Knowledge

Martian dichotomy

Source 📝

178:
ejecta and rims should stand above upland elevations. The rims and ejecta blankets of the lowland impact craters are still much below the upland areas. There are also areas in the lowlands that are outside any of the impact basins, these areas must be overlain by multiple ejecta blankets and should stand at elevations similar to the original planetary surface. That clearly is not the case either. One approach explaining the absence of ejecta blankets infers that no ejecta was ever present. Absence of ejecta could be caused by a large impactor scattering the ejecta into outer space. Another approach proposed the formation of the dichotomy by cooling at depth and crustal loading by later volcanism. The multiple-impact hypothesis is also statistically unfavorable, it is unlikely that multiple impacts basins occur and overlap primarily in the northern hemisphere.
20: 150:
believed to be involved as cells or plumes. Since endogenic processes of Earth have yet to be completely understood, studying of similar processes on Mars is very difficult. The dichotomy could be created at the time of the creation of the Martian core. The roughly circular shape of the lowland could then be attributed to plume-like first-order overturn which could occur in the process of rapid core formation. There is evidence for internally driven tectonic events in the vicinity of the lowland area that clearly occurred at the end of the
317: 246: 2759: 122:
but could not explain the absence of volcanoes. Also, the mega-impact could have scattered a large portion of the debris into outer space and across the southern hemisphere. Geologic evidence of the debris would provide very convincing support for this hypothesis. A 2008 study provided additional research towards the single giant impact theory in the northern hemisphere. In the past tracing of the impact boundaries was complicated by the presence of the
118:. However, most estimations of the shape of the lowlands area produce a shape that in places dramatically deviates from the circular shape. Additional processes could create those deviations from circularity. Also, if the proposed Borealis basin is a depression created by an impact, it would be the largest impact crater known in the Solar System. An object that large could have hit Mars sometime during the process of the Solar System accretion. 98: 2798: 2771: 88:
dramatic. Three major hypotheses have been proposed for the origin of the crustal dichotomy: endogenic (by mantle processes), single impact, or multiple impact. Both impact-related hypotheses involve processes that could have occurred before the end of the primordial bombardment, implying that the crustal dichotomy has its origins early in the history of Mars.
131:
dichotomy observed. This may have also triggered the magnetic field of the planet. The discovery of twelve volcanic alignments lends evidence to this new hypothesis. Initially, the estimated size of the impacting body required for this scenario was Moon-sized, but more recent research favour a smaller, 500-750 km-radius projectile.
156:
A 2005 study suggests that degree-1 mantle convection could have created the dichotomy. Degree-1 mantle convection is a convective process in which one hemisphere is dominated by an upwelling, while the other hemisphere is downwelling. Some of the evidence is the abundance of extensive fracturing and
121:
It is expected that an impact of such magnitude would have produced an ejecta blanket that should be found in areas around the lowland and generate enough heat to form volcanoes. However, if the impact occurred around 4.5 Ga (billion years ago), erosion could explain the absence of the ejecta blanket
149:
could have been active on Mars early in the planet's history. Large-scale redistribution of lithospheric crustal material is known to be caused by plate tectonic processes on Earth. Even though it is still not entirely clear how mantle processes affect plate tectonics on Earth, mantle convection is
198:
More visibly, dust storms originate in the Southern hemisphere far more often than in the North. High Northern dust content tends to occur after exceptional Southern storms escalate into global dust storms. As a consequence, opacity (tau) is often higher in the Southern hemisphere. The effect of
177:
The multiple impact hypothesis is supported by correlation of segments of the dichotomy with the rims of several large impact basins. But there are large parts of the Borealis Basin outside the rims of those impact basins. If the Martian lowlands were formed by the multiple basins then their inner
165:
age. A counter argument to the endogenic hypothesis is the possibility of those tectonic events occurring in the Borealis Basin due to the post-impact weakening of the crust. In order to further support the endogenic origin hypothesis geologic evidence of faulting and flexing of the crust prior to
130:
However, this hypothesis has been countered by a new hypothesis of a giant impact to the south pole of Mars with a large object that melted the southern hemisphere of Mars, which, after recrystallisation, forms a thicker crust relative to the northern hemisphere and thus gives rise to the crustal
235:
of Mars is offset from symmetry about its equator. When combined with the greater seasonal range of the Southern hemisphere (see above), this results in "the striking north-south hemispherical asymmetries of the atmospheric and residual ice cap inventories of Mars water", "as well as the current
126:
volcanic rise. The Tharsis volcanic rise buried part of the proposed dichotomy boundary under 30 km of basalt. The researchers at MIT and Jet Propulsion Lab at CIT have been able to use gravity and topography of Mars to constrain the location of the dichotomy beneath the Tharsis rise, thus
87:
The northern lowlands comprise about one-third of the surface of Mars and are relatively flat, with as many impact craters as the southern hemisphere. The other two-thirds of the Martian surface are the highlands of the southern hemisphere. The difference in elevation between the hemispheres is
34:, between the Southern and the Northern hemispheres. The two hemispheres' geography differ in elevation by 1 to 3 km. The average thickness of the Martian crust is 45 km, with 32 km in the northern lowlands region, and 58 km in the southern highlands. 1400:
Golabek, Gregor J.; Keller, Tobias; Gerya, Taras V.; Zhu, Guizhi; Tackley, Paul J.; Connolly, James A.D. (September 2011). "Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism".
