Knowledge

Molecular modelling

Source đź“ť

371:
Cartesian space may not be a straight line trajectory due to the prohibitions of the interconnected bonds. Thus, it is very common for computational optimizing programs to flip back and forth between representations during their iterations. This can dominate the calculation time of the potential itself and in long chain molecules introduce cumulative numerical inaccuracy. While all conversion algorithms produce mathematically identical results, they differ in speed and numerical accuracy. Currently, the fastest and most accurate torsion to Cartesian conversion is the Natural Extension Reference Frame (NERF) method.
85: 333:. Integration of Newton's laws of motion, using different integration algorithms, leads to atomic trajectories in space and time. The force on an atom is defined as the negative gradient of the potential energy function. The energy minimization method is useful to obtain a static picture for comparing between states of similar systems, while molecular dynamics provides information about the dynamic processes with the intrinsic inclusion of temperature effects. 1827: 1851: 288:, computes the molecular potential energy as a sum of energy terms that describe the deviation of bond lengths, bond angles and torsion angles away from equilibrium values, plus terms for non-bonded pairs of atoms describing van der Waals and electrostatic interactions. The set of parameters consisting of equilibrium bond lengths, bond angles, partial charge values, force constants and van der Waals parameters are collectively termed a 296:. The common force fields in use today have been developed by using chemical theory, experimental reference data, and high level quantum calculations. The method, termed energy minimization, is used to find positions of zero gradient for all atoms, in other words, a local energy minimum. Lower energy states are more stable and are commonly investigated because of their role in chemical and biological processes. A 1863: 1839: 370:
or torsion angle representation. Unfortunately, continuous motions in Cartesian space often require discontinuous angular branches in internal coordinates, making it relatively hard to work with force fields in the internal coordinate representation, and conversely a simple displacement of an atom in
379:
Molecular modelling methods are used routinely to investigate the structure, dynamics, surface properties, and thermodynamics of inorganic, biological, and polymeric systems. A large number of molecular models of force field are today readily available in databases. The types of biological activity
67:
to study molecular systems ranging from small chemical systems to large biological molecules and material assemblies. The simplest calculations can be performed by hand, but inevitably computers are required to perform molecular modelling of any reasonably sized system. The common feature of
111:) to describe the physical basis behind the models. Molecular models typically describe atoms (nucleus and electrons collectively) as point charges with an associated mass. The interactions between neighbouring atoms are described by spring-like interactions (representing 361:
Most force fields are distance-dependent, making the most convenient expression for these Cartesian coordinates. Yet the comparatively rigid nature of bonds which occur between specific atoms, and in essence, defines what is meant by the designation
222: 279: 135:
and is related to the system internal energy (U), a thermodynamic quantity equal to the sum of potential and kinetic energies. Methods which minimize the potential energy are termed energy minimization methods (e.g.,
366:, make an internal coordinate system the most logical representation. In some fields the IC representation (bond length, angle between bonds, and twist angle of the bond as shown in the figure) is termed the 131:, and can also be assigned velocities in dynamical simulations. The atomic velocities are related to the temperature of the system, a macroscopic quantity. The collective mathematical expression is termed a 30: 331: 154: 300:
simulation, on the other hand, computes the behaviour of a system as a function of time. It involves solving Newton's laws of motion, principally the second law,
420: 230: 602:
Parsons J, Holmes JB, Rojas JM, Tsai J, Strauss CE (July 2005). "Practical conversion from torsion space to Cartesian space for in silico protein synthesis".
68:
molecular modelling methods is the atomistic level description of the molecular systems. This may include treating atoms as the smallest individual unit (a
441: 922: 415: 341:
Molecules can be modelled either in vacuum, or in the presence of a solvent such as water. Simulations of systems in vacuum are referred to as
562:"Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities" 436: 349:
simulations. In another type of simulation, the effect of solvent is estimated using an empirical mathematical expression; these are termed
1023: 446: 1028: 410: 751:"CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field" 72:
approach), or explicitly modelling protons and neutrons with its quarks, anti-quarks and gluons and electrons with its photons (a
1006: 491: 1050: 890: 536: 425: 1062: 1001: 292:. Different implementations of molecular mechanics use different mathematical expressions and different parameters for the 391:, protein stability, conformational changes associated with biomolecular function, and molecular recognition of proteins, 915: 486: 293: 285: 132: 431: 17: 869: 850: 831: 812: 1904: 880: 1867: 303: 1746: 908: 702:
Eggimann, Becky L.; Sunnarborg, Amara J.; Stern, Hudson D.; Bliss, Andrew P.; Siepmann, J. Ilja (2014-01-02).
