Knowledge

Mathematics of paper folding

Source đź“ť

1414:. A universality result defines the bounds of possibility given a particular model of folding. For example, a large enough piece of paper can be folded into any tree-shaped origami base, polygonal silhouette, and polyhedral surface. When universality results are not attainable, efficient decision algorithms can be used to test whether an object is foldable in polynomial time. Certain paper-folding problems do not have efficient algorithms. Computational intractability results show that there are no such polynomial-time algorithms that currently exist to solve certain folding problems. For example, it is NP-hard to evaluate whether a given crease pattern folds into any flat origami. 3883: 3320: 152: 1188: 85: 417:, but can be solved using only a few paper folds. Paper fold strips can be constructed to solve equations up to degree 4. The Huzita–Justin axioms or Huzita–Hatori axioms are an important contribution to this field of study. These describe what can be constructed using a sequence of creases with at most two point or line alignments at once. Complete methods for solving all equations up to degree 4 by applying methods satisfying these axioms are discussed in detail in 4953: 190: 46:
folding of bases. Computational origami results either address origami design or origami foldability. In origami design problems, the goal is to design an object that can be folded out of paper given a specific target configuration. In origami foldability problems, the goal is to fold something using the creases of an initial configuration. Results in origami design problems have been more accessible than in origami foldability problems.
1156: 484: 316: 20: 1427: 122: 308: 282:
In 2003, Jeremy Gibbons, a researcher from the University of Oxford, described a style of functional programming in terms of origami. He coined this paradigm as "origami programming." He characterizes fold and unfolds as natural patterns of computation over recursive datatypes that can be framed in
45:
Computational origami is a recent branch of computer science that is concerned with studying algorithms that solve paper-folding problems. The field of computational origami has also grown significantly since its inception in the 1990s with Robert Lang's TreeMaker algorithm to assist in the precise
1485:
In 2014, researchers at the Massachusetts Institute of Technology, Harvard University, and the Wyss Institute for Biologically Inspired Engineering published a method for building self-folding machines and credited advances in computational origami for the project's success. Their origami-inspired
1417:
In 2017, Erik Demaine of the Massachusetts Institute of Technology and Tomohiro Tachi of the University of Tokyo published a new universal algorithm that generates practical paper-folding patterns to produce any 3-D structure. The new algorithm built upon work that they presented in their paper in
1167:
can be solved using origami. This construction is due to Peter Messer: A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P is on the top edge and the crease mark on the edge meets the other crease mark Q. The
139:
and Masamori Sakamaki demonstrated a novel map-folding technique whereby the folds are made in a prescribed parallelogram pattern, which allows the map to be expandable without any right-angle folds in the conventional manner. Their pattern allows the fold lines to be interdependent, and hence the
1500:
Applications of computational origami have been featured by various production companies and commercials. Lang famously worked with Toyota Avalon to feature an animated origami sequence, Mitsubishi Endeavor to create a world entirely out of origami figures, and McDonald's to form numerous origami
431:
As a result of origami study through the application of geometric principles, methods such as Haga's theorem have allowed paperfolders to accurately fold the side of a square into thirds, fifths, sevenths, and ninths. Other theorems and methods have allowed paperfolders to get other shapes from a
1470:
Computational origami has contributed to applications in robotics, engineering, biotechnology & medicine, industrial design. Applications for origami have also been developed in the study of programming languages and programming paradigms, particular in the setting of functional programming.
1198:
is another of the classical problems that cannot be solved using a compass and unmarked ruler but can be solved using origami. This construction, which was reported in 1980, is due to Hisashi Abe. The angle CAB is trisected by making folds PP' and QQ' parallel to the base with QQ' halfway in
491:
The side of a square can be divided at an arbitrary rational fraction in a variety of ways. Haga's theorems say that a particular set of constructions can be used for such divisions. Surprisingly few folds are necessary to generate large odd fractions. For instance
1418:
1999 that first introduced a universal algorithm for folding origami shapes that guarantees a minimum number of seams. The algorithm will be included in Origamizer, a free software for generating origami crease patterns that was first released by Tachi in 2008.
174:
in 1989. The first International Meeting of Origami Science and Technology (now known as the International Conference on Origami in Science, Math, and Education) was held in 1989 in Ferrara, Italy. At this meeting, a construction was given by Scimemi for the
278:
of spherical optics. In the same paper, Alperin showed a construction for a regular heptagon. In 2004, was proven algorithmically the fold pattern for a regular heptagon. Bisections and trisections were used by Alperin in 2005 for the same construction.
293:
In 2009, Alperin and Lang extended the theoretical origami to rational equations of arbitrary degree, with the concept of manifold creases. This work was a formal extension of Lang's unpublished 2004 demonstration of angle quintisection.
365:
at all points on its surface, and only folds naturally along lines of zero curvature. Curved surfaces that can't be flattened can be produced using a non-folded crease in the paper, as is easily done with wet paper or a fingernail.
1434:
There are several software design tools that are used for origami design. Users specify the desired shape or functionality and the software tool constructs the fold pattern and/or 2D or 3D model of the result. Researchers at the
1356:, in December 2001. In January 2002, she folded a 4,000-foot-long (1,200 m) piece of toilet paper twelve times in the same direction, debunking a long-standing myth that paper cannot be folded in half more than eight times. 323:
The construction of origami models is sometimes shown as crease patterns. The major question about such crease patterns is whether a given crease pattern can be folded to a flat model, and if so, how to fold them; this is an
1379:
Computational origami is a branch of computer science that is concerned with studying algorithms for solving paper-folding problems. In the early 1990s, origamists participated in a series of origami contests called the
1363:
asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained.
1199:
between. Then point P is folded over to lie on line AC and at the same time point A is made to lie on line QQ' at A'. The angle A'AB is one third of the original angle CAB. This is because PAQ, A'AQ and A'AR are three
215:
In late 2001 and early 2002, Britney Gallivan proved the minimum length of paper necessary to fold it in half a certain number of times and folded a 4,000-foot-long (1,200 m) piece of toilet paper twelve times.
1384:
in which artists attempted to out-compete their peers by adding complexity to their origami bugs. Most competitors in the contest belonged to the Origami Detectives, a group of acclaimed Japanese artists.
1405:
Paper-folding problems are classified as either origami design or origami foldability problems. There are predominantly three current categories of computational origami research: universality results,
1330: 1142: 1455:
have developed and posted publicly available tools in computational origami. TreeMaker, ReferenceFinder, OrigamiDraw, and Origamizer are among the tools that have been used in origami design.
144:
can be packed into a very compact shape. In 1985 Miura reported a method of packaging and deployment of large membranes in outer space, and as early as 2012 this technique had been applied to
2136:
Robu, Judit; Ida, Tetsuo; Ţepeneu, Dorin; Takahashi, Hidekazu; Buchberger, Bruno (2006). "Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness".
140:
map can be unpacked in one motion by pulling on its opposite ends, and likewise folded by pushing the two ends together. No unduly complicated series of movements are required, and folded
1474:
Robert Lang participated in a project with researchers at EASi Engineering in Germany to develop automotive airbag folding designs. In the mid-2000s, Lang worked with researchers at the
584: 835: 4860: 784: 38:
study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the use of paper folds to solve up-to cubic
741: 697: 1486:
robot was reported to fold itself in 4 minutes and walk away without human intervention, which demonstrated the potential for autonomous self-controlled assembly in robotics.
1397:, also participated in the contest. The contest helped initialize a collective interest in developing universal models and tools to aid in origami design and foldability. 290:, a game popularized in British television in which competitors used a list of source numbers to build an arithmetic expression as close to the target number as possible. 205:
showed that the problem of assigning a crease pattern of mountain and valley folds in order to produce a flat origami structure starting from a flat sheet of paper is
4101: 1244:
The maximum number of times an incompressible material can be folded has been derived. With each fold a certain amount of paper is lost to potential folding. The
656: 269: 249: 3352: 111:
In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms.
1430:
Animation of folds to make a Samurai helmet, also called a kabuto. (On a laptop computer, Julia and GLMakie generated the 66 second .mp4 video in 10 seconds.)
5033: 2277: 3882: 1230:
is the problem of whether a square or rectangle of paper can be folded so the perimeter of the flat figure is greater than that of the original square.
402: 346:
It follows from this that every vertex has an even number of creases, and therefore also the regions between the creases can be colored with two colors.
3231: 3210: 4892: 81:
published "Houdini's Paper Magic," which described origami techniques that drew informally from mathematical approaches that were later formalized.
167: 1233:
The placement of a point on a curved fold in the pattern may require the solution of elliptic integrals. Curved origami allows the paper to form
370: 198: 1823: 4887: 4061: 3762: 2584: 374: 202: 4041: 1241:
origami is a technique evolved by Yoshizawa that allows curved folds to create an even greater range of shapes of higher order complexity.
2292: 3345: 1458:
There are other software solutions associated with building computational origami models using non-paper materials such as Cadnano in
5049: 5014: 1913:
Benedetto Scimemi, Regular Heptagon by Folding, Proceedings of Origami, Science and Technology, ed. H. Huzita., Ferrara, Italy, 1990
4991: 2899: 2642: 5024: 70:
which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the
1475: 1172: 132:
In 1980 a construction was reported which enabled an angle to be trisected. Trisections are impossible under Euclidean rules.
3338: 3201: 3179: 3131: 2626: 2515: 2462: 2406: 2153: 1743: 1703: 1436: 1251: 1203:
triangles. Aligning the two points on the two lines is another neusis construction as in the solution to doubling the cube.