79:
transitional zone, the dichotomy boundary is characterized by an escarpment with a local relief of about 2 km, and interconnected NW-SE-trending closed depressions at the foot of the dichotomy probably related to
127:
creating an elliptical model of the dichotomy boundary. The elliptical shape of the Borealis basin contributed to the northern single impact hypothesis as a re-edition of the original theory published in 1984.
826:
Baker, D.; et al. (2010). "Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian".
219:. This results in one hemisphere, the Southern, receiving more sunlight in summer and less in winter, and thus more extreme temperatures, than the Northern. When combined with Mars' much higher 308: 253: 495:
Greeley, R. and J. Guest. 1987. Geological map of the eastern equatorial region of Mars, scale 1:15,000,000. U. S. Geol. Ser. Misc. Invest. Map I-802-B, Reston, Virginia
1600:
O'Rourke, Joseph G.; Korenaga, Jun (2012-11-01). "Terrestrial planet evolution in the stagnant-lid regime: Size effects and the formation of self-destabilizing crust".
281: 255: 263: 236:
north-south asymmetry of the seasonal ice cap albedos". The atmosphere of Mars is currently "a nonlinear pump of water into the northern hemisphere of Mars."
250: 273: 256: 571:
Plaut, J. et al. 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf
284: 295: 282: 286: 271: 267: 259: 257: 301: 279: 278: 383: 287: 1151:
Andrews-Hanna, Jeffrey C.; Zuber, Maria T.; Banerdt, W. Bruce (2008-06-26). "The Borealis basin and the origin of the martian crustal dichotomy".
305: 332:
over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative
269: 1730:
Clancy, R. T.; Grossman, A. W.; et al. (Jul 1996). "Water Vapor Saturation at Low Altitudes around Mars Aphelion: A Key to Mars Climate?".
309: 285: 252: 293: 288: 1553:"Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations" 310: 292: 289: 268: 265: 258: 1041:
Andrews-Hanna, Jeffrey C.; Zuber, Maria T.; Banerdt, W. Bruce (2008). "The Borealis basin and the origin of the martian crustal dichotomy".
261: 1428:
Ballantyne, Harry A.; Jutzi, Martin; Golabek, Gregor J.; Mishra, Lokesh; Cheng, Kar Wai; Rozel, Antoine B.; Tackley, Paul J. (March 2023).
291: 264: 254: 67:. All three regions have been studied extensively because they contain landforms believed to have been produced by the movement of ice or 307: 306: 304: 303: 300: 280: 260: 249: 298: 272: 791:
Leone, Giovanni (2016-01-01). "Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes".
299: 276: 270: 266: 302: 311: 297: 296: 290: 277: 262: 190:
varies significantly between Northern and Southern hemispheres, both for reasons related and unrelated to the geographic dichotomy.
389: 2019: 1092:
Marinova, Margarita M.; Aharonson, Oded; Asphaug, Erik (2008-06-26). "Mega-impact formation of the Mars hemispheric dichotomy".
275: 274: 251: 2089: 745:
Leverington, David W. (2011-09-15). "A volcanic origin for the outflow channels of Mars: Key evidence and major implications".
114:
A single mega-impact would produce a very large, circular depression in the crust. The proposed depression has been named the
41:. It contains mesas, knobs, and flat-floored valleys having walls about a mile high. Around many of the mesas and knobs are 2228: 2213: 900: 645: 585: 556: 2687: 283: 1944: 661:
Leone, Giovanni (2014-05-01). "A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars".
2442: 2029: 223:
compared to Earth, and far thinner atmosphere in general, Southern winters and summers are wider ranging than on Earth.
2682: 1697: 2311: 1353:"Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy" 1304:"Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy" 1255:"Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy" 1210:
Wilhelms, Don E.; Squyres, Steven W. (1984-05-10). "The martian hemispheric dichotomy may be due to a giant impact".
869: 151: 1653:
Frey, H.; Schultz, R.A. (1988). "Large impact basins and the mega-impact origin for the crustal dichotomy of Mars".
1964: 294: 2004: 1841: 1798: 418: 37:
The boundary between the two regions is quite complex in places. One distinctive type of topography is called
2417: 337: 2647: 2402: 2397: 2306: 1914: 363: 2788: 2579: 2412: 2283: 2169: 2056: 1006:
McGill, G. E.; Squyres, S. W (1991). "Origin of the martian crustal dichotomy: Evaluating hypotheses".
2699: 2514: 2206: 2024: 1472: 52:
Many large valleys formed by the lava erupted from the volcanoes of Mars cut through the dichotomy.
2818: 2617: 2609: 2186: 115: 1949: 19: 1999: 1856: 2389: 2364: 2201: 2104: 2046: 1978: 1866: 398: 199:
higher dust content is to increase absorption of sunlight, increasing atmospheric temperature.
2584: 2564: 2437: 2248: 2196: 2191: 2174: 2051: 2036: 926:"Geologic map of the Terra Cimmeria-Nepenthes Mensae transitional zone, Mars – 1:1.45Million" 81: 1351:
Leone, Giovanni; Tackley, Paul J.; Gerya, Taras V.; May, Dave A.; Zhu, Guizhi (2014-12-28).
1302:
Leone, Giovanni; Tackley, Paul J.; Gerya, Taras V.; May, Dave A.; Zhu, Guizhi (2014-12-28).
