Knowledge

Colloidal gold

Source 📝

1150:
metal surface. Because gold is very sensitive to its surroundings' dielectric constant, binding of an analyte significantly shifts the gold nanoparticle's SPR and therefore allows for more sensitive detection. Gold nanoparticle could also amplify the SPR signal. When the plasmon wave pass through the gold nanoparticle, the charge density in the wave and the electron I the gold interact and result in a higher energy response, referred to as electron coupling. When the analyte and bio-receptor both bind to the gold, the apparent mass of the analyte increases and therefore amplifies the signal. These properties had been used to build a DNA sensor with 1000-fold greater sensitivity than without the Au NP. Humidity sensors have also been built by altering the atom interspacing between molecules with humidity change, the interspacing change would also result in a change of the Au NP's LSPR.
629: 1006:
dominates, whereas for the larger axial diameter nanorods (>35 nm) scattering can dominate. As a consequence, for in-vivo studies, small diameter gold nanorods are being used as photothermal converters of near-infrared light due to their high absorption cross-sections. Since near-infrared light transmits readily through human skin and tissue, these nanorods can be used as ablation components for cancer, and other targets. When coated with polymers, gold nanorods have been observed to circulate in-vivo with half-lives longer than 6 hours, bodily residence times around 72 hours, and little to no uptake in any internal organs except the liver.
1159:
attach the Au NP to either the enzyme or the electrode. GNP-glucose oxidase monolayer electrode was constructed use these two methods. The Au NP allowed more freedom in the enzyme's orientation and therefore more sensitive and stable detection. Au NP also acts as immobilization platform for the enzyme. Most biomolecules denatures or lose its activity when interacted with the electrode. The biocompatibility and high surface energy of Au allow it to bind to a large amount of protein without altering its activity and results in a more sensitive sensor. Moreover, Au NP also catalyzes biological reactions. Gold nanoparticle under 2 nm has shown
886:), delivery to the difficult sites (brain, retina, tumors, intracellular organelles) and drugs with serious side effects (e.g. anti-cancer agents). The performance of the nanoparticles depends on the size and surface functionalities in the particles. Also, the drug release and particle disintegration can vary depending on the system (e.g. biodegradable polymers sensitive to pH). An optimal nanodrug delivery system ensures that the active drug is available at the site of action for the correct time and duration, and their concentration should be above the minimal effective concentration (MEC) and below the minimal toxic concentration (MTC). 1322:
due to the high curvature observed at the nanoparticle surfaces. Thiolate-gold interfaces at the nanoscale have been well-studied and the thiolate ligands are observed to pull Au atoms off of the surface of the particles to form “staple” motifs that have significant Thiyl-Au(0) character. The citrate-gold surface, on the other hand, is relatively less-studied due to the vast number of binding conformations of the citrate to the curved gold surfaces. A study performed in 2014 identified that the most-preferred binding of the citrate involves two carboxylic acids and the hydroxyl group of the citrate binds three surface metal atoms.
1708:
nanoparticles comprises three main steps: reduction of gold salt ion by block copolymers in the solution and formation of gold clusters, adsorption of block copolymers on gold clusters and further reduction of gold salt ions on the surfaces of these gold clusters for the growth of gold particles in steps, and finally its stabilization by block copolymers. But this method usually has a limited-yield (nanoparticle concentration), which does not increase with the increase in the gold salt concentration. Ray et al. improved this synthesis method by enhancing the nanoparticle yield by manyfold at ambient temperature.
1623:
act in conjunction with hydroquinone to catalyze reduction of ionic gold onto their surface. The presence of a stabilizer such as citrate results in controlled deposition of gold atoms onto the particles, and growth. Typically, the nanoparticle seeds are produced using the citrate method. The hydroquinone method complements that of Frens, as it extends the range of monodispersed spherical particle sizes that can be produced. Whereas the Frens method is ideal for particles of 12–20 nm, the hydroquinone method can produce particles of at least 30–300 nm.
1415:) for concentrations up to 0.25 M. Also, citrate-capped gold nanospheres (AuNSs) have been proven to be compatible with human blood and did not cause platelet aggregation or an immune response. However, citrate-capped gold nanoparticles sizes 8-37 nm were found to be lethally toxic for mice, causing shorter lifespans, severe sickness, loss of appetite and weight, hair discoloration, and damage to the liver, spleen, and lungs; gold nanoparticles accumulated in the spleen and liver after traveling a section of the immune system. There are mixed-views for 1411:-stabilized AuNRs at low concentration, but it is thought that free CTAB was the culprit in toxicity . Modifications that overcoat these AuNRs reduces this toxicity in human colon cancer cells (HT-29) by preventing CTAB molecules from desorbing from the AuNRs back into the solution. Ligand toxicity can also be seen in AuNPs. Compared to the 90% toxicity of HAuCl4 at the same concentration, AuNPs with carboxylate termini were shown to be non-toxic. Large AuNPs conjugated with biotin, cysteine, citrate, and glucose were not toxic in human leukemia cells ( 1488: 1126: 1639:-HCl ions within the "sweet zone," along with heating, enables reproducible diameter tuning between 3–6 nm. The aqueous particles are colloidally stable due to their high charge from the excess ions in solution. These particles can be coated with various hydrophilic functionalities, or mixed with hydrophobic ligands for applications in non-polar solvents. In non-polar solvents the nanoparticles remain highly charged, and self-assemble on liquid droplets to form 2D monolayer films of monodisperse nanoparticles. 1602:), which will bind to gold, producing a near-permanent solution. Alkanethiol protected gold nanoparticles can be precipitated and then redissolved. Thiols are better binding agents because there is a strong affinity for the gold-sulfur bonds that form when the two substances react with each other. Tetra-dodecanthiol is a commonly used strong binding agent to synthesize smaller particles. Some of the phase transfer agent may remain bound to the purified nanoparticles, this may affect physical properties such as 94: 474: 336: 348: 36: 1254: eV, higher than what is predicted in theory for continuum plates of the same thickness, due to nonlocal microstructural constraints such as nonlocal coupling of particle rotational degrees of freedom. On the other hand, resistance to bending is found to be greatly reduced in nanoparticle monolayers that are supported at the air/water interface, possibly due to screening of ligand interactions in a wet environment. 725: 817: 1423:). AuNP toxicity also depends on the overall charge of the ligands. In certain doses, AuNSs that have positively-charged ligands are toxic in monkey kidney cells (Cos-1), human red blood cells, and E. coli because of the AuNSs interaction with the negatively-charged cell membrane; AuNSs with negatively-charged ligands have been found to be nontoxic in these species. In addition to the previously mentioned 121: 560:, Faraday accidentally created a ruby red solution while mounting pieces of gold leaf onto microscope slides. Since he was already interested in the properties of light and matter, Faraday further investigated the optical properties of the colloidal gold. He prepared the first pure sample of colloidal gold, which he called 'activated gold', in 1857. He used 966: 1676:. The first method of this type was invented by Baigent and Müller. This work pioneered the use of ultrasound to provide the energy for the processes involved and allowed the creation of gold particles with a diameter of under 10 nm. In another method using ultrasound, the reaction of an aqueous solution of HAuCl 1542:
A capping agent is used during nanoparticle synthesis to inhibit particle growth and aggregation. The chemical blocks or reduces reactivity at the periphery of the particle—a good capping agent has a high affinity for the new nuclei. Citrate ions or tannic acid function both as a reducing agent and a
1321:
The precise structure of the ligands on the surface of colloidal gold NPs impact the properties of the colloidal gold particles. Binding conformations and surface packing of the capping ligands at the surface of the colloidal gold NPs tend to differ greatly from bulk surface model adsorption, largely
1158:
Electrochemical sensor convert biological information into electrical signals that could be detected. The conductivity and biocompatibility of Au NP allow it to act as "electron wire". It transfers electron between the electrode and the active site of the enzyme. It could be accomplished in two ways:
1149:
Gold nanoparticles improve the sensitivity of optical sensors in response to the change in the local refractive index. The angle of the incidence light for surface plasmon resonance, an interaction between light waves and conducting electrons in metal, changes when other substances are bounded to the
1116:
to enhance its stability, sensitivity, and selectivity. Nanoparticle properties such as small size, high surface-to-volume ratio, and high surface energy allow immobilization of large range of biomolecules. Gold nanoparticle, in particular, could also act as "electron wire" to transport electrons and
1045:
Considerable interest has been shown in the use of gold and other heavy-atom-containing nanoparticles to enhance the dose delivered to tumors. Since the gold nanoparticles are taken up by the tumors more than the nearby healthy tissue, the dose is selectively enhanced. The biological effectiveness of
952:
Tumor targeting via multifunctional nanocarriers. Cancer cells reduce adhesion to neighboring cells and migrate into the vasculature-rich stroma. Once at the vasculature, cells can freely enter the bloodstream. Once the tumor is directly connected to the main blood circulation system, multifunctional
6606:
Navarro JR, Lerouge F, Cepraga C, Micouin G, Favier A, Chateau D, Charreyre MT, Lanoë PH, Monnereau C, Chaput F, Marotte S, Leverrier Y, Marvel J, Kamada K, Andraud C, Baldeck PL, Parola S (November 2013). "Nanocarriers with ultrahigh chromophore loading for fluorescence bio-imaging and photodynamic
1199:
Gold nanoparticles capped with organic ligands, such as alkanethiol molecules, can self-assemble into large monolayers (>cm). The particles are first prepared in organic solvent, such as chloroform or toluene, and are then spread into monolayers either on a liquid surface or on a solid substrate.