354:
or Kawasaki-Justin theorem: at any vertex, the sum of all the odd angles (see image) adds up to 180 degrees, as do the even.
4672: 3587: 1652: 66: 4832: 3608: 3113: 1081: 1900:
Justin, Jacques, "Resolution par le pliage de l'equation du troisieme degre et applications geometriques", reprinted in
4846: 4744: 3508: 1394: 1352:
must be expressed in the same units, such as inches. This result was derived by Britney Gallivan, a high schooler from
5029: 3755: 3289: 2319: 2120: 2044: 1658: 1200: 74:
system. Row demonstrated an approximate trisection of angles and implied construction of a cube root was impossible.
4196: 1482:, particularly its large mirrors, to fit into a rocket using principles and algorithms from computational origami. 1444: 212:
In 1999, a theorem due to Haga provided constructions used to divide the side of a square into rational fractions.
452:. Methods for folding most regular polygons up to and including the regular 19-gon have been developed. A regular 4331: 2825: 1411: 4907: 4877: 4317: 3719: 3649: 2440: 2800: 5080: 3446: 3415: 2774: 1530: 1367:
A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements. The
531: 406: 115: 3280: 2422: 790: 5075: 5009: 4984: 4957: 4770: 4432: 4282: 4251: 4146: 4093: 3907: 3748: 3594: 3050: 2839: 2444: 383: 1784: 1562: 747: 369:
Assigning a crease pattern mountain and valley folds in order to produce a flat model has been proven by
703: 3949: 3934: 3644: 3310: 2359: 1479: 662: 145: 93: 502:
can be generated with three folds; first halve a side, then use Haga's theorem twice to produce first
5019: 4289: 3850: 1171:
The edge with the crease mark is considered a marked straightedge, something which is not allowed in
1827: 4882: 4303: 3679: 3615: 3385: 3260: 2064: 1558: 598: 414: 396: 286:
In 2005, principles and concepts from mathematical and computational origami were applied to solve
224: 101: 26:
for a 2×2 grid of squares: there are eight different ways to fold such a map along its creases
3271: 2924: 2232:
Bird, Richard; Mu, Shin-Cheng (September 2005). "Countdown: A case study in origami programming".
2215: 4977: 4606: 4296: 3939: 3820: 3521: 2580: 2389:
The Proceedings of the Third International Meeting of Origami Science, Mathematics, and Education
2036: 1693: 4897: 4738: 4634: 4015: 3405: 2736: 2563: 1947:
Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996)
1520: 1407: 1227: 228: 166:
The first complete statement of the seven axioms of origami by French folder and mathematician
4969: 4796: 2617:
Michael J Winckler; Kathrin D Wold; Hans Georg Bock (2011). "Hands-on Geometry with Origami".
2339: 1972: 5044: 4778: 4752: 4600: 4579: 4421: 4338: 4166: 4121: 4047: 3998: 3805: 3390: 2790:
Schneider, Jonathan (December 10, 2004). "Flat-Foldability of Origami Crease Patterns" (PDF).
2271: 2060: 1639:
Origami USA: We are the American national society devoted to origami, the art of paperfolding
1448: 351: 220: 1611: 1223:
is a rigid fold that has been used to deploy large solar panel arrays for space satellites.
4703: 4574: 4455: 4068: 3565: 3395: 3375: 2999: 2472: 1954: 1589: 1360: 340: 275: 3074: 8: 4928: 4853: 4592: 4223: 3842: 3771: 3532: 3513: 2854: 2668: 2540: 1882: 1581: 1452: 1390: 1234: 1176: 4244: 3299: 3003: 2646: 1874: 4933: 4790: 4620: 4416: 4406: 4259: 4131: 3986: 3694: 3517: 3492: 3324: 3158: 3031: 2715: 2707: 2532: 2392: 2259: 2196: 2178: 1593: 641: 362: 254: 234: 55: 4126: 2987: 2962: 2085: 2068: 4654: 4628: 4510: 4171: 3601: 3472: 3319: 3197: 3175: 3141:
Geretschlager, Robert (1995). "Euclidean Constructions and the Geometry of Origami".
3127: 3023: 3015: 2833: 2719: 2622: 2511: 2505: 2458: 2402: 2315: 2251: 2149: 2116: 2040: 2002: 1739: 1699: 1164: 419: 410: 186:
and others first attempted to write computer code that would solve origami problems.
4642: 4185: 3035: 2304:
Origami: Fourth International Meeting of Origami Science, Mathematics, and Education
2263: 151: 5070: 4804: 4495: 4445: 4391: 4346: 4275: 4075: 3855: 3714: 3674: 3639: 3570: 3542: 3527: 3410: 3243: 3222: 3150: 3119: 3007: 2703: 2699: 2487: 2450: 2307: 2241: 2188: 2141: 2108: 2080: 2069:"Modelling the folding of paper into three dimensions using affine transformations" 1841: 1597: 1577: 1515: 1195: 449: 445: 176: 136: 4500: 4325: 4311: 2942: 2338:
Bertschinger, Thomas H.; Slote, Joseph; Spencer, Olivia Claire; Vinitsky, Samuel.
170:
was written in 1986, but were overlooked until the first six were rediscovered by
4938: 4666: 4555: 4470: 4450: 4401: 3991: 3897: 3872: 3810: 3654: 3482: 3467: 3264: 2468: 2030: 1950: 1845: 1585: 1187: 332:
problems. There are three mathematical rules for producing flat-foldable origami
160: 84: 4460: 3441: 3235: 3214: 1902:
Proceedings of the First International Meeting of Origami Science and Technology
4505: 4480: 4426: 4411: 4367: 4238: 4230: 4111: 3830: 3724: 3699: 3689: 3669: 3664: 3547: 3380: 3330: 3189: 2616: 1924: 1386: 1220: 472: 464: 457: 333: 183: 171: 125: 105: 3684: 3294: 3123: 2590: 2246: 1765: 343:: at any vertex the number of valley and mountain folds always differ by two. 5064: 4923: 4902: 4839: 4691: 4485: 4396: 4217: 4177: 4161: 4082: 4054: 3922: 3912: 3837: 3825: 3477: 3247: 3019: 2454: 2255: 2005: 1789: 1672: 1245: 1212: 128:
for a Miura fold. The parallelograms of this example have 84° and 96° angles.
78: 61: 3011: 1497:, folding of manufacturing instruments, and surgery by tiny origami robots. 155:
A diagram showing the first and last step of how origami can double the cube
4715: 4614: 4465: 4376: 4371: 4269: 4190: 4106: 4025: 3929: 3902: 3867: 3800: 3729: 3659: 3431: 3284: 3275: 3108:, PhD thesis, Department of Computer Science, University of Waterloo, 2001. 3101: 3027: 2436: 1942: 1534: 1440: 468: 71: 1766:"a comparison between straight edge and compass constructions and origami" 4764: 4537: 4475: 4386: 4381: 3981: 3944: 3709: 3400: 3105: 1525: 1494: 1490: 1459: 1238: 1216: 1215:, treating the folds as hinges joining two flat, rigid surfaces, such as 378: 329: 325: 206: 97: 35: 23: 2711: 2564:"From Flapping Birds to Space Telescopes: The Modern Science of Origami" 2200: 4585: 4490: 4440: 4020: 3815: 3704: 3537: 3462: 3162: 2145: 1676: 1368: 1353: 381:. Further references and technical results are discussed in Part II of 3740: 2763:
Demaine, Erik (2001). "Recent Results in Computational Origami" (PDF).
2311: 4549: 4136: 4116: 3785: 3622: 3226: 2986:
Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. (2014-08-08).
2192: 2183: 2140:. Lecture Notes in Computer Science. Vol. 3763. pp. 19–33. 2010: 1371:
is a solution to the problem, and several others have been proposed.
1147:
Therefore, BQ:CQ=k:1 implies AP:BP=k:2 for a positive real number k.
437: 433: 3154: 2387:
Thomas C. Hull (2002). "The Combinatorics of Flat Folds: a Survey".
1812:, Tech. Report 618, The Institute of Space and Astronautical Science 4362: 3964: 3862: 3790: 3436: 2112: 1510: 1381: 441: 189: 39: 3118:. Science Networks. Historical Studies. Vol. 59. Birkhäuser. 2397: 2169:
Alperin, Roger C. (2005). "Trisections and Totally Real Origami".
1168:
length PB will then be the cube root of 2 times the length of AP.
315: 19: 4264: 4003: 3917: 3795: 2595: 1988:
K. Haga, Origamics, Part 1, Nippon Hyoron Sha, 1999 (in Japanese)
1426: 1155: 483: 31: 4861:
Viewpoints: Mathematical Perspective and Fractal Geometry in Art
3170:
Haga, Kazuo (2008). Fonacier, Josefina C; Isoda, Masami (eds.).
1248:
for folding paper in half in a single direction was given to be
307: 4999: 3969: 3487: 3194:
Origami Design Secrets: Mathematical Methods for an Ancient Art
2828:. Julia code animating kabuto is in example 3.4. 31 March 2024. 2105:
Mathematical Origami: Another View of Alhazen's Optical Problem
609:
then a number of other lengths are also rational functions of
121: 3303: 3115:
A History of Folding in Mathematics: Mathematizing the Margins
1810:
Method of packaging and deployment of large membranes in space
328:. Related problems when the creases are orthogonal are called 3954: 3174:. University of Tsukuba, Japan: World Scientific Publishing. 2874: 2337: 1651:
T. Sundara Row (1917). Beman, Wooster; Smith, David (eds.).
3976: 3959: 1798:, 1981, and online at the British Origami Society web site. 159:
In 1986, Messer reported a construction by which one could
3172:
Origamics: Mathematical Explorations Through Paper Folding
2690:
Hull, Thomas (2002). "In search of a practical map fold".