1253:
Leone, Giovanni; Tackley, Paul J.; Gerya, Taras V.; May, Dave A.; Zhu, Guizhi (2014-12-28).
2599: 2594: 2381: 1739: 1662: 1619: 1564: 1523: 1484: 1364: 1315: 1266: 1219: 1160: 1101: 1050: 1015: 970: 835: 800: 754: 709: 670: 606: 521: 506: 342: 220: 8: 2802: 2775: 2731: 2544: 2154: 2134: 2099: 1851: 457: 427: 56: 42: 1743: 1666: 1623: 1568: 1527: 1488: 1368: 1319: 1270: 1223: 1164: 1105: 1054: 1019: 974: 839: 804: 758: 713: 674: 610: 525: 2472: 2181: 2094: 2084: 1833: 1791: 1635: 1609: 1512:"Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy" 1441: 1235: 1192: 1133: 1074: 906: 770: 232: 187: 146: 2704: 2641: 2492: 2482: 2369: 2347: 2325: 2263: 2253: 2238: 2164: 2149: 2109: 1954: 1703: 1693: 1582: 1382: 1333: 1284: 1184: 1176: 1125: 1117: 1066: 1027: 988: 910: 896: 812: 727: 682: 641: 618: 581: 552: 469: 463: 394: 375: 325: 140: 102: 64: 60: 1639: 774: 2709: 2634: 2291: 2273: 2258: 2218: 2129: 2041: 1747: 1670: 1627: 1572: 1531: 1492: 1451: 1410: 1372: 1323: 1274: 1239: 1227: 1196: 1168: 1137: 1109: 1078: 1058: 1023: 978: 937: 888: 843: 808: 766: 762: 717: 678: 614: 529: 451: 76: 942: 698:"Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars" 2741: 2694: 2352: 2243: 2139: 2124: 2119: 2071: 2061: 2014: 2009: 1919: 1904: 1879: 1846: 1816: 1631: 1456: 1429: 1414: 959:"Impact constraints on, and a chronology for, major events in early Mars history" 847: 439: 433: 68: 38: 925: 2652: 1974: 1929: 1884: 442: – Scientific study of the surface, crust, and interior of the planet Mars 72: 1577: 1552: 892: 2812: 2762: 2530: 2359: 2342: 2334: 2268: 2223: 2144: 2079: 1994: 1909: 1899: 1889: 1784: 1707: 1586: 1386: 1337: 1288: 1180: 1121: 992: 731: 475: 1674: 533: 2721: 2716: 2657: 2589: 2569: 2233: 1989: 1934: 1874: 1751: 1720:
De Pateris, I., Lissauer, J. Planetary Sciences Cambridge University Press
1188: 1129: 1070: 634: 448: – Persistent body of ice that is moving downhill under its own weight 46: 861: 2466: 2461: 1924: 1771: 1536: 1511: 1377: 1328: 1279: 983: 958: 722: 697: 1172: 1113: 1062: 597:
Squyres, S (1978). "Martian fretted terrain: Flow of erosional debris".
549:
Imagery & Creativity: Ethnoaesthetics and Art Worlds in the Americas
2574: 2559: 1894: 1824: 208: 1496: 1430:"Investigating the feasibility of an impact-induced Martian Dichotomy" 169:
However, the lack of plate tectonics on Mars weakens this hypothesis.
2726: 2662: 2296: 2159: 1231: 371: 333: 321: 162: 105:
of Mars with 20× elevation exaggeration showing the Martian dichotomy
1984: 580:
Carr, M. 2006. The Surface of Mars. Cambridge University Press.
2736: 2448: 2429: 2301: 1446: 1352: 1303: 1254: 367: 212: 158: 1614: 1939: 445: 123: 97: 316: 1690:
Mars: An Introduction to its Interior, Surface, and Atmosphere
216: 1729: 1427: 1807: 421: – Delineation and characterization of Martian regions 55:
The Martian dichotomy boundary includes the regions called
27: 1767: 1150: 1040: 1091: 466: – Fretted terrain in the Casius quadrangle on Mars 1776: 436: – Surface feature common to certain areas of Mars 423:
Pages displaying short descriptions of redirect targets
2786: 1551:
Wong, Teresa; Solomatov, Viatcheslav S (2015-07-02).