640:
Colloidal gold has been used by artists for centuries because of the nanoparticle’s interactions with visible light. Gold nanoparticles absorb and scatter light resulting in colours ranging from vibrant reds (smaller particles) to blues to black and finally to clear and colorless (larger particles),
1695:(forming at the interfacial region between the collapsing cavities and the bulk water) and the morphology obtained is that of nanoribbons with width 30–50 nm and length of several micrometers. These ribbons are very flexible and can bend with angles larger than 90°. When glucose is replaced by 1296:
method, although higher temperatures are needed to promote the rate of the ligand detachment. An alternative method for further functionalization is achieved through the conjugation of the ligands with other molecules, though this method can cause the colloidal stability of the Au NPs to breakdown.
1295:
by mediating interactions between adsorbates and the active gold surfaces for specific oxygenation reactions. Ligand exchange can also be used to promote phase transfer of the colloidal particles. Ligand exchange is also possible with alkane thiol-arrested NPs produced from the Brust-type synthesis
944:
for enhanced imaging in a time-resolved optical tomography system using short-pulse lasers for skin cancer detection in mouse model. It is found that intravenously administered spherical gold nanoparticles broadened the temporal profile of reflected optical signals and enhanced the contrast between
1622:
in an aqueous solution that contains 15 nm gold nanoparticle seeds. This seed-based method of synthesis is similar to that used in photographic film development, in which silver grains within the film grow through addition of reduced silver onto their surface. Likewise, gold nanoparticles can
1340:
As gold nanoparticles (AuNPs) are further investigated for targeted drug delivery in humans, their toxicity needs to be considered. For the most part, it is suggested that AuNPs are biocompatible, but the concentrations at which they become toxic needs to be determined, and if those concentrations
1304:
In many cases, as in various high-temperature catalytic applications of Au, the removal of the capping ligands produces more desirable physicochemical properties. The removal of ligands from colloidal gold while maintaining a relatively constant number of Au atoms per Au NP can be difficult due to
1005:
are rod-shaped gold nanoparticles whose aspect ratios tune the surface plasmon resonance (SPR) band from the visible to near-infrared wavelength. The total extinction of light at the SPR is made up of both absorption and scattering. For the smaller axial diameter nanorods (~10 nm), absorption
665:
theory for spherical nanoparticles. Nanoparticles with diameters of 30–100 nm may be detected easily by a microscope, and particles with a size of 40 nm may even be detected by the naked eye when the concentration of the particles is 10 M or greater. The scattering from a 60 nm
873:
Gold nanoparticles can be used to optimize the biodistribution of drugs to diseased organs, tissues or cells, in order to improve and target drug delivery. Nanoparticle-mediated drug delivery is feasible only if the drug distribution is otherwise inadequate. These cases include drug targeting of
1721:
Antibiotic functionalized metal nanoparticles have been widely studied as a mode to treat multi-drug resistant bacterial strains. For example, kanamycin capped gold-nanoparticles (Kan-AuPs) showed broad spectrum dose dependent antibacterial activity against both gram positive and gram negative
1282:
After initial nanoparticle synthesis, colloidal gold ligands are often exchanged with new ligands designed for specific applications. For example, Au NPs produced via the Turkevich-style (or Citrate Reduction) method are readily reacted via ligand exchange reactions, due to the relatively weak
1207:
The mechanical properties of nanoparticle monolayers have been studied extensively. For 5 nm spheres capped with dodecanethiol, the Young's modulus of the monolayer is on the order of GPa. The mechanics of the membranes are guided by strong interactions between ligand shells on adjacent
949: 678:
Changes in the apparent color of a gold nanoparticle solution can also be caused by the environment in which the colloidal gold is suspended. The optical properties of gold nanoparticles depend on the refractive index near the nanoparticle surface, so the molecules directly attached to the
1707:
An economical, environmentally benign and fast synthesis methodology for gold nanoparticles using block copolymer has been developed by Sakai et al. In this synthesis methodology, block copolymer plays the dual role of a reducing agent as well as a stabilizing agent. The formation of gold
2321:
Mr. Culpepper's Treatise of aurum potabile Being a description of the three-fold world, viz. elementary celestial intellectual containing the knowledge necessary to the study of hermetick philosophy. Faithfully written by him in his life-time, and since his death, published by his
1305:
the tendency for these bare clusters to aggregate. The removal of ligands is partially achievable by simply washing away all excess capping ligands, though this method is ineffective in removing all capping ligand. More often ligand removal achieved under high temperature or light
615:, have contributed the most to nanoparticle research. Due to their comparably easy synthesis and high stability, various gold particles have been studied for their practical uses. Different types of gold nanoparticle are already used in many industries, such as electronics. 1659:
For particles larger than 30 nm, control of particle size with a low polydispersity of spherical gold nanoparticles remains challenging. In order to provide maximum control on the NP structure, Navarro and co-workers used a modified Turkevitch-Frens procedure using
5971:
Cassano, Domenico; Summa, Maria; Pocoví-Martínez, Salvador; Mapanao, Ana-Katrina; Catelani, Tiziano; Bertorelli, Rosalia; Voliani, Valerio (February 2019). "Biodegradable Ultrasmall-in-Nano Gold Architectures: Mid-Period In Vivo Distribution and Excretion Assessment".
89: 1357:
toxicity results can vary depending on the type of the cellular growth media with different protein compositions, the method used to determine cellular toxicity (cell health, cell stress, how many cells are taken into a cell), and the capping ligands in solution.
1650:
can be used in synthesis of gold nanocubes with sizes between 10 and 100 nanometres. Gold nanoparticles are usually synthesized at high temperatures in organic solvents or using toxic reagents. The bacteria produce them in much milder conditions.
1390:
While AuNPs themselves appear to have low or negligible toxicity, and the literature shows that the toxicity has much more to do with the ligands rather than the particles themselves, the synthesis of them involves chemicals that are hazardous.
1471:
studies, but this is very size dependent. 1.8 nm AuNPs were found to be almost totally trapped in the lungs of rats. Different sized AuNPs were found to buildup in the blood, brain, stomach, pancreas, kidneys, liver, and spleen.
6161:
Pong BK, Elim HI, Chong JX, Trout BL, Lee JY (2007). "New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties".
1419:(PEG)-modified AuNPs. These AuNPs were found to be toxic in mouse liver by injection, causing cell death and minor inflammation. However, AuNPs conjugated with PEG copolymers showed negligible toxicity towards human colon cells ( 864:
In addition to biological probes, gold nanoparticles can be transferred to various mineral substrates, such as mica, single crystal silicon, and atomically flat gold(III), to be observed under atomic force microscopy (AFM).
969:
Multifunctional siRNA-gold nanoparticles with several biomolecules: PEG, cell penetration and cell adhesion peptides and siRNA. Two different approaches were employed to conjugate the siRNA to the gold nanoparticle: (1)
6216:
Fang Y, Tan J, Lan T, Foo SG, Pyun DG, Lim S, Kim DH (2018). "Universal one‐pot, one‐step synthesis of core–shell nanocomposites with self‐assembled tannic acid shell and their antibacterial and catalytic activities".
1593:
TOAB does not bind to the gold nanoparticles particularly strongly, so the solution will aggregate gradually over the course of approximately two weeks. To prevent this, one can add a stronger binding agent, like a
4337:
Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (August 2008). "Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters".
1478:
and biokinetics investigations on biodegradable ultrasmall-in-nano architectures have demonstrated that gold nanoparticles are able to avoid metal accumulation in organisms through escaping by the renal pathway.
2162: 1823:
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (March 2013). "Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology".
568:
a solution of gold chloride. The colloidal gold Faraday made 150 years ago is still optically active. For a long time, the composition of the 'ruby' gold was unclear. Several chemists suspected it to be a gold
5915:
Cassano, Domenico; Mapanao, Ana-Katrina; Summa, Maria; Vlamidis, Ylea; Giannone, Giulia; Santi, Melissa; Guzzolino, Elena; Pitto, Letizia; Poliseno, Laura; Bertorelli, Rosalia; Voliani, Valerio (2019-10-21).
3288:
Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (January 2008). "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags".
1631:
This simple method, discovered by Martin and Eah in 2010, generates nearly monodisperse "naked" gold nanoparticles in water. Precisely controlling the reduction stoichiometry by adjusting the ratio of NaBH
1966:
Torres-Torres, D.; Trejo-Valdez, M.; Castañeda, L.; Torres-Torres, C.; Tamayo-Rivera, L.; Fernández-Hernández, R. C.; Reyes-Esqueda, J. A.; Muñoz-Saldaña, J.; Rangel-Rojo, R.; Oliver, A. (2010-08-02).
453:
The properties of colloidal gold nanoparticles, and thus their potential applications, depend strongly upon their size and shape. For example, rodlike particles have both a transverse and longitudinal
1455:
Toxicity in certain systems can also be dependent on the size of the nanoparticle. AuNSs size 1.4 nm were found to be toxic in human skin cancer cells (SK-Mel-28), human cervical cancer cells (
430:, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including 1362:
assessments can determine the general health of an organism (abnormal behavior, weight loss, average life span) as well as tissue specific toxicology (kidney, liver, blood) and inflammation and
3866:
Daniel MC, Astruc D (January 2004). "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology".
