Knowledge

Muffin-tin approximation

Source đź“ť

275:. Augmented plane wave method (APW) is a method which uses muffin-tin approximation. It is a method to approximate the energy states of an electron in a crystal lattice. The basic approximation lies in the potential in which the potential is assumed to be spherically symmetric in the muffin-tin region and constant in the interstitial region. Wave functions (the augmented plane waves) are constructed by matching solutions of the 22: 279:
within each sphere with plane-wave solutions in the interstitial region, and linear combinations of these wave functions are then determined by the variational method. Many modern electronic structure methods employ the approximation. Among them APW method, the linear muffin-tin orbital method (LMTO)
323:
of a radial Schrödinger equation. Such use of functions other than plane waves as basis functions is termed the augmented plane-wave approach (of which there are many variations). It allows for an efficient representation of single-particle wave functions in the vicinity of the atomic cores where
307:
experienced by an electron is approximated to be spherically symmetric about the given nucleus. In the remaining interstitial region, the potential is approximated as a constant. Continuity of the potential between the atom-centered spheres and interstitial region is enforced.
496: 231: 656:
I Turek, J Kudrnovsky & V Drchal (2000). "Disordered Alloys and Their Surfaces: The Coherent Potential Approximation". In Hugues Dreyssé (ed.).
481: 40: 293: 131: 224: 119: 562: 153: 451: 115: 165: 161: 593: 741: 675: 640: 626: 609: 576: 545: 510: 465: 394: 217: 207: 736: 135: 751: 58: 297: 311:
In the interstitial region of constant potential, the single electron wave functions can be expanded in terms of
169: 746: 324:
they can vary rapidly (and where plane waves would be a poor choice on convergence grounds in the absence of a
303:
In its simplest form, non-overlapping spheres are centered on the atomic positions. Within these regions, the
362: 199: 667: 568: 533: 183: 97: 89: 195: 264: 176: 146: 123: 104: 93: 36: 357: 352: 111: 276: 157: 527: 657: 705: 694:
Slater, J. C. (1937). "An Augmented Plane Wave Method for the Periodic Potential Problem".
663: 632: 601: 457: 424: 74: 8: 498:
Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
296:. This method has been adapted to treat random materials as well, where it is called the 281: 268: 139: 82: 709: 428: 475: 337: 316: 260: 671: 636: 605: 572: 541: 506: 461: 390: 256: 713: 432: 386: 304: 203: 696: 502: 415: 325: 127: 315:. In the atom-centered regions, the wave functions can be expanded in terms of 272: 252: 730: 320: 187: 717: 436: 285: 347: 289: 284:
methods. One application is found in the variational theory developed by
449: 312: 246: 342: 413:
Slater, J. C. (1937). "Wave Functions in a Periodic Potential".
655: 659:
Electronic Structure and Physical Properties of Solids
624: 591: 529:
Electronic Structure: Basic Theory and Applications
31:
may be too technical for most readers to understand
728: 525: 450:Kaoru Ohno, Keivan Esfarjani, Yoshiyuki (1999). 380: 225: 480:: CS1 maint: multiple names: authors list ( 292:and N. Rostoker (1954) referred to as the 132:Multi-configurational self-consistent field 560: 408: 406: 232: 218: 687: 59:Learn how and when to remove this message 43:, without removing the technical details. 383:Introduction to Condensed Matter Physics 154:Time-dependent density functional theory 116:Semi-empirical quantum chemistry methods 554: 403: 729: 693: 412: 166:Linearized augmented-plane-wave method 162:Orbital-free density functional theory 682:KKR coherent potential approximation. 618: 585: 519: 494: 41:make it understandable to non-experts 649: 564:Introduction to the Theory of Metals 298:KKR coherent potential approximation 271:. The approximation was proposed by 15: 598:Impurity Scattering in Metal Alloys 443: 136:Quantum chemistry composite methods 13: 259:. It is most commonly employed in 120:Møller–Plesset perturbation theory 14: 763: 625:Kuon Inoue; Kazuo Ohtaka (2004). 381:Duan, Feng; Guojun, Jin (2005). 251:is a shape approximation of the 20: 453:Computational Materials Science 170:Projector augmented wave method 592:Joginder Singh Galsin (2001). 488: 374: 1: 368: 208:Korringa–Kohn–Rostoker method 742:Electronic structure methods 7: 363:Local-density approximation 331: 200:Empty lattice approximation 10: 768: 737:Electronic band structures 569:Cambridge University Press 534:Cambridge University Press 385:. Vol. 1. Singapore: 184:Nearly free electron model 98:Modern valence bond theory 526:Richard P Martin (2004). 