Knowledge

Meshfree methods

Source đź“ť

1771:
W2 models can be made soft enough (in uniform fashion) to produce upper bound solutions (for force-driving problems). Together with stiff models (such as the fully compatible FEM models), one can conveniently bound the solution from both sides. This allows easy error estimation for generally complicated problems, as long as a triangular mesh can be generated. Typical W2 models are the Smoothed Point Interpolation Methods (or S-PIM). The S-PIM can be node-based (known as NS-PIM or LC-PIM), edge-based (ES-PIM), and cell-based (CS-PIM). The NS-PIM was developed using the so-called SCNI technique. It was then discovered that NS-PIM is capable of producing upper bound solution and volumetric locking free. The ES-PIM is found superior in accuracy, and CS-PIM behaves in between the NS-PIM and ES-PIM. Moreover, W2 formulations allow the use of polynomial and radial basis functions in the creation of shape functions (it accommodates the discontinuous displacement functions, as long as it is in G1 space), which opens further rooms for future developments. The W2 formulation has also led to the development of combination of meshfree techniques with the well-developed FEM techniques, and one can now use triangular mesh with excellent accuracy and desired softness. A typical such a formulation is the so-called smoothed finite element method (or S-FEM). The S-FEM is the linear version of S-PIM, but with most of the properties of the S-PIM and much simpler.
1754:, which necessitates a mesh to generate quadrature points and weights). Nodal integration however, suffers from numerical instability due to underestimation of strain energy associated with short-wavelength modes, and also yields inaccurate and non-convergent results due to under-integration of the weak form. One major advance in numerical integration has been the development of a stabilized conforming nodal integration (SCNI) which provides a nodal integration method which does not suffer from either of these problems. The method is based on strain-smoothing which satisfies the first order 101:), the connectivity of the mesh can be difficult to maintain without introducing error into the simulation. If the mesh becomes tangled or degenerate during simulation, the operators defined on it may no longer give correct values. The mesh may be recreated during simulation (a process called remeshing), but this can also introduce error, since all the existing data points must be mapped onto a new and different set of data points. Meshfree methods are intended to remedy these problems. Meshfree methods are also useful for: 22: 806:, respectively. Generally in finite differences one can allow very simply for steps variable along the mesh, but all the original nodes should be preserved and they can move independently only by deforming the original elements. If even only two of all the nodes change their order, or even only one node is added to or removed from the simulation, that creates a defect in the original mesh and the simple finite difference approximation can no longer hold. 45:, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows 1758:. However, it was later realized that low-energy modes were still present in SCNI, and additional stabilization methods have been developed. This method has been applied to a variety of problems including thin and thick plates, poromechanics, convection-dominated problems, among others. More recently, a framework has been developed to pass arbitrary-order patch tests, based on a 1778:
The S-PIM and S-FEM works well for solid mechanics problems. For CFD problems, the formulation can be simpler, via strong formulation. A Gradient Smoothing Methods (GSM) has also been developed recently for CFD problems, implementing the gradient smoothing idea in strong form. The GSM is similar to
1770:
theory. The W2 formulation offers possibilities to formulate various (uniformly) "soft" models that work well with triangular meshes. Because a triangular mesh can be generated automatically, it becomes much easier in re-meshing and hence enables automation in modeling and simulation. In addition,
1782:
Nodal integration has been proposed as a technique to use finite elements to emulate a meshfree behaviour. However, the obstacle that must be overcome in using nodally integrated elements is that the quantities at nodal points are not continuous, and the nodes are shared among multiple elements.
1409:
pioneered the Element Free Galerkin (EFG) method, which employed MLS with Lagrange multipliers to enforce boundary conditions, higher order numerical quadrature in the weak form, and full derivatives of the MLS approximation which gave better accuracy. Around the same time, the
1265: 1423:. RKPM and other meshfree methods were extensively developed by Chen, Liu, and Li in the late 1990s for a variety of applications and various classes of problems. During the 1990s and thereafter several other varieties were developed including those listed below. 1414:(RKPM) emerged, the approximation motivated in part to correct the kernel estimate in SPH: to give accuracy near boundaries, in non-uniform discretizations, and higher-order accuracy in general. Notably, in a parallel development, the 1774:
It is a general perception that meshfree methods are much more expensive than the FEM counterparts. The recent study has found however, some meshfree methods such as the S-PIM and S-FEM can be much faster than the FEM counterparts.
1004: 532: 626: 73:
were originally defined on meshes of data points. In such a mesh, each point has a fixed number of predefined neighbors, and this connectivity between neighbors can be used to define mathematical operators like the
1735:, where they can be imposed directly. Techniques have been developed to overcome this difficulty and impose conditions strongly. Several methods have been developed to impose the essential boundary conditions 1378:), it would be a waste of effort to calculate the summations above over every particle in a large simulation. So typically SPH simulators require some extra code to speed up this nearest neighbor calculation. 1765:
One recent advance in meshfree methods aims at the development of computational tools for automation in modeling and simulations. This is enabled by the so-called weakened weak (W2) formulation based on the
1542: 1418:
were developed around the same time which offer similar capabilities. Material point methods are widely used in the movie industry to simulate large deformation solid mechanics, such as snow in the movie
1351:
and its derivatives do not depend on any adjacency information about the particles; they can use the particles in any order, so it doesn't matter if the particles move around or even exchange places.
1129: 3466:
Gross, B. J.; Trask, N.; Kuberry, P.; Atzberger, P. J. (15 May 2020). "Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: A Generalized Moving Least-Squares (GMLS) approach".
3054:
Zhang, Jian; Liu, G.R.; Lam, K.Y.; Li, Hua; Xu, G. (November 2008). "A gradient smoothing method (GSM) based on strong form governing equation for adaptive analysis of solid mechanics problems".
1630: 1642: 1524: 1590: 1597: 427: 365: 2858:
Liu, G. R. (2009). "A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems".
812:(SPH), one of the oldest meshfree methods, solves this problem by treating data points as physical particles with mass and density that can move around over time, and carry some value 2105:
Liu, W. K.; Chen, Y.; Jun, S.; Chen, J. S.; Belytschko, T.; Pan, C.; Uras, R. A.; Chang, C. T. (March 1996). "Overview and applications of the reproducing Kernel Particle methods".
1723:
The primary areas of advancement in meshfree methods are to address issues with essential boundary enforcement, numerical quadrature, and contact and large deformations. The common
3437:
Sousa, Washington; de Oliveira, Rodrigo (April 2015). "Coulomb's Law Discretization Method: a New Methodology of Spatial Discretization for the Radial Point Interpolation Method".
1494: 1560: 1394:
were the first to apply SPH in solid mechanics. The main drawbacks of SPH are inaccurate results near boundaries and tension instability that was first investigated by Swegle.
1714:
Meshfree Interface-Finite Element Method (MIFEM) (2015) - a hybrid finite element-meshfree method for numerical simulation of phase transformation and multiphase flow problems
1636: 2942:
Liu, G. R.; Zhang, G. Y. (14 May 2008). "Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM)".
1692: 1612: 303: 264: 1081: 196: 1624: 1566: 1123:
is a kernel function that operates on nearby data points and is chosen for smoothness and other useful qualities. By linearity, we can write the spatial derivative as
804: 771: 1349: 1303: 872: 664: 164: 1034: 837: 738: 223: 3373:
Netuzhylov, Hennadiy; Zilian, Andreas (15 October 2009). "Space-time meshfree collocation method: Methodology and application to initial-boundary value problems".
1572: 1548: 1453: 46: 2598:
Boroomand, B.; Soghrati, S.; Movahedian, B. (2009). "Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style".
2210:
Chen, Shang-Ying; Hsu, Kuo-Chin; Fan, Chia-Ming (15 March 2021). "Improvement of generalized finite difference method for stochastic subsurface flow modeling".
1372: 1121: 1101: 1054: 711: 691: 1536: 1530: 1310: 3615: 1584: 1888:
Libersky, Larry D.; Petschek, Albert G.; Carney, Theodore C.; Hipp, Jim R.; Allahdadi, Firooz A. (November 1993). "High Strain Lagrangian Hydrodynamics".