2759:
Xing S, Tan LH, Yang M, Pan M, Lv Y, Tang Q, Yang Y, Chen H (2009-05-12). "Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains".
1283:
binding between the carboxyl groups and the surfaces of the NPs. This ligand exchange can produce conjugation with a number of biomolecules from DNA to RNA to proteins to polymers (such as
6720:
Sakai T, Alexandridis P (April 2005). "Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions".
5614:
Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J (April 2009). "Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles".
3421:
Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (September 2006). "PEG-modified gold nanorods with a stealth character for in vivo applications".
1467:(J774A.1), while 0.8, 1.2, and 1.8 nm sized AuNSs were less toxic by a six-fold amount and 15 nm AuNSs were nontoxic. There is some evidence for AuNP buildup after injection in 2220:
Sharma V, Park K, Srinivasarao M (2009). "Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly".
1117:
its amplification effect on electromagnetic light allows it to function as signal amplifiers. Main types of gold nanoparticle based biosensors are optical and electrochemical biosensor.
683:
may both influence the observed optical features. As the refractive index near the gold surface increases, the LSPR shifts to longer wavelengths. In addition to solvent environment, the
5363:
Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (March 2009). "Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects".
2247: 5880:
De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (April 2008). "Particle size-dependent organ distribution of gold nanoparticles after intravenous administration".
1407:
Some of the capping ligands associated with AuNPs can be toxic while others are nontoxic. In gold nanorods (AuNRs), it has been shown that a strong cytotoxicity was associated with
6353:
Gao J, Huang X, Liu H, Zan F, Ren J (March 2012). "Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging".
4014:
Lin HY, Chen CT, Chen YC (October 2006). "Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates".
3909:
Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (November 2006). "Gold nanostructures: engineering their plasmonic properties for biomedical applications".
5171:
Park JW, Shumaker-Parry JS (February 2014). "Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles".
6323: 4679:
Griesemer SD, You SS, Kanjanaboos P, Calabro M, Jaeger HM, Rice SA, Lin B (May 2017). "The role of ligands in the mechanical properties of Langmuir nanoparticle films".
4205:
Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001). "Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity".
2193: 3332:
Sajjadi AY, Suratkar AA, Mitra KK, Grace MS (2012). "Short-Pulse Laser-Based System for Detection of Tumors: Administration of Gold Nanoparticles Enhances Contrast".
1522:
spherical gold nanoparticles of around 10–20 nm in diameter. Larger particles can be produced, but at the cost of monodispersity and shape. In this method, hot
5398:
Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (January 2006). "Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity".
6262:
Fang Y, Tan J, Choi H, Lim S, Kim DH (2018). "Highly sensitive naked eye detection of Iron (III) and H2O2 using poly-(tannic acid) (PTA) coated Au nanocomposite".
4534:
He J, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (July 2010). "Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes".
1252: 1226: 1091:
buffer solution leads to the formation of HS-, which can stabilize AuNPs and ensure they maintain their red color allowing for visual detection of toxic levels of
4965: 3658:
McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O'Sullivan JM, Prise KM, Hirst DG, Currell FJ (2011).
3952:
Link S, El-Sayed MA (1996). "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods".
937:, which is sometimes overexpressed in cells of certain cancer types. Using SERS, these pegylated gold nanoparticles can then detect the location of the tumor. 3099:
Grobelny J, DelRio FW, Pradeep N, Kim DI, Hackley VA, Cook RF (2011). "Size measurement of nanoparticles using atomic force microscopy". In McNeil SE (ed.).
5840:
Sonavane G, Tomoda K, Makino K (October 2008). "Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size".
6388:
Bekalé, Laurent; Barazzouk, Saïd; Hotchandani, Surat (2012). "Beneficial role of gold nanoparticles as photoprotector of magnesium tetraphenylporphyrin".
607:
With advances in various analytical technologies in the 20th century, studies on gold nanoparticles has accelerated. Advanced microscopy methods, such as
4929:
Perumal S, Hofmann A, Scholz N, Rühl E, Graf C (April 2011). "Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles".
2951:
Romano EL, Romano M (1977). "Staphylococcal protein a bound to colloidal gold: A useful reagent to label antigen-antibody sites in electron microscopy".
2702:
Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004-09-01). "Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids".
4057:
He L, Musick MD, Nicewarner SR, Salinas FG (2000). "Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization".
3039:"Visualization of antigens attached to cytoskeletal framework in animal cells: colocalization of simian virus 40 Vp1 polypeptide and actin in TC7 cells" 861:, and receptors. Particles of different sizes are easily distinguishable in electron micrographs, allowing simultaneous multiple-labelling experiments. 4259:
Valden M, Lai X, Goodman DW (September 1998). "Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties".
57: 6299:
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994). "Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System".
5917: 5473:
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (March 2005). "Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity".
2794:
Ghosh SK, Pal T (November 2007). "Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications".
2588:
Anderson ML, Morris CA, Stroud RM, Merzbacher CI, Rolison DR (1999-02-01). "Colloidal Gold Aerogels: Preparation, Properties, and Characterization".
1399:, a potent acid. Because of the high toxicity and hazard of reagents used to synthesize AuNPs, the need for more “green” methods of synthesis arose. 735: 6571:
Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Gurunathan S (November 2009). "Biological synthesis of gold nanocubes from Bacillus licheniformis".
1699:(a glucose oligomer), only spherical gold particles are obtained, suggesting that glucose is essential in directing the morphology toward a ribbon. 1270:
to a disordered boundary with no repeating patterns. Beyond the Au-Ligand interface, conjugation of the interfacial ligands with various functional
1046:
this type of therapy seems to be due to the local deposition of the radiation dose near the nanoparticles. This mechanism is the same as occurs in
5438:
Goodman CM, McCusker CD, Yilmaz T, Rotello VM (June 2004). "Toxicity of gold nanoparticles functionalized with cationic and anionic side chains".
6755:
Ray D, Aswal VK, Kohlbrecher J (March 2011). "Synthesis and Characterization of High Concentration Block Copolymer-Mediated Gold Nanoparticles".
4577:
Wang Y, Kanjanaboos P, Barry E, McBride S, Lin XM, Jaeger HM (February 2014). "Fracture and failure of nanoparticle monolayers and multilayers".
1137:
with a chemical group that binds to GSH and makes the NPs partially collapse, and thus change colour. The exact amount of GSH can be derived via
4154:
Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (March 2003). ""Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle".
6497:
Perrault SD, Chan WC (December 2009). "Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm".
573:
compound, due to its preparation. Faraday recognized that the color was actually due to the miniature size of the gold particles. He noted the
6532:
Martin MN, Basham JI, Chando P, Eah SK (May 2010). "Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly".
1507:). To prevent the particles from aggregating, stabilizing agents are added. Citrate acts both as the reducing agent and colloidal stabilizer. 1870: 516:
gold). The book introduces information on the formation of colloidal gold and its medical uses. About half a century later, English botanist
4628:
Wang Y, Liao J, McBride SP, Efrati E, Lin XM, Jaeger HM (October 2015). "Strong Resistance to Bending Observed for Nanoparticle Membranes".
1228:
2.6 MPa, comparable to that of cross-linked polymer films. Free-standing nanoparticle membranes exhibit bending rigidity on the order of 10
6469: 6042:
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (August 2006). "Turkevich method for gold nanoparticle synthesis revisited".
4232:
Gole A, Vyas S, Phadtare S, Lachke A, Sastry M (2002). "Studies on the formation of bioconjugates of Endoglucanase with colloidal gold".
5510:"Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles" 1443:
by using polyethylemnimine-capped gold nanoparticles that were transfected with a gene that promotes wound healing and inhibits corneal
535:, Kunckel assumed that the pink color of Aurum Potabile came from small particles of metallic gold, not visible to human eyes. In 1842, 4727:
Sperling RA, Parak WJ (March 2010). "Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles".
1331: 962:
Gold nanoparticles have shown potential as intracellular delivery vehicles for siRNA oligonucleotides with maximal therapeutic impact.
157: 6845:
Boisselier E, Astruc D (June 2009). "Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity".
5684:
Boisselier E, Astruc D (June 2009). "Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity".
6790:
Payne NJ, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, Chavda F, Badwaik VD, Lawrenz MB, Dakshinamurthy R (May 2016).
147: 641:
depending on particle size, shape, local refractive index, and aggregation state. These colors occur because of a phenomenon called
4829:
Taguchi T, Isozaki K, Miki K (December 2012). "Enhanced catalytic activity of self-assembled-monolayer-capped gold nanoparticles".
46: 6007:
Turkevich J, Stevenson PC, Hillier J (1951). "A study of the nucleation and growth processes in the synthesis of colloidal gold".
1431:
experiments, other similar experiments have been performed. Alkylthiolate-AuNPs with trimethlyammonium ligand termini mediate the
917:. These gold nanoparticles are surrounded with Raman reporters, which provide light emission that is over 200 times brighter than 707:
When gold nanoparticles aggregate, the optical properties of the particle change, because the effective particle size, shape, and
684: 5077:
Häkkinen H, Walter M, Grönbeck H (May 2006). "Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings".