1399: 346:. Whites and browns indicate the highest elevations ( 1599: 1350: 1301: 1252: 226: 882: 633: 358:; greens and blues are lower elevations (down to 166:the end of the primordial bombardment is needed. 71:questioned as formed by volcanic erosion. In the 2810: 1209: 478: – Study of past and present water on Mars 248: 885:Encyclopedia of Planetary Landforms - Springer 793:Journal of Volcanology and Geothermal Research 663:Journal of Volcanology and Geothermal Research 202: 134: 1792: 1550: 1005: 172: 1509: 923: 207:The spin axis of Mars, as with many bodies, 1652: 883:Hargitai, Henrik; Kereszturi, Ákos (2015). 744: 695: 109: 1799: 1785: 1613: 1576: 1535: 1510:Roberts, James H.; Zhong, Shijie (2006). 1455: 1445: 1376: 1327: 1278: 982: 941: 721: 211:over millions of years. At present, the 963:Journal of Geophysical Research: Planets 702:Journal of Geophysical Research: Planets 244: 95: 18: 1557:Progress in Earth and Planetary Science 786: 784: 631: 596: 546: 239: 2811: 1687: 454: – Extraterrestrial bodies of ice 1780: 1470: 862:"HiRISE - Glacier? (ESP_018857_2225)" 825: 790: 660: 504: 956: 781: 696:Leverington, David W. (2004-10-01). 507:"Mars Fretted and chaotic terrains" 460: – Geological features on Mars 13: 30:is a sharp contrast, known as the 14: 2830: 1761: 632:Kieffer, Hugh H. (October 1992). 2796: 2769: 2758: 2757: 872:from the original on 2017-05-30. 813:10.1016/j.jvolgeores.2015.10.028 683:10.1016/j.jvolgeores.2014.01.011 315: 227:Hadley circulation and volatiles 26:The most conspicuous feature of 16:Geomorphological feature of Mars 1723: 1714: 1681: 1646: 1593: 1544: 1516:Journal of Geophysical Research 1503: 1477:Journal of Geophysical Research 1464: 1421: 1393: 1344: 1295: 1246: 1203: 1144: 1085: 1034: 999: 950: 917: 876: 854: 819: 738: 350:); followed by pinks and reds ( 96: 1692:. Cambridge University Press. 767:10.1016/j.geomorph.2011.05.022 689: 654: 625: 590: 574: 565: 540: 498: 489: 419:Areography (geography of Mars) 193: 1: 943:10.1080/17445647.2023.2227205 547:Whitten, Dorothea S. (1993). 483: 181: 2214:Recurring slope lineae (RSL) 1632:10.1016/j.icarus.2012.10.015 1457:10.1016/j.icarus.2022.115395 1415:10.1016/j.icarus.2011.06.012 1357:Geophysical Research Letters 1308:Geophysical Research Letters 1259:Geophysical Research Letters 1028:10.1016/0019-1035(91)90221-e 924:García-Arnay, Ángel (2023). 848:10.1016/j.icarus.2009.11.017 619:10.1016/0019-1035(78)90048-9 338:Mars Orbiter Laser Altimeter 7: 2648:Inspiration Mars Foundation 411: 215:nearly coincide with Mars' 203:Precession of the equinoxes 135:Endogenic origin hypothesis 45:that have been shown to be 10: 2835: 2683:Artificial objects on Mars 957:Frey, H. V. (2006-08-01). 173:Multiple impact hypothesis 138: 2752: 2700:List of films set on Mars 2675: 2626: 2608: 2552: 2543: 2523: 2515:C/2013 A1 (Siding Spring) 2507: 2428: 2380: 2333: 2324: 2312:Classical albedo features 2282: 2070: 1963: 1865: 1832: 1823: 1814: 1578:10.1186/s40645-015-0041-x 1473:"Martian plate tectonics" 893:10.1007/978-1-4614-3134-3 336:, based on data from the 326:global topography of Mars 157:igneous activity of late 91: 2618:List of missions to Mars 1806: 152:early bombardment phase. 147:plate tectonic processes 110:Single impact hypothesis 2776:Solar System portal 1675:10.1029/gl015i003p00229 534:10.1029/jb078i020p04073 217:aphelion and perihelion 2390:Solar eclipses on Mars 2249:"Swiss cheese" feature 2105:Concentric crater fill 1752:10.1006/icar.1996.0108 430: – Mensae on Mars 404: 106: 23: 472: – Martian plain 322:Interactive image map 313: 101: 82:extensional tectonics 22: 2590:Permanent settlement 1537:10.1029/2005je002668 1378:10.1002/2014GL062261 1363:(24): 2014GL062261. 1329:10.1002/2014GL062261 1314:(24): 2014GL062261. 1280:10.1002/2014GL062261 1265:(24): 2014GL062261. 984:10.1029/2005JE002449 723:10.1029/2004JE002311 343:Mars Global Surveyor 240:Interactive Mars map 145:It is believed that 43:lobate debris aprons 2732:Timekeeping on Mars 2409:Planetary transits 2394:Satellite transits 2307:Observation history 2155:Lobate debris apron 1744:1996Icar..122...36C 1688:Barlow, N. (2008). 