2892:
Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY and Han X, A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems,
880: 2915:
Liu, G. R.; Zhang, G. Y. (20 November 2011). "A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method".
1431:
The following numerical methods are generally considered to fall within the general class of "meshfree" methods. Acronyms are provided in parentheses.
2633:
Ghoneim, A. (March 2015). "A meshfree interface-finite element method for modelling isothermal solutal melting and solidification in binary systems".
666:
and its spatial and temporal derivatives to write the equation being simulated in finite difference form, then simulate the equation with one of many
438: 3193:
Arroyo, M.; Ortiz, M. (26 March 2006). "Localmaximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods".
2820:
Liu, G. R. (2009). "A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory".
1750:, nodal integration is generally preferred which offers simplicity, efficiency, and keeps the meshfree method free of any mesh (as opposed to using 543: 1313:. In physical terms, this means calculating the forces between the particles, then integrating these forces over time to determine their motion. 2893: 2327:
A. Behzadan; H. M. Shodja; M. Khezri (2011). "A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS".
2774:; Hillman, Michael; RĂĽter, Marcus (3 August 2013). "An arbitrary order variationally consistent integration for Galerkin meshfree methods". 432:
We can define the derivatives that occur in the equation being simulated using some finite difference formulae on this domain, for example
2905:
G.R. Liu, G.R. Zhang. Edge-based Smoothed Point Interpolation Methods. International Journal of Computational Methods, 5(4): 621–646, 2008
2736:; Wu, Cheng-Tang; Yoon, Sangpil; You, Yang (20 January 2001). "A stabilized conforming nodal integration for Galerkin mesh-free methods". 1354:
One disadvantage of SPH is that it requires extra programming to determine the nearest neighbors of a particle. Since the kernel function
1477: 1374:
only returns nonzero results for nearby particles within twice the "smoothing length" (because we typically choose kernel functions with
2693:
Belytschko, Ted; Guo, Yong; Kam Liu, Wing; Ping Xiao, Shao (30 July 2000). "A unified stability analysis of meshless particle methods".
2418:
Li, B.; Habbal, F.; Ortiz, M. (17 September 2010). "Optimal transportation meshfree approximation schemes for fluid and plastic flows".
1405:
approximation in the Galerkin solution of partial differential equations, with approximate derivatives of the MLS function. Thereafter
4085: 3706: 1802: 1767: 3656: 1950:
Nayroles, B.; Touzot, G.; Villon, P. (1992). "Generalizing the finite element method: Diffuse approximation and diffuse elements".
1500: 3366: 1260:{\displaystyle {\partial u \over \partial x}=\sum _{i}m_{i}{\frac {u_{i}^{n}}{\rho _{i}}}{\partial W(|x-x_{i}|) \over \partial x}} 3632: 3606: 3327: 2714: 3515:"First-passage time statistics on surfaces of general shape: Surface PDE solvers using Generalized Moving Least Squares (GMLS)" 1618: 2757: 4090: 3930: 3700: 3362: 2998: 2140:
Atluri, S. N.; Zhu, T. (24 August 1998). "A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics".
4000: 3857: 3712: 1512: 1459: 1411: 3353:
Netuzhylov, H. (2008), "A Space-Time Meshfree Collocation Method for Coupled Problems on Irregularly-Shaped Domains",
3293: 3278: 3264: 3248: 3183: 3164: 2555:
Zhang, Xiong; Liu, Xiao-Hu; Song, Kang-Zu; Lu, Ming-Wan (30 July 2001). "Least-squares collocation meshless method".
1779:, but uses gradient smoothing operations exclusively in nested fashions, and is a general numerical method for PDEs. 1680: 3908: 2183:
Oliveira, T.; Portela, A. (December 2016). "Weak-form collocation – A local meshless method in linear elasticity".
79: 3925: 115:
Simulations where the problem geometry may move out of alignment with a fixed mesh, such as in bending simulations
4059: 3845: 1554: 1435: 1387: 809: 371: 309: 3826: 3815: 3792: 3011:
Liu, G. R.; Xu, George X. (10 December 2008). "A gradient smoothing method (GSM) for fluid dynamics problems".
1915:
Swegle, J.W.; Hicks, D.L.; Attaway, S.W. (January 1995). "Smoothed Particle Hydrodynamics Stability Analysis".
1797: 1686: 1676: 2255:"Data assimilation for real-time subsurface flow modeling with dynamically adaptive meshless node adjustments" 3798: 2520:
Ooi, E.H.; Popov, V. (May 2012). "An efficient implementation of the radial basis integral equation method".
1606: 1506: 1447: 1375: 3915: 3880: 1755: 1731:
property. This make essential boundary condition enforcement non-trivial, at least more difficult than the
1727:
requires strong enforcement of the essential boundary conditions, yet meshfree methods in general lack the
90: 4080: 3920: 3599: 83: 1401:. This first method called the diffuse element method (DEM), pioneered by Nayroles et al., utilized the 4037: 4022: 3898: 3584: 3134:
Liu, M. B.; Liu, G. R.; Zong, Z. (20 November 2011). "An overview on smoothed particle hydrodynamics".
1759: 3684: 3664: 3646: 2463:"The Repeated Replacement Method: A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics" 75: 3113:
Garg, Sahil; Pant, Mohit (24 May 2018). "Meshfree Methods: A Comprehensive Review of Applications".
4007: 3893: 3623: 3215: 2666:; Hillman, Michael; Chi, Sheng-Wei (April 2017). "Meshfree Methods: Progress Made after 20 Years". 1817: 1670:
Continuous blending method (enrichment and coupling of finite elements and meshless methods) – see
667: 128: 62: 4049: 4027: 4012: 3995: 3903: 3888: 3804: 3669: 2028:
Liu, Wing Kam; Jun, Sukky; Zhang, Yi Fei (30 April 1995). "Reproducing kernel particle methods".
1812: 94: 270: 231: 3969: 3740: 3592: 3210: 1482: 1471: 1441: 1059: 169: 3412:"RBF Based Meshless Method for Large Scale Shallow Water Simulations: Experimental Validation" 2362:
Gauger, Christoph; Leinen, Peter; Yserentant, Harry (January 2000). "The Finite Mass Method".
713:) are constant along all the mesh, and the left and right mesh neighbors of the data value at 4017: 3863: 3779: 3300: 1747: 1732: 1488: 1415: 1306: 776: 743: 70: 2064: 1319: 1273: 842: 634: 134: 4054: 3727: 3536: 3485: 3446: 3382: 3315: 3202: 3020: 2951: 2783: 2745: 2702: 2679: 2564: 2474: 2427: 2336: 2301: 2219: 2149: 2037: 2002: 1959: 1924: 1860: 1740: 1658: 1402: 1012: 815: 716: 201: 98: 66: 8: 3821: 3735: 3254:
Belytschko, T.; Huerta, A.; Fernández-Méndez, S; Rabczuk, T. (2004), "Meshless methods",
1792: 1751: 1465: 3540: 3489: 3450: 3386: 3319: 3206: 3024: 2955: 2787: 2749: 2706: 2568: 2478: 2431: 2340: 2305: 2223: 2153: 2041: 2006: 1963: 1928: 1864: 1667:
methods (PoUM) – provide general approximation formulation used in some meshfree methods
41:
are those that do not require connection between nodes of the simulation domain, i.e. a
4044: 3985: 3560: 3526: 3501: 3475: 3398: 3341: 3228: 3036: 2967: 2875: 2837: 2799: 2615: 2580: 2537: 2497: 2462: 2443: 2235: 2165: 2122: 2093: 1975: 1807: 1664: 1420: 1357: 1106: 1086: 1039: 696: 676: 34: 2533: 2196: 1993:
Belytschko, T.; Lu, Y. Y.; Gu, L. (30 January 1994). "Element-free Galerkin methods".