1189: 943: 1889: 1466: 953: 1899: 1843: 1392: 1363: 1343: 1296: 981: 646: 501: 471: 451: 703: 1736: 1652: 1291: 1894: 1674: 1585: 1548: 1432: 1358: 1179: 1162: 1105: 289: 120: 52: 1592: 1580: 1471: 1336: 1110: 976: 506: 217:{\displaystyle E=E_{\text{bonds}}+E_{\text{angle}}+E_{\text{dihedral}}+E_{\text{non-bonded}}\,} 123:
is commonly used to describe the latter. The electrostatic interactions are computed based on
1741: 1638: 1623: 1553: 1476: 1308: 1258: 1167: 1092: 991: 456: 60: 144:), while methods that model the behaviour of the system with propagation of time are termed 1731: 1686: 1461: 1281: 1211: 968: 948: 367: 345:
simulations, while those that include the presence of solvent molecules are referred to as
128: 29: 8: 1754: 1708: 1633: 1606: 1504: 1486: 1439: 1377: 1273: 1253: 1122: 1018: 274:{\displaystyle E_{\text{non-bonded}}=E_{\text{electrostatic}}+E_{\text{van der Waals}}\,} 116: 108: 104: 100: 69: 1831: 1797: 1659: 1628: 1509: 1451: 1149: 1132: 1127: 1082: 1045: 1035: 996: 775: 750: 749:
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. (January 2016).
731: 684: 658: 627: 481: 461: 297: 145: 141: 84: 647:"MolMod – an open access database of force fields for molecular simulations of fluids" 1850: 1812: 1777: 1760: 1698: 1616: 1611: 1539: 1524: 1494: 1415: 1382: 1353: 1348: 1323: 1313: 1233: 1221: 1100: 1013: 886: 865: 846: 827: 808: 780: 723: 688: 676: 619: 581: 542: 532: 496: 73: 64: 735: 1855: 1772: 1427: 1286: 1263: 1216: 1157: 770: 762: 715: 668: 631: 611: 573: 137: 124: 44: 672: 1713: 1669: 1664: 1558: 1534: 1368: 1331: 1184: 1174: 1057: 719: 476: 466: 405: 381: 1597: 1575: 1570: 1565: 1520: 1516: 1499: 1456: 1387: 1248: 1243: 1228: 1040: 958: 89: 1883: 1802: 1691: 1647: 1372: 1206: 1201: 1194: 1072: 766: 727: 680: 645:
Stephan, Simon; Horsch, Martin T.; Vrabec, Jadran; Hasse, Hans (2019-07-03).
546: 112: 1679: 1529: 1444: 1420: 1410: 1402: 1303: 1238: 1137: 986: 784: 623: 585: 882:
Computational Chemistry and Molecular Modeling Principles and Applications
1077: 862:
Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation
56: 900: 1703: 577: 561: 704:"An online parameter and property database for the TraPPE force field" 615: 1765: 1067: 932: 388: 1787: 824:
Understanding Molecular Simulation: From Algorithms to Applications
663: 48: 878: 1807: 93: 103:
is one aspect of molecular modelling, as it involves the use of
43:
encompasses all methods, theoretical and computational, used to
385: 380:
that have been investigated using molecular modelling include
701: 1782: 127:. Atoms are assigned coordinates in Cartesian space or in 1792: 392: 644: 879:
Ramachandran KI, Deepa G, Krishnan Namboori PK (2008).