2103:
Alperin, Roger C. (2002). "Ch.12". In Hull, Thomas (ed.).
1563:"Solving cubics with creases: the work of Beloch and Lill" 1890:(10): 284–285 – via Canadian Mathematical Society. 1336:
is the minimum length of the paper (or other material),
2135: 1325:{\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} 1175:. Using a marked straightedge in this way is called a 34:
or paper folding has received a considerable amount of
2985: 1846:"Miura folding: Applying origami to space exploration" 1262: 1070: 3308: 3290:
Britney Gallivan has solved the Paper Folding Problem
3236:"An Overview of Mechanisms and Patterns with Origami" 1853:
International Journal of Pure and Applied Mathematics
1254: 1084: 793: 750: 706: 665: 644: 534: 525:
The accompanying diagram shows Haga's first theorem:
257: 237: 3281:
Dividing a Segment into Equal Parts by Paper Folding
1826:. Japan Aerospace Exploration Agency. Archived from 1691: 1637:"Lecture: Recent Results in Computational Origami". 163:, which is impossible with Euclidean constructions. 2591:"Numberphile: How to Trisect an Angle with Origami" 2435: 1219:, has great practical importance. For example, the 1137:{\displaystyle {\frac {BQ}{CQ}}={\frac {2AP}{BP}}.} 227:brought to the theoretical origami the language of 4758:The Drawing of Geometric Patterns in Saracenic Art 2900:"How Origami Is Revolutionizing Industrial Design" 1718: 1324: 1136: 829: 778: 735: 691: 650: 578: 263: 243: 118:of instruction by diagram was introduced in 1961. 4893:Goudreau Museum of Mathematics in Art and Science 2276:: CS1 maint: DOI inactive as of September 2024 ( 2024: 2022: 5062: 3360: 2805:MIT News | Massachusetts Institute of Technology 2000: 1344:is the number of folds possible. The distances 271:in only the case of single-vertex construction. 3188: 2530: 2775:"A Computational Algorithm for Origami Design" 2499: 2497: 2386: 2028: 2019: 1650: 4985: 4888:European Society for Mathematics and the Arts 4062:Mathematica: A World of Numbers... and Beyond 3756: 3346: 3140: 2988:"A method for building self-folding machines" 2503: 2059: 1733: 1075:Haga's theorems are generalized as follows: 4042:List of works designed with the golden ratio 2897: 2533:"A Note on Haga's theorems in paper folding" 2098: 2096: 1996: 1994: 1872: 16:Overview of the mathematics of paper folding 2557: 2555: 2494: 2293:"One-, Two-, and Multi-Fold Origami Axioms" 2291:Lang, Robert J.; Alperin, Roger C. (2009). 2290: 2053: 1927:. University of Cambridge. + plus magazine. 1868: 1866: 1612:"origami - History of origami | Britannica" 403:classical construction problems of geometry 4992: 4978: 3763: 3749: 3353: 3339: 1759: 1757: 1755: 4102:Cathedral of Saint Mary of the Assumption 3240:International Journal of Space Structures 2524: 2449:. Cambridge: Cambridge University Press. 2396: 2284: 2245: 2182: 2162: 2093: 2084: 1991: 1984: 1982: 1940: 1936: 1934: 1907: 1840: 1159:Doubling the cube: PB/PA = cube root of 2 456:-gon can be constructed by paper folding 3259: 3111: 2963:"Webb and Origami - Webb Telescope/NASA" 2826:"Julia and Projective Geometric Algebra" 2660: 2552: 1973:"How to Divide the Side of Square Paper" 1966: 1964: 1863: 1834: 1553: 1551: 1425: 1374: 1186: 1154: 482: 314: 306: 188: 150: 120: 83: 18: 4648:Vier BĂĽcher von Menschlicher Proportion 3770: 3300:Introduction to Statistics with Origami 3215:"Folding optimal polygons from squares" 2922: 2589:Dancso, Zsuzsanna (December 12, 2014). 2333: 2331: 2213: 2168: 2102: 1801: 1752: 1541: 1421: 579:{\displaystyle BQ={\frac {2AP}{1+AP}}.} 390: 5063: 3048: 2898:Magazine, Smithsonian; Morrison, Jim. 2683: 2666: 2588: 2429: 2351: 2231: 2129: 1979: 1931: 1922: 1894: 1776: 1476:Lawrence Livermore National Laboratory 1182: 1173:compass and straightedge constructions 830:{\displaystyle {\frac {1+x^{2}}{1+x}}} 4973: 3744: 3334: 2759: 2757: 2731: 2729: 2488:"Origami and Geometric Constructions" 2001: 1961: 1941:Bern, Marshall; Hayes, Barry (1996). 1916: 1807: 1727: 1548: 1437:Massachusetts Institute of Technology 444:, and special rectangles such as the 3588:Geometric Exercises in Paper Folding 3169: 2689: 2667:Korpal, Gaurish (25 November 2015). 2561: 2485: 2357: 2328: 2032:How to Free Your Inner Mathematician 1904:, H. Huzita ed. (1989), pp. 251–261. 1816: 1782: 1763: 1654:Geometric Exercises in Paper Folding 1644: 1633: 1631: 1582:10.4169/amer.math.monthly.118.04.307 1557: 1501:figures from cheeseburger wrappers. 1412:computational intractability results 1150: 779:{\displaystyle {\frac {1-x^{2}}{2}}} 413:— are proven to be unsolvable using 67:Geometric Exercises in Paper Folding 4833:Journal of Mathematics and the Arts 3609:A History of Folding in Mathematics 2423:"Robert Lang folds way-new origami" 2073:Linear Algebra and Its Applications 1949:. ACM, New York. pp. 175–183. 1671: 1206: 1071:A generalization of Haga's theorems 357:A sheet can never penetrate a fold. 13: 4847:Making Mathematics with Needlework 3095: 2754: 2726: 1970: 1395:California Institute of Technology 736:{\displaystyle {\frac {1-x}{1+x}}} 478: 100:', later used in the sixth of the 14: 5092: 4673:I quattro libri dell'architettura 3253: 2940: 2852: 2234:Journal of Functional Programming 2171:The American Mathematical Monthly 1975:. Japan Origami Academic Society. 1659:The Open Court Publishing Company 1628: 1340:is the material's thickness, and 692:{\displaystyle {\frac {2x}{1+x}}} 589:The function changing the length 4952: 4951: 4197:Self-portrait in a Convex Mirror 3881: 3318: 2772: 2569:. Usenix Conference, Boston, MA. 1943:"The complexity of flat origami" 426: 3509:Alexandrov's uniqueness theorem 3067: 3042: 2979: 2955: 2934: 2916: 2891: 2867: 2846: 2818: 2793: 2784: 2766: 2635: 2610: 2573: 2479: 2415: 2380: 2225: 2207: 2138:Automated Deduction in Geometry 1923:Newton, Liz (1 December 2009). 1738:. Chrysalis Books. p. 18. 1465: 1445:University of California Irvine 487:BQ is always rational if AP is. 302: 297: 4908:National Museum of Mathematics 4660:Regole generali d'architettura 2704:10.1080/10724117.2002.11975147 2679:(3). Teachers of India: 20–23. 2504:Geretschläger, Robert (2008). 1712: 1685: 1665: 1604: 1478:to develop a solution for the 1319: 1300: 1297: 1278: 1: 3447:Regular paperfolding sequence 2086:10.1016/S0024-3795(01)00608-5 1723:. Louisiana State University. 1692:George Edward Martin (1997). 1570:American Mathematical Monthly 1531:Regular paperfolding sequence 1408:efficient decision algorithms 407:trisecting an arbitrary angle 4433:Garden of Cosmic Speculation 3595:Geometric Folding Algorithms 3362:Mathematics of paper folding 2643:"Siggraph: "Curved Origami"" 2446:Geometric folding algorithms 1389:, a research-scientist from 432:square, such as equilateral 384:Geometric Folding Algorithms 108:to be solved using origami. 