4426:"High sensitive detection of carbohydrate binding proteins in an ELISA-solid phase assay based on multivalent glyconanoparticles" 4084:
Okamoto T, Yamaguchi I, Kobayashi T (2000). "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates".
1183:
was unexpected, but the method seems to have a high sensitivity and thus offers potential for development of specific assays for
378: 4310:
Lou Y, Maye MM, Han L, Zhong CJ (2001). "Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation".
4127:
Brown KR, Fox P, Natan MJ (1996). "Morphology-Dependent Electrochemistry of Cytochromecat Au Colloid-Modified SnO2Electrodes".
2615:
Link S, El-Sayed MA (1999-05-01). "Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles".
454: 152: 6677:
Zhang J, Du J, Han B, Liu Z, Jiang T, Zhang Z (February 2006). "Sonochemical formation of single-crystalline gold nanobelts".
4389:
Marradi M, Chiodo F, García I, Penadés S (2013). "Glyconanoparticles as multifunctional and multimodal carbohydrate systems".
2980:"Simultaneous visualization of chromosome bands and hybridization signal using colloidal-gold labeling in electron microscopy" 2059: 6924: 6481: 5649:
Gref R, Couvreur P, Barratt G, Mysiakine E (November 2003). "Surface-engineered nanoparticles for multiple ligand coupling".
3186: 3108: 2935: 2911: 2886: 1799: 796: 4483:
Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (September 2007). "Elastic membranes of close-packed nanoparticle arrays".
2430: 1518:
This simple method was pioneered by J. Turkevich et al. in 1951 and refined by G. Frens in the 1970s. It produces modestly
1138: 768: 3804:
Wang J, Polsky R, Xu D (2001). "Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization".
3615:
Hainfeld JF, Slatkin DN, Smilowitz HM (September 2004). "The use of gold nanoparticles to enhance radiotherapy in mice".
1510:
They can be functionalized with various organic ligands to create organic-inorganic hybrids with advanced functionality.
910: 658: 533:
Valuable Observations or Remarks About the Fixed and Volatile Salts-Auro and Argento Potabile, Spiritu Mundi and the Like
6903: 3831:
Wang J, Xu D, Polsky R (April 2002). "Magnetically-induced solid-state electrochemical detection of DNA hybridization".
3564:
Cassano, Domenico; Santi, Melissa; D’Autilia, Francesca; Mapanao, Ana Katrina; Luin, Stefano; Voliani, Valerio (2019).
1871:"Broadband absorbing mono, blended and hybrid nanofluids for direct absorption solar collector: A comprehensive review" 1747: 1551:
This method was discovered by Brust and Schiffrin in the early 1990s, and can be used to produce gold nanoparticles in
921:. It was found that the Raman reporters were stabilized when the nanoparticles were encapsulated with a thiol-modified 195: 775: 653:
As a general rule, the wavelength of light absorbed increases as a function of increasing nanoparticle size. Both the
645:(LSPR), in which conduction electrons on the surface of the nanoparticle oscillate in resonance with incident light. 75: 17: 6126:
Frens, G. (1973). "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions".
5780:"Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles" 5323:
Perala SR, Kumar S (August 2013). "On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method".
754: 934: 837:
Colloidal gold and various derivatives have long been among the most widely used labels for antigens in biological
50: 5114:"Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form" 1968:"Inhibition of the two-photon absorption response exhibited by a bilayer TiO2 film with embedded Au nanoparticles" 1534:. These gold nanowires are responsible for the dark appearance of the reaction solution before it turns ruby-red. 528: 1408: 782: 56:
Help add sources such as review articles, monographs, or textbooks. Please also establish the relevance for any
5508:
Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (June 2009).
3210:
Langer R (February 2000). "Biomaterials in drug delivery and tissue engineering: one laboratory's experience".
2732:
Underwood S, Mulvaney P (1994-10-01). "Effect of the Solution Refractive Index on the Color of Gold Colloids".
1274:(from small organic molecules to polymers to DNA to RNA) afford colloidal gold much of its vast functionality. 462: 269: 2654:"Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy" 1208:
particles. Upon fracture, the films crack perpendicular to the direction of strain at a fracture stress of 11
978:: interaction of the negatively charged siRNA to the modified surface of the AuNP through ionic interactions. 289: 137: 6902:
Point-by-point methods for citrate synthesis and hydroquinone synthesis of gold nanoparticles are available
3717:"On-site visual detection of hydrogen sulfide in air based on enhancing the stability of gold nanoparticles" 1921:"Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement" 1757: 1160: 764: 229: 162: 3374:"The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments" 2337:
Utiles observationes sive animadversiones de salibus fixis et volatilibus, auro et argento potabili (etc.)
628: 371: 4882:"Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters" 100:
Suspensions of gold nanoparticles of various sizes. The size difference causes the difference in colors.
2060:
The beauty and elegance of Nanocrystals: How invisibly small particles will colour and shape our future
1568: 940:
Gold nanoparticles accumulate in tumors, due to the leakiness of tumor vasculature, and can be used as
898: 1606:. In order to remove as much of this agent as possible, the nanoparticles must be further purified by 2559:"Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement" 1432: 1266:
of the nanoparticles can display widely different character – ranging from an interface similar to a
933:
gold particles are conjugated with an antibody (or an antibody fragment such as scFv), against, e.g.
743: 654: 642: 244: 142: 6429: 2629: 1530:
solution, producing colloidal gold. The Turkevich reaction proceeds via formation of transient gold
6895: 3245:
Gibson JD, Khanal BP, Zubarev ER (September 2007). "Paclitaxel-functionalized gold nanoparticles".
3124:
Han G, Ghosh P, Rotello VM (February 2007). "Functionalized gold nanoparticles for drug delivery".
2533: 2023:
Yang X, Yang M, Pang B, Vara M, Xia Y (October 2015). "Gold Nanomaterials at Work in Biomedicine".
1967: 1267: 1034: 1014: 322: 274: 6324:"Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides" 1395:, a harsh reagent, is used to reduce the gold ions to gold metal. The gold ions usually come from 909:
In cancer research, colloidal gold can be used to target tumors and provide detection using SERS (
3660:"Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles" 1587: 1018: 1010: 894: 739: 633: 608: 585: 264: 986:
oligonucleotides (single and double stranded DNA) by providing protection against intracellular
427: 6792:"Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity" 6424: 2624: 2077:
Rao CN, Kulkarni GU, Thomas PJ, Edwards PP (2000). "Metal nanoparticles and their assemblies".
1661: 1439:
at a high level, which is detrimental to these cells. Corneal haze in rabbits have been healed
1201: 364: 6415:
Templeton AC, Wuelfing WP, Murray RW (January 2000). "Monolayer-protected cluster molecules".
5208:"Study on Biocompatibility of AuNPs and Theoretical Design of a Multi-CDR-Functional Nanobody" 2653: 1920: 3170: 3161: 1496: 1263: 879: 279: 789: 6686: 6135: 5732: 5570: 5279: 5125: 5016: 4838: 4736: 4688: 4637: 4586: 4492: 4437: 4347: 4268: 4163: 4093: 3671: 3050: 2991: 2506: 2467: 2402: 1979: 1932: 1885: 1030: 1026: 1022: 832: 399: 317: 239: 200: 180: 6883: 1231: 1211: 8: 5721:"BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo" 4966:"Phase transfer of large gold nanoparticles to organic solvents with increased stability" 4880:
Heinecke CL, Ni TW, Malola S, Mäkinen V, Wong OA, Häkkinen H, Ackerson CJ (August 2012).
3458:"Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics" 1692: 1618:
This approach, discovered by Perrault and Chan in 2009, uses hydroquinone to reduce HAuCl
1416: 1284: 1179:
for use in immunological detection methods. The possibility to use glyconanoparticles in
922: 841:. Colloidal gold particles can be attached to many traditional biological probes such as 838: 612: 593: 431: 284: 249: 190: 6690: 6139: 5736: 5574: 5283: 5129: 5050:
Niu Z, Li Y (2014-01-14). "Removal and Utilization of Capping Agents in Nanocatalysis".
5020: 4842: 4740: 4692: 4641: 4590: 4496: 4441: 4351: 4272: 4167: 4097: 3675: 3054: 2995: 2652:
Huang, Xiaohua; Jain, Prashant K; El-Sayed, Ivan H; El-Sayed, Mostafa A (October 2007).
