Knowledge

Nanosheet

Source 📝

71: 222: 236: 560:
Payamyar, P.; Kaja, K.; Ruiz-Vargas, C.; Stemmer, A.; Murray, D. J; Johnson, C. J; King, B. T.; Schiffmann, F.; VandeVondele, J.; Renn, A.; Götzinger, S.; Ceroni, P.; Schütz, A.; Lee, L.-T.; Zheng, Z.; Sakamoto, J.; Schlüter, A. D. (2014). "Synthesis of a Covalent Monolayer Sheet by Photochemical
150:
were used during the formation of PbS sheets. PbS ultrathin sheets probably resulted from the oriented attachment of the PbS nanoparticles in a two-dimensional fashion. The highly reactive facets were preferentially consumed in the growth process that led to the sheet-like PbS crystal growth.
198:
with a technique that involves heating the fibres at over 350F (180C) for 24 hours. The result is then subjected to intense heat causing the fibers to exfoliate into a carbon nanosheet. This has been used to create an electrode for a
301:
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; et al. (2011). "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials".
862:
Bai, Yongxiao; Yeom, Jihyeon; Yang, Ming; Cha, Sang-Ho; Sun, Kai; Kotov, Nicholas A. (2013-02-14). "Universal Synthesis of Single-Phase Pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets".
696:
Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; et al. (2010). "Ultrathin PbS sheets by two-dimensional oriented attachment".
491: 989:
Li, Zhonghao; Liu, Zhimin; Zhang, Jianling; Han, Buxing; Du, Jimin; Gao, Yanan; Jiang, Tao (2005). "Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids".
97:) nanosheets could be synthesized by precipitating and aging CdTe nanoparticles in deionized water. The formation of free-floating CdTe nanosheets was due to directional 749:
Talapin, Dmitri V.; Shevchenko, Elena V.; Murray, Christopher B.; Titov, Alexey V.; Král, Petr (2007). "Dipole-dipole interactions in nanoparticle superlattices".
517:
Yin, Xi; Liu, Xinhong; Pan, Yung-Tin; Walsh, Kathleen A.; Yang, Hong (November 4, 2014). "Hanoi Tower-like Multilayered Ultrathin Palladium Nanosheets".
355:
Guo, Shaojun; Dong, Shaojun (2011). "Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications".
897:
Yin, Xi; Liu, Xinhong; Pan, Yung-Tin; Walsh, Kathleen; Yang, Hong (November 4, 2014). "Hanoi Tower-like Multilayered Ultrathin Palladium Nanosheets".
177:
were employed in the synthesis process. Oriented attachment, in which the sheets form by aggregation of small nanoparticles that each has a net
792:
Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. (13 October 2006). "Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets".
210:
Metal nanosheets have also been synthesized from solution-based method by reducing metal precursors, including palladium, rhodium, and gold.
78:
The most commonly used nanosheet synthesis methods use a bottom-up approach, e.g., pre-organization and polymerization at interfaces like
940:
Duan, H; Yan, N; Yu, R; Chang, CR; Zhou, G; Hu, HS; Rong, H; Niu, Z; Mao, J; Asakura, H; Tanaka, T; Dyson, PJ; Li, J; Li, Y (2014).
653:
Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. (2006). "Self-assembly of CdTe nanocrystals into free-floating sheets".
185:
are the two main reasons for the formation of the PbO nanosheets. The same process was observed for iron sulfide nanoparticles.
1030: 393:
Zeng, Shuwen; Liang, Yennan; Lu, Haifei; Wang, Libo; Dinh, Xuan-Quyen; Yu, Xia; Ho, Ho-Pui; Hu, Xiao; Yong, Ken-Tye (2012).
31:, the thinnest two-dimensional material (0.34 nm) in the world. It consists of a single layer of carbon atoms with 835:
Yang, Weiyou; Gao, Fengmei; Wei, Guodong; An, Linan (2010). "Ostwald Ripening Growth of Silicon Nitride Nanoplates".
561:
Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation".
476: 280: 79: 83: 596:
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting (2012).