7: 1719:Robert Carl Yeates (1949). 1504: 1489:Other applications include 1400: 615: 10: 5097: 5050:three-phase electric power 5015:artificial neural networks 3950:Islamic geometric patterns 3645:Margherita Piazzola Beloch 3295:Overview of Origami Axioms 3265:"Origami Mathematics Page" 3112:Friedman, Michael (2018). 3049:Brewin, Bob (2004-05-10). 2621:. CRC Press. p. 225. 2341:The Mathematics of Origami 2029:D'Agostino, Susan (2020). 1480:James Webb Space Telescope 394: 146:solar panels on spacecraft 53: 49: 5005: 5000:"Mathematics of" articles 4947: 4916: 4870: 4824: 4771:A Mathematician's Apology 4731: 4684: 4567: 4530: 4523: 4355: 4208: 4154: 4145: 4092: 4034: 3890: 3879: 3778: 3632: 3579: 3558: 3501: 3455: 3424: 3416:Yoshizawa–Randlett system 3368: 3124:10.1007/978-3-319-72487-4 2247:10.1017/S0956796805005642 1698:. Springer. p. 145. 1163:The classical problem of 463:is a product of distinct 231:, with an extension from 116:Yoshizawa–Randlett system 64:T. Sundara Row published 4883:The Bridges Organization 3616:Origami Polyhedra Design 3248:10.1260/0266-3511.27.1.1 3075:"The Origami Resolution" 2923:Gibbons, Jeremy (2003). 2838:: CS1 maint: location ( 2531:Hiroshi Okumura (2014). 2455:10.1017/CBO9780511735172 2358:Lang, Robert J. (2004). 2214:Gibbons, Jeremy (2003). 1191:Trisecting the angle CAB 415:compass and straightedge 283:the context of origami. 274:In 2002, Alperin solved 193:Mountain-valley counting 96:showed that use of the ' 5025:cyclic redundacy checks 4745:The Grammar of Ornament 4697:Nature's Harmonic Unity 4607:De prospectiva pingendi 3106:"Folding and Unfolding" 3051:"Computational Origami" 3012:10.1126/science.1252610 2855:"Computational Origami" 2669:"Folding Paper in Half" 2562:Lang, Robert J (2008). 2250:(inactive 2024-09-25). 2037:Oxford University Press 1695:Geometric constructions 1641:. Retrieved 2022-05-08. 1616:Encyclopedia Britannica 4898:Institute For Figuring 4810:The 'Life' of a Carpet 4635:A Treatise on Painting 3406:Napkin folding problem 3272:Paper Folding Geometry 3221:79(4): 272–280, 2006. 2061:Belcastro, Sarah-Marie 1925:"The power of origami" 1734:Nick Robinson (2004). 1521:Napkin folding problem 1431: 1326: 1228:napkin folding problem 1192: 1160: 1138: 831: 780: 737: 693: 652: 580: 488: 320: 319:Angles around a vertex 312: 265: 245: 229:affine transformations 194: 156: 129: 104:, allowed the general 89: 40:mathematical equations 27: 4779:George David Birkhoff 4753:Ernest Hanbury Hankin 4621:De divina proportione 4601:Piero della Francesca 4580:Leon Battista Alberti 4167:Piero della Francesca 3806:Hyperboloid structure 2925:"Origami Programming" 2360:"Angle Quintisection" 2216:"Origami Programming" 1873:Peter Messer (1986). 1678:Houdini's Paper Magic 1449:University of Tsukuba 1429: 1375:Computational origami 1327: 1190: 1158: 1139: 832: 781: 738: 694: 653: 617:Haga's first theorem 581: 486: 318: 310: 266: 246: 221:Sarah-Marie Belcastro 192: 154: 124: 87: 22: 5081:NP-complete problems 4704:Frederik Macody Lund 4575:Filippo Brunelleschi 4456:Hamid Naderi Yeganeh 4318:La condition humaine 3566:Fold-and-cut theorem 3522:Steffen's polyhedron 3386:Huzita–Hatori axioms 3376:Big-little-big lemma 3219:Mathematics Magazine 3143:Mathematics Magazine 2904:Smithsonian Magazine 2306:. pp. 383–406. 1830:on 25 November 2005. 1542:Notes and references 1422:Software & tools 1361:fold-and-cut problem 1252: 1235:developable surfaces 1082: 791: 748: 704: 663: 642: 532: 397:Huzita–Hatori axioms 391:Huzita–Justin axioms 361:Paper exhibits zero 255: 235: 102:Huzita–Hatori axioms 94:Margharita P. Beloch 5076:Mathematics and art 4929:Mathematical beauty 4854:Rhythm of Structure 4797:Gödel, Escher, Bach 4593:De re aedificatoria 4224:The Ancient of Days 3843:Projective geometry 3772:Mathematics and art 3514:Flexible polyhedron 3242:27(1): 1–14, 2012. 3004:2014Sci...345..644F 2541:Forum Geometricorum 2347:. Carleton College. 1883:Crux Mathematicorum 1785:"The Miura-Ori map" 1453:University of Tokyo 1391:Stanford University 1237:that are not flat. 1183:Trisecting an angle 1177:neusis construction 618: 326:NP-complete problem 5030:general relativity 4934:Patterns in nature 4791:Douglas Hofstadter 4417:Desmond Paul Henry 4407:Bathsheba Grossman 4339:The Swallow's Tail 4260:Giorgio de Chirico 4132:Sydney Opera House 3987:Croatian interlace 3695:Toshikazu Kawasaki 3518:Bricard octahedron 3493:Yoshimura buckling 3391:Kawasaki's theorem 2801:"Origami anything" 2146:10.1007/11615798_2 2107:. pp. 83–93. 2003:Weisstein, Eric W. 1808:Miura, K. (1985), 1783:Bain, Ian (1980), 1764:Hull, Tom (1997). 1533:(for example, the 1432: 1322: 1276: 1193: 1161: 1134: 827: 776: 733: 689: 648: 616: 576: 489: 363:Gaussian curvature 352:Kawasaki's theorem 321: 313: 261: 241: 195: 157: 130: 90: 56:History of origami 30:The discipline of 28: 5058: 5057: 4967: 4966: 4820: 4819: 4784:Aesthetic Measure 4655:Sebastiano Serlio 4629:Leonardo da Vinci 4519: 4518: 4511:Margaret Wertheim 4172:Leonardo da Vinci 3738: 3737: 3602:Geometric Origami 3473:Paper bag problem 3396:Maekawa's theorem 3232:Dureisseix, David 3211:Dureisseix, David 3203:978-1-56881-194-9 3181:978-981-283-490-4 3133:978-3-319-72486-7 2998:(6197): 644–646. 2737:"The Origami Lab" 2628:978-1-56881-714-9 2517:978-0-9555477-1-3 2507:Geometric Origami 2464:978-0-521-85757-4 2408:978-1-56881-181-9 2312:10.1201/b10653-38 2155:978-3-540-31332-8 1971:Hatori, Koshiro. 1842:Nishiyama, Yutaka 1745:978-1-84340-105-6 1736:The Origami Bible 1705:978-0-387-98276-2 1275: 1165:doubling the cube 1151:Doubling the cube 1129: 1103: 1068: 1067: 825: 774: 731: 687: 651:{\displaystyle x} 571: 420:Geometric Origami 411:doubling the cube 341:Maekawa's theorem 276:Alhazen's problem 264:{\displaystyle R} 244:{\displaystyle R} 5088: 4994: 4987: 4980: 4971: 4970: 4955: 4954: 4805:Nikos Salingaros 4528: 4527: 4496:Hiroshi Sugimoto 4446:Robert Longhurst 4392:Helaman Ferguson 4347:Crockett Johnson 4276:Circle Limit III 4245:Danseuse au cafĂ© 4152: 4151: 4122:Pyramid of Khufu 3885: 3765: 3758: 3751: 3742: 3741: 3675:David A. Huffman 3640:Roger C. Alperin 3543:Source unfolding 3411:Pureland origami 3355: 3348: 3341: 3332: 3331: 3323: 3322: 3314: 3268: 3227:10.2307/27642951 3207: 3185: 3166: 3137: 3102:Demaine, Erik D. 3089: 3088: 3086: 3085: 3079:Damn Interesting 3071: 3065: 3064: 3062: 3061: 3046: 3040: 3039: 2983: 2977: 2976: 2974: 2973: 2959: 2953: 2952: 2950: 2949: 2943:"Airbag Folding" 2938: 2932: 2931: 2929: 2920: 2914: 2913: 2911: 2910: 2895: 2889: 2888: 2886: 2885: 2871: 2865: 2864: 2862: 2861: 2850: 2844: 2843: 2837: 2829: 2822: 2816: 2815: 2813: 2812: 2797: 2791: 2788: 2782: 2781: 2779: 2770: 2764: 2761: 2752: 2751: 2749: 2748: 2733: 2724: 2723: 2687: 2681: 2680: 2664: 2658: 2657: 2655: 2654: 2645:. Archived from 2639: 2633: 2632: 2614: 2608: 2607: 2605: 2603: 2577: 2571: 2570: 2568: 2559: 2550: 2549: 2537: 2528: 2522: 2521: 2501: 2492: 2491: 2483: 2477: 2476: 2441:O'Rourke, Joseph 2437:Demaine, Erik D. 2433: 2427: 2426: 2419: 2413: 2412: 2400: 2384: 2378: 2377: 2375: 2373: 2364: 2355: 2349: 2348: 2346: 2335: 2326: 2325: 2297: 2288: 2282: 2281: 2275: 2267: 2249: 2229: 2223: 2222: 2220: 2211: 2205: 2204: 2193:10.2307/30037438 2186: 2166: 2160: 2159: 2133: 2127: 2126: 2100: 2091: 2090: 2088: 2079:(1–3): 273–282. 