265:electronic band structure 177:Electronic band structure 147:Density functional theory 124:Configuration interaction 752:Condensed matter physics 192:Muffin-tin approximation 105:Molecular orbital theory 94:Generalized valence bond 495:Vitos, Levente (2007). 196:k·p perturbation theory 718:10.1103/PhysRev.92.603 437:10.1103/PhysRev.51.846 90:Coulson–Fischer theory 747:Computational physics 277:Schrödinger equation 75:Electronic structure 710:1953PhRv...92..603S 561:U Mizutani (2001). 429:1937PhRv...51..846S 358:Kronig–Penney model 353:Kohn–Sham equations 317:spherical harmonics 263:simulations of the 140:Quantum Monte Carlo 112:Hartree–Fock method 83:Valence bond theory 305:screened potential 261:quantum mechanical 158:Thomas–Fermi model 677:978-3-540-67238-8 642:978-3-540-20559-3 628:Photonic Crystals 611:978-0-306-46574-1 578:978-0-521-58709-9 547:978-0-521-78285-2 512:978-1-84628-950-7 467:978-3-540-63961-9 396:978-981-238-711-0 242: 241: 69: 68: 61: 759: 722: 721: 691: 685: 684: 653: 647: 646: 622: 616: 615: 589: 583: 582: 558: 552: 551: 523: 517: 516: 492: 486: 485: 479: 471: 447: 441: 440: 410: 401: 400: 387:World Scientific 378: 282:Green's function 234: 227: 220: 204:GW approximation 71: 70: 64: 57: 53: 50: 44: 24: 23: 16: 767: 766: 762: 761: 760: 758: 757: 756: 727: 726: 725: 697:Physical Review 692: 688: 678: 654: 650: 643: 623: 619: 612: 590: 586: 579: 571:. p. 211. 559: 555: 548: 536:. pp. 313 524: 520: 513: 503:Springer-Verlag 493: 489: 473: 472: 468: 448: 444: 423:(10): 846–851. 416:Physical Review 411: 404: 397: 379: 375: 371: 338:Anderson's rule 334: 326:pseudopotential 257:crystal lattice 238: 206: 202: 198: 194: 190: 186: 168: 164: 160: 156: 138: 134: 130: 128:Coupled cluster 126: 122: 118: 114: 96: 92: 65: 54: 48: 45: 37:help improve it 34: 25: 21: 12: 11: 5: 765: 755: 754: 749: 744: 739: 724: 723: 704:(3): 603–608. 686: 676: 648: 641: 635:. p. 66. 617: 610: 584: 577: 553: 546: 518: 511: 487: 466: 460:. p. 52. 442: 402: 395: 372: 370: 367: 366: 365: 360: 355: 350: 345: 340: 333: 330: 321:eigenfunctions 288:(1947) and by 273:John C. Slater 253:potential well 240: 239: 237: 236: 229: 222: 214: 211: 210: 180: 179: 173: 172: 150: 149: 143: 142: 108: 107: 101: 100: 86: 85: 79: 78: 67: 66: 28: 26: 19: 9: 6: 4: 3: 2: 764: 753: 750: 748: 745: 743: 740: 738: 735: 734: 732: 719: 715: 711: 707: 703: 699: 698: 690: 683: 679: 673: 669: 665: 661: 660: 652: 644: 638: 634: 630: 629: 621: 613: 607: 603: 599: 595: 588: 580: 574: 570: 566: 565: 557: 549: 543: 539: 535: 531: 530: 522: 514: 508: 505:. p. 7. 504: 500: 499: 491: 483: 477: 469: 463: 459: 455: 454: 446: 438: 434: 430: 426: 422: 418: 417: 409: 407: 398: 392: 388: 384: 377: 373: 364: 361: 359: 356: 354: 351: 349: 346: 344: 341: 339: 336: 335: 329: 327: 322: 318: 314: 309: 306: 301: 299: 295: 291: 287: 283: 278: 274: 270: 266: 262: 258: 254: 250: 249:approximation 248: 235: 230: 228: 223: 221: 216: 215: 213: 212: 209: 205: 201: 197: 193: 189: 188:Tight binding 185: 182: 181: 178: 175: 174: 171: 167: 163: 159: 155: 152: 151: 148: 145: 144: 141: 137: 133: 129: 125: 121: 117: 113: 110: 109: 106: 103: 102: 99: 95: 91: 88: 87: 84: 81: 80: 76: 73: 72: 63: 60: 52: 42: 38: 32: 29:This article 27: 18: 17: 701: 695: 689: 681: 658: 651: 627: 620: 597: 594:"Appendix C" 587: 563: 556: 537: 528: 521: 497: 490: 452: 445: 420: 414: 382: 376: 310: 302: 286:Jan Korringa 280:and various 245: 243: 191: 55: 46: 30: 348:Bloch waves 313:plane waves 290:Walter Kohn 731:Categories 666:. p.  369:References 294:KKR method 247:muffin-tin 476:cite book 49:July 2018 664:Springer 633:Springer 602:Springer 458:Springer 343:Band gap 332:See also 319:and the 706:Bibcode 425:Bibcode 77:methods 35:Please 674:  639:  608:  575:  544:  509:  464:  393:  269:solids 255:in a 672:ISBN 637:ISBN 606:ISBN 573:ISBN 542:ISBN 507:ISBN 482:link 462:ISBN 391:ISBN 244:The 714:doi 668:349 433:doi 328:). 267:in 39:to 733:: 712:. 702:92 700:. 680:. 670:. 662:. 631:. 604:. 600:. 596:. 567:. 540:. 538:ff 532:. 501:. 478:}} 474:{{ 456:. 431:. 421:51 419:. 405:^ 389:. 300:. 720:. 716:: 708:: 645:. 614:. 581:. 550:. 515:. 484:) 470:. 439:. 435:: 427:: 399:. 233:e 226:t 219:v 62:) 56:( 51:) 47:( 33:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
Electronic structure
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