This explains its use for shipment equipments and
438: 326: 231: 661: 467:
the magnetic enrichment of poor iron ores but failed. In the 1900s, high intensity magnetic separation was inaugurated which allowed the separation of pragmatic materials.
380: 272: 187: 133: 683: 689:
magnetic filter attracts all these bits of debris with a strong magnet as the water flows around it, preventing a build-up of sludge in the pipework or in the boiler.
618:
and the separation of complex mixtures. Low magnetic field gradients are field gradients that are smaller than one hundred tesla per meter. Monodisperse magnetite (
594:
MagRack 6 and magnetic beads with a coating that attaches to the substance of interest. The beads are visible accumulated on the top left of the solution surface.
1040:
Ma, Naiyang; Houser, Joseph Blake (2014). "Recycling of steelmaking slag fines by weak magnetic separation coupled with selective particle size screening".
550:
Magnetic separation is also used in situations where pollution needs to be controlled, in chemical processing, as well as during the benefaction of
557:
Magnetic separation is also used in the following industries: dairy, grain and milling, plastics, food, chemical, oils, textile, and more.
578:. Today, the manufacture of therapeutic products concerning cancers and genetic diseases, are being innovated due to these discoveries. 505:, magnetic separation is used to separate the ores. At these mines, a device called a Wetherill's Magnetic Separator (invented by 1079: 1098: 565:
Magnetic cell separation is on the rise. It is currently being used in clinical therapies, more specifically in
826: 870:
Brown, William H (1995). "Trends in patent renewals at the United States patent and trademark office".
506: 464: 394: 1103: 603: 586: 286: 204: 765:
Oberteuffer, J. (1974). "Magnetic separation: A review of principles, devices, and applications".
621: 340: 245: 147: 93: 1022: 545: 666: 737: 1074:
Brauer, J. R. (2014). Magnetic Actuators and Sensors (2nd ed.). Hoboken NJ: Wiley IEEE Press.
844: 774: 707:
wide variety of practical examples, obtaining results agreeing with Oberteuffer's paper .
59:. The table below shows the common ferromagnetic and paramagnetic minerals as well as the 8: 910:
Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M (1994).
570: 778: 1108: 1005: 615: 944: 911: 1075: 1057: 997: 989: 949: 931: 887: 883: 822: 551: 1009: 1049: 981: 939: 923: 879: 814: 782: 527: 1053: 738:"Magnet traps / metal separator for powder flow - A guide to magnetic separation" 502: 60: 51: 494: 28: 786: 1092: 1061: 993: 935: 891: 591: 514: 475: 460: 32: 985: 818: 1001: 599: 575: 490: 471: 953: 614:
Low-field magnetic separation is often in environmental contexts such as
510: 486: 927: 482: 35:. Most metals, including gold, silver and aluminum, are nonmagnetic. 56: 498: 513:
was fed onto a conveyor belt which passed underneath two pairs of
566: 538: 22:
is the process of separating components of mixtures by using a
16:
Process of separating components of mixtures by using magnets
912:"Magnetic separation techniques in diagnostic microbiology" 534: 509:, 1844–1906) was used. In this machine, the raw ore, after 501:
or with bismuth such as at the Shepherd and Murphy mine in
909: 809:
Bronkala, William J. (2000-06-15), "Magnetic Separation",
701: 649: 636: 426: 368: 355: 314: 301: 260: 219: 175: 162: 121: 108: 40: 606:), the results increase in sensitivity and specificity. 63:
that is required in order to separate 𝚝𝚑𝚎 minerals.