255: 265: 178: 94: 162:
as seeds under room temperature. The size of the PbO nanosheet can be tuned by gold NPs and
953: 906: 801: 758: 715: 662: 609: 526: 443: 311: 8: 135: 957: 910: 805: 762: 719: 666: 613: 530: 447: 315: 705: 630: 597: 433: 143: 70: 1006: 971: 922: 879: 817: 774: 731: 678: 635: 578: 542: 459: 394: 372: 337: 241: 159: 117: 32: 998: 961: 914: 871: 844: 809: 766: 723: 670: 625: 617: 570: 534: 451: 406: 364: 327: 319: 182: 395:"Synthesis of symmetrical hexagonal-shape PbO nanosheets using gold nanoparticles" 410: 598:"Excitation of surface electromagnetic waves in a graphene-based Bragg grating" 260: 227: 200: 113: 59: 47:
nanosheets are being used to prototype future generations of small (5 nm)
1024: 883: 154:
Nanosheets can also be prepared at room temperature. For instance, hexagonal
105: 74:
3D AFM topography image of multilayered palladium nanosheet on silicon wafer.
21: 813: 727: 674: 492:"Could hemp nanosheets topple graphene for making the ideal supercapacitor?" 455: 323: 1010: 975: 926: 821: 778: 735: 682: 639: 582: 574: 546: 463: 376: 341: 270: 139: 134:) sheets with micro scale in x-, y- dimensions can be obtained using a hot 275: 102: 98: 966: 941: 368: 195: 174: 48: 1002: 918: 875: 848: 770: 621: 538: 332: 221: 250: 204: 147: 112:
moment and small positive charges. Molecular simulations through a
55: 28: 710: 438: 235: 203:
with electrochemical qualities ‘on a par with’ devices made using
91: 44: 188: 131: 109: 559: 695: 300: 748: 120:
calculations can be used to prove the experimental process.
192: 128: 87: 155: 124: 24:
with thickness in a scale ranging from 1 to 100 nm.
54:
Carbon nanosheets (from hemp) may be an alternative to
595: 424:
Geim, A. K. (2009). "Graphene: status and prospects".
791: 652: 217: 173:concentration in the growth solution. No organic 1022: 477:IBM Figures Out How to Make 5nm Chips. June 2017 158:(lead oxide)) nanosheets were synthesized using 392: 191:nanosheets have been produced using industrial 939: 896: 861: 516: 988: 834: 388: 386: 38: 116:model with parameters from semi-empirical 965: 709: 629: 486: 484: 437: 383: 331: 69: 354: 1023: 481: 423: 27:A typical example of a nanosheet is 991:The Journal of Physical Chemistry B 864:The Journal of Physical Chemistry C 13: 14: 1042: 234: 220: 982: 933: 890: 855: 828: 785: 742: 689: 646: 82:, solution phase synthesis and 942:"Ultrathin rhodium nanosheets" 589: 553: 510: 470: 417: 348: 294: 138:method. Compounds with linear 1: 1031:Two-dimensional nanomaterials 287: 498:. American Chemistry Society 411:10.1016/j.matlet.2011.09.048 65: 7: 837:Crystal Growth & Design 213: 10: 1047: 123:Ultrathin single-crystal 84:chemical vapor deposition 39:Examples and applications 357:Chemical Society Reviews 814:10.1126/science.1128045 728:10.1126/science.1188035 675:10.1126/science.1128045 456:10.1126/science.1158877 324:10.1126/science.1194975 256:Two-dimensional polymer 108:interactions caused by 80:Langmuir–Blodgett films 575:10.1002/adma.201304705 281:Langmuir–Blodgett film 266:Nanocrystal solar cell 75: 946:Nature Communications 73: 20:is a two-dimensional 86:(CVD). For example, 997:(30): 14445–14448. 