1667:1988GeoRL..15..229F 1624:2012Icar..221.1043O 1569:2015PEPS....2...18W 1528:2006JGRE..111.6013R 1489:1994JGR....99.5639S 1369:2014GeoRL..41.8736L 1320:2014GeoRL..41.8736L 1271:2014GeoRL..41.8736L 1224:1984Natur.309..138W 1173:10.1038/nature07011 1165:2008Natur.453.1212A 1159:(7199): 1212–1215. 1114:10.1038/nature07070 1106:2008Natur.453.1216M 1100:(7199): 1216–1219. 1063:10.1038/nature07011 1055:2008Natur.453.1212A 1049:(7199): 1212–1215. 1020:1991Icar...93..386M 975:2006JGRE..111.8S91F 840:2010Icar..207..186B 805:2016JVGR..309...78L 759:2011Geomo.132...51L 714:2004JGRE..10910011L 675:2014JVGR..277....1L 611:1978Icar...34..600S 526:1973JGR....78.4073S 458:Lobate debris apron 428:Deuteronilus Mensae 57:Deuteronilus Mensae 1655:Geophys. Res. Lett 405: 233:Hadley circulation 188:atmosphere of Mars 107: 24: 2784: 2783: 2737:Sol (day on Mars) 2705:Martian scientist 2688:Memorials on Mars 2671: 2670: 2642:The Case for Mars 2539: 2538: 2320: 2319: 2254:Terrain softening 2219:Ring mold craters 2187:North Polar Basin 2110:Dark slope streak 1955:Vastitas Borealis 1852:Dust devil tracks 1497:10.1029/94JE00216 1218:(5964): 138–140. 902:978-1-4614-3133-6 647:978-0-8165-1257-7 586:978-0-521-87201-0 558:978-0-8165-1247-8 520:(20): 4073–4083. 505:Sharp, R (1973). 470:Protonilus Mensae 464:Nilosyrtis Mensae 390:Mars Memorial map 348:+12 to +8 km 141:Tectonics of Mars 65:Nilosyrtis Mensae 61:Protonilus Mensae 32:Martian dichotomy 2826: 2801: 2800: 2799: 2792: 2774: 2773: 2772: 2761: 2760: 2635:The Mars Project 2550: 2549: 2498: 2488: 2478: 2456: 2454: 2453: 2331: 2330: 2192:Ocean hypothesis 2042:Outflow channels 1830: 1829: 1801: 1794: 1787: 1778: 1777: 1756: 1755: 1727: 1721: 1718: 1712: 1711: 1685: 1679: 1678: 1650: 1644: 1643: 1617: 1608:(2): 1043–1060. 1597: 1591: 1590: 1580: 1548: 1542: 1541: 1539: 1507: 1501: 1500: 1468: 1462: 1461: 1459: 1449: 1425: 1419: 1418: 1397: 1391: 1390: 1380: 1348: 1342: 1341: 1331: 1299: 1293: 1292: 1282: 1250: 1244: 1243: 1232:10.1038/309138a0 1207: 1201: 1200: 1148: 1142: 1141: 1089: 1083: 1082: 1038: 1032: 1031: 1003: 997: 996: 986: 954: 948: 947: 945: 921: 915: 914: 880: 874: 873: 866:www.uahirise.org 858: 852: 851: 823: 817: 816: 788: 779: 778: 742: 736: 735: 725: 693: 687: 686: 658: 652: 651: 639: 629: 623: 622: 594: 588: 578: 572: 569: 563: 562: 544: 538: 537: 511: 502: 496: 493: 452:Glaciers on Mars 424: 402: 361: 357: 353: 352:+8 to +3 km 349: 331: 320: 319: 318: 247: 100: 77:Nepenthes Mensae 2834: 2833: 2829: 2828: 2827: 2825: 2824: 2823: 2819:Geology of Mars 2809: 2808: 2807: 2797: 2795: 2787: 2785: 2780: 2770: 2768: 2748: 2742:Darian calendar 2667: 2622: 2604: 2535: 2519: 2503: 2496: 2491: 2486: 2481: 2476: 2471: 2451: 2450: 2447: 2424: 2376: 2370:Voltaire crater 2348:Stickney crater 2316: 2278: 2120:Fretted terrain 2066: 1966: 1959: 1920:Sinus Meridiani 1905:Planum Australe 1880:Cerberus (Mars) 1861: 1819: 1817:Outline of Mars 1810: 1805: 1764: 1759: 1728: 1724: 1719: 1715: 1700: 1686: 1682: 1651: 1647: 1598: 1594: 1549: 1545: 1508: 1504: 1469: 1465: 1426: 1422: 1398: 1394: 1349: 1345: 1300: 1296: 1251: 1247: 1208: 1204: 1149: 1145: 1090: 1086: 1039: 1035: 1004: 1000: 955: 951: 930:Journal of Maps 922: 918: 903: 881: 877: 860: 859: 855: 824: 820: 789: 782: 743: 739: 708:(E10): E10011. 