421:
Comparison of software for molecular mechanics modeling
37:
Discovering chemical properties by physical simulations
601: 529:
Molecular modelling : principles and applications
306: 233: 157: 559: 442:
List of software for Monte Carlo molecular modeling
748: 325: 273: 216: 1881: 802: 597: 595: 416:Comparison of nucleic acid simulation software 916: 437:List of protein structure prediction software 356: 447:List of software for nanostructures modeling 821: 592: 560:Heinz H, Ramezani-Dakhel H (January 2016). 923: 909: 755:Journal of Chemical Theory and Computation 326:{\displaystyle \mathbf {F} =m\mathbf {a} } 930: 774: 662: 411:Comparison of force field implementations 270: 213: 92:are included in the molecular model of a 843:The Art of Molecular Dynamics Simulation 840: 83: 51:. The methods are used in the fields of 28: 492:Semi-empirical quantum chemistry method 14: 1882: 79: 904: 859: 526: 1838: 1862: 487:Quantum chemistry computer programs 24: 795: 604:Journal of Computational Chemistry 432:List of molecular graphics systems 25: 1916: 1861: 1849: 1837: 1826: 1825: 319: 308: 284:This function, referred to as a 803:Allen MP, Tildesley DJ (1989). 374: 845:. Cambridge University Press. 805:Computer simulation of liquids 742: 695: 638: 553: 520: 13: 1: 1190:Interface and colloid science 944:Glossary of chemical formulae 673:10.1080/08927022.2019.1601191 513: 720:10.1080/08927022.2013.842994 336: 7: 1467:Bioorganometallic chemistry 954:List of inorganic compounds 807:. Oxford University Press. 398: 10: 1921: 1393:Dynamic covalent chemistry 1364:Enantioselective synthesis 1344:Physical organic chemistry 1297:Organolanthanide chemistry 822:Frenkel D, Smit B (1996). 395:, and membrane complexes. 357:Coordinate representations 47:or mimic the behaviour of 1821: 1724: 1485: 1401: 1322: 1272: 1148: 1091: 982:Electroanalytical methods 967: 939: 531:. Pearson Prentice Hall. 502:Structural bioinformatics 472:Molecular modeling on GPU 452:Molecular design software 426:Density functional theory 1737:Nobel Prize in Chemistry 1653:Supramolecular chemistry 1292:Organometallic chemistry 885:. Springer-Verlag GmbH. 767:10.1021/acs.jctc.5b00935 566:Chemical Society Reviews 33:Modeling of ionic liquid 1905:Computational chemistry 1675:Combinatorial chemistry 1586:Food physical chemistry 1549:Environmental chemistry 1433:Bioorthogonal chemistry 1359:Retrosynthetic analysis 1180:Chemical thermodynamics 1163:Spectroelectrochemistry 1106:Computational chemistry 121:Lennard-Jones potential 53:computational chemistry 1747:of element discoveries 1593:Agricultural chemistry 1581:Carbohydrate chemistry 1472:Bioinorganic chemistry 1337:Alkane stereochemistry 1282:Coordination chemistry 1111:Mathematical chemistry 977:Instrumental chemistry 507:Z-matrix (mathematics) 327: 275: 218: 97: 34: 1742:Timeline of chemistry 1639:Post-mortem chemistry 1624:Clandestine chemistry 1554:Atmospheric chemistry 1477:Biophysical chemistry 1309:Solid-state chemistry 1259:Equilibrium chemistry 1168:Photoelectrochemistry 457:Molecular engineering 328: 276: 219: 87: 61:computational biology 32: 1732:History of chemistry 1687:Chemical engineering 1462:Bioorganic chemistry 1212:Structural chemistry 949:List of biomolecules 841:Rapaport DC (2004). 