2510: 2471: 2406: 1983: 1936: 1889: 750: 6818: 6791: 6659: 6620: 6450: 6244: 6105: 6067: 6024: 5989: 5953: 5893: 5804: 5779: 5755: 5720: 5591: 5558: 5534: 5509: 5300: 5267: 5243: 5148: 5113: 4906: 4881: 4862: 4806: 4779: 4760: 4661: 4610: 4559: 4516: 4460: 4425: 4371: 4292: 4187: 4039: 3969: 3934: 3891: 3744: 3692: 3659: 3640: 3541: 3506: 3398: 3373: 3314: 3270: 2819: 2776: 2185: 2138: 2113: 2094: 1948: 1901: 1851: 1805: 1607: 1576: 1392: 1363: 1271: 1021:
ultrasmall-in-nano architecture has been reported, and jointly combine: (i) a suitable
219: 5662: 4729:
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
4245: 3628: 3073: 3038: 1495:
Generally, gold nanoparticles are produced in a liquid ("liquid chemical methods") by
1074:
present in air based on the antiaggregation of gold nanoparticles (AuNPs). Dissolving
1013:, they have yet to obtain the approval for clinical use because the size is above the 661:
and environment of the nanoparticles. This phenomenon may be quantified by use of the
531:, a German chemist, published a book on the manufacture of stained glass. In his book 6929: 6862: 6823: 6772: 6737: 6702: 6624: 6588: 6549: 6514: 6477: 6442: 6370: 6248: 6059: 5993: 5957: 5945: 5937: 5897: 5857: 5809: 5760: 5701: 5666: 5631: 5596: 5539: 5490: 5455: 5415: 5380: 5340: 5305: 5247: 5235: 5227: 5188: 5153: 5094: 5032: 4985: 4946: 4911: 4866: 4854: 4811: 4752: 4704: 4653: 4614: 4602: 4563: 4551: 4508: 4465: 4406: 4363: 4284: 4179: 4109: 4031: 3926: 3883: 3848: 3748: 3736: 3697: 3632: 3597: 3546: 3528: 3487: 3479: 3438: 3403: 3306: 3262: 3227: 3192: 3182: 3141: 3104: 3078: 3019: 3014: 2979: 2964: 2931: 2907: 2882: 2860: 2811: 2681: 2673: 2558: 2143: 2040: 2005: 1997: 1905: 1855: 1843: 1809: 1795: 1142: 1047: 557: 517: 443: 352: 259: 6663: 6454: 6109: 6071: 6028: 5207: 4665: 4296: 4191: 4043: 3973: 3895: 3644: 3474: 3457: 3318: 3274: 2823: 2780: 2189: 2098: 1952: 6854: 6813: 6803: 6764: 6729: 6694: 6651: 6616: 6584: 6580: 6541: 6506: 6434: 6397: 6362: 6335: 6304: 6279: 6271: 6234: 6226: 6198: 6171: 6143: 6097: 6051: 6016: 5981: 5929: 5889: 5853: 5849: 5799: 5791: 5750: 5740: 5693: 5658: 5623: 5586: 5578: 5529: 5521: 5482: 5447: 5407: 5372: 5332: 5295: 5287: 5219: 5180: 5143: 5133: 5086: 5059: 5024: 4977: 4938: 4901: 4893: 4846: 4801: 4791: 4764: 4744: 4696: 4645: 4594: 4543: 4500: 4455: 4445: 4398: 4375: 4355: 4319: 4276: 4241: 4214: 4171: 4136: 4101: 4066: 4023: 3996: 3961: 3938: 3918: 3875: 3840: 3813: 3784: 3728: 3687: 3679: 3624: 3587: 3577: 3566:"Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures" 3536: 3518: 3469: 3430: 3393: 3385: 3341: 3298: 3254: 3219: 3174: 3133: 3068: 3058: 3009: 2999: 2960: 2850: 2839:"Colloidal gold, a useful marker for transmission and scanning electron microscopy" 2803: 2768: 2741: 2711: 2665: 2634: 2597: 2570: 2514: 2475: 2410: 2366: 2284: 2229: 2177: 2133: 2125: 2086: 2063: 2032: 1987: 1940: 1893: 1835: 1826: 1787: 1731: 1523: 1500: 1487: 1396: 1288: 1134: 1125: 1059: 953:
nanocarriers can interact directly with cancer cells and effectively target tumors.
897:
and it is found that nanosized particles are particularly efficient in evading the
589: 574: 6189:
Niu Z, Li Y (2014). "Removal and Utilization of Capping Agents in Nanocatalysis".
5795: 5268:"Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?" 5206:
Liu, Rui Rui; Song, Li Ting; Meng, Ya Jie; Zhu, Min; Zhai, Hong Lin (2019-09-05).
4520: 4280: 3987:
Mulvaney, P. (1996). "Surface Plasmon Spectroscopy of Nanosized Metal Particles".
3434: 2391:"The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light" 1869:
Sreekumar, S.; Shah, N.; Mondol, J.; Hewitt, N.; Chakrabarti, S. (February 2022).
5745: 4649: 4450: 1564: 696: 553: 505: 478: 128: 5918:"Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature" 3178: 2036: 5627: 5525: 5118:
Proceedings of the National Academy of Sciences of the United States of America
3043:
Proceedings of the National Academy of Sciences of the United States of America
2984:
Proceedings of the National Academy of Sciences of the United States of America
2233: 1965: 1897: 1685: 1552: 1527: 1335: 1310: 1058:
Researchers have developed simple inexpensive methods for on-site detection of
941: 662: 601: 578: 513: 439: 340: 93: 6570: 6559: 6275: 5582: 5291: 2574: 2181: 1944: 1009:
Despite the unquestionable success of gold nanorods as photothermal agents in
508:, a philosopher and member of the medical profession, published a book called 6919: 6913: 6808: 6476:(Second ed.). Hackensack (N.J.); London: World Scientific. p. 155. 5941: 5719:
Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, Mohan RR (June 2013).
5231: 5223: 3601: 3532: 3523: 3507:"Bringing Again Noble Metal Nanoparticles to the Forefront of Cancer Therapy" 3483: 3456:
Cassano, Domenico; Pocoví-Martínez, Salvador; Voliani, Valerio (2018-01-17).
3137: 3004: 2677: 2669: 2518: 2479: 2431:"Michael Faraday's gold colloids | The Royal Institution: Science Lives Here" 2001: 1779:
Gold Nanoparticles: An Introduction to Synthesis, Properties and Applications
1742: 1002: 998: 687:
can be tuned by coating the nanoparticles with non-conducting shells such as
588:
prepared the first colloidal gold in diluted solution. Apart from Zsigmondy,
536: 486: 481:
bowl was made by adding a gold salt (probably gold chloride) to molten glass.
395: 307: 298: 234: 185: 112: 6642:
Baigent CL, Müller G (1980). "A colloidal gold prepared using ultrasonics".
6558:
A 3-min demonstration video for the Martin synthesis method is available at
5138: 4175: 3063: 2930:. Methods in Molecular Biology (2nd ed.). Humana Press. February 2007. 504:, had a reputation for its curative property for various diseases. In 1618, 6866: 6827: 6776: 6741: 6706: 6698: 6628: 6592: 6553: 6518: 6446: 6374: 6147: 6063: 5985: 5949: 5933: 5901: 5861: 5813: 5764: 5705: 5670: 5635: 5600: 5543: 5494: 5486: 5459: 5419: 5384: 5376: 5344: 5309: 5239: 5192: 5157: 5098: 5036: 5028: 4989: 4950: 4915: 4858: 4850: 4815: 4756: 4748: 4708: 4657: 4606: 4555: 4547: 4512: 4469: 4410: 4367: 4183: 4113: 4035: 3930: 3887: 3852: 3740: 3701: 3636: 3550: 3491: 3442: 3407: 3310: 3266: 3231: 3196: 3145: 2815: 2685: 2415: 2163:"A review on functionalized gold nanoparticles for biosensing applications" 2147: 2044: 2009: 1847: 1696: 1519: 965: 930: 918: 858: 850: 490: 411: 403: 210: 5778:
Gratton SE, Pohlhaus PD, Lee J, Guo J, Cho MJ, Desimone JM (August 2007).
4796: 4288: 3082: 3023: 2371: 2354: 1791: 1777: 1200:
Such interfacial thin films of nanoparticles have close relationship with
604:, were also interested in the synthesis and properties of colloidal gold. 473: 60:
cited. Unsourced or poorly sourced material may be challenged and removed.
6891: 6308: 6020: 4105: 3716: 3169:. Advances in Experimental Medicine and Biology. Vol. 620. pp.  2864: 1992: 1599: 1464: 1130: 982:
Gold nanoparticles show potential as intracellular delivery vehicles for
974:: use of thiolated siRNA for gold-thiol binding to the nanoparticle; (2) 692: 667: 497: 447: 435: 224: 4359: 3879: 2855: 2838: 2745: 1001:
are being investigated as photothermal agents for in-vivo applications.
889:
Gold nanoparticles are being investigated as carriers for drugs such as
6655: 6401: 6284: 6239: 6101: 6088:
Frens, G. (1972). "Particle size and sol stability in metal colloids".
4700: 4402: 3789: 3772: 3592: 3582: 3565: 2289: 2272: 2129: 2112:
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (April 2012).
1783: 1672:
Another method for the experimental generation of gold particles is by
1603: 1460: 1188: 1184: 890: 753:
if you can. Unsourced or poorly sourced material may be challenged and
708: 597: 561: 540: 501: 458: 6768: 6733: 6545: 6510: 6438: 6366: 6339: 6230: 6202: 6175: 6055: 5451: 5411: 5336: 5184: 5090: 5063: 4981: 4942: 4897: 4598: 4424:
Chiodo F, Marradi M, Tefsen B, Snippe H, van Die I, Penadés S (2013).
4218: 4140: 4070: 4027: 4000: 3965: 3844: 3817: 3732: 3683: 3389: 3345: 3258: 3223: 2807: 2715: 2638: 2601: 2557:
Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, H o HP, Yong KT (2013).