694: 690: 659: 655: 648: 630: 626: 595: 591: 579: 575: 570: 566: 559: 545: 541: 514:J. Geophys. Res 509: 503: 499: 494: 490: 486: 481: 440:Geology of Mars 434:Fretted terrain 422: 414: 408: 406: 403: 384:Mars Rovers map 380: 359: 355: 351: 347: 329: 314: 312: 245: 242: 229: 205: 196: 184: 175: 143: 137: 112: 94: 69:paleoshorelines 39:fretted terrain 17: 12: 11: 5: 2832: 2822: 2821: 2806: 2805: 2782: 2781: 2779: 2778: 2765: 2753: 2750: 2749: 2747: 2746: 2745: 2744: 2739: 2729: 2724: 2719: 2714: 2713: 2712: 2707: 2702: 2692: 2691: 2690: 2679: 2677: 2673: 2672: 2669: 2668: 2666: 2665: 2660: 2655: 2653:Mars Institute 2650: 2645: 2638: 2630: 2628: 2624: 2623: 2621: 2620: 2614: 2612: 2606: 2605: 2603: 2602: 2597: 2592: 2587: 2582: 2577: 2572: 2567: 2562: 2556: 2554: 2547: 2541: 2540: 2537: 2536: 2534: 2533: 2527: 2525: 2521: 2520: 2518: 2517: 2511: 2509: 2505: 2504: 2502: 2501: 2500: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2459: 2458: 2457: 2440: 2434: 2432: 2426: 2425: 2423: 2422: 2421: 2420: 2415: 2407: 2406: 2405: 2400: 2392: 2386: 2384: 2378: 2377: 2375: 2374: 2373: 2372: 2367: 2357: 2356: 2355: 2350: 2339: 2337: 2328: 2322: 2321: 2318: 2317: 2315: 2314: 2309: 2304: 2299: 2294: 2288: 2286: 2280: 2279: 2277: 2276: 2271: 2266: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2229:Seasonal flows 2226: 2224:Rootless cones 2221: 2216: 2211: 2210: 2209: 2199: 2194: 2189: 2184: 2179: 2178: 2177: 2172: 2162: 2157: 2152: 2147: 2142: 2137: 2132: 2127: 2122: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2076: 2074: 2068: 2067: 2065: 2064: 2059: 2054: 2052:Valley network 2049: 2044: 2039: 2037:Observed rocks 2034: 2033: 2032: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1971: 1969: 1961: 1960: 1958: 1957: 1952: 1950:Ultimi Scopuli 1947: 1942: 1937: 1932: 1930:Terra Cimmeria 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1871: 1869: 1863: 1862: 1860: 1859: 1854: 1849: 1844: 1838: 1836: 1827: 1821: 1820: 1815: 1812: 1811: 1804: 1803: 1796: 1789: 1781: 1775: 1774: 1763: 1762:External links 1760: 1758: 1757: 1722: 1713: 1699:978-1107644878 1698: 1680: 1661:(3): 229–232. 1645: 1592: 1543: 1522:(E6): E06013. 1502: 1471:Sleep (1994). 1463: 1420: 1409:(1): 346–357. 1392: 1343: 1294: 1245: 1202: 1143: 1084: 1033: 1014:(2): 386–393. 998: 969:(E8): E08S91. 949: 916: 901: 875: 853: 834:(1): 186–209. 818: 780: 753:(3–4): 51–75. 737: 688: 653: 646: 624: 605:(3): 600–613. 589: 573: 564: 557: 539: 497: 487: 485: 482: 480: 479: 473: 467: 461: 455: 449: 443: 437: 431: 425: 415: 413: 410: 379: 243: 241: 238: 228: 225: 204: 201: 195: 192: 183: 180: 174: 171: 136: 133: 116:Borealis Basin 111: 108: 93: 90: 73:Terra Cimmeria 15: 9: 6: 4: 3: 2: 2831: 2820: 2817: 2816: 2814: 2804: 2794: 2793: 2790: 2777: 2766: 2764: 2755: 2754: 2751: 2743: 2740: 2738: 2735: 2734: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2711: 2708: 2706: 2703: 2701: 2698: 2697: 2696: 2693: 2689: 2686: 2685: 2684: 2681: 2680: 2678: 2674: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2643: 2639: 2637: 2636: 2632: 2631: 2629: 2625: 2619: 2616: 2615: 2613: 2611: 2607: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2585:Human mission 2583: 2581: 2580:Sample return 2578: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2557: 2555: 2551: 2548: 2546: 2542: 2532: 2529: 2528: 2526: 2522: 2516: 2513: 2512: 2510: 2506: 2497: 2490: 2487: 2480: 2477: 2470: 2468: 2465: 2464: 2463: 2460: 2455: 2446: 2445: 2444: 2443:Mars-crossers 2441: 2439: 2436: 2435: 2433: 2431: 2427: 2419: 2416: 2414: 2411: 2410: 2408: 2404: 2401: 2399: 2396: 2395: 2393: 2391: 2388: 2387: 2385: 2383: 2379: 2371: 2368: 2366: 2363: 2362: 2361: 2358: 2354: 2351: 2349: 2346: 2345: 2344: 2341: 2340: 2338: 2336: 2332: 2329: 2327: 2323: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2289: 2287: 2285: 2281: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2259:Tharsis bulge 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2208: 2205: 2204: 2203: 2200: 2198: 2197:Ore resources 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2176: 2173: 2171: 2168: 2167: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2090:Chaos terrain 2088: 2086: 2083: 2081: 2080:Brain terrain 2078: 2077: 2075: 2073: 2069: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2031: 2028: 2027: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1995:Chaos terrain 1993: 1991: 1988: 1986: 1983: 1980: 1976: 1973: 1972: 1970: 1968: 1962: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1910:Planum Boreum 1908: 1906: 1903: 1901: 1900:Olympia Undae 1898: 1896: 1893: 1891: 1890:Eridania Lake 