2057: 2051: 2050: 2026: 2017: 2016: 2015: 1998: 1989: 1986: 1977: 1976: 1968: 1959: 1958: 1938: 1929: 1928: 1920: 1914: 1911: 1905: 1898: 1892: 1891: 1879: 1870: 1861: 1860: 1850: 1838: 1832: 1831: 1820: 1814: 1813: 1805: 1799: 1794:. Reproduced in 1793: 1780: 1774: 1773: 1761: 1750: 1749: 1731: 1725: 1724: 1716: 1710: 1709: 1689: 1683: 1682: 1669: 1663: 1662: 1648: 1642: 1635: 1626: 1625: 1623: 1622: 1608: 1602: 1601: 1567: 1555: 1331: 1329: 1328: 1323: 1312: 1311: 1290: 1289: 1277: 1271: 1263: 1207:Related problems 1196:Angle trisection 1143: 1141: 1140: 1135: 1130: 1128: 1120: 1109: 1104: 1102: 1094: 1086: 1064: 1063: 1059: 1053: 1052: 1048: 1042: 1041: 1037: 1031: 1030: 1026: 1020: 1019: 1015: 1007: 1006: 1002: 996: 995: 991: 985: 984: 980: 974: 973: 969: 963: 962: 958: 950: 949: 945: 939: 938: 934: 928: 927: 923: 917: 916: 912: 906: 905: 901: 893: 892: 888: 882: 881: 877: 871: 870: 866: 860: 859: 855: 849: 848: 844: 836: 834: 833: 828: 826: 824: 813: 812: 811: 795: 785: 783: 782: 777: 775: 770: 769: 768: 752: 742: 740: 739: 734: 732: 730: 719: 708: 698: 696: 695: 690: 688: 686: 675: 667: 657: 655: 654: 649: 619: 585: 583: 582: 577: 572: 570: 556: 545: 521: 520: 516: 511: 510: 506: 501: 500: 496: 450:silver rectangle 446:golden rectangle 311:Two-colorability 270: 268: 267: 262: 250: 248: 247: 242: 177:regular heptagon 60:In 1893, Indian 5096: 5095: 5091: 5090: 5089: 5087: 5086: 5085: 5061: 5060: 5059: 5054: 5001: 4998: 4968: 4963: 4943: 4939:Sacred geometry 4912: 4878:Ars Mathematica 4866: 4816: 4727: 4680: 4667:Andrea Palladio 4563: 4556:De architectura 4515: 4471:Antoine Pevsner 4451:Jeanette McLeod 4402:Susan Goldstine 4351: 4210: 4204: 4141: 4127:Sagrada FamĂ­lia 4088: 4030: 3898:Algorithmic art 3886: 3877: 3873:Wallpaper group 3811:Minimal surface 3774: 3769: 3739: 3734: 3720:Joseph O'Rourke 3655:Robert Connelly 3628: 3575: 3554: 3497: 3483:Schwarz lantern 3468:Modular origami 3451: 3420: 3364: 3359: 3329: 3317: 3309: 3256: 3204: 3190:Lang, Robert J. 3182: 3155:10.2307/2690924 3134: 3098: 3096:Further reading 3093: 3092: 3083: 3081: 3073: 3072: 3068: 3059: 3057: 3047: 3043: 2984: 2980: 2971: 2969: 2961: 2960: 2956: 2947: 2945: 2939: 2935: 2927: 2921: 2917: 2908: 2906: 2896: 2892: 2883: 2881: 2873: 2872: 2868: 2859: 2857: 2851: 2847: 2831: 2830: 2824: 2823: 2819: 2810: 2808: 2799: 2798: 2794: 2789: 2785: 2777: 2771: 2767: 2762: 2755: 2746: 2744: 2735: 2734: 2727: 2688: 2684: 2673:At Right Angles 2665: 2661: 2652: 2650: 2641: 2640: 2636: 2629: 2615: 2611: 2601: 2599: 2585:Wayback Machine 2578: 2574: 2566: 2560: 2553: 2535: 2529: 2525: 2518: 2510:. UK: Arbelos. 2502: 2495: 2484: 2480: 2465: 2434: 2430: 2421: 2420: 2416: 2409: 2385: 2381: 2371: 2369: 2367:langorigami.com 2362: 2356: 2352: 2344: 2336: 2329: 2322: 2295: 2289: 2285: 2269: 2268: 2230: 2226: 2218: 2212: 2208: 2167: 2163: 2156: 2134: 2130: 2123: 2101: 2094: 2065:Hull, Thomas C. 2058: 2054: 2047: 2027: 2020: 1999: 1992: 1987: 1980: 1969: 1962: 1939: 1932: 1921: 1917: 1912: 1908: 1899: 1895: 1877: 1871: 1864: 1848: 1839: 1835: 1822: 1821: 1817: 1806: 1802: 1796:British Origami 1781: 1777: 1762: 1753: 1746: 1732: 1728: 1721:Geometric Tools 1717: 1713: 1706: 1690: 1686: 1670: 1666: 1649: 1645: 1636: 1629: 1620: 1618: 1610: 1609: 1605: 1565: 1559:Hull, Thomas C. 1556: 1549: 1544: 1507: 1468: 1424: 1403: 1377: 1307: 1303: 1285: 1281: 1264: 1261: 1253: 1250: 1249: 1211:The problem of 1209: 1185: 1153: 1121: 1110: 1108: 1095: 1087: 1085: 1083: 1080: 1079: 1073: 1061: 1057: 1056: 1050: 1046: 1045: 1039: 1035: 1034: 1028: 1024: 1023: 1017: 1013: 1012: 1004: 1000: 999: 993: 989: 988: 982: 978: 977: 971: 967: 966: 960: 956: 955: 947: 943: 942: 936: 932: 931: 925: 921: 920: 914: 910: 909: 903: 899: 898: 890: 886: 885: 879: 875: 874: 868: 864: 863: 857: 853: 852: 846: 842: 841: 814: 807: 803: 796: 794: 792: 789: 788: 764: 760: 753: 751: 749: 746: 745: 720: 709: 707: 705: 702: 701: 676: 668: 666: 664: 661: 660: 643: 640: 639: 613:. For example: 557: 546: 544: 533: 530: 529: 518: 514: 513: 508: 504: 503: 498: 494: 493: 481: 479:Haga's theorems 473:powers of three 465:Pierpont primes 429: 399: 393: 334:crease patterns 305: 300: 256: 253: 252: 236: 233: 232: 161:double the cube 88:The Beloch fold 58: 52: 17: 12: 11: 5: 5094: 5084: 5083: 5078: 5073: 5056: 5055: 5053: 5052: 5047: 5042: 5037: 5027: 5022: 5017: 5012: 5006: 5003: 5002: 4997: 4996: 4989: 4982: 4974: 4965: 4964: 4962: 4961: 4948: 4945: 4944: 4942: 4941: 4936: 4931: 4926: 4920: 4918: 4914: 4913: 4911: 4910: 4905: 4900: 4895: 4890: 4885: 4880: 4874: 4872: 4868: 4867: 4865: 4864: 4857: 4850: 4843: 4836: 4828: 4826: 4822: 4821: 4818: 4817: 4815: 4814: 4813: 4812: 4802: 4801: 4800: 4788: 4787: 4786: 4776: 4775: 4774: 4762: 4761: 4760: 4750: 4749: 4748: 4735: 4733: 4729: 4728: 4726: 4725: 4724: 4723: 4721:The Greek Vase 4713: 4712: 4711: 4701: 4700: 4699: 4688: 4686: 4682: 4681: 4679: 4678: 4677: 4676: 4664: 4663: 4662: 4652: 4651: 4650: 4643:Albrecht DĂĽrer 4640: 4639: 4638: 4626: 4625: 4624: 4612: 4611: 4610: 4598: 4597: 4596: 4589: 4577: 4571: 4569: 4565: 4564: 4562: 4561: 4560: 4559: 4547: 4546: 4545: 4534: 4532: 4525: 4521: 4520: 4517: 4516: 4514: 4513: 4508: 4506:Roman Verostko 4503: 4498: 4493: 4488: 4483: 4481:Alba Rojo Cama 4478: 4473: 4468: 4463: 4458: 4453: 4448: 4443: 4438: 4437: 4436: 4427:Charles Jencks 4424: 4419: 4414: 4412:George W. Hart 4409: 4404: 4399: 4394: 4389: 4384: 4379: 4374: 4365: 4359: 4357: 4353: 4352: 4350: 4349: 4344: 4343: 4342: 4335: 4323: 4322: 4321: 4309: 4308: 4307: 4300: 4293: 4286: 4279: 4267: 4262: 4257: 4256: 4255: 4248: 4239:Jean Metzinger 4236: 4235: 4234: 4227: 4214: 4212: 4206: 4205: 4203: 4202: 4201: 4200: 4188: 4186:Albrecht DĂĽrer 4183: 4182: 4181: 4169: 4164: 4158: 4156: 4149: 4143: 4142: 4140: 