1839: 679:
nanoparticle surface (i.e. nanoparticle ligands) and the nanoparticle
335: 6858: 5697: 4504: 4323: 3922: 2978:
Fetni R, Drouin R, Lemieux N, Messier PE, Richer CL (December 1991).
2772: 2090: 1752: 1689: 1673: 1491:
Potential difference as a function of distance from particle surface.
1475: 1341:
fall within the range of used concentrations. Toxicity can be tested
1292: 1113: 987: 983: 648: 415: 171: 5004: 3372:
Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA (February 2014).
3302: 2494: 2455: 2390: 549:
meaning "gold") that used colloidal gold to record images on paper.
2904:
Practical electron microscopy : a beginner's illustrated guide
1736: 1556: 1531: 1444: 1343: 1306: 1291:
and functionality. For example, ligands have been shown to enhance
1172: 842: 552:
Modern scientific evaluation of colloidal gold did not begin until
312: 5970: 948: 410:
in a fluid, usually water. The colloid is coloured usually either
347: 1681: 1572: 1560: 1349: 1176: 875: 680: 666:
nanoparticle is about 10 times stronger than the emission from a
577:
properties of suspended gold microparticles, which is now called
493:, which changes color depending on the location of light source. 423: 5112:
Reimers JR, Ford MJ, Halder A, Ulstrup J, Hush NS (March 2016).
4780:"Molecular recognition by gold, silver and copper nanoparticles" 3087:
Double labeling with colloidal gold particles of different sizes
1543:
capping agent. Less sodium citrate results in larger particles.
5507: 4778:
Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (August 2013).
1716: 1420: 1088: 854: 846: 688: 419: 4678: 4388: 3360:
Gene regulation with polyvalent siRNA-nanoparticle conjugates.
2587: 6322:
Manna A, Chen P, Akiyama H, Wei T, Tamada K, Knoll W (2003).
5397: 4482: 3455: 3420: 3358:
Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA.
2879:
Electron microscopy: principles and techniques for biologists
1595: 1582:
Here, the gold nanoparticles will be around 5–6 nm. NaBH
1316: 1180: 565: 544: 6605: 5648: 5437: 4336: 3563: 3101:
Characterization of nanoparticles intended for drug delivery
1664:
as the reducing agent and sodium citrate as the stabilizer.
6789: 6298: 5914: 4576: 4204: 1456: 1412: 602:
theory for scattering and absorption by spherical particles
407: 120: 6387: 6041: 5879: 5718: 5559:"Assessment of the In Vivo Toxicity of Gold Nanoparticles" 2111: 88: 6006: 4777: 4423: 4083: 4056: 3331: 2977: 2651: 2395:
Philosophical Transactions of the Royal Society of London
1868: 1822: 1579:
as an anti-coagulant and a reducing agent, respectively.
1262:
In many different types of colloidal gold syntheses, the
883: 570: 510:
Panacea Aurea, sive tractatus duo de ipsius Auro Potabili
6470:"Chemical preparation of gold nanoparticles on surfaces" 5362: 5111: 4928: 4153: 3657: 3614: 3098: 2306:
Panacea aurea sive Tractatus duo de ipsius auro potabili
2270: 2076: 1450: 556:
work in the 1850s. In 1856, in a basement laboratory of
524:, solely discussing the medical uses of colloidal gold. 6414: 5472: 4879: 4533: 3162:"Multi-Functional Gold Nanoparticles for Drug Delivery" 1309:
followed by washing. Alternatively, the ligands can be
990:
and ease of functionalization for selective targeting.
657:
frequency and scattering intensity depend on the size,
5076: 4231: 3287: 3036: 2727: 2725: 2334: 2219: 2161:
Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011).
6531: 6474:
Gold nanoparticles for physics, chemistry and biology
5777: 5005:"Catalysis by clusters with precise numbers of atoms" 4722: 4720: 4718: 4627: 3334:
Journal of Nanotechnology in Engineering and Medicine
1234: 1214: 1037:
of the building blocks after the therapeutic action.
636:
of 100 nm-radius gold nanoparticle vs. the wavelength
5839: 2697: 2695: 2114:"The golden age: gold nanoparticles for biomedicine" 1722:
bacterial strains in comparison to kanamycin alone.
1385: 1277: 1107: 925:
coat. This allows for compatibility and circulation
6754: 6321: 5433: 5431: 5429: 3371: 3244: 3037:Kasamatsu H, Lin W, Edens J, Revel JP (July 1983). 2722: 2701: 673: 6160: 5358: 5356: 5354: 5170: 5070: 4828: 4715: 3715:Zhang Z, Chen Z, Wang S, Qu C, Chen L (May 2014). 3160: 2881:(2nd ed.). Jones and Bartlett. October 1998. 1702: 1402: 1246: 1220: 893:. The administration of hydrophobic drugs require 649:Effect of size, shape, composition and environment 6719: 6121: 6119: 6083: 6081: 5556: 2836: 2731: 2692: 2062:(Report). University of Melbourne. Archived from 6911: 6844: 5974:Particle & Particle Systems Characterization 5683: 5426: 4258: 2355:"Gold nanoparticles: synthesis and applications" 2022: 1378:experiments are more simplistic to perform than 5613: 5557:Chen YS, Hung YC, Liau I, Huang GS (May 2009). 5466: 5351: 4309: 3714: 3505:Vlamidis, Ylea; Voliani, Valerio (2018-10-08). 3504: 3158: 3123: 2843:The Journal of Histochemistry and Cytochemistry 2384: 2382: 2271:Freestone I, Meeks N, Sax M, Higgitt C (2007). 2160: 6352: 6261: 6154: 6116: 6078: 5265: 5205: 2758: 2608: 2556: 1129:Gold nanoparticle-based (Au-NP) biosensor for 749:Please review the contents of the section and 6676: 6641: 6408: 6215: 4726: 4126: 3511:Frontiers in Bioengineering and Biotechnology 2222:Materials Science and Engineering: R: Reports 2215: 2213: 1040: 1029:treatments, (ii) the possibility of multiple 372: 6496: 5835: 5833: 5831: 5829: 5827: 5825: 5823: 4963: 4672: 3951: 3865: 3830: 3803: 3651: 3608: 3281: 2950: 2906:(2nd ed.). Cambridge University Press. 2614: 2379: 1717:Antibiotic conjugated nanoparticle synthesis 1586:is the reducing agent, and TOAB is both the 1153: 1017:threshold. In 2019, the first NIR-absorbing 414:(for spherical particles less than 100  27:Suspension of gold nanoparticles in a liquid 5875: 5873: 5871: 5322: 5261: 5259: 5257: 4013: 3030: 2971: 2273:"The Lycurgus Cup — A Roman nanotechnology" 1918: 489:colloidal gold was used in the 4th-century 3908: 2928:Electron microscopy: methods and protocols 2453: 2210: 1332:Health and safety hazards of nanomaterials 1317:Surface structure and chemical environment 1166: 929:. To specifically target tumor cells, the 512:(Latin: gold potion, or two treatments of 379: 365: 6817: 6807: 6428: 6283: 6238: 5820: 5803: 5754: 5744: 5590: 5533: 5299: 5266:Alkilany AM, Murphy CJ (September 2010). 5147: 5137: 4905: 4805: 4795: 4459: 4449: 3788: 3766: 3764: 3762: 3760: 3758: 3691: 3591: 3581: 3540: 3522: 3473: 3397: 3072: 3062: 3013: 3003: 2854: 2628: 2531: 2492: 2414: 2370: 2288: 2137: 1991: 1546: 1171:Gold nanoparticles have been coated with 1112:Gold nanoparticles are incorporated into 1053: 76:Learn how and when to remove this message 6635: 6499:Journal of the American Chemical Society 5868: 5254: 5173:Journal of the American Chemical Society 5002: 4886:Journal of the American Chemical Society 4129:Journal of the American Chemical Society 4059:Journal of the American Chemical Society 3986: 3833:Journal of the American Chemical Society 3247:Journal of the American Chemical Society 2793: 2318: 2057: 1654: 1486: 1124: 964: 947: 702: 627: 485:Used since ancient times as a method of 472: 92: 87: 5842:Colloids and Surfaces. B, Biointerfaces 2388: 2348: 2346: 2303: 1919:Gorji, Saleh; Cheong, Kuan Yew (2015). 