1683:(XFEM, GFEM) – variants of FEM (finite element method) combining some meshless aspects 3674: 3564: 3552: 3505: 3402: 3358: 3345: 3289: 3274: 3260: 3244: 3179: 3160: 2994: 2879: 2841: 2803: 2584: 2541: 2502: 2274: 2239: 2126: 2080: 1979: 3232: 3040: 2971: 2447: 118:
Simulations containing nonlinear material behavior, discontinuities or singularities
112:
Simulations where nodes may be created or destroyed, such as in cracking simulations
3990: 3980: 3869: 3544: 3493: 3454: 3423: 3390: 3331: 3323: 3220: 3143: 3122: 3090: 3063: 3028: 2959: 2924: 2867: 2829: 2791: 2753: 2710: 2675: 2642: 2619: 2607: 2572: 2529: 2492: 2482: 2435: 2371: 2344: 2309: 2266: 2227: 2192: 2169: 2157: 2114: 2076: 2045: 2010: 1967: 1932: 1897: 1868: 1736: 1724: 1518: 999:{\displaystyle u(x,t_{n})=\sum _{i}m_{i}{\frac {u_{i}^{n}}{\rho _{i}}}W(|x-x_{i}|)} 78:. These operators are then used to construct the equations to simulate—such as the 4032: 3975: 3964: 2771: 2733: 2663: 2487: 1827: 1728: 1398: 106: 26: 3256:
Encyclopedia of Computational Mechanics Vol. 1 Chapter 10, John Wiley & Sons
3067: 2646: 1849:"Smoothed particle hydrodynamics: theory and application to non-spherical stars" 527:{\displaystyle {\partial u \over \partial x}={u_{i+1}^{n}-u_{i-1}^{n} \over 2h}} 3810: 3757: 2270: 1406: 50: 3548: 3497: 3147: 3126: 3094: 2928: 2375: 2348: 2231: 1873: 1848: 131:
simulation, the domain of a one-dimensional simulation would be some function
4074: 3679: 3556: 3458: 2278: 2254: 621:{\displaystyle {\partial u \over \partial t}={u_{i}^{n+1}-u_{i}^{n} \over k}} 89:
But in simulations where the material being simulated can move around (as in
42: 3514: 3428: 3411: 2292:
W.K. Liu; S. Jun; Y.F. Zhang (1995). "Reproducing kernel particle methods".
21: 3851: 3768: 3745: 2506: 2313: 2049: 2014: 1936: 1901: 1822: 16:
Methods in numerical analysis not requiring knowledge of neighboring points
3355:
Dissertation, TU Braunschweig, CSE – Computational Sciences in Engineering
2161: 3762: 3640: 3614: 3328:
10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S
1305:
and its spatial derivatives to write the equation being simulated as an
3579: 3253: 2715:
10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
2118: 1971: 1661:(MLS) – provide general approximation method for arbitrary set of nodes 2815: 2813: 3394: 3336: 3224: 3032: 2963: 2871: 2833: 2795: 2758:
10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
2611: 2439: 3301:"Enrichment and coupling of the finite element and meshless methods" 2576: 3531: 3480: 2810: 1397:
In the 1990s a new class of meshfree methods emerged based on the
3948: 2326: 1316:
The advantage of SPH in this situation is that the formulae for
3787: 3157:
Smoothed Particle Hydrodynamics, a meshfree and Particle Method
1581:
Generalized/Gradient Reproducing Kernel Particle Method (2011)
107:
creating a useful mesh from the geometry of a complex 3D object
3176:
The Meshless Method (MLPG) for Domain & BIE Discretization
3513:
Gross, B. J.; Kuberry, P.; Atzberger, P. J. (15 March 2022).
3410:
Alhuri, Y.; Naji, A.; Ouazar, D.; Taik, A. (26 August 2010).
2692: 2253:
Chen, Shang-Ying; Wei, Jian-Yu; Hsu, Kuo-Chin (2023-10-01).
3942: 3936: 3751: 3299:
Huerta, Antonio; Fernández-Méndez, Sonia (20 August 2000).
2597: 3465: 3375:
International Journal for Numerical Methods in Engineering
3308:
International Journal for Numerical Methods in Engineering
3195:
International Journal for Numerical Methods in Engineering
2944:
International Journal for Numerical Methods in Engineering
2860:
International Journal for Numerical Methods in Engineering
2822:
International Journal for Numerical Methods in Engineering
2776:
International Journal for Numerical Methods in Engineering
2738:
International Journal for Numerical Methods in Engineering
2695:
International Journal for Numerical Methods in Engineering
2600:
International Journal for Numerical Methods in Engineering
2557:
International Journal for Numerical Methods in Engineering
2420:
International Journal for Numerical Methods in Engineering
1995:
International Journal for Numerical Methods in Engineering
1887: 49:
simulations, in which the nodes can move according to the
673:
In this simple example, the steps (here the spatial step
2291: 2063:
Sulsky, D.; Chen, Z.; Schreyer, H.L. (September 1994).
1603:
Local radial basis function collocation Method (LRBFCM)
109:
may be especially difficult or require human assistance
3298: 2361: 1671: 3512: 3013:
International Journal for Numerical Methods in Fluids
2069:
Computer Methods in Applied Mechanics and Engineering
2030:
International Journal for Numerical Methods in Fluids
1704:
Space-Time Meshfree Collocation Method (STMCM) – see
1360: 1322: 1276: 1132: 1109: 1089: 1062: 1042: 1015: 883: 845: 818: 779: 746: 719: 699: 679: 637: 546: 441: 374: 312: 273: 234: 204: 172: 137: 3616:
Numerical methods for partial differential equations
3409: 3081:
Liu, G. R. (20 November 2011). "On G space theory".
2094:
https://www.math.ucla.edu/~jteran/papers/SSCTS13.pdf
1949: 2065:"A particle method for history-dependent materials" 1847:Gingold, R. A.; Monaghan, J. J. (1 December 1977). 2728: 2726: 2724: 2658: 2656: 2062: 1914: 1366: 1343: 1297: 1259: 1115: 1095: 1075: 1048: 1028: 998: 866: 831: 798: 765: 732: 705: 685: 658: 620: 526: 421: 359: 297: 258: 217: 190: 158: 1853:Monthly Notices of the Royal Astronomical Society 1578:Reproducing Kernel Particle Method (RKPM) (1995) 4072: 3436: 3372: 2770: 2461:Walker, Wade A.; Langowski, Jörg (6 July 2012). 