4139: 4134: 4129: 4124: 4119: 4114: 4109: 4104: 4098: 4096: 4090: 4089: 4087: 4086: 4079: 4072: 4065: 4058: 4051: 4044: 4038: 4036: 4032: 4031: 4029: 4028: 4023: 4018: 4013: 4012: 4011: 4001: 3996: 3995: 3994: 3989: 3984: 3974: 3973: 3972: 3967: 3962: 3957: 3947: 3942: 3937: 3932: 3927: 3926: 3925: 3920: 3915: 3905: 3903:Anamorphic art 3900: 3894: 3892: 3888: 3887: 3880: 3878: 3876: 3875: 3870: 3865: 3860: 3859: 3858: 3853: 3845: 3840: 3835: 3834: 3833: 3831:Camera obscura 3828: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3782: 3780: 3776: 3775: 3768: 3767: 3760: 3753: 3745: 3736: 3735: 3733: 3732: 3727: 3725:Tomohiro Tachi 3722: 3717: 3712: 3707: 3702: 3700:Robert J. Lang 3697: 3692: 3690:Humiaki Huzita 3687: 3682: 3677: 3672: 3670:Rona Gurkewitz 3667: 3665:Martin Demaine 3662: 3657: 3652: 3647: 3642: 3636: 3634: 3630: 3629: 3627: 3626: 3619: 3612: 3605: 3598: 3591: 3583: 3581: 3577: 3576: 3574: 3573: 3568: 3562: 3560: 3556: 3555: 3553: 3552: 3551: 3550: 3548:Star unfolding 3545: 3540: 3535: 3525: 3511: 3505: 3503: 3499: 3498: 3496: 3495: 3490: 3485: 3480: 3475: 3470: 3465: 3459: 3457: 3453: 3452: 3450: 3449: 3444: 3439: 3434: 3428: 3426: 3422: 3421: 3419: 3418: 3413: 3408: 3403: 3398: 3393: 3388: 3383: 3381:Crease pattern 3378: 3372: 3370: 3366: 3365: 3358: 3357: 3350: 3343: 3335: 3328: 3327: 3307: 3306: 3297: 3292: 3287: 3278: 3269: 3255: 3254:External links 3252: 3251: 3250: 3229: 3208: 3202: 3196:. A K Peters. 3186: 3180: 3167: 3149:(5): 357–371. 3138: 3132: 3109: 3097: 3094: 3091: 3090: 3066: 3041: 2978: 2954: 2933: 2915: 2890: 2866: 2845: 2817: 2807:. 22 June 2017 2792: 2783: 2773:Lang, Robert. 2765: 2753: 2741:The New Yorker 2725: 2682: 2659: 2634: 2627: 2609: 2572: 2551: 2523: 2516: 2493: 2478: 2463: 2428: 2414: 2407: 2379: 2350: 2327: 2320: 2283: 2240:(5): 679–702. 2224: 2206: 2177:(3): 200–211. 2161: 2154: 2128: 2121: 2113:10.1201/b15735 2092: 2052: 2045: 2039:. p. 22. 2018: 1990: 1978: 1960: 1930: 1915: 1906: 1893: 1875:"Problem 1054" 1862: 1833: 1815: 1800: 1775: 1770:origametry.net 1751: 1744: 1726: 1711: 1704: 1684: 1673:Houdini, Harry 1664: 1643: 1627: 1603: 1576:(4): 307–315. 1546: 1545: 1543: 1540: 1539: 1538: 1528: 1523: 1518: 1513: 1506: 1503: 1467: 1464: 1423: 1420: 1402: 1399: 1376: 1373: 1321: 1318: 1315: 1310: 1306: 1302: 1299: 1296: 1293: 1288: 1284: 1280: 1274: 1270: 1267: 1260: 1257: 1221:Miura map fold 1208: 1205: 1184: 1181: 1152: 1149: 1145: 1144: 1133: 1127: 1124: 1119: 1116: 1113: 1107: 1101: 1098: 1093: 1090: 1072: 1069: 1066: 1065: 1054: 1043: 1032: 1021: 1009: 1008: 997: 986: 975: 964: 952: 951: 940: 929: 918: 907: 895: 894: 883: 872: 861: 850: 838: 837: 823: 820: 817: 810: 806: 802: 799: 786: 773: 767: 763: 759: 756: 743: 729: 726: 723: 718: 715: 712: 699: 685: 682: 679: 674: 671: 658: 647: 636: 635: 632: 629: 626: 623: 587: 586: 575: 569: 566: 563: 560: 555: 552: 549: 543: 540: 537: 480: 477: 458:if and only if 428: 425: 395:Main article: 392: 389: 359: 358: 355: 349: 348: 347: 304: 301: 299: 296: 260: 240: 184:Robert J. Lang 172:Humiaki Huzita 168:Jacques Justin 135:Also in 1980, 126:Crease pattern 106:cubic equation 51: 48: 15: 9: 6: 4: 3: 2: 5093: 5082: 5079: 5077: 5074: 5072: 5069: 5068: 5066: 5051: 5048: 5046: 5043: 5041: 5040:paper folding 5038: 5035: 5031: 5028: 5026: 5023: 5021: 5018: 5016: 5013: 5011: 5010:apportionment 5008: 5007: 5004: 4995: 4990: 4988: 4983: 4981: 4976: 4975: 4972: 4960: 4959: 4950: 4949: 4946: 4940: 4937: 4935: 4932: 4930: 4927: 4925: 4924:Droste effect 4922: 4921: 4919: 4915: 4909: 4906: 4904: 4903:Mathemalchemy 4901: 4899: 4896: 4894: 4891: 4889: 4886: 4884: 4881: 4879: 4876: 4875: 4873: 4871:Organizations 4869: 4863: 4862: 4858: 4856: 4855: 4851: 4849: 4848: 4844: 4842: 4841: 4840:Lumen Naturae 4837: 4835: 4834: 4830: 4829: 4827: 4823: 4811: 4808: 4807: 4806: 4803: 4799: 4798: 4794: 4793: 4792: 4789: 4785: 4782: 4781: 4780: 4777: 4773: 4772: 4768: 4767: 4766: 4763: 4759: 4756: 4755: 4754: 4751: 4747: 4746: 4742: 4741: 4740: 4737: 4736: 4734: 4730: 4722: 4719: 4718: 4717: 4714: 4710: 4707: 4706: 4705: 4702: 4698: 4695: 4694: 4693: 4692:Samuel Colman 4690: 4689: 4687: 4683: 4675: 4674: 4670: 4669: 4668: 4665: 4661: 4658: 4657: 4656: 4653: 4649: 4646: 4645: 4644: 4641: 4637: 4636: 4632: 4631: 4630: 4627: 4623: 4622: 4618: 4617: 4616: 4613: 4609: 4608: 4604: 4603: 4602: 4599: 4595: 4594: 4590: 4588: 4587: 4583: 4582: 4581: 4578: 4576: 4573: 4572: 4570: 4566: 4558: 4557: 4553: 4552: 4551: 4548: 4544: 4541: 4540: 4539: 4536: 4535: 4533: 4529: 4526: 4522: 4512: 4509: 4507: 4504: 4502: 4501:Daina Taimiņa 4499: 4497: 4494: 4492: 4489: 4487: 4486:Reza Sarhangi 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4447: 4444: 4442: 4439: 4435: 4434: 4430: 4429: 4428: 4425: 4423: 4420: 4418: 4415: 4413: 4410: 4408: 4405: 4403: 4400: 4398: 4397:Peter Forakis 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4378: 4375: 4373: 4369: 4366: 4364: 4361: 4360: 4358: 4354: 4348: 4345: 4341: 4340: 4336: 4334: 4333: 4329: 4328: 4327: 4326:Salvador DalĂ­ 4324: 4320: 4319: 4315: 4314: 4313: 4312:RenĂ© Magritte 4310: 4306: 4305: 4301: 4299: 4298: 4294: 4292: 4291: 4287: 4285: 4284: 4283:Print Gallery 4280: 4278: 4277: 4273: 4272: 4271: 4268: 4266: 4263: 4261: 4258: 4254: 4253: 4252:L'Oiseau bleu 4249: 4247: 4246: 4242: 4241: 4240: 4237: 4233: 4232: 4228: 4226: 4225: 4221: 4220: 4219: 4218:William Blake 4216: 4215: 4213: 4207: 4199: 4198: 4194: 4193: 4192: 4189: 4187: 4184: 4180: 4179: 4178:Vitruvian Man 4175: 4174: 4173: 4170: 4168: 4165: 4163: 4162:Paolo Uccello 4160: 4159: 4157: 4153: 4150: 4148: 4144: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4113: 4110: 4108: 4105: 4103: 4100: 4099: 4097: 4095: 4091: 4085: 4084: 4083:Pi in the Sky 4080: 4078: 4077: 4073: 4071: 4070: 4066: 4064: 4063: 4059: 4057: 4056: 4055:Mathemalchemy 4052: 4050: 4049: 4045: 4043: 4040: 4039: 4037: 4033: 4027: 4024: 4022: 4019: 4017: 4014: 4010: 4007: 4006: 4005: 4002: 4000: 3997: 3993: 3990: 3988: 3985: 3983: 3980: 3979: 3978: 3975: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3952: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3924: 3923:Vastu shastra 3921: 3919: 3916: 3914: 3913:Geodesic dome 3911: 3910: 3909: 3906: 3904: 3901: 3899: 3896: 3895: 3893: 3889: 3884: 3874: 3871: 3869: 3866: 3864: 3861: 3857: 3854: 3852: 3849: 3848: 3846: 3844: 3841: 3839: 3838:Plastic ratio 3836: 3832: 3829: 3827: 3826:Camera lucida 3824: 3823: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3783: 3781: 3777: 3773: 3766: 3761: 3759: 3754: 3752: 3747: 3746: 3743: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3637: 3635: 3631: 3625: 