958:2014NatCo...5.3093D 911:2014NanoL..14.7188Y 806:2006Sci...314..274T 763:2007NanoL...7.1213T 720:2010Sci...329..550S 667:2006Sci...314..274T 614:2012NatSR...2E.737S 531:2014NanoL..14.7188Y 448:2009Sci...324.1530G 432:(5934): 1530–1534. 316:2011Sci...331..568C 136:colloidal synthesis 967:10.1038/ncomms4093 602:Scientific Reports 369:10.1039/C0CS00079E 160:gold nanoparticles 144:1,2-dichloroethane 76: 33:hexagonal lattices 1003:10.1021/jp0520998 919:10.1021/nl503879a 876:10.1021/jp3111106 849:10.1021/cg901148q 800:(5797): 274–278. 771:10.1021/nl070058c 704:(5991): 550–553. 661:(5797): 274–278. 622:10.1038/srep00737 569:(13): 2052–2058. 539:10.1021/nl503879a 399:Materials Letters 310:(6017): 568–571. 242:Technology portal 118:quantum mechanics 58:as electrodes in 1038: 1015: 1014: 986: 980: 979: 969: 937: 931: 930: 894: 888: 887: 870:(6): 2567–2573. 859: 853: 852: 832: 826: 825: 789: 783: 782: 757:(5): 1213–1219. 746: 740: 739: 713: 693: 687: 686: 650: 644: 643: 633: 593: 587: 586: 557: 551: 550: 514: 508: 507: 505: 503: 488: 479: 474: 468: 467: 441: 421: 415: 414: 390: 381: 380: 363:(5): 2644–2672. 352: 346: 345: 335: 298: 244: 239: 238: 230: 225: 224: 183:ostwald ripening 172: 171: 170: 1046: 1045: 1041: 1040: 1039: 1037: 1036: 1035: 1021: 1020: 1019: 1018: 987: 983: 938: 934: 905:(12): 7188–94. 895: 891: 860: 856: 833: 829: 790: 786: 747: 743: 694: 690: 651: 647: 594: 590: 558: 554: 525:(12): 7188–94. 515: 511: 501: 499: 490: 489: 482: 475: 471: 422: 418: 391: 384: 353: 349: 299: 295: 290: 285: 240: 233: 226: 219: 216: 169: 167: 166: 165: 163: 101:attraction and 68: 60:supercapacitors 41: 12: 11: 5: 1044: 1034: 1033: 1017: 1016: 981: 932: 889: 854: 827: 784: 741: 688: 645: 588: 552: 509: 480: 469: 416: 382: 347: 292: 291: 289: 286: 284: 283: 278: 273: 268: 263: 261:Colloidal gold 258: 253: 247: 246: 245: 231: 228:Science portal 215: 212: 201:supercapacitor 168: 114:coarse-grained 67: 64: 40: 37: 9: 6: 4: 3: 2: 1043: 1032: 1029: 1028: 1026: 1012: 1008: 1004: 1000: 996: 992: 985: 977: 973: 968: 963: 959: 955: 951: 947: 943: 936: 928: 924: 920: 916: 912: 908: 904: 900: 893: 885: 881: 877: 873: 869: 865: 858: 850: 846: 842: 838: 831: 823: 819: 815: 811: 807: 803: 799: 795: 788: 780: 776: 772: 768: 764: 760: 756: 752: 745: 737: 733: 729: 725: 721: 717: 712: 707: 703: 699: 692: 684: 680: 676: 672: 668: 664: 660: 656: 649: 641: 637: 632: 627: 623: 619: 615: 611: 607: 603: 599: 592: 584: 580: 576: 572: 568: 564: 556: 548: 544: 540: 536: 532: 528: 524: 520: 513: 497: 493: 487: 485: 478: 473: 465: 461: 457: 453: 449: 445: 440: 435: 431: 427: 420: 412: 408: 404: 400: 396: 389: 387: 378: 374: 370: 366: 362: 358: 351: 343: 339: 334: 329: 325: 321: 317: 313: 309: 305: 297: 293: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 248: 243: 237: 232: 229: 223: 218: 211: 208: 206: 202: 197: 194: 190: 186: 184: 180: 179:dipole moment 176: 161: 157: 152: 149: 