2107:Archives of Computational Methods in Engineering 1709: 1650:Exponential Basis Functions method (EBFs) (2010) 97:of the material can occur (as in simulations of 2721: 2653: 2460: 2182: 1846: 1647:Least-square collocation meshless method (2001) 1501:Generalized-strain mesh-free (GSMF) formulation 1426: 3136:International Journal of Computational Methods 3115:International Journal of Computational Methods 3083:International Journal of Computational Methods 2917:International Journal of Computational Methods 2894:International Journal of Computational Methods 2662: 2554: 2104: 1992: 3600: 3053: 2853: 2851: 2732: 2417: 1309:, and simulate the equation with one of many 1543:Meshfree moving Kriging interpolation method 3416:Mathematical Modelling of Natural Phenomena 3192: 2522:Engineering Analysis with Boundary Elements 2185:Engineering Analysis with Boundary Elements 2027: 1743:, Nitche's method, and the penalty method. 1699: 3607: 3593: 3352: 3133: 2848: 2252: 2209: 1705: 422:{\displaystyle t_{n+1}-t_{n}=k\ \forall n} 360:{\displaystyle x_{i+1}-x_{i}=h\ \forall i} 3530: 3479: 3427: 3335: 3214: 2496: 2486: 2139: 1872: 839:with them. SPH then defines the value of 3112: 2985: 2983: 2981: 2941: 2914: 2519: 1386:One of the earliest meshfree methods is 20: 2632: 166:, represented as a mesh of data values 4073: 3439:IEEE Antennas and Propagation Magazine 3173: 3154: 3056:Finite Elements in Analysis and Design 2635:Finite Elements in Analysis and Design 2391: 2389: 2387: 2385: 1631:Optimal Transportation Meshfree method 1619:Discrete least squares meshless method 3588: 3010: 2978: 1718: 1643:Radial basis integral equation method 1525:Moving particle finite element method 1270:Then we can use these definitions of 631:Then we can use these definitions of 3858:Moving particle semi-implicit method 3769:Weighted essentially non-oscillatory 3239:Belytschko, T., Chen, J.S. (2007). 1672:Huerta & Fernández-MĂ©ndez (2000) 1513:Generalized finite difference method 3080: 2857: 2819: 2382: 1591:Smoothed point interpolation method 13: 3707:Finite-difference frequency-domain 3580:The USACM blog on Meshfree Methods 3105: 2680:10.1061/(ASCE)EM.1943-7889.0001176 2364:SIAM Journal on Numerical Analysis 1698:Local maximum-entropy (LME) – see 1460:Reproducing kernel particle method 1412:reproducing kernel particle method 1248: 1208: 1144: 1136: 558: 550: 453: 445: 413: 351: 14: 4102: 3573: 2534:10.1016/j.enganabound.2011.12.001 2197:10.1016/j.enganabound.2016.09.010 1598:radial point interpolation method 4086:Numerical differential equations 3519:Journal of Computational Physics 3468:Journal of Computational Physics 2668:Journal of Engineering Mechanics 2399:, CRC Press. 978-1-4200-8209-9 2329:Comput. Methods. Appl. Mech. Eng 2212:Journal of Computational Physics 1917:Journal of Computational Physics 1890:Journal of Computational Physics 4060:Method of fundamental solutions 3846:Smoothed-particle hydrodynamics 3074: 3047: 3004: 2991:Smoothed Finite Element Methods 2935: 2908: 2899: 2886: 2764: 2686: 2626: 2591: 2548: 2513: 2454: 2411: 2402: 2355: 2320: 2285: 2246: 2203: 2176: 2133: 1555:Method of fundamental solutions 1436:Smoothed particle hydrodynamics 1388:smoothed particle hydrodynamics 810:Smoothed-particle hydrodynamics 3701:Alternating direction-implicit 2098: 2087: 2056: 2021: 1986: 1943: 1908: 1881: 1840: 1798:Smoothed finite element method 1710:Netuzhylov & Zilian (2009) 1687:Smoothed finite element method 1495:Meshless local Petrov Galerkin 1390:, presented in 1977. Libersky 1338: 1326: 1307:ordinary differential equation 1292: 1280: 1243: 1239: 1218: 1214: 993: 989: 968: 964: 906: 887: 861: 849: 653: 641: 153: 141: 61:Numerical methods such as the 1: 3713:Finite-difference time-domain 3241:Meshfree and Particle Methods 3155:Liu, G.R.; Liu, M.B. (2003). 2408:Sarler B, Vertnik R. Meshfree 1833: 1607:Viscous vortex domains method 1561:Method of particular solution 1507:Moving particle semi-implicit 1448:Dissipative particle dynamics 56: 4091:Computational fluid dynamics 3752:Advection upstream-splitting 3288:, Berlin: Springer Verlag. 3243:, John Wiley and Sons Ltd. 2488:10.1371/journal.pone.0039999 2081:10.1016/0045-7825(94)90112-0 1427:List of methods and acronyms 91:computational fluid dynamics 7: 3763:Essentially non-oscillatory 3746:Monotonic upstream-centered 3068:10.1016/j.finel.2008.06.006 2647:10.1016/j.finel.2014.10.002 1786: 1637:Repeated replacement method 1083:is the density of particle 10: 4107: 4023:Infinite difference method 3641:Forward-time central-space 3284:Li, S., Liu, W.K. (2004). 2294:Int. J. Numer. Methods Eng 2271:10.1007/s00366-023-01897-6 2259:Engineering with Computers 1456:method (EFG / EFGM) (1994) 1381: 298:{\displaystyle n=0,1,2...} 259:{\displaystyle i=0,1,2...} 122: 3957: 3926:Poincaré–Steklov operator 3879: 3836: 3778: 3726: 3693: 3685:Method of characteristics 3655: 3631: 3622: 3549:10.1016/j.jcp.2021.110932 3498:10.1016/j.jcp.2020.109340 3286:Meshfree Particle Methods 3269:Liu, G.R. 1st edn, 2002. 3148:10.1142/S021987620800142X 3127:10.1142/S0219876218300015 3095:10.1142/S0219876209001863 2929:10.1142/S0219876209001796 2376:10.1137/S0036142999352564 2349:10.1016/j.cma.2010.07.017 2232:10.1016/J.JCP.2020.110002 1700:Arroyo & Ortiz (2006) 1693:Gradient smoothing method 1613:Cracking Particles Method 1076:{\displaystyle \rho _{i}} 874:between the particles by 668:finite difference methods 191:{\displaystyle u_{i}^{n}} 3943:Tearing and interconnect 3937:Balancing by constraints 3459:10.1109/MAP.2015.2414571 2395:Liu, G.R. 2nd edn: 2009 1818:Immersed boundary method 1625:Immersed Particle Method 1567:Method of finite spheres 1036:is the mass of particle 63:finite difference method 4050:Computer-assisted proof 4028:Infinite element method 3816:Gradient discretisation 2142:Computational Mechanics 1952:Computational Mechanics 1874:10.1093/mnras/181.3.375 1813:Boundary element method 799:{\displaystyle x_{i+1}} 766:{\displaystyle x_{i-1}} 84:Navier–Stokes equations 4038:Petrov–Galerkin method 3799:Discontinuous Galerkin 3178:. Tech Science Press. 2896:, 2(4): 645–665, 2005. 