669: 624: 397: 343: 289: 248: 207: 150: 96: 31:(iron-, nickel-, and cobalt-containing minerals) and 971: 677: 655: 432: 374: 320: 266: 225: 181: 127: 1090: 609: 598:Magnetic separation techniques are also used in 67:Common Ferromagnetic and Paramagnetic Minerals 811:Ullmann's Encyclopedia of Industrial Chemistry 533:Magnetic separation is also useful in mining 764: 692: 560: 943: 474:, systems that were the most common were 1039: 813:, Wiley-VCH Verlag GmbH & Co. KGaA, 808: 585: 845:"Historical Markers - Samuel Wetherill" 1091: 702:Magnetic Separation Force Calculations 521: 869: 1035: 1033: 1031: 967: 965: 963: 905: 903: 901: 865: 863: 861: 839: 837: 804: 802: 800: 798: 796: 760: 758: 756: 754: 732: 730: 728: 726: 724: 722: 720: 1068: 13: 581: 433:{\displaystyle {\ce {(Fe,Mn)WO4}}} 14: 1120: 1028: 960: 898: 858: 834: 793: 751: 717: 1025:(page visited on 14 March 2020) 685:) are used for this technique. 321:{\displaystyle {\ce {FeCr2O4}}} 1016: 767:IEEE Transactions on Magnetics 412: 400: 226:{\displaystyle {\ce {FeTiO3}}} 1: 1054:10.1016/j.jclepro.2014.06.092 1042:Journal of Cleaner Production 916:Clinical Microbiology Reviews 710: 656:{\displaystyle {\ce {Fe3O4}}} 610:Low-field magnetic separation 375:{\displaystyle {\ce {Fe2O3}}} 267:{\displaystyle {\ce {FeCO3}}} 182:{\displaystyle {\ce {Fe7S8}}} 128:{\displaystyle {\ce {Fe3O4}}} 1023:What is a magnaclean filter? 884:10.1016/0172-2190(95)00043-7 7: 678:{\displaystyle {\ce {NCs}}} 10: 1125: 546:pharmaceutical industries. 46: 787:10.1109/TMAG.1974.1058315 604:polymerase chain reaction 590:DNA purification using a 195: 84: 872:World Patent Information 693:Weak magnetic separation 561:Magnetic cell separation 537:as it is attracted to a 986:10.1126/science.1131475 819:10.1002/14356007.b02_19 1099:Solid-solid separation 847:. ExplorePAhistory.com 679: 657: 595: 434: 376: 322: 268: 227: 183: 129: 680: 658: 589: 435: 377: 323: 269: 228: 184: 130: 667: 663:) and nanocrystals ( 622: 507:John Price Wetherill 395: 341: 287: 246: 205: 148: 94: 80:Field Strength (kG) 779:1974ITM....10..223O 740:. Powderprocess.net 651: 638: 571:hereditary diseases 522:Common applications 428: 370: 357: 316: 303: 262: 221: 177: 164: 123: 110: 68: 57:magnetic properties 20:Magnetic separation 928:10.1128/cmr.7.1.43 675: 653: 639: 626: 616:water purification 596: 430: 416: 372: 358: 345: 318: 304: 291: 264: 250: 223: 209: 179: 165: 152: 125: 111: 98: 66: 1080:978-1-118-50525-0 980:(5801): 964–967. 673: 642: 629: 456: 455: 419: 411: 405: 361: 348: 307: 294: 253: 212: 168: 155: 114: 101: 1116: 1104:Magnetic devices 1083: 1072: 1066: 1065: 1037: 1026: 1020: 1014: 1013: 969: 958: 957: 947: 907: 896: 895: 867: 856: 855: 853: 852: 841: 832: 831: 806: 791: 790: 762: 749: 748: 746: 745: 734: 684: 682: 681: 676: 674: 671: 662: 660: 659: 654: 652: 650: 647: 640: 637: 634: 627: 554:low-grade ores. 528:waste management 472:Second World War 439: 437: 436: 431: 429: 427: 424: 417: 415: 409: 403: 381: 379: 378: 373: 371: 369: 366: 359: 356: 353: 346: 327: 325: 324: 319: 317: 315: 312: 305: 302: 299: 292: 273: 271: 270: 265: 263: 261: 258: 251: 232: 230: 229: 224: 222: 220: 217: 210: 188: 186: 185: 180: 178: 176: 173: 166: 163: 160: 153: 134: 132: 131: 126: 124: 122: 119: 112: 109: 106: 99: 69: 65: 1124: 1123: 1119: 1118: 1117: 1115: 1114: 1113: 1089: 1088: 1087: 1086: 1073: 1069: 1038: 1029: 1021: 1017: 970: 961: 908: 899: 868: 859: 850: 848: 843: 842: 835: 829: 807: 794: 763: 752: 743: 741: 736: 735: 718: 713: 704: 695: 670: 668: 665: 664: 648: 643: 635: 630: 625: 623: 620: 619: 612: 584: 582:In microbiology 563: 524: 503:Moina, Tasmania 485:was mixed with 481:In mines where 425: 420: 399: 398: 396: 393: 392: 367: 362: 354: 349: 344: 342: 339: 338: 313: 308: 300: 295: 290: 288: 285: 284: 259: 254: 249: 247: 244: 243: 218: 213: 208: 206: 203: 202: 174: 169: 161: 156: 151: 149: 146: 145: 120: 115: 107: 102: 97: 95: 92: 91: 61:field intensity 52:Michael Faraday 49: 17: 12: 11: 5: 1122: 1112: 1111: 1106: 1101: 1085: 1084: 1067: 1027: 1015: 959: 897: 878:(4): 225–234. 