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1872: 1870: 1868: 1864: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1839: 1837: 1835: 1831: 1828: 1826: 1822: 1818: 1813: 1809: 1802: 1797: 1795: 1790: 1788: 1783: 1782: 1779: 1773: 1769: 1766: 1765: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1717: 1709: 1705: 1701: 1695: 1691: 1684: 1676: 1672: 1668: 1664: 1660: 1656: 1649: 1641: 1637: 1633: 1629: 1625: 1621: 1616: 1611: 1607: 1603: 1596: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1538: 1533: 1529: 1525: 1521: 1517: 1513: 1506: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1467: 1458: 1453: 1448: 1443: 1439: 1435: 1431: 1424: 1416: 1412: 1408: 1404: 1396: 1388: 1384: 1379: 1374: 1370: 1366: 1362: 1358: 1354: 1347: 1339: 1335: 1330: 1325: 1321: 1317: 1313: 1309: 1305: 1298: 1290: 1286: 1281: 1276: 1272: 1268: 1264: 1260: 1256: 1249: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1147: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1029: 1025: 1021: 1017: 1013: 1009: 1002: 994: 990: 985: 980: 976: 972: 968: 964: 960: 953: 944: 939: 935: 931: 927: 920: 912: 908: 904: 898: 894: 890: 886: 879: 871: 867: 863: 857: 849: 845: 841: 837: 833: 829: 822: 814: 810: 806: 802: 798: 794: 787: 785: 776: 772: 768: 764: 760: 756: 752: 748: 747:Geomorphology 741: 733: 729: 724: 719: 715: 711: 707: 703: 699: 692: 684: 680: 676: 672: 668: 664: 657: 649: 643: 638: 637: 628: 620: 616: 612: 608: 604: 600: 593: 587: 583: 577: 568: 560: 554: 550: 543: 535: 531: 527: 523: 519: 515: 508: 501: 492: 488: 477: 476:Water on Mars 474: 471: 468: 465: 462: 459: 456: 453: 450: 447: 444: 441: 438: 435: 432: 429: 426: 420: 417: 416: 409: 400: 396: 392: 391: 386: 385: 377: 376:Polar regions 373: 369: 365: 354:); yellow is 345: 344: 339: 335: 327: 323: 237: 234: 224: 222: 218: 214: 210: 200: 191: 189: 179: 170: 167: 164: 160: 154: 153: 148: 142: 132: 128: 125: 119: 117: 104: 99: 89: 85: 83: 78: 74: 70: 66: 62: 58: 53: 50: 48: 47:rock glaciers 44: 40: 35: 33: 29: 21: 2803:Solar System 2722:Life on Mars 2717:Flag of Mars 2658:Mars Society 2640: 2633: 2600:Terraforming 2595:Colonization 2365:Swift crater 2207:polar wander 2114: 1935:Terra Sabaea 1875:Arabia Terra 1738:(1): 36–62. 1735: 1731: 1725: 1716: 1689: 1683: 1658: 1654: 1648: 1605: 1601: 1595: 1560: 1556: 1546: 1519: 1515: 1505: 1483:(E3): 5639. 1480: 1476: 1466: 1437: 1433: 1423: 1406: 1402: 1395: 1360: 1356: 1346: 1311: 1307: 1297: 1262: 1258: 1248: 1215: 1211: 1205: 1156: 1152: 1146: 1097: 1093: 1087: 1046: 1042: 1036: 1011: 1007: 1001: 966: 962: 952: 933: 929: 919: 884: 878: 865: 856: 831: 827: 821: 796: 792: 750: 746: 740: 705: 701: 691: 666: 662: 656: 635: 627: 602: 598: 592: 576: 567: 548: 542: 517: 513: 500: 491: 407: 388: 382: 341: 230: 221:eccentricity 206: 197: 185: 176: 168: 155: 144: 129: 120: 113: 103:STL 3D model 86: 54: 51: 36: 31: 25: 2545:Exploration 2467:5261 Eureka 2135:Groundwater 2100:Composition 1925:Tempe Terra 1915:Quadrangles 1842:Circulation 1772:Google Maps 1768:Google Mars 381:(See also: 378:are noted. 194:Dust storms 2202:Polar caps 2182:Mud cracks 2165:Meteorites 2150:Lava tubes 2085:Carbonates 2020:Labyrinthi 1895:Iani Chaos 1834:Atmosphere 1447:2212.02466 1440:: 115395. 636:Mars: Maps 484:References 360:−8 km 340:on NASA's 334:elevations 330:your mouse 182:Atmosphere 139:See also: 2727:Sub-Earth 2710:Mythology 2663:Mars race 2430:Asteroids 2326:Astronomy 2297:Hesperian 2292:Amazonian 2264:Volcanism 2239:Spherules 2160:Marsquake 2115:Dichotomy 2030:by height 2025:Mountains 1825:Geography 1708:232551466 1615:1210.3838 1587:2197-4284 1563:(1): 18. 1387:1944-8007 1338:1944-8007 1289:1944-8007 1181:0028-0836 1122:0028-0836 993:2156-2202 911:132406061 799:: 78–95. 