2314:10.1002/fld.1650200824 2050:10.1002/fld.1650200824 2015:10.1002/nme.1620370205 1937:10.1006/jcph.1995.1010 1902:10.1006/jcph.1993.1199 1760:Petrov–Galerkin method 1573:Discrete vortex method 1483:Natural element method 1472:Finite pointset method 1442:Diffuse element method 1416:Material point methods 1368: 1345: 1344:{\displaystyle u(x,t)} 1299: 1298:{\displaystyle u(x,t)} 1261: 1117: 1097: 1077: 1050: 1030: 1000: 868: 867:{\displaystyle u(x,t)} 833: 800: 767: 734: 707: 687: 660: 659:{\displaystyle u(x,t)} 622: 528: 423: 361: 299: 260: 219: 192: 160: 159:{\displaystyle u(x,t)} 30: 4018:Isogeometric analysis 3864:Material point method 3429:10.1051/mmnp/20105701 3174:Atluri, S.N. (2004). 2162:10.1007/s004660050346 1733:Finite element method 1549:Boundary cloud method 1489:Material point method 1454:Element-free Galerkin 1369: 1346: 1300: 1262: 1118: 1098: 1078: 1051: 1031: 1029:{\displaystyle m_{i}} 1001: 869: 834: 832:{\displaystyle u_{i}} 801: 768: 735: 733:{\displaystyle x_{i}} 708: 688: 661: 623: 529: 424: 362: 300: 261: 220: 218:{\displaystyle x_{i}} 193: 161: 71:finite element method 24: 4055:Integrable algorithm 3881:Domain decomposition 3159:. World Scientific. 1741:Lagrange multipliers 1659:Moving least squares 1537:Boundary node method 1358: 1320: 1274: 1130: 1107: 1087: 1060: 1040: 1013: 881: 843: 816: 777: 744: 717: 697: 677: 635: 544: 439: 372: 310: 271: 232: 202: 170: 135: 67:finite-volume method 25:20 points and their 3899:Schwarz alternating 3822:Loubignac iteration 3541:2022JCoPh.45310932G 3490:2020JCoPh.40909340G 3451:2015IAPM...57..277S 3387:2009IJNME..80..355N 3320:2000IJNME..48.1615H 3207:2006IJNME..65.2167A 3025:2008IJNMF..58.1101L 2956:2008IJNME..74.1128L 2788:2013IJNME..95..387C 2750:2001IJNME..50..435C 2707:2000IJNME..48.1359B 2569:2001IJNME..51.1089Z 2479:2012PLoSO...739999W 2432:2010IJNME..83.1541L 2341:2011CMAME.200..540B 2306:1995IJNMF..20.1081L 2224:2021JCoPh.42910002C 2154:1998CompM..22..117A 2042:1995IJNMF..20.1081L 2007:1994IJNME..37..229B 1964:1992CompM..10..307N 1929:1995JCoPh.116..123S 1865:1977MNRAS.181..375G 1793:Continuum mechanics 1531:Finite cloud method 1466:Finite point method 1192: 948: 611: 593: 512: 488: 187: 4081:Numerical analysis 4045:Validated numerics 2300:(8–9): 1081–1106. 2119:10.1007/BF02736130 2036:(8–9): 1081–1106. 1972:10.1007/BF00364252 1808:Weakened weak form 1719:Recent development 1665:Partition of unity 1585:Finite mass method 1364: 1341: 1295: 1257: 1178: 1165: 1113: 1093: 1073: 1046: 1026: 996: 934: 921: 864: 829: 796: 763: 740:are the values at 730: 703: 683: 656: 618: 597: 573: 524: 492: 468: 419: 357: 295: 256: 215: 188: 173: 156: 105:Simulations where 35:numerical analysis 31: 4068: 4067: 4008:Immersed boundary 4001:Method of moments 3916:Neumann–Dirichlet 3909:abstract additive 3894:Fictitious domain 3838:Meshless/Meshfree 3722: 3721: 3624:Finite difference 3363:978-3-00-026744-4 3314:(11): 1615–1636. 3271:Mesh Free Methods 3201:(13): 2167–2202. 3019:(10): 1101–1133. 2999:978-1-4398-2027-8 2426:(12): 1541–1579. 2397:Mesh Free Methods 1706:Netuzhylov (2008) 1654:Related methods: 1367:{\displaystyle W} 1311:numerical methods 1255: 1203: 1156: 1151: 1116:{\displaystyle W} 1096:{\displaystyle i} 1049:{\displaystyle i} 959: 912: 706:{\displaystyle k} 686:{\displaystyle h} 616: 565: 522: 460: 412: 350: 129:finite difference 127:In a traditional 99:plastic materials 93:) or where large 4098: 4013:Analytic element 3996:Boundary element 3889:Schur complement 3870:Particle-in-cell 3805:Spectral element 3629: 3628: 3609: 3602: 3595: 3586: 3585: 3568: 3534: 3509: 3483: 3462: 3433: 3431: 3406: 3395:10.1002/nme.2638 3357: 3349: 3339: 3305: 3258: 3236: 3225:10.1002/nme.1534 3218: 3189: 3170: 3151: 3130: 3099: 3098: 3078: 3072: 3071: 3051: 3045: 3044: 3033:10.1002/fld.1788 3008: 3002: 2989:Liu, G.R., 2010 2987: 2976: 2975: 2964:10.1002/nme.2204 2950:(7): 1128–1161. 2939: 2933: 2932: 2912: 2906: 2903: 2897: 2890: 2884: 2883: 2872:10.1002/nme.2720 2866:(9): 1127–1156. 2855: 2846: 2845: 2834:10.1002/nme.2719 2828:(9): 1093–1126. 2817: 2808: 2807: 2796:10.1002/nme.4512 2772:Chen, Jiun-Shyan 2768: 2762: 2761: 2734:Chen, Jiun-Shyan 2730: 2719: 2718: 2701:(9): 1359–1400. 2690: 2684: 2683: 2664:Chen, Jiun-Shyan 2660: 2651: 2650: 2630: 2624: 2623: 2612:10.1002/nme.2718 2595: 2589: 2588: 2563:(9): 1089–1100. 2552: 2546: 2545: 2517: 2511: 2510: 2500: 2490: 2458: 2452: 2451: 2440:10.1002/nme.2869 2415: 2409: 2406: 2400: 2393: 2380: 2379: 2370:(6): 1768–1799. 2359: 2353: 2352: 2335:(5–8): 540–576. 2324: 2318: 2317: 2289: 2283: 2282: 2265:(3): 1893–1925. 2250: 2244: 2243: 2207: 2201: 2200: 2180: 2174: 2173: 2137: 2131: 2130: 2102: 2096: 2091: 2085: 2084: 2075:(1–2): 179–196. 2060: 2054: 2053: 2025: 2019: 2018: 1990: 1984: 1983: 1947: 1941: 1940: 1912: 1906: 1905: 1885: 1879: 1878: 1876: 1844: 1752:Gauss quadrature 1519:Particle-in-cell 1373: 1371: 1370: 1365: 1350: 1348: 1347: 1342: 1304: 1302: 1301: 1296: 1266: 1264: 1263: 1258: 1256: 1254: 1246: 1242: 1237: 1236: 1221: 1206: 1204: 1202: 1201: 1191: 1186: 1177: 1175: 1174: 1164: 1152: 1150: 1142: 1134: 1122: 1120: 1119: 1114: 1102: 1100: 1099: 1094: 1082: 1080: 1079: 1074: 1072: 1071: 1055: 1053: 1052: 1047: 1035: 1033: 1032: 1027: 1025: 1024: 1005: 1003: 1002: 997: 992: 987: 986: 971: 960: 958: 957: 947: 942: 933: 931: 930: 920: 905: 904: 873: 871: 870: 865: 838: 836: 835: 830: 828: 827: 805: 803: 802: 797: 795: 794: 772: 770: 769: 764: 762: 761: 739: 737: 736: 731: 729: 728: 712: 710: 709: 704: 692: 690: 689: 684: 665: 663: 662: 657: 627: 625: 624: 619: 617: 612: 610: 605: 592: 581: 571: 566: 564: 556: 548: 533: 531: 530: 525: 523: 521: 513: 511: 506: 487: 482: 466: 461: 459: 451: 443: 428: 426: 425: 420: 410: 403: 402: 390: 389: 366: 364: 363: 358: 348: 341: 340: 328: 327: 304: 302: 301: 296: 265: 263: 262: 257: 224: 222: 221: 216: 214: 213: 197: 195: 194: 189: 186: 181: 165: 163: 162: 157: 39:meshfree methods 33:In the field of 4106: 4105: 4101: 4100: 4099: 4097: 4096: 4095: 4071: 4070: 4069: 4064: 4033:Galerkin method 3976:Method of lines 3953: 3921:Neumann–Neumann 3875: 3832: 3774: 3741:High-resolution 3718: 3689: 3651: 3618: 3613: 3576: 3571: 3303: 3186: 3167: 3108: 3106:Further reading 3103: 3102: 3079: 3075: 3062:(15): 889–909. 