857: 833: 827: 792: 773:(2): 223–238. 750: 715: 714: 712: 709: 703: 700: 694: 691: 646: 633: 611: 608: 583: 580: 562: 559: 523: 520: 518:of ore a day. 515:electromagnets 495:East Pool mine 476:electromagnets 454: 453: 450: 448: 444: 443: 440: 423: 414: 408: 402: 390: 386: 385: 382: 365: 352: 336: 332: 331: 328: 311: 298: 282: 278: 277: 274: 257: 241: 237: 236: 233: 216: 200: 197: 193: 192: 189: 172: 159: 143: 139: 138: 135: 118: 105: 89: 86: 85:Ferromagnetic 82: 81: 78: 75: 72: 48: 45: 43:concentrate). 15: 9: 6: 4: 3: 2: 1121: 1110: 1107: 1105: 1102: 1100: 1097: 1096: 1094: 1081: 1077: 1071: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1034: 1032: 1024: 1019: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 968: 966: 964: 955: 951: 946: 941: 937: 933: 929: 925: 921: 917: 913: 906: 904: 902: 893: 889: 885: 881: 877: 873: 866: 864: 862: 846: 840: 838: 830: 824: 820: 816: 812: 805: 803: 801: 799: 797: 788: 784: 780: 776: 772: 768: 761: 759: 757: 755: 739: 733: 731: 729: 727: 725: 723: 721: 716: 708: 699: 690: 686: 644: 631: 617: 607: 605: 601: 593: 588: 579: 577: 572: 568: 558: 555: 553: 548: 547: 542: 540: 536: 531: 529: 519: 516: 512: 508: 504: 500: 496: 492: 488: 484: 479: 477: 473: 468: 466: 465:commercialize 462: 461:Thomas Edison 451: 449: 446: 445: 441: 421: 406: 391: 388: 387: 383: 363: 350: 337: 334: 333: 329: 309: 296: 283: 280: 279: 275: 255: 242: 239: 238: 234: 214: 201: 198: 196:Paramagnetic 194: 190: 170: 157: 144: 141: 140: 136: 116: 103: 90: 87: 83: 79: 76: 73: 71: 70: 64: 62: 58: 53: 44: 42: 36: 34: 30: 29:ferromagnetic 25: 21: 1070: 1045: 1041: 1018: 977: 973: 922:(1): 43–54. 919: 915: 875: 871: 849:. Retrieved 810: 770: 766: 742:. Retrieved 705: 696: 687: 613: 600:microbiology 597: 576:cell biology 564: 556: 549: 543: 532: 525: 491:South Crofty 480: 469: 457: 50: 37: 33:paramagnetic 23: 19: 18: 1048:: 221–231. 511:calcination 487:cassiterite 447:Tourmaline 389:Wolframite 142:Pyrrhotite 1093:Categories 851:2012-08-20 828:3527306730 744:2022-04-20 711:References 552:nonferrous 489:, such as 483:wolframite 470:After the 88:Magnetite 1109:Magnetism 1062:0959-6526 994:0036-8075 936:0893-8512 892:0172-2190 463:tried to 335:Hematite 281:Chromite 240:Siderite 199:Ilmenite 39:(e.g. an 1010:23522459 1002:17095696 499:Cornwall 452:16 - 20 442:12 - 18 384:12 - 18 330:10 - 16 191:0.5 - 4 77:Formula 74:Mineral 974:Science 954:8118790 775:Bibcode 567:cancers 276:9 - 18 235:8 - 16 47:History 1078:  1060:  1008:  1000:  992:  952:  945:358305 942:  934:  890:  825:  539:magnet 24:magnet 1006:S2CID 211:FeTiO 1076:ISBN 1058:ISSN 998:PMID 990:ISSN 950:PMID 932:ISSN 888:ISSN 823:ISBN 569:and 535:iron 493:and 293:FeCr 252:FeCO 1050:doi 982:doi 978:314 940:PMC 924:doi 880:doi 815:doi 783:doi 672:NCs 497:in 41:ore 1095:: 1056:. 1046:82 1044:. 1030:^ 1004:. 996:. 988:. 976:. 962:^ 948:. 938:. 930:. 918:. 914:. 900:^ 886:. 876:17 874:. 860:^ 836:^ 821:, 795:^ 781:. 771:10 769:. 753:^ 719:^ 628:Fe 592:GE 541:. 418:WO 410:Mn 404:Fe 347:Fe 154:Fe 137:1 100:Fe 1082:. 1064:. 1052:: 1012:. 984:: 956:. 926:: 920:7 894:. 882:: 854:. 817:: 789:. 785:: 777:: 747:. 645:4 641:O 632:3 422:4 413:) 407:, 401:( 364:3 360:O 351:2 310:4 306:O 297:2 256:3 215:3 171:8 167:S 158:7 117:4 113:O 104:3

Index

ferromagnetic
paramagnetic
ore
Michael Faraday
magnetic properties
field intensity
Thomas Edison
commercialize
Second World War
electromagnets
wolframite
cassiterite
South Crofty
East Pool mine
Cornwall
Moina, Tasmania
John Price Wetherill
calcination
electromagnets
waste management
iron
magnet
pharmaceutical industries.
nonferrous
cancers
hereditary diseases
cell biology

GE
microbiology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.