1775: 1435:of DNA across mammalian cell membranes 868: 539:invented a photographic process called 14: 6912: 4234:Colloids and Surfaces B: Biointerfaces 3755: 3721:ACS Applied Materials & Interfaces 3209: 2901: 2837:Horisberger M, Rosset J (April 1977). 1739:, also called decahedral nanoparticles 993: 945:surrounding normal tissue and tumors. 826: 618: 500:, soluble gold, a solution containing 6467: 6188: 6125: 6087: 5049: 4964:McMahon JM, Emory SR (January 2007). 4784:World Journal of Biological Chemistry 2495:"Ueber den Cassius' schen Goldpurpur" 2352: 1451:Toxicity due to size of nanoparticles 6881: 3773:"Gold nanoparticle-based biosensors" 2456:"Ueber den Cassius'schen Goldpurpur" 2343: 1325: 1257: 1120: 718: 29: 6722:The Journal of Physical Chemistry B 6044:The Journal of Physical Chemistry B 5616:Toxicology and Applied Pharmacology 5212:The Journal of Physical Chemistry B 5079:The Journal of Physical Chemistry B 3378:The Journal of Physical Chemistry B 3159:Han G, Ghosh P, Rotello VM (2007). 2704:The Journal of Physical Chemistry B 2617:The Journal of Physical Chemistry B 2070: 2051: 1642: 1513: 911:surface enhanced Raman spectroscopy 714: 643:localized surface plasmon resonance 422:(for larger spherical particles or 24: 6837: 6621:10.1016/j.biomaterials.2013.07.032 6219:Journal of Applied Polymer Science 5894:10.1016/j.biomaterials.2007.12.037 3770: 1748:Gold nanoparticles in chemotherapy 1613: 1370:experiments are more popular than 1204:monolayers made from surfactants. 904: 25: 6941: 6875: 6472:. In Louis C, Pluchery O (eds.). 6264:Sensors and Actuators B: Chemical 3362:J Am Chem Soc 2009;131:2072–2073. 3167:Bio-Applications of Nanoparticles 2563:Sensors and Actuators B: Chemical 2532:Zsigmondy R (December 11, 1926). 2335:Kunckel von Löwenstern J (1678). 1563:). It involves the reaction of a 1537: 1386:Toxicity and hazards in synthesis 1299: 1278:Ligand exchange/functionalization 1108:Gold nanoparticle based biosensor 6783: 6748: 6713: 6670: 6599: 6564: 6525: 6490: 6461: 6381: 6346: 6315: 6292: 6255: 6209: 6182: 6035: 6000: 5964: 5908: 5771: 5712: 5677: 5272:Journal of Nanoparticle Research 3103:. Humana Press. pp. 71–82. 1688:are hydroxyl radicals and sugar 1626: 935:epidermal growth factor receptor 815: 723: 674:Effect of local refractive index 346: 334: 119: 34: 5642: 5607: 5550: 5501: 5391: 5316: 5199: 5164: 5105: 5043: 4996: 4957: 4922: 4873: 4822: 4771: 4621: 4570: 4527: 4476: 4417: 4382: 4330: 4303: 4252: 4225: 4198: 4147: 4120: 4077: 4050: 4007: 3980: 3945: 3902: 3859: 3824: 3797: 3708: 3617:Physics in Medicine and Biology 3557: 3498: 3475:10.1021/acs.bioconjchem.7b00664 3449: 3414: 3365: 3352: 3325: 3238: 3203: 3152: 3117: 3092: 2944: 2920: 2895: 2871: 2830: 2787: 2752: 2645: 2581: 2550: 2525: 2486: 2447: 2423: 2328: 2312: 2297: 2264: 2240: 2154: 1776:Voliani, Valerio (2020-04-20). 1711: 1703:Block copolymer-mediated method 1403:Toxicity due to capping ligands 957: 107:Part of a series of articles on 6585:10.1016/j.biortech.2009.05.051 5854:10.1016/j.colsurfb.2008.07.004 2761:Journal of Materials Chemistry 2105: 2016: 1959: 1912: 1862: 1816: 1769: 751:add the appropriate references 13: 1: 6417:Accounts of Chemical Research 6090:Colloid & Polymer Science 5796:10.1016/j.jconrel.2007.05.027 5784:Journal of Controlled Release 5663:10.1016/s0142-9612(03)00348-x 5003:Tyo EC, Vajda S (July 2015). 4281:10.1126/science.281.5383.1647 4246:10.1016/s0927-7765(01)00301-0 3435:10.1016/j.jconrel.2006.06.017 3423:Journal of Controlled Release 3212:Accounts of Chemical Research 1763: 1194: 1163:to the oxidation of styrene. 51:secondary or tertiary sources 6925:Nanoparticles by composition 5746:10.1371/journal.pone.0066434 4650:10.1021/acs.nanolett.5b02587 4451:10.1371/journal.pone.0073027 2965:10.1016/0019-2791(77)90146-X 2902:Hunter EE (September 1993). 2308:. Ex Bibliopolio Frobeniano. 1758:Colloidal gold protein assay 1667: 1482: 632:The variation of scattering 97:Gold Colloid of varying size 7: 3629:10.1088/0031-9155/49/18/N03 3179:10.1007/978-0-387-76713-0_4 2037:10.1021/acs.chemrev.5b00193 1725: 1590:and the stabilizing agent. 736:reliable medical references 461:of the shape affects their 10: 6946: 5628:10.1016/j.taap.2008.12.023 5563:Nanoscale Research Letters 5526:10.1016/j.nano.2008.08.001 2389:Faraday M (January 1857). 2234:10.1016/j.mser.2009.02.002 1569:tetraoctylammonium bromide 1329: 1041:Radiotherapy dose enhancer 899:reticuloendothelial system 830: 623: 545: 522:Treatise of Aurum Potabile 520:published a book in 1656, 468: 6796:Frontiers in Microbiology 6276:10.1016/j.snb.2017.12.031 5922:ACS Applied Bio Materials 5583:10.1007/s11671-009-9334-6 5292:10.1007/s11051-010-9911-8 2575:10.1016/j.snb.2012.09.073 2182:10.1007/s11468-011-9228-1 1945:10.1007/s00339-014-8733-4 1154:Electrochemical biosensor 742:or relies too heavily on 655:surface plasmon resonance 58:primary research articles 6896:University of Nottingham 6884:"Au – Gold Nanoparticle" 6847:Chemical Society Reviews 6809:10.3389/fmicb.2016.00607 5686:Chemical Society Reviews 5224:10.1021/acs.jpcb.9b05147 3911:Chemical Society Reviews 3524:10.3389/fbioe.2018.00143 3138:10.2217/17435889.2.1.113 3005:10.1073/pnas.88.23.10916 2670:10.2217/17435889.2.5.681 2534:"Properties of colloids" 2519:10.1002/andp.18310980613 2480:10.1002/andp.18321010809 2118:Chemical Society Reviews 2079:Chemical Society Reviews 1898:10.1088/2399-1984/ac57f7 1463:cells (L929), and mouse 1311:electrochemically etched 1268:self-assembled monolayer 711:environment all change. 323:Nanocrystalline material 299:Nanostructured materials 43:This scientific article 5139:10.1073/pnas.1600472113 4312:Chemical Communications 4176:10.1126/science.1080664 3064:10.1073/pnas.80.14.4339 1588:phase transfer catalyst 1167:Immunological biosensor 895:molecular encapsulation 609:atomic force microscopy 586:Richard Adolf Zsigmondy 6699:10.1002/ange.200503762 6573:Bioresource Technology 6328:Chemistry of Materials 6191:Chemistry of Materials 6148:10.1038/physci241020a0 5986:10.1002/ppsc.201800464 5934:10.1021/acsabm.9b00630 5487:10.1002/smll.200400093 5440:Bioconjugate Chemistry 5377:10.1002/smll.200801546 5052:Chemistry of Materials 5029:10.1038/nnano.2015.140 4851:10.1002/adma.201202979 4749:10.1098/rsta.2009.0273 4548:10.1002/smll.201000114 3462:Bioconjugate Chemistry 2416:10.1098/rstl.1857.0011 2353:Reddy VR (July 2006). 1662:sodium acetylacetonate 1648:Bacillus licheniformis 1555:that are normally not 1547:Brust-Schiffrin method 1492: 1248: 1222: 1146: 1054:Detection of toxic gas 979: 954: 637: 579:Faraday-Tyndall effect 482: 101: 98: 5009:Nature Nanotechnology 4797:10.4331/wjbc.v4.i3.35 2493:Berzelius JJ (1831). 