3052: 3048: 3009: 3005: 2988: 2979: 2940: 2936: 2913: 2909: 2904: 2900: 2891: 2887: 2856: 2849: 2818: 2811: 2769: 2765: 2731: 2722: 2691: 2687: 2674:(4): 04017001. 2661: 2654: 2631: 2627: 2606:(8): 971–1018. 2596: 2592: 2577:10.1002/nme.200 2553: 2549: 2518: 2514: 2459: 2455: 2416: 2412: 2407: 2403: 2394: 2383: 2360: 2356: 2325: 2321: 2290: 2286: 2251: 2247: 2208: 2204: 2181: 2177: 2138: 2134: 2103: 2099: 2092: 2088: 2061: 2057: 2026: 2022: 1991: 1987: 1948: 1944: 1913: 1909: 1886: 1882: 1845: 1841: 1836: 1828:Particle method 1789: 1729:Kronecker delta 1721: 1681:Generalized FEM 1596:Meshfree local 1593:(S-PIM) (2005). 1429: 1399:Galerkin method 1384: 1376:compact support 1359: 1356: 1355: 1321: 1318: 1317: 1275: 1272: 1271: 1247: 1238: 1232: 1228: 1217: 1207: 1205: 1197: 1193: 1187: 1182: 1176: 1170: 1166: 1160: 1143: 1135: 1133: 1131: 1128: 1127: 1108: 1105: 1104: 1088: 1085: 1084: 1067: 1063: 1061: 1058: 1057: 1041: 1038: 1037: 1020: 1016: 1014: 1011: 1010: 988: 982: 978: 967: 953: 949: 943: 938: 932: 926: 922: 916: 900: 896: 882: 879: 878: 844: 841: 840: 823: 819: 817: 814: 813: 784: 780: 778: 775: 774: 751: 747: 745: 742: 741: 724: 720: 718: 715: 714: 698: 695: 694: 678: 675: 674: 636: 633: 632: 606: 601: 582: 577: 572: 570: 557: 549: 547: 545: 542: 541: 514: 507: 496: 483: 472: 467: 465: 452: 444: 442: 440: 437: 436: 398: 394: 379: 375: 373: 370: 369: 336: 332: 317: 313: 311: 308: 307: 272: 269: 268: 233: 230: 229: 209: 205: 203: 200: 199: 182: 177: 171: 168: 167: 136: 133: 132: 125: 80:Euler equations 59: 17: 12: 11: 5: 4104: 4094: 4093: 4088: 4083: 4066: 4065: 4063: 4062: 4057: 4052: 4047: 4042: 4041: 4040: 4030: 4025: 4020: 4015: 4010: 4005: 4004: 4003: 3993: 3988: 3983: 3978: 3973: 3970:Pseudospectral 3967: 3961: 3959: 3955: 3954: 3952: 3951: 3946: 3940: 3934: 3928: 3923: 3918: 3913: 3912: 3911: 3906: 3896: 3891: 3885: 3883: 3877: 3876: 3874: 3873: 3867: 3861: 3855: 3849: 3842: 3840: 3834: 3833: 3831: 3830: 3824: 3819: 3813: 3808: 3802: 3796: 3790: 3784: 3782: 3780:Finite element 3776: 3775: 3773: 3772: 3766: 3760: 3758:Riemann solver 3755: 3749: 3743: 3738: 3732: 3730: 3724: 3723: 3720: 3719: 3717: 3716: 3710: 3704: 3697: 3695: 3691: 3690: 3688: 3687: 3682: 3677: 3672: 3667: 3665:Lax–Friedrichs 3661: 3659: 3653: 3652: 3650: 3649: 3647:Crank–Nicolson 3644: 3637: 3635: 3626: 3620: 3619: 3612: 3611: 3604: 3597: 3589: 3583: 3582: 3575: 3574:External links 3572: 3570: 3569: 3510: 3463: 3445:(2): 277–293. 3434: 3407: 3381:(3): 355–380. 3370: 3367:electronic ed. 3350: 3296: 3282: 3273:, CRC Press. 3267: 3251: 3237: 3216:10.1.1.68.2696 3190: 3184: 3171: 3165: 3152: 3142:(1): 135–188. 3131: 3121:(4): 1830001. 3109: 3107: 3104: 3101: 3100: 3089:(2): 257–289. 3073: 3046: 3003: 2977: 2934: 2923:(1): 147–179. 2907: 2898: 2885: 2847: 2809: 2782:(5): 387–418. 2763: 2744:(2): 435–466. 2720: 2685: 2652: 2625: 2590: 2547: 2528:(5): 716–726. 2512: 2453: 2410: 2401: 2381: 2354: 2319: 2284: 2245: 2202: 2175: 2148:(2): 117–127. 2132: 2097: 2086: 2055: 2020: 2001:(2): 229–256. 1985: 1958:(5): 307–318. 1942: 1923:(1): 123–134. 1907: 1880: 1859:(3): 375–389. 1838: 1837: 1835: 1832: 1831: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1788: 1785: 1720: 1717: 1716: 1715: 1712: 1702: 1696: 1690: 1689:(S-FEM) (2007) 1684: 1674: 1668: 1662: 1652: 1651: 1648: 1645: 1640: 1634: 1628: 1622: 1616: 1610: 1604: 1601: 1594: 1588: 1582: 1579: 1576: 1570: 1564: 1558: 1552: 1546: 1540: 1534: 1528: 1522: 1516: 1510: 1504: 1498: 1492: 1486: 1480: 1475: 1469: 1463: 1457: 1451: 1445: 1439: 1428: 1425: 1383: 1380: 1363: 1340: 1337: 1334: 1331: 1328: 1325: 1294: 1291: 1288: 1285: 1282: 1279: 1268: 1267: 1253: 1250: 1245: 1241: 1235: 1231: 1227: 1224: 1220: 1216: 1213: 1210: 1200: 1196: 1190: 1185: 1181: 1173: 1169: 1163: 1159: 1155: 1149: 1146: 1141: 1138: 1112: 1092: 1070: 1066: 1045: 1023: 1019: 1007: 1006: 995: 991: 985: 981: 977: 974: 970: 966: 963: 956: 952: 946: 941: 937: 929: 925: 919: 915: 911: 908: 903: 899: 895: 892: 889: 886: 863: 860: 857: 854: 851: 848: 826: 822: 793: 790: 787: 783: 760: 757: 754: 750: 727: 723: 702: 682: 655: 652: 649: 646: 643: 640: 629: 628: 615: 609: 604: 600: 596: 591: 588: 585: 580: 576: 569: 563: 560: 555: 552: 535: 534: 520: 517: 510: 505: 502: 499: 495: 491: 486: 481: 478: 475: 471: 464: 458: 455: 450: 447: 430: 429: 418: 415: 409: 406: 401: 397: 393: 388: 385: 382: 378: 367: 356: 353: 347: 344: 339: 335: 331: 326: 323: 320: 316: 305: 294: 291: 288: 285: 282: 279: 276: 266: 255: 252: 249: 246: 243: 240: 237: 212: 208: 185: 180: 176: 155: 152: 149: 146: 143: 140: 124: 121: 120: 119: 116: 113: 110: 58: 55: 51:velocity field 15: 9: 6: 4: 3: 2: 4103: 4092: 4089: 4087: 4084: 4082: 4079: 4078: 4076: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4039: 4036: 4035: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4002: 3999: 3998: 3997: 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3971: 3968: 3966: 3963: 3962: 3960: 3956: 3950: 3947: 3944: 3941: 3938: 3935: 3932: 3929: 3927: 3924: 3922: 3919: 3917: 3914: 3910: 3907: 3905: 3902: 3901: 3900: 3897: 3895: 3892: 3890: 3887: 3886: 3884: 3882: 3878: 3871: 3868: 3865: 3862: 3859: 3856: 3853: 3850: 3847: 3844: 3843: 3841: 3839: 3835: 3828: 3825: 3823: 3820: 3817: 3814: 3812: 3809: 3806: 3803: 3800: 3797: 3794: 3791: 3789: 3786: 3785: 3783: 3781: 3777: 3770: 3767: 3764: 3761: 3759: 3756: 3753: 3750: 3747: 3744: 3742: 3739: 3737: 3734: 3733: 3731: 3729: 3728:Finite volume 3725: 3714: 3711: 3708: 3705: 3702: 3699: 3698: 3696: 3692: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3662: 3660: 3658: 3654: 3648: 3645: 3642: 3639: 3638: 3636: 3634: 3630: 3627: 3625: 3621: 3617: 3610: 3605: 3603: 3598: 3596: 3591: 3590: 3587: 3581: 3578: 3577: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3533: 3528: 3524: 3520: 3516: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3482: 