708:Molecular Simulation 651:Molecular Simulation 304: 231: 155: 129:internal coordinates 117:Van der Waals forces 1890:Molecular modelling 1755:The central science 1709:Ceramic engineering 1634:Forensic toxicology 1607:Chemistry education 1505:Radiation chemistry 1487:Interdisciplinarity 1440:Medicinal chemistry 1378:Fullerene chemistry 1254:Microwave chemistry 1123:Molecular mechanics 1118:Molecular modelling 109:Newtonian mechanics 105:classical mechanics 101:Molecular mechanics 80:Molecular mechanics 70:molecular mechanics 41:Molecular modelling 1798:Chemical substance 1660:Chemical synthesis 1629:Forensic chemistry 1510:Actinide chemistry 1452:Clinical chemistry 1133:Molecular geometry 1128:Molecular dynamics 1083:Elemental analysis 1036:Separation process 826:. Academic Press. 578:10.1039/C5CS00890E 482:Monte Carlo method 462:Molecular graphics 351:implicit solvation 323: 298:molecular dynamics 294:potential function 286:potential function 271: 214: 146:molecular dynamics 142:conjugate gradient 133:potential function 98: 35: 18:Molecular modeling 1900:Molecular biology 1877: 1876: 1813:Quantum mechanics 1778:Chemical compound 1761:Chemical reaction 1699:Materials science 1617:General chemistry 1612:Amateur chemistry 1540:Photogeochemistry 1525:Stellar chemistry 1495:Nuclear chemistry 1416:Molecular biology 1383:Polymer chemistry 1354:Organic synthesis 1349:Organic reactions 1314:Ceramic chemistry 1304:Cluster chemistry 1234:Chemical kinetics 1222:Molecular physics 1101:Quantum chemistry 1014:Mass spectrometry 892:978-3-540-77302-3 860:Sadus RJ (2002). 616:10.1002/jcc.20237 538:978-0-582-38210-7 527:Leach AR (2009). 497:Simulated reality 267: 254: 241: 210: 197: 184: 171: 74:quantum chemistry 65:materials science 16:(Redirected from 1912: 1865: 1864: 1853: 1841: 1840: 1829: 1828: 1773:Chemical element 1428:Chemical biology 1287:Magnetochemistry 1264:Mechanochemistry 1217:Chemical physics 1158:Electrochemistry 1063:Characterization 925: 918: 911: 902: 901: 896: 875: 856: 837: 818: 789: 788: 778: 746: 740: 739: 714:(1–3): 101–105. 699: 693: 692: 666: 642: 636: 635: 599: 590: 589: 557: 551: 550: 524: 347:explicit solvent 332: 330: 329: 324: 322: 311: 280: 278: 277: 272: 269: 268: 265: 256: 255: 252: 243: 242: 239: 223: 221: 220: 215: 212: 211: 208: 199: 198: 195: 186: 185: 182: 173: 172: 169: 138:steepest descent 21: 1920: 1919: 1915: 1914: 1913: 1911: 1910: 1909: 1880: 1879: 1878: 1873: 1817: 1720: 1714:Polymer science 1670:Click chemistry 1665:Green chemistry 1559:Ocean chemistry 1535:Biogeochemistry 1481: 1397: 1369:Total synthesis 1332:Stereochemistry 1318: 1268: 1185:Surface science 1175:Thermochemistry 1144: 1087: 1058:Crystallography 963: 935: 929: 899: 893: 872: 853: 834: 815: 798: 796:Further reading 793: 792: 747: 743: 700: 696: 657:(10): 806–814. 643: 639: 600: 593: 558: 554: 539: 525: 521: 516: 511: 477:Molecule editor 467:Molecular model 406:Cheminformatics 401: 382:protein folding 377: 359: 339: 318: 307: 305: 302: 301: 264: 260: 251: 247: 238: 234: 232: 229: 228: 207: 203: 194: 190: 181: 177: 168: 164: 156: 153: 152: 90:dihedral angles 82: 38: 23: 22: 15: 12: 11: 5: 1918: 1908: 1907: 1902: 1897: 1895:Bioinformatics 1892: 1875: 1874: 1872: 1871: 1859: 1847: 1835: 1822: 1819: 1818: 1816: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1769: 1768: 1758: 1751: 1750: 1749: 1739: 1734: 1728: 1726: 1722: 1721: 1719: 1718: 1717: 1716: 1711: 1706: 1696: 1695: 1694: 1684: 1683: 1682: 1677: 1672: 1667: 1657: 1656: 1655: 1644: 1643: 1642: 1641: 1636: 1626: 1621: 1620: 1619: 1614: 1603: 1602: 1601: 1600: 1598:Soil chemistry 1590: 1589: 1588: 1583: 1576:Food chemistry 1573: 1571:Carbochemistry 1568: 1566:Clay chemistry 1563: 1562: 1561: 1556: 1545: 1544: 1543: 1542: 1537: 1527: 1521:Astrochemistry 1517:Cosmochemistry 1514: 1513: 1512: 1507: 1502: 1500:Radiochemistry 1491: 1489: 1483: 1482: 1480: 1479: 1474: 1469: 1464: 1459: 1457:Neurochemistry 1454: 