3624: 3620: 3618: 3617: 3613: 3611: 3610: 3606: 3604: 3603: 3599: 3597: 3596: 3592: 3590: 3589: 3585: 3584: 3582: 3578: 3572: 3571:Lill's method 3569: 3567: 3564: 3563: 3561: 3559:Miscellaneous 3557: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3530: 3529: 3526: 3523: 3519: 3515: 3512: 3510: 3507: 3506: 3504: 3500: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3478:Rigid origami 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3460: 3458: 3456:3d structures 3454: 3448: 3445: 3443: 3440: 3438: 3435: 3433: 3430: 3429: 3427: 3425:Strip folding 3423: 3417: 3414: 3412: 3409: 3407: 3404: 3402: 3399: 3397: 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3373: 3371: 3367: 3363: 3356: 3351: 3349: 3344: 3342: 3337: 3336: 3333: 3326: 3321: 3316: 3315: 3312: 3305: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3282: 3279: 3277: 3273: 3270: 3266: 3262: 3258: 3257: 3249: 3245: 3241: 3237: 3233: 3230: 3228: 3224: 3220: 3216: 3212: 3209: 3205: 3199: 3195: 3191: 3187: 3183: 3177: 3173: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3139: 3135: 3129: 3125: 3121: 3117: 3116: 3110: 3107: 3103: 3100: 3099: 3080: 3076: 3070: 3056: 3055:Computerworld 3052: 3045: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2989: 2982: 2968: 2967:webb.nasa.gov 2964: 2958: 2944: 2937: 2926: 2919: 2905: 2901: 2894: 2880: 2876: 2870: 2856: 2849: 2841: 2835: 2827: 2821: 2806: 2802: 2796: 2787: 2776: 2769: 2760: 2758: 2742: 2738: 2732: 2730: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2692:Math Horizons 2686: 2678: 2674: 2670: 2663: 2649:on 2017-05-08 2648: 2644: 2638: 2630: 2624: 2620: 2613: 2598: 2597: 2592: 2586: 2582: 2576: 2565: 2558: 2556: 2547: 2543: 2542: 2534: 2527: 2519: 2513: 2509: 2508: 2500: 2498: 2489: 2482: 2474: 2470: 2466: 2460: 2456: 2452: 2448: 2447: 2442: 2438: 2432: 2424: 2418: 2410: 2404: 2399: 2394: 2391:. AK Peters. 2390: 2383: 2368: 2361: 2354: 2343: 2342: 2334: 2332: 2323: 2321:9780429106613 2317: 2313: 2309: 2305: 2301: 2294: 2287: 2279: 2273: 2265: 2261: 2257: 2253: 2248: 2243: 2239: 2235: 2228: 2217: 2210: 2202: 2198: 2194: 2190: 2185: 2180: 2176: 2172: 2165: 2157: 2151: 2147: 2143: 2139: 2132: 2124: 2122:9780429064906 2118: 2114: 2110: 2106: 2099: 2097: 2087: 2082: 2078: 2074: 2070: 2066: 2062: 2056: 2048: 2046:9780198843597 2042: 2038: 2034: 2033: 2025: 2023: 2013: 2012: 2007: 2004: 1997: 1995: 1985: 1983: 1974: 1967: 1965: 1956: 1952: 1948: 1944: 1937: 1935: 1926: 1919: 1910: 1903: 1897: 1889: 1885: 1884: 1876: 1869: 1867: 1858: 1854: 1847: 1843: 1837: 1829: 1825: 1819: 1811: 1804: 1797: 1792: 1791: 1790:New Scientist 1786: 1779: 1771: 1767: 1760: 1758: 1756: 1747: 1741: 1737: 1730: 1722: 1715: 1707: 1701: 1697: 1696: 1688: 1680: 1679: 1674: 1668: 1660: 1656: 1655: 1647: 1640: 1634: 1632: 1617: 1613: 1607: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1564: 1560: 1554: 1552: 1547: 1536: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1516:Lill's method 1514: 1512: 1509: 1508: 1502: 1498: 1496: 1492: 1487: 1483: 1481: 1477: 1472: 1463: 1461: 1456: 1454: 1450: 1446: 1442: 1438: 1428: 1419: 1415: 1413: 1409: 1398: 1396: 1392: 1388: 1383: 1372: 1370: 1365: 1362: 1357: 1355: 1351: 1347: 1343: 1339: 1335: 1316: 1313: 1308: 1304: 1294: 1291: 1286: 1282: 1272: 1268: 1265: 1258: 1255: 1247: 1246:loss function 1242: 1240: 1236: 1231: 1229: 1224: 1222: 1218: 1214: 1213:rigid origami 1204: 1202: 1197: 1189: 1180: 1179:in geometry. 1178: 1174: 1169: 1166: 1157: 1148: 1131: 1125: 1122: 1117: 1114: 1111: 1105: 1099: 1096: 1091: 1088: 1078: 1077: 1076: 1055: 1044: 1033: 1022: 1011: 1010: 998: 987: 976: 965: 954: 953: 941: 930: 919: 908: 897: 896: 884: 873: 862: 851: 840: 839: 821: 818: 815: 808: 804: 800: 797: 787: 771: 765: 761: 757: 754: 744: 727: 724: 721: 716: 713: 710: 700: 683: 680: 677: 672: 669: 659: 645: 638: 637: 633: 630: 627: 624: 621: 620: 614: 612: 608: 604: 600: 596: 592: 573: 567: 564: 561: 558: 553: 550: 547: 541: 538: 535: 528: 527: 526: 523: 485: 476: 474: 470: 469:powers of two 466: 462: 459: 455: 451: 447: 443: 439: 435: 427:Constructions 424: 422: 421: 416: 412: 408: 404: 398: 388: 386: 385: 380: 376: 372: 371:Marshall Bern 367: 364: 356: 353: 350: 345: 344: 342: 339: 338: 337: 335: 331: 327: 317: 309: 295: 291: 289: 284: 280: 277: 272: 258: 238: 230: 226: 222: 217: 213: 210: 208: 204: 200: 199:Marshall Bern 191: 187: 185: 182:Around 1990, 180: 178: 173: 169: 164: 162: 153: 149: 147: 143: 138: 133: 127: 123: 119: 117: 112: 109: 107: 103: 99: 95: 86: 82: 80: 79:Harry Houdini 75: 73: 69: 68: 63: 62:civil servant 57: 47: 43: 41: 37: 33: 25: 21: 5039: 5034:introduction 4956: 4859: 4852: 4845: 4838: 4831: 4825:Publications 4809: 4795: 4783: 4769: 4757: 4743: 4720: 4716:Jay Hambidge 4709:Ad Quadratum 4708: 4696: 4671: 4659: 4647: 4633: 4619: 4615:Luca Pacioli 4605: 4591: 4584: 4554: 4542: 4466:Hinke Osinga 4461:István Orosz 4431: 4422:Anthony Hill 4377:Scott Draves 4372:Erik Demaine 4356:Contemporary 4337: 4330: 4316: 4302: 4295: 4288: 4281: 4274: 4270:M. C. Escher 4250: 4243: 4229: 4222: 4195: 4191:Parmigianino 4176: 4107:Hagia Sophia 4081: 4074: 4067: 4060: 4053: 4046: 4008: 3930:Computer art 3908:Architecture 3868:Tessellation 3851:Architecture 3801:Golden ratio 3730:Eve Torrence 3660:Erik Demaine 3621: 3614: 3607: 3600: 3593: 3586: 3580:Publications 3442:Möbius strip 3432:Dragon curve 3369:Flat folding 3361: 3304:Mario Cigada 3285:cut-the-knot 3276:cut-the-knot 3261:Dr. Tom Hull 3239: 3218: 3193: 3171: 3146: 3142: 3114: 3082:. Retrieved 3078: 3069: 3058:. Retrieved 3054: 3044: 2995: 2991: 2981: 2970:. Retrieved 2966: 2957: 2946:. Retrieved 2936: 2918: 2907:. Retrieved 2903: 2893: 2882:. Retrieved 2878: 2869: 2858:. Retrieved 2848: 2820: 2809:. Retrieved 2804: 2795: 2786: 2768: 2745:. Retrieved 2743:. 2007-02-12 2740: 2698:(3): 22–24. 