3477: 3473: 3469: 3464: 3460: 3456: 3452: 3448: 3444: 3440: 3435: 3430: 3425: 3421: 3417: 3413: 3408: 3404: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3371: 3368: 3364: 3360: 3356: 3351: 3347: 3343: 3338: 3333: 3329: 3325: 3321: 3317: 3313: 3309: 3302: 3297: 3295: 3294:3-540-22256-1 3291: 3287: 3283: 3280: 3279:0-8493-1238-8 3276: 3272: 3268: 3266: 3265:0-470-84699-2 3262: 3257: 3252: 3250: 3249:0-470-84800-6 3246: 3242: 3238: 3234: 3230: 3226: 3222: 3217: 3212: 3208: 3204: 3200: 3196: 3191: 3187: 3185:0-9657001-8-6 3181: 3177: 3172: 3168: 3166:981-238-456-1 3162: 3158: 3153: 3149: 3145: 3141: 3137: 3132: 3128: 3124: 3120: 3116: 3111: 3110: 3096: 3092: 3088: 3084: 3077: 3069: 3065: 3061: 3057: 3050: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3007: 3000: 2996: 2993:, CRC Press, 2992: 2986: 2984: 2982: 2973: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2938: 2930: 2926: 2922: 2918: 2911: 2902: 2895: 2889: 2881: 2877: 2873: 2869: 2865: 2861: 2854: 2852: 2843: 2839: 2835: 2831: 2827: 2823: 2816: 2814: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2773: 2767: 2759: 2755: 2751: 2747: 2743: 2739: 2735: 2729: 2727: 2725: 2716: 2712: 2708: 2704: 2700: 2696: 2689: 2681: 2677: 2673: 2669: 2665: 2659: 2657: 2648: 2644: 2640: 2636: 2629: 2621: 2617: 2613: 2609: 2605: 2601: 2594: 2586: 2582: 2578: 2574: 2570: 2566: 2562: 2558: 2551: 2543: 2539: 2535: 2531: 2527: 2523: 2516: 2508: 2504: 2499: 2494: 2489: 2484: 2480: 2476: 2473:(7): e39999. 2472: 2468: 2464: 2457: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2414: 2405: 2398: 2392: 2390: 2388: 2386: 2377: 2373: 2369: 2365: 2358: 2350: 2346: 2342: 2338: 2334: 2330: 2323: 2315: 2311: 2307: 2303: 2299: 2295: 2288: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2249: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2206: 2198: 2194: 2190: 2186: 2179: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2128: 2124: 2120: 2116: 2112: 2108: 2101: 2095: 2090: 2082: 2078: 2074: 2070: 2066: 2059: 2051: 2047: 2043: 2039: 2035: 2031: 2024: 2016: 2012: 2008: 2004: 2000: 1996: 1989: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1938: 1934: 1930: 1926: 1922: 1918: 1911: 1903: 1899: 1895: 1891: 1884: 1875: 1870: 1866: 1862: 1858: 1854: 1850: 1843: 1839: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1790: 1784: 1780: 1776: 1772: 1769: 1763: 1761: 1757: 1753: 1749: 1744: 1742: 1738: 1734: 1730: 1726: 1713: 1711: 1707: 1703: 1701: 1697: 1694: 1691: 1688: 1685: 1682: 1678: 1675: 1673: 1669: 1666: 1663: 1660: 1657: 1656: 1655: 1649: 1646: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1621:(DLSM) (2006) 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1599: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1497:(MLPG) (1998) 1496: 1493: 1490: 1487: 1484: 1481: 1479: 1476: 1473: 1470: 1467: 1464: 1462:(RKPM) (1995) 1461: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1434: 1433: 1432: 1424: 1422: 1417: 1413: 1408: 1404: 1400: 1395: 1393: 1389: 1379: 1377: 1361: 1352: 1335: 1332: 1329: 1323: 1314: 1312: 1308: 1289: 1286: 1283: 1277: 1251: 1233: 1229: 1225: 1222: 1211: 1198: 1194: 1188: 1183: 1179: 1171: 1167: 1161: 1157: 1153: 1147: 1139: 1126: 1125: 1124: 1110: 1090: 1068: 1064: 1043: 1021: 1017: 983: 979: 975: 972: 961: 954: 950: 944: 939: 935: 927: 923: 917: 913: 909: 901: 897: 893: 890: 884: 877: 876: 875: 858: 855: 852: 846: 824: 820: 811: 807: 791: 788: 785: 781: 758: 755: 752: 748: 725: 721: 700: 693:and timestep 680: 671: 669: 650: 647: 644: 638: 613: 607: 602: 598: 594: 589: 586: 583: 578: 574: 567: 561: 553: 540: 539: 538: 518: 515: 508: 503: 500: 497: 493: 489: 484: 479: 476: 473: 469: 462: 456: 448: 435: 434: 433: 416: 407: 404: 399: 395: 391: 386: 383: 380: 376: 368: 354: 345: 342: 337: 333: 329: 324: 321: 318: 314: 306: 292: 289: 286: 283: 280: 277: 274: 267: 253: 250: 247: 244: 241: 238: 235: 228: 227: 226: 210: 206: 183: 178: 174: 150: 147: 144: 138: 130: 117: 114: 111: 108: 104: 103: 102: 100: 96: 92: 87: 85: 81: 77: 72: 68: 64: 54: 52: 48: 44: 40: 36: 28: 23: 19: 3852:Peridynamics 3837: 3670:Lax–Wendroff 3522: 3518: 3471: 3467: 3442: 3438: 3419: 3415: 3378: 3374: 3354: 3311: 3307: 3285: 3270: 3255: 3240: 3198: 3194: 3175: 3156: 3139: 3135: 3118: 3114: 3086: 3082: 3076: 3059: 3055: 3049: 3016: 3012: 3006: 2990: 2947: 2943: 2937: 2920: 2916: 2910: 2901: 2888: 2863: 2859: 2825: 2821: 2779: 2775: 2766: 2741: 2737: 2698: 2694: 2688: 2671: 2667: 2638: 2634: 2628: 2603: 2599: 2593: 2560: 2556: 2550: 2525: 2521: 2515: 2470: 2466: 2456: 2423: 2419: 2413: 2404: 2396: 2367: 2363: 2357: 2332: 2328: 2322: 2297: 2293: 2287: 2262: 2258: 2248: 2215: 2211: 2205: 2188: 2184: 2178: 2145: 2141: 2135: 2110: 2106: 2100: 2089: 2072: 2068: 2058: 2033: 2029: 2023: 1998: 1994: 1988: 1955: 1951: 1945: 1920: 1916: 1910: 1896:(1): 67–75. 1893: 1889: 1883: 1856: 1852: 1842: 1823:Stencil code 1781: 1777: 1773: 1764: 1745: 1739:, including 1722: 1695:(GSM) (2008) 1677:eXtended FEM 1653: 1639:(RRM) (2012) 1633:(OTM) (2010) 1627:(IPM) (2006) 1615:(CPM) (2004) 1587:(FMM) (2000) 1474:(FPM) (1998) 1468:(FPM) (1996) 1450:(DPD) (1992) 1444:(DEM) (1992) 1438:(SPH) (1977) 1430: 1396: 1391: 1385: 1353: 1315: 1269: 1008: 808: 672: 630: 536: 431: 126: 95:deformations 88: 60: 38: 32: 18: 3986:Collocation 3422:(7): 4–10. 2191:: 144–160. 2113:(1): 3–80. 4075:Categories 3675:MacCormack 3657:Hyperbolic 3532:2102.02421 3525:: 110932. 3481:1905.10469 3474:: 109340. 3365:, also as 2218:: 110002. 1834:References 1756:patch test 1748:quadrature 1407:Belytschko 198:at points 76:derivative 57:Motivation 47:Lagrangian 3991:Level-set 3981:Multigrid 3931:Balancing 3633:Parabolic 3565:231802303 3557:0021-9991 3506:166228451 3403:122969330 3346:122813651 3337:2117/8264 3211:CiteSeerX 2880:119378545 2842:123009384 2804:124640562 2641:: 20–41. 