1449: 1448: 1447: 1437: 1436: 1435: 1425: 1424: 1423: 1418: 1407: 1405: 1399: 1398: 1396: 1395: 1390: 1388:Petrochemistry 1385: 1380: 1375: 1366: 1361: 1356: 1351: 1346: 1341: 1340: 1339: 1328: 1326: 1320: 1319: 1317: 1316: 1311: 1306: 1301: 1300: 1299: 1289: 1284: 1278: 1276: 1270: 1269: 1267: 1266: 1261: 1256: 1251: 1249:Spin chemistry 1246: 1244:Photochemistry 1241: 1236: 1231: 1229:Femtochemistry 1226: 1225: 1224: 1214: 1209: 1204: 1199: 1198: 1197: 1187: 1182: 1177: 1172: 1171: 1170: 1165: 1154: 1152: 1146: 1145: 1143: 1142: 1141: 1140: 1130: 1125: 1120: 1115: 1114: 1113: 1103: 1097: 1095: 1089: 1088: 1086: 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1054: 1053: 1048: 1041:Chromatography 1038: 1033: 1032: 1031: 1026: 1021: 1011: 1010: 1009: 1004: 999: 994: 984: 979: 973: 971: 965: 964: 962: 961: 959:Periodic table 956: 951: 946: 940: 937: 936: 928: 927: 920: 913: 905: 898: 897: 891: 876: 870: 857: 851: 838: 832: 819: 813: 799: 797: 794: 791: 790: 741: 694: 637: 610:(10): 1063–8. 591: 552: 537: 518: 517: 515: 512: 510: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 434: 429: 423: 418: 413: 408: 402: 400: 397: 376: 373: 358: 355: 338: 335: 321: 317: 314: 310: 282: 281: 263: 259: 250: 246: 237: 225: 224: 206: 202: 193: 189: 180: 176: 167: 163: 160: 113:chemical bonds 81: 78: 36: 9: 6: 4: 3: 2: 1917: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1887: 1885: 1870: 1869: 1860: 1858: 1857: 1852: 1848: 1846: 1845: 1836: 1834: 1833: 1824: 1823: 1820: 1814: 1811: 1809: 1806: 1804: 1803:Chemical bond 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1767: 1764: 1763: 1762: 1759: 1756: 1752: 1748: 1745: 1744: 1743: 1740: 1738: 1735: 1733: 1730: 1729: 1727: 1723: 1715: 1712: 1710: 1707: 1705: 1702: 1701: 1700: 1697: 1693: 1692:Stoichiometry 1690: 1689: 1688: 1685: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1662: 1661: 1658: 1654: 1651: 1650: 1649: 1648:Nanochemistry 1646: 1645: 1640: 1637: 1635: 1632: 1631: 1630: 1627: 1625: 1622: 1618: 1615: 1613: 1610: 1609: 1608: 1605: 1604: 1599: 1596: 1595: 1594: 1591: 1587: 1584: 1582: 1579: 1578: 1577: 1574: 1572: 1569: 1567: 1564: 1560: 1557: 1555: 1552: 1551: 1550: 1547: 1546: 1541: 1538: 1536: 1533: 1532: 1531: 1528: 1526: 1522: 1518: 1515: 1511: 1508: 1506: 1503: 1501: 1498: 1497: 1496: 1493: 1492: 1490: 1488: 1484: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1446: 1443: 1442: 1441: 1438: 1434: 1431: 1430: 1429: 1426: 1422: 1419: 1417: 1414: 1413: 1412: 1409: 1408: 1406: 1404: 1400: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1373:Semisynthesis 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1338: 1335: 1334: 1333: 1330: 1329: 1327: 1325: 1321: 1315: 1312: 1310: 1307: 1305: 1302: 1298: 1295: 1294: 1293: 1290: 1288: 1285: 1283: 1280: 1279: 1277: 1275: 1271: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1223: 1220: 1219: 1218: 1215: 1213: 1210: 1208: 1207:Sonochemistry 1205: 1203: 1202:Cryochemistry 1200: 1196: 1195:Micromeritics 1193: 1192: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1169: 1166: 1164: 1161: 1160: 1159: 1156: 1155: 1153: 1151: 1147: 1139: 1136: 1135: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1112: 1109: 1108: 1107: 1104: 1102: 1099: 1098: 1096: 1094: 1090: 1084: 1081: 1079: 1076: 1074: 1073:Wet chemistry 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1052: 1049: 1047: 1044: 1043: 1042: 1039: 1037: 1034: 1030: 1027: 1025: 1022: 1020: 1017: 1016: 1015: 1012: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 989: 988: 985: 983: 980: 978: 975: 974: 972: 970: 966: 960: 957: 955: 952: 950: 947: 945: 942: 941: 938: 934: 926: 921: 919: 914: 912: 907: 906: 903: 894: 888: 884: 883: 877: 873: 871:0-444-51082-6 867: 863: 858: 854: 852:0-521-82568-7 848: 844: 839: 835: 833:0-12-267370-0 829: 825: 820: 816: 814:0-19-855645-4 810: 806: 801: 800: 786: 782: 777: 772: 768: 764: 761:(1): 405–13. 