2695: 2691: 2685: 2676: 2672: 2662: 2651:. Retrieved 2647:the original 2637: 2618: 2612: 2600:. Retrieved 2594: 2581:Ghostarchive 2579:Archived at 2575: 2545: 2539: 2526: 2506: 2481: 2445: 2431: 2417: 2388: 2382: 2370:. Retrieved 2366: 2353: 2340: 2303: 2299: 2286: 2272:cite journal 2237: 2233: 2227: 2209: 2184:math/0408159 2174: 2170: 2164: 2137: 2131: 2104: 2076: 2072: 2055: 2031: 2009: 1946: 1918: 1909: 1901: 1896: 1887: 1881: 1859:(2): 269–279 1856: 1852: 1836: 1828:the original 1818: 1809: 1803: 1795: 1788: 1778: 1769: 1735: 1729: 1720: 1714: 1694: 1687: 1677: 1667: 1653: 1646: 1638: 1619:. Retrieved 1615: 1606: 1573: 1569: 1535:dragon curve 1499: 1488: 1484: 1473: 1469: 1466:Applications 1457: 1441:Georgia Tech 1433: 1416: 1404: 1378: 1366: 1358: 1349: 1345: 1341: 1337: 1333: 1243: 1232: 1225: 1210: 1194: 1170: 1162: 1146: 1074: 610: 606: 602: 599:self inverse 594: 590: 588: 524: 490: 460: 453: 430: 418: 400: 382: 368: 360: 322: 303:Flat folding 298:Pure origami 292: 287: 285: 281: 273: 218: 214: 211: 196: 181: 165: 158: 141: 134: 131: 113: 110: 91: 76: 72:kindergarten 65: 59: 44: 36:mathematical 29: 4765:G. H. Hardy 4568:Renaissance 4538:Polykleitos 4476:Tony Robbin 4387:John Ernest 4382:Jan Dibbets 4332:Crucifixion 4155:Renaissance 4009:Mathematics 3982:Celtic knot 3945:Fractal art 3847:Proportion 3821:Perspective 3715:KĹŤryĹŤ Miura 3710:Jun Maekawa 3685:KĂ´di Husimi 3401:Map folding 3325:Mathematics 1526:Map folding 1495:RNA origami 1491:DNA origami 1460:DNA origami 1387:Robert Lang 1239:Wet-folding 1217:sheet metal 379:NP-complete 375:Barry Hayes 330:map folding 207:NP-complete 203:Barry Hayes 137:KĹŤryĹŤ Miura 98:Beloch fold 24:Map folding 5065:Categories 5020:bookmaking 4739:Owen Jones 4586:De pictura 4491:Oliver Sin 4441:Andy Lomas 4290:Relativity 4021:String art 3935:Fiber arts 3816:Paraboloid 3705:Anna Lubiw 3538:Common net 3463:Miura fold 3084:2022-05-08 3060:2022-05-08 2972:2022-05-08 2948:2022-05-08 2909:2022-05-08 2884:2022-05-08 2860:2022-05-08 2811:2022-05-08 2747:2022-05-09 2653:2008-10-08 2602:October 2, 2548:: 241–242. 2486:Tom Hull. 2372:16 January 1824:"2D Array" 1621:2022-05-08 1369:Miura fold 1354:California 54:See also: 4550:Vitruvius 4524:Theorists 4304:Waterfall 4209:19th–20th 4137:Taj Mahal 4117:Parthenon 4094:Buildings 4048:Continuum 4016:Sculpture 3992:Interlace 3786:Algorithm 3623:Origamics 3502:Polyhedra 3020:0036-8075 2875:"Cadnano" 2720:126397750 2619:Origami 5 2398:1307.1065 2300:Origami 4 2256:1469-7653 2011:MathWorld 2006:"Folding" 1314:− 1266:π 1201:congruent 758:− 714:− 512:and then 438:pentagons 434:triangles 405:— namely 288:Countdown 219:In 2002, 197:In 1996, 142:Miura-ori 77:In 1922, 4958:Category 4685:Romantic 4363:Max Bill 4297:Reptiles 4112:Pantheon 4069:Octacube 4035:Artworks 3977:Knotting 3965:Muqarnas 3863:Symmetry 3791:Catenary 3779:Concepts 3680:Tom Hull 3650:Yan Chen 3533:Blooming 3437:Flexagon 3192:(2003). 3036:18415193 3028:25104380 2834:cite web 2712:25678354 2583:and the 2443:(2007). 2264:46359986 2201:30037438 2067:(2002). 1844:(2012), 1561:(2011). 1511:Flexagon 1505:See also 1401:Research 1393:and the 1382:Bug Wars 1332:, where 448:and the 442:hexagons 225:Tom Hull 92:In 1936 5071:Origami 4917:Related 4531:Ancient 4265:Man Ray 4211:Century 4147:Artists 4004:Origami 3918:Pyramid 3796:Fractal 3163:2690924 3000:Bibcode 2992:Science 2941:TASON. 2879:cadnano 2853:TASON. 2596:YouTube 2473:2354878 1955:1381938 1598:2540978 1590:2800341 1060:⁄ 1049:⁄ 1038:⁄ 1027:⁄ 1016:⁄ 1003:⁄ 992:⁄ 981:⁄ 970:⁄ 959:⁄ 946:⁄ 935:⁄ 924:⁄ 913:⁄ 902:⁄ 889:⁄ 878:⁄ 867:⁄ 856:⁄ 845:⁄ 517:⁄ 507:⁄ 497:⁄ 50:History 32:origami 5045:Sudoku 4732:Modern 4368:Martin 4231:Newton 4026:Tiling 3970:Zellij 3940:4D art 3633:People 3488:Sonobe 3311:Portal 3200:  3178:  3161:  3130:  3034:  3026:  3018:  2718:  2710:  2625:  2514:  2471:  2461:  2405:  2318:  2262:  2254:  2199:  2152:  2119:  2043:  1953:  1742:  1702:  1596:  1588:  1451:, and 1410:, and 601:. Let 471:, and 377:to be 4543:Canon 3999:Music 3955:Girih 3891:Forms 3856:Human 3159:JSTOR 3032:S2CID 2928:(PDF) 2778:(PDF) 2716:S2CID 2708:JSTOR 2567:(PDF) 2536:(PDF) 2393:arXiv 2363:(PDF) 2345:(PDF) 2296:(PDF) 2260:S2CID 2219:(PDF) 2197:JSTOR 2179:arXiv 1878:(PDF) 1849:(PDF) 1594:S2CID 1566:(PDF) 401:Some 4370:and 3960:Jali 3198:ISBN 3176:ISBN 3128:ISBN 3024:PMID 3016:ISSN 2840:link 2623:ISBN 2604:2021 2512:ISBN 2459:ISBN 2403:ISBN 2374:2021 2316:ISBN 2278:link 2252:ISSN 2150:ISBN 2117:ISBN 2041:ISBN 1740:ISBN 1700:ISBN 1493:and 1359:The 1348:and 1226:The 373:and 223:and 201:and 114:The 3528:Net 3302:by 3283:at 3274:at 3244:doi 3223:doi 3151:doi 3120:doi 3008:doi 2996:345 2700:doi 2451:doi 2308:doi 2242:doi 2189:doi 2175:112 2142:doi 2109:doi 2081:doi 2077:348 1578:doi 1574:118 634:PQ 605:be 597:is 593:to 409:or 251:to 5067:: 4076:Pi 3520:, 3263:. 3238:, 3234:, 3217:, 3213:, 3157:. 3147:68 3145:. 3126:. 3104:, 3077:. 3053:. 3030:. 3022:. 3014:. 3006:. 2994:. 2990:. 2965:. 2902:. 2877:. 2836:}} 2832:{{ 2803:. 2756:^ 2739:. 2728:^ 2714:. 2706:. 2694:. 2675:. 2671:. 2593:. 2587:: 2554:^ 2546:14 2544:. 2538:. 2496:^ 2469:MR 2467:. 2457:. 2439:; 2401:. 2365:. 2330:^ 2314:. 2302:. 2298:. 2274:}} 2270:{{ 2258:. 2238:15 2236:. 2195:. 2187:. 2173:. 2148:. 2115:. 2095:^ 2075:. 2071:. 2063:; 2035:. 2021:^ 2008:. 1993:^ 1981:^ 1963:^ 1951:MR 1945:. 1933:^ 1888:12 1886:. 1880:. 1865:^ 1857:79 1855:, 1851:, 1787:, 1768:. 1754:^ 1675:. 1657:. 1630:^ 1614:. 1592:. 1586:MR 1584:. 1572:. 1568:. 1550:^ 1462:. 1447:, 1443:, 1439:, 1062:15 1058:13 1051:25 1047:12 1005:15 1001:13 994:18 631:AR 628:QC 625:BQ 622:AP 607:AP 595:QC 591:AP 522:. 475:. 467:, 440:, 436:, 423:. 387:. 336:: 209:. 179:. 148:. 42:. 5036:) 5032:( 4993:e 4986:t 4979:v 3764:e 3757:t 3750:v 3524:) 3516:( 3354:e 3347:t 3340:v 3313:: 3267:. 3246:: 3225:: 3206:. 3184:. 3165:. 3153:: 3136:. 3122:: 3087:. 3063:. 3038:. 3010:: 3002:: 2975:. 2951:. 2930:. 2912:. 2887:. 2863:. 2842:) 2814:. 2780:. 2750:. 2722:. 2702:: 2696:9 2677:4 2656:. 2631:. 2606:. 2520:. 2490:. 2475:. 2453:: 2425:. 2411:. 2395:: 2376:. 2324:. 2310:: 2280:) 2266:. 2244:: 2221:. 2203:. 2191:: 2181:: 2158:. 2144:: 2125:. 2111:: 2089:. 2083:: 2049:. 2014:. 1957:. 1772:. 1748:. 1708:. 1681:. 1661:. 1624:. 1600:. 1580:: 1537:) 1350:t 1346:L 1342:n 1338:t 1334:L 1320:) 1317:1 1309:n 1305:2 1301:( 1298:) 1295:4 1292:+ 1287:n 1283:2 1279:( 1273:6 1269:t 1259:= 1256:L 1132:. 1126:P 1123:B 1118:P 1115:A 1112:2 1106:= 1100:Q 1097:C 1092:Q 1089:B 1040:3 1036:2 1029:3 1025:1 1018:5 1014:1 990:5 983:5 979:1 972:5 968:4 961:3 957:2 948:6 944:5 937:9 933:4 926:2 922:1 915:2 911:1 904:3 900:1 891:6 887:5 880:8 876:3 869:3 865:1 858:3 854:2 847:2 843:1 822:x 819:+ 816:1 809:2 805:x 801:+ 798:1 772:2 766:2 762:x 755:1 728:x 725:+ 722:1 717:x 711:1 684:x 681:+ 678:1 673:x 670:2 646:x 611:x 603:x 574:. 568:P 565:A 562:+ 559:1 554:P 551:A 548:2 542:= 539:Q 536:B 519:5 515:1 509:3 505:2 499:5 495:1 461:n 454:n 259:R 239:R

Index


Map folding
origami
mathematical
mathematical equations
History of origami
civil servant
Geometric Exercises in Paper Folding
kindergarten
Harry Houdini

Margharita P. Beloch
Beloch fold
Huzita–Hatori axioms
cubic equation
Yoshizawa–Randlett system

Crease pattern
KĹŤryĹŤ Miura
solar panels on spacecraft

double the cube
Jacques Justin
Humiaki Huzita
regular heptagon
Robert J. Lang

Marshall Bern
Barry Hayes
NP-complete

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