732:2156-2202 372:longitude 356:0 km 213:solstices 209:precesses 163:Hesperian 161:to early 2813:Category 2763:Category 2627:Advocacy 2610:Missions 2553:Concepts 2382:Transits 2353:Monolith 2302:Noachian 2274:Yardangs 2170:on Earth 2130:Glaciers 1975:"Canals" 1967:features 1965:Physical 1640:19823214 1189:18580944 1130:18580945 1071:18580944 870:Archived 775:26520111 412:See also 368:latitude 328:. Hover 159:Noachian 2695:Fiction 2676:Related 2570:Landing 2565:Orbiter 2524:General 2493:2007 NS 2483:1999 UJ 2473:1998 VF 2462:Trojans 2449:2007 WD 2438:Impacts 2418:Mercury 2284:History 2244:Surface 2175:on Mars 2140:Gullies 2125:Geysers 2072:Geology 2062:Gravity 2057:Valleys 2010:Gullies 2000:Craters 1990:Catenae 1985:Canyons 1940:Tharsis 1885:Cydonia 1867:Regions 1857:Methane 1847:Climate 1740:Bibcode 1663:Bibcode 1620:Bibcode 1565:Bibcode 1524:Bibcode 1485:Bibcode 1365:Bibcode 1316:Bibcode 1267:Bibcode 1240:4319084 1220:Bibcode 1197:1981671 1161:Bibcode 1138:4328610 1102:Bibcode 1079:1981671 1051:Bibcode 1016:Bibcode 971:Bibcode 836:Bibcode 801:Bibcode 755:Bibcode 710:Bibcode 671:Bibcode 669:: 1–8. 607:Bibcode 522:Bibcode 446:Glacier 399:discuss 324:of the 124:Tharsis 2789:Portal 2767:  2756:  2508:Comets 2403:Deimos 2398:Phobos 2360:Deimos 2343:Phobos 2047:Plains 2015:Mensae 2005:Fossae 1732:Icarus 1706:  1696:  1638:  1602:Icarus 1585:  1434:Icarus 1403:Icarus 1385:  1336:  1287:  1238:  1212:Nature 1195:  1187:  1179:  1153:Nature 1136:  1128:  1120:  1094:Nature 1077:  1069:  1043:Nature 1008:Icarus 991:  909:  899:  828:Icarus 773:  730:  644:  599:Icarus 584:  555:  92:Origin 63:, and 2575:Rover 2560:Flyby 2531:Orbit 2413:Earth 2335:Moons 2269:Water 2145:Lakes 2095:Color 1945:Undae 1636:S2CID 1610:arXiv 1442:arXiv 1236:S2CID 1193:S2CID 1134:S2CID 1075:S2CID 936:(1). 907:S2CID 771:S2CID 510:(PDF) 2234:Soil 1979:list 1808:Mars 1704:OCLC 1694:ISBN 1583:ISSN 1383:ISSN 1334:ISSN 1285:ISSN 1185:PMID 1177:ISSN 1126:PMID 1118:ISSN 1067:PMID 989:ISSN 897:ISBN 728:ISSN 642:ISBN 582:ISBN 553:ISBN 395:view 387:and 370:and 366:are 364:Axes 231:The 186:The 28:Mars 1748:doi 1736:122 1671:doi 1628:doi 1606:221 1573:doi 1532:doi 1520:111 1493:doi 1452:doi 1438:392 1411:doi 1407:215 1373:doi 1324:doi 1275:doi 1228:doi 1216:309 1169:doi 1157:453 1110:doi 1098:453 1059:doi 1047:453 1024:doi 979:doi 967:111 938:doi 889:doi 844:doi 832:207 809:doi 797:309 763:doi 751:132 718:doi 706:109 679:doi 667:277 615:doi 530:doi 393:) ( 362:). 2815:: 2475:31 1770:– 1746:. 1734:. 1702:. 1669:. 1659:15 1657:. 1634:. 1626:. 1618:. 1604:. 1581:. 1571:. 1559:. 1555:. 1530:. 1518:. 1514:. 1491:. 1481:99 1479:. 1475:. 1450:. 1436:. 1432:. 1405:. 1381:. 1371:. 1361:41 1359:. 1355:. 1332:. 1322:. 1312:41 1310:. 1306:. 1283:. 1273:. 1263:41 1261:. 1257:. 1234:. 1226:. 1214:. 1191:. 1183:. 1175:. 1167:. 1155:. 1132:. 1124:. 1116:. 1108:. 1096:. 1073:. 1065:. 1057:. 1045:. 1022:. 1012:93 1010:. 987:. 977:. 965:. 961:. 934:19 932:. 928:. 905:. 895:. 887:. 868:. 864:. 842:. 830:. 807:. 795:. 783:^ 769:. 761:. 749:. 726:. 716:. 704:. 700:. 677:. 665:. 640:. 613:. 603:34 601:. 551:. 528:. 518:78 516:. 512:. 397:• 374:; 84:. 59:, 49:. 2791:: 2495:2 2485:7 2452:5 1981:) 1977:( 1800:e 1793:t 1786:v 1754:. 1750:: 1742:: 1710:. 1677:. 1673:: 1665:: 1642:. 1630:: 1622:: 1612:: 1589:. 1575:: 1567:: 1561:2 1540:. 1534:: 1526:: 1499:. 1495:: 1487:: 1460:. 1454:: 1444:: 1417:. 1413:: 1389:. 1375:: 1367:: 1340:. 1326:: 1318:: 1291:. 1277:: 1269:: 1242:. 1230:: 1222:: 1199:. 1171:: 1163:: 1140:. 1112:: 1104:: 1081:. 1061:: 1053:: 1030:. 1026:: 1018:: 995:. 981:: 973:: 946:. 940:: 913:. 891:: 850:. 846:: 838:: 815:. 811:: 803:: 777:. 765:: 757:: 734:. 720:: 712:: 685:. 681:: 673:: 650:. 621:. 617:: 609:: 561:. 536:. 532:: 524:: 401:) 75:–

Index


Mars
fretted terrain
lobate debris aprons
rock glaciers
Deuteronilus Mensae
Protonilus Mensae
Nilosyrtis Mensae
paleoshorelines
Terra Cimmeria
Nepenthes Mensae
extensional tectonics

STL 3D model
Borealis Basin
Tharsis
Tectonics of Mars
plate tectonic processes
early bombardment phase.
Noachian
Hesperian
atmosphere of Mars
precesses
solstices
aphelion and perihelion
eccentricity
Hadley circulation
Interactive image map
global topography of Mars
elevations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.