760: 756: 752: 745: 737: 733: 729: 725: 721: 717: 713: 709: 705: 698: 690: 686: 682: 678: 674: 670: 665: 660: 656: 652: 648: 641: 633: 629: 625: 621: 617: 613: 609: 605: 598: 596: 587: 583: 579: 575: 572:(2): 412–48. 571: 567: 563: 556: 548: 544: 540: 534: 530: 523: 519: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 427: 424: 422: 419: 417: 414: 412: 409: 407: 404: 403: 396: 394: 390: 387: 383: 372: 369: 365: 354: 353:simulations. 352: 348: 344: 334: 315: 312: 299: 295: 291: 287: 266:van der Waals 261: 257: 253:electrostatic 248: 244: 235: 227: 226: 204: 200: 191: 187: 178: 174: 165: 161: 158: 151: 150: 149: 147: 143: 139: 134: 130: 126: 125:Coulomb's law 122: 118: 114: 110: 106: 102: 95: 91: 88:The backbone 86: 77: 75: 71: 66: 62: 58: 54: 50: 46: 42: 31: 27: 19: 1866: 1854: 1842: 1830: 1680:Biosynthesis 1530:Geochemistry 1445:Pharmacology 1421:Cell biology 1411:Biochemistry 1239:Spectroscopy 1138:VSEPR theory 1117: 987:Spectroscopy 931:Branches of 881: 864:. Elsevier. 861: 842: 823: 804: 758: 754: 744: 711: 707: 697: 654: 650: 640: 607: 603: 569: 565: 555: 528: 522: 378: 375:Applications 363: 360: 350: 346: 342: 340: 283: 99: 40: 39: 26: 1868:WikiProject 1093:Theoretical 1078:Calorimetry 290:force field 76:approach). 57:drug design 1884:Categories 1704:Metallurgy 1403:Biological 969:Analytical 664:1904.05206 514:References 240:non-bonded 209:non-bonded 1766:Catalysis 1274:Inorganic 1068:Titration 933:chemistry 728:0892-7022 689:119199372 681:0892-7022 547:635267533 389:catalysis 343:gas-phase 337:Variables 49:molecules 1832:Category 1788:Molecule 1725:See also 1150:Physical 785:26631602 736:95716947 624:15898109 586:26750724 428:software 399:See also 368:Z-matrix 364:molecule 196:dihedral 1844:Commons 1808:Alchemy 1324:Organic 776:4712441 632:2279574 94:protein 1856:Portal 1002:UV-Vis 889:  868:  849:  830:  811:  783:  773:  734:  726:  687:  679:  630:  622:  584:  545:  535:  386:enzyme 119:. The 115:) and 1029:MALDI 997:Raman 732:S2CID 685:S2CID 659:arXiv 628:S2CID 183:angle 170:bonds 45:model 1783:Atom 1051:HPLC 887:ISBN 866:ISBN 847:ISBN 828:ISBN 809:ISBN 781:PMID 724:ISSN 677:ISSN 620:PMID 582:PMID 543:OCLC 533:ISBN 140:and 63:and 1793:Ion 1024:ICP 1007:NMR 771:PMC 763:doi 716:doi 669:doi 612:doi 574:doi 393:DNA 1886:: 1523:/ 1519:/ 1371:/ 1046:GC 1019:EI 992:IR 779:. 769:. 759:12 757:. 753:. 730:. 722:. 712:40 710:. 706:. 683:. 675:. 667:. 655:45 653:. 649:. 626:. 618:. 608:26 606:. 594:^ 580:. 570:45 568:. 564:. 541:. 384:, 148:. 59:, 55:, 1757:" 1753:" 924:e 917:t 910:v 895:. 874:. 855:. 836:. 817:. 787:. 765:: 738:. 718:: 691:. 671:: 661:: 634:. 614:: 588:. 576:: 549:. 320:a 316:m 313:= 309:F 262:E 258:+ 249:E 245:= 236:E 205:E 201:+ 192:E 188:+ 179:E 175:+ 166:E 162:= 159:E 107:( 96:. 20:)

Index

Molecular modeling

model
molecules
computational chemistry
drug design
computational biology
materials science
molecular mechanics
quantum chemistry

dihedral angles
protein
Molecular mechanics
classical mechanics
Newtonian mechanics
chemical bonds
Van der Waals forces
Lennard-Jones potential
Coulomb's law
internal coordinates
potential function
steepest descent
conjugate gradient
molecular dynamics
potential function
force field
potential function
molecular dynamics
Z-matrix

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