145: 141: 140:chloroalkanes 137: 133: 130: 126: 121: 119: 115: 111: 107: 106:electrostatic 104: 100: 96: 93: 89: 85: 81: 72: 63: 61: 57: 52: 50: 46: 36: 34: 30: 25: 23: 22:nanostructure 19: 994: 990: 984: 949: 945: 935: 902: 899:Nano Letters 898: 892: 867: 863: 857: 840: 836: 830: 797: 793: 787: 754: 751:Nano Letters 750: 744: 701: 697: 691: 658: 654: 648: 605: 601: 591: 566: 562: 555: 522: 519:Nano Letters 518: 512: 500:. Retrieved 495: 472: 429: 425: 419: 402: 398: 360: 356: 350: 307: 303: 296: 271:Nanoparticle 209: 187: 153: 122: 77: 53: 43:As of 2017, 42: 26: 17: 15: 276:Quantum dot 196:bast fibres 175:surfactants 146:containing 103:anisotropic 99:hydrophobic 49:transistors 563:Adv. Mater 333:2262/66458 288:References 884:1932-7447 843:: 29–31. 711:1103.2920 502:14 August 439:0906.3799 405:: 74–77. 95:telluride 66:Synthesis 18:nanosheet 1025:Category 1011:16852818 976:24435210 952:: 3093. 927:25369350 822:17038616 779:17397231 736:20671184 683:17038616 640:23071901 583:24347495 547:25369350 464:19541989 377:21283849 342:21292974 251:Graphene 214:See also 205:graphene 148:chlorine 56:graphene 29:graphene 954:Bibcode 907:Bibcode 802:Bibcode 794:Science 759:Bibcode 716:Bibcode 698:Science 663:Bibcode 655:Science 631:3471096 610:Bibcode 608:: 737. 527:Bibcode 496:acs.org 444:Bibcode 426:Science 312:Bibcode 304:Science 92:cadmium 45:silicon 1009:  974:  925:  882:  820:  777:  734:  681:  638:  628:  581:  545:  462:  375:  340:  189:Carbon 181:, and 132:sulfur 110:dipole 706:arXiv 434:arXiv 142:like 1007:PMID 972:PMID 923:PMID 880:ISSN 818:PMID 775:PMID 732:PMID 679:PMID 636:PMID 579:PMID 543:PMID 504:2014 460:PMID 373:PMID 338:PMID 193:hemp 129:lead 88:CdTe 999:doi 995:109 962:doi 915:doi 872:doi 868:117 845:doi 810:doi 798:314 767:doi 724:doi 702:329 671:doi 659:314 626:PMC 618:doi 571:doi 535:doi 452:doi 430:324 407:doi 365:doi 328:hdl 320:doi 308:331 156:PbO 125:PbS 1027:: 1005:. 993:. 970:. 960:. 948:. 944:. 921:. 913:. 903:14 901:. 878:. 866:. 841:10 839:. 816:. 808:. 796:. 773:. 765:. 753:. 730:. 722:. 714:. 700:. 677:. 669:. 657:. 634:. 624:. 616:. 604:. 600:. 577:. 567:26 565:. 541:. 533:. 523:14 521:. 494:. 483:^ 458:. 450:. 442:. 428:. 403:67 401:. 397:. 385:^ 371:. 361:40 359:. 336:. 326:. 318:. 306:. 207:. 164:Pb 62:. 51:. 35:. 16:A 1013:. 1001:: 978:. 964:: 956:: 950:5 929:. 917:: 909:: 886:. 874:: 851:. 847:: 824:. 812:: 804:: 781:. 769:: 761:: 755:7 738:. 726:: 718:: 708:: 685:. 673:: 665:: 642:. 620:: 612:: 606:2 585:. 573:: 549:. 537:: 529:: 506:. 466:. 454:: 446:: 436:: 413:. 409:: 379:. 367:: 344:. 330:: 322:: 314:: 127:( 90:(

Index

nanostructure
graphene
hexagonal lattices
silicon
transistors
graphene
supercapacitors

Langmuir–Blodgett films
chemical vapor deposition
CdTe
cadmium
telluride
hydrophobic
anisotropic
electrostatic
dipole
coarse-grained
quantum mechanics
PbS
lead
sulfur
colloidal synthesis
chloroalkanes
1,2-dichloroethane
chlorine
PbO
gold nanoparticles
surfactants
dipole moment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.