2585:119952479 2542:122004658 2279:1435-5663 2240:228828681 2127:122241092 1980:121511161 1725:weak form 1478:hp-clouds 1249:∂ 1226:− 1209:∂ 1195:ρ 1158:∑ 1145:∂ 1137:∂ 1065:ρ 976:− 951:ρ 914:∑ 756:− 595:− 559:∂ 551:∂ 501:− 490:− 454:∂ 446:∂ 414:∀ 392:− 352:∀ 330:− 3965:Spectral 3904:additive 3827:Smoothed 3793:Extended 3233:15974625 3041:53983110 2972:54088894 2507:22866175 2467:PLOS ONE 2448:18225521 1787:See also 225:, where 3949:FETI-DP 3829:(S-FEM) 3748:(MUSCL) 3736:Godunov 3537:Bibcode 3486:Bibcode 3447:Bibcode 3383:Bibcode 3316:Bibcode 3203:Bibcode 3021:Bibcode 2952:Bibcode 2784:Bibcode 2746:Bibcode 2703:Bibcode 2620:4943418 2565:Bibcode 2498:3391243 2475:Bibcode 2428:Bibcode 2337:Bibcode 2302:Bibcode 2220:Bibcode 2170:3688083 2150:Bibcode 2038:Bibcode 2003:Bibcode 1960:Bibcode 1925:Bibcode 1861:Bibcode 1803:G space 1768:G space 1746:As for 1600:(RPIM). 1527:(MPFEM) 1382:History 123:Example 82:or the 27:Voronoi 3958:Others 3945:(FETI) 3939:(BDDC) 3811:Mortar 3795:(XFEM) 3788:hp-FEM 3771:(WENO) 3754:(AUSM) 3715:(FDTD) 3709:(FDFD) 3694:Others 3680:Upwind 3643:(FTCS) 3563:  3555:  3504:  3401:  3361:  3344:  3292:  3277:  3263:  3247:  3231:  3213:  3182:  3163:  3039:  2997:  2970:  2878:  2840:  2802:  2618:  2583:  2540:  2505:  2495:  2446:  2277:  2238:  2168:  2125:  1978:  1737:weakly 1515:(GFDM) 1503:(2016) 1421:Frozen 1392:et al. 1103:, and 1009:where 411:  349:  69:, and 3972:(DVR) 3933:(BDD) 3872:(PIC) 3866:(MPM) 3860:(MPS) 3848:(SPH) 3818:(GDM) 3807:(SEM) 3765:(ENO) 3703:(ADI) 3561:S2CID 3527:arXiv 3502:S2CID 3476:arXiv 3399:S2CID 3342:S2CID 3304:(PDF) 3229:S2CID 3037:S2CID 2968:S2CID 2876:S2CID 2838:S2CID 2800:S2CID 2616:S2CID 2581:S2CID 2538:S2CID 2444:S2CID 2236:S2CID 2166:S2CID 2123:S2CID 1976:S2CID 1609:(VVD) 1575:(DVM) 1569:(MFS) 1563:(MPS) 1557:(MFS) 1551:(BCM) 1539:(BNM) 1533:(FCM) 1521:(PIC) 1509:(MPS) 1491:(MPM) 1485:(NEM) 29:cells 3854:(PD) 3801:(DG) 3553:ISSN 3359:ISBN 3290:ISBN 3275:ISBN 3261:ISBN 3245:ISBN 3180:ISBN 3161:ISBN 2995:ISBN 2503:PMID 2275:ISSN 1545:(MK) 773:and 537:and 293:2... 254:2... 43:mesh 3545:doi 3523:453 3494:doi 3472:409 3455:doi 3424:doi 3391:doi 3332:hdl 3324:doi 3221:doi 3144:doi 3123:doi 3091:doi 3064:doi 3029:doi 2960:doi 2925:doi 2868:doi 2830:doi 2792:doi 2754:doi 2711:doi 2676:doi 2672:143 2643:doi 2608:doi 2573:doi 2530:doi 2493:PMC 2483:doi 2436:doi 2372:doi 2345:doi 2333:200 2310:doi 2267:doi 2228:doi 2216:429 2193:doi 2158:doi 2115:doi 2077:doi 2073:118 2046:doi 2011:doi 1968:doi 1933:doi 1921:116 1898:doi 1894:109 1869:doi 1857:181 1403:MLS 4077:: 3559:. 3551:. 3543:. 3535:. 3521:. 3517:. 3500:. 3492:. 3484:. 3470:. 3453:. 3443:57 3441:. 3418:. 3414:. 3397:. 3389:. 3379:80 3377:. 3340:. 3330:. 3322:. 3312:48 3310:. 3306:. 3259:. 3227:. 3219:. 3209:. 3199:65 3197:. 3140:05 3138:. 3119:15 3117:. 3087:06 3085:. 3060:44 3058:. 3035:. 3027:. 3017:58 3015:. 2980:^ 2966:. 2958:. 2948:74 2946:. 2921:06 2919:. 2874:. 2864:81 2862:. 2850:^ 2836:. 2826:81 2824:. 2812:^ 2798:. 2790:. 2780:95 2778:. 2752:. 2742:50 2740:. 2723:^ 2709:. 2699:48 2697:. 2670:. 2655:^ 2639:95 2637:. 2614:. 2604:81 2602:. 2579:. 2571:. 2561:51 2559:. 2536:. 2526:36 2524:. 2501:. 2491:. 2481:. 2469:. 2465:. 2442:. 2434:. 2424:83 2422:. 2384:^ 2368:37 2366:. 2343:. 2331:. 2308:. 2298:20 2296:. 2273:. 2263:40 2261:. 2257:. 2234:. 2226:. 2214:. 2189:73 2187:. 2164:. 2156:. 2146:22 2144:. 2121:. 2109:. 2071:. 2067:. 2044:. 2034:20 2032:. 2009:. 1999:37 1997:. 1974:. 1966:. 1956:10 1954:. 1931:. 1919:. 1892:. 1867:. 1855:. 1851:. 1762:. 1708:, 1679:, 1056:, 670:. 86:. 65:, 53:. 37:, 3608:e 3601:t 3594:v 3567:. 3547:: 3539:: 3529:: 3508:. 3496:: 3488:: 3478:: 3461:. 3457:: 3449:: 3432:. 3426:: 3420:5 3405:. 3393:: 3385:: 3369:. 3348:. 3334:: 3326:: 3318:: 3281:. 3235:. 3223:: 3205:: 3188:. 3169:. 3150:. 3146:: 3129:. 3125:: 3097:. 3093:: 3070:. 3066:: 3043:. 3031:: 3023:: 3001:. 2974:. 2962:: 2954:: 2931:. 2927:: 2882:. 2870:: 2844:. 2832:: 2806:. 2794:: 2786:: 2760:. 2756:: 2748:: 2717:. 2713:: 2705:: 2682:. 2678:: 2649:. 2645:: 2622:. 2610:: 2587:. 2575:: 2567:: 2544:. 2532:: 2509:. 2485:: 2477:: 2471:7 2450:. 2438:: 2430:: 2378:. 2374:: 2351:. 2347:: 2339:: 2316:. 2312:: 2304:: 2281:. 2269:: 2242:. 2230:: 2222:: 2199:. 2195:: 2172:. 2160:: 2152:: 2129:. 2117:: 2111:3 2083:. 2079:: 2052:. 2048:: 2040:: 2017:. 2013:: 2005:: 1982:. 1970:: 1962:: 1939:. 1935:: 1927:: 1904:. 1900:: 1877:. 1871:: 1863:: 1362:W 1339:) 1336:t 1333:, 1330:x 1327:( 1324:u 1293:) 1290:t 1287:, 1284:x 1281:( 1278:u 1252:x 1244:) 1240:| 1234:i 1230:x 1223:x 1219:| 1215:( 1212:W 1199:i 1189:n 1184:i 1180:u 1172:i 1168:m 1162:i 1154:= 1148:x 1140:u 1111:W 1091:i 1069:i 1044:i 1022:i 1018:m 994:) 990:| 984:i 980:x 973:x 969:| 965:( 962:W 955:i 945:n 940:i 936:u 928:i 924:m 918:i 910:= 907:) 902:n 898:t 894:, 891:x 888:( 885:u 862:) 859:t 856:, 853:x 850:( 847:u 825:i 821:u 792:1 789:+ 786:i 782:x 759:1 753:i 749:x 726:i 722:x 701:k 681:h 654:) 651:t 648:, 645:x 642:( 639:u 614:k 608:n 603:i 599:u 590:1 587:+ 584:n 579:i 575:u 568:= 562:t 554:u 519:h 516:2 509:n 504:1 498:i 494:u 485:n 480:1 477:+ 474:i 470:u 463:= 457:x 449:u 417:n 408:k 405:= 400:n 396:t 387:1 384:+ 381:n 377:t 355:i 346:h 343:= 338:i 334:x 325:1 322:+ 319:i 315:x 290:, 287:1 284:, 281:0 278:= 275:n 251:, 248:1 245:, 242:0 239:= 236:i 211:i 207:x 184:n 179:i 175:u 154:) 151:t 148:, 145:x 142:( 139:u

Index


Voronoi
numerical analysis
mesh
Lagrangian
velocity field
finite difference method
finite-volume method
finite element method
derivative
Euler equations
Navier–Stokes equations
computational fluid dynamics
deformations
plastic materials
creating a useful mesh from the geometry of a complex 3D object
finite difference
finite difference methods
Smoothed-particle hydrodynamics
ordinary differential equation
numerical methods
compact support
smoothed particle hydrodynamics
Galerkin method
MLS
Belytschko
reproducing kernel particle method
Material point methods
Frozen
Smoothed particle hydrodynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