2372:10.1055/s-2006-944219 1792:10.1515/9781501511455 1655:Navarro et al. method 1490: 1249: 1223: 1133:(GSH). The AuNPs are 1128: 1033:treatments and (iii) 968: 951: 703:Effect of aggregation 631: 476: 353:Technology portal 148:Mechanical properties 96: 91: 6309:10.1039/C39940000801 6021:10.1039/df9511100055 6009:Discuss. Faraday Soc 4106:10.1364/OL.25.000372 4016:Analytical Chemistry 3291:Nature Biotechnology 1993:10.1364/OE.18.016406 1374:experiments because 1247:{\displaystyle ^{5}} 1232: 1221:{\displaystyle \pm } 1212: 1011:preclinical research 869:Drug delivery system 833:Immunogold labelling 400:colloidal suspension 318:Nanoporous materials 181:Buckminsterfullerene 6691:2006AngCh.118.1134Z 6140:1973NPhS..241...20F 5737:2013PLoSO...866434T 5575:2009NRL.....4..858C 5284:2010JNR....12.2313A 5130:2016PNAS..113E1424R 5021:2015NatNa..10..577T 4843:2012AdM....24.6462T 4741:2010RSPTA.368.1333S 4693:2017SMat...13.3125G 4642:2015NanoL..15.6732W 4591:2014NanoL..14..826W 4497:2007NatMa...6..656M 4442:2013PLoSO...873027C 4360:10.1038/nature07194 4352:2008Natur.454..981T 4273:1998Sci...281.1647V 4168:2003Sci...299.1877X 4098:2000OptL...25..372O 3676:2011NatSR...1E..18M 3055:1983PNAS...80.4339K 2996:1991PNAS...8810916F 2856:10.1177/25.4.323352 2746:10.1021/la00022a011 2710:(37): 13963–13971. 2511:1831AnP....98..306B 2472:1832AnP...101..629G 2454:Gay-Lussac (1832). 2407:1857RSPT..147..145F 2319:Culpeper N (1657). 2058:Mulvaney P (2003). 1984:2010OExpr..1816406T 1978:(16): 16406–16417. 1937:2015ApPhA.118..315G 1890:2022NanoF...6b2002S 1635:-NaOH ions to HAuCl 1571:(TOAB) solution in 1417:polyethylene glycol 1364:oxidative responses 1139:UV-vis spectroscopy 994:Photothermal agents 931:polyethylenegylated 923:polyethylene glycol 839:electron microscopy 827:Electron microscopy 619:Physical properties 613:electron microscopy 600:, who provided the 594:ultracentrifugation 432:electron microscopy 220:Carbon quantum dots 6882:Moriarty, Philip. 6656:10.1007/BF01975154 6402:10.1039/C1JM13861H 6102:10.1007/bf01498565 4831:Advanced Materials 4701:10.1039/c7sm00319f 4403:10.1039/C2CS35420A 3790:10.1007/BF03214964 3664:Scientific Reports 3583:10.1039/C9MH00096H 3570:Materials Horizons 2539:. Nobel Foundation 2499:Annalen der Physik 2460:Annalen der Physik 2339:. Austria: Wilson. 2304:Antonii F (1618). 2290:10.1007/BF03215599 2248:"The Lycurgus Cup" 2130:10.1039/c1cs15237h 1608:soxhlet extraction 1577:sodium borohydride 1493: 1393:Sodium borohydride 1293:catalytic activity 1244: 1218: 1187:identification of 1161:catalytic activity 1147: 980: 955: 638: 518:Nicholas Culpepper 483: 341:Science portal 153:Optical properties 102: 99: 6769:10.1021/la2001706 6734:10.1021/jp046221z 6679:Angewandte Chemie 6546:10.1021/la100591h 6511:10.1021/ja907069u 6483:978-1-78634-124-2 6439:10.1021/ar9602664 6367:10.1021/la204289k 6340:10.1021/cm0207696 6231:10.1002/app.45829 6203:10.1021/cm4022479 6176:10.1021/jp068666o 6170:(17): 6281–6287. 6056:10.1021/jp061667w 5928:(10): 4464–4470. 5452:10.1021/bc049951i 5412:10.1021/la0520029 5337:10.1021/la401604q 5218:(35): 7570–7577. 5185:10.1021/ja4097384 5091:10.1021/jp0619787 5064:10.1021/cm4022479 4982:10.1021/la0617560 4943:10.1021/la105134m 4898:10.1021/ja3032339 4735:(1915): 1333–83. 4687:(17): 3125–3133. 4599:10.1021/nl404185b 4267:(5383): 1647–50. 4219:10.1021/la001164w 4162:(5614): 1877–81. 4141:10.1021/ja952951w 4071:10.1021/ja001215b 4028:10.1021/ac060833t 4001:10.1021/la9502711 3966:10.1021/jp9917648 3880:10.1021/cr030698+ 3845:10.1021/ja0255709 3818:10.1021/la011002f 3733:10.1021/am500564w 3684:10.1038/srep00018 3390:10.1021/jp409298f 3346:10.1115/1.4007245 3259:10.1021/ja075181k 3224:10.1021/ar9800993 3188:978-0-387-76712-3 3110:978-1-60327-198-1 2959:(9–10): 711–715. 2937:978-1-58829-573-6 2913:978-0-521-38539-8 2888:978-0-7637-0192-5 2808:10.1021/cr0680282 2740:(10): 3427–3430. 2716:10.1021/jp047021q 2639:10.1021/jp984796o 2623:(21): 4212–4217. 2602:10.1021/la980784i 1925:Applied Physics A 1840:10.1021/cr300143v 1801:978-1-5015-1145-5 1559:with water (like 1326:Health and safety 1258:Surface chemistry 1202:Langmuir-Blodgett 1191:in patient sera. 1143:calibration curve 1121:Optical biosensor 1048:heavy ion therapy 972:Covalent approach 824: 823: 800: 659:shape composition 558:Royal Institution 554:Michael Faraday's 444:materials science 389: 388: 201:Carbon allotropes 86: 85: 78: 45:needs additional 18:Gold nanoparticle 16:(Redirected from 6937: 6899: 6870: 6859:10.1039/b806051g 6832: 6831: 6821: 6811: 6787: 6781: 6780: 6752: 6746: 6745: 6717: 6711: 6710: 6674: 6668: 6667: 6639: 6633: 6632: 6603: 6597: 6596: 6568: 6562: 6557: 6529: 6523: 6522: 6494: 6488: 6487: 6468:Louis C (2017). 6465: 6459: 6458: 6432: 6412: 6406: 6405: 6396:(7): 2943–2951. 6385: 6379: 6378: 6350: 6344: 6343: 6319: 6313: 6312: 6296: 6290: 6289: 6287: 6259: 6253: 6252: 6242: 6213: 6207: 6206: 6186: 6180: 6179: 6164:J. Phys. Chem. C 6158: 6152: 6151: 6123: 6114: 6113: 6085: 6076: 6075: 6039: 6033: 6032: 6004: 5998: 5997: 5968: 5962: 5961: 5912: 5906: 5905: 5877: 5866: 5865: 5837: 5818: 5817: 5807: 5775: 5769: 5768: 5758: 5748: 5716: 5710: 5709: 5698:10.1039/b806051g 5681: 5675: 5674: 5646: 5640: 5639: 5611: 5605: 5604: 5594: 5554: 5548: 5547: 5537: 5505: 5499: 5498: 5470: 5464: 5463: 5435: 5424: 5423: 5395: 5389: 5388: 5360: 5349: 5348: 5320: 5314: 5313: 5303: 5278:(7): 2313–2333. 5263: 5252: 5251: 5203: 5197: 5196: 5168: 5162: 5161: 5151: 5141: 5124:(11): E1424–33. 5109: 5103: 5102: 5074: 5068: 5067: 5047: 5041: 5040: 5000: 4994: 4993: 4961: 4955: 4954: 4926: 4920: 4919: 4909: 4892:(32): 13316–22. 4877: 4871: 4870: 4826: 4820: 4819: 4809: 4799: 4775: 4769: 4768: 4724: 4713: 4712: 4676: 4670: 4669: 4625: 4619: 4618: 4574: 4568: 4567: 4531: 4525: 4524: 4505:10.1038/nmat1965 4485:Nature Materials 4480: 4474: 4473: 4463: 4453: 4421: 4415: 4414: 4386: 4380: 4379: 4334: 4328: 4327: 4324:10.1039/b008669j 4307: 4301: 4300: 4256: 4250: 4249: 4229: 4223: 4222: 4202: 4196: 4195: 4151: 4145: 4144: 4124: 4118: 4117: 4081: 4075: 4074: 4054: 4048: 4047: 4011: 4005: 4004: 3984: 3978: 3977: 3954:J. Phys. Chem. B 3949: 3943: 3942: 3923:10.1039/b517615h 3906: 3900: 3899: 3868:Chemical Reviews 3863: 3857: 3856: 3828: 3822: 3821: 3801: 3795: 3794: 3792: 3768: 3753: 3752: 3712: 3706: 3705: 3695: 3655: 3649: 3648: 3612: 3606: 3605: 3595: 3585: 3561: 3555: 3554: 3544: 3526: 3502: 3496: 3495: 3477: 3453: 3447: 3446: 3418: 3412: 3411: 3401: 3369: 3363: 3356: 3350: 3349: 3329: 3323: 3322: 3285: 3279: 3278: 3253:(37): 11653–61. 3242: 3236: 3235: 3207: 3201: 3200: 3164: 3156: 3150: 3149: 3121: 3115: 3114: 3096: 3090: 3089: 3076: 3066: 3034: 3028: 3027: 3017: 3007: 2990:(23): 10916–20. 2975: 2969: 2968: 2948: 2942: 2941: 2924: 2918: 2917: 2899: 2893: 2892: 2875: 2869: 2868: 2858: 2834: 2828: 2827: 2802:(11): 4797–862. 2796:Chemical Reviews 2791: 2785: 2784: 2773:10.1039/b900993k 2756: 2750: 2749: 2729: 2720: 2719: 2699: 2690: 2689: 2649: 2643: 2642: 2632: 2612: 2606: 2605: 2585: 2579: 2578: 2554: 2548: 2547: 2545: 2544: 2538: 2529: 2523: 2522: 2490: 2484: 2483: 2451: 2445: 2444: 2442: 2441: 2427: 2421: 2420: 2418: 2386: 2377: 2376: 2374: 2350: 2341: 2340: 2332: 2326: 2325: 2316: 2310: 2309: 2301: 2295: 2294: 2292: 2268: 2262: 2261: 2259: 2258: 2244: 2238: 2237: 2217: 2208: 2207: 2205: 2204: 2198: 2192:. Archived from 2167: 2158: 2152: 2151: 2141: 2109: 2103: 2102: 2091:10.1039/A904518J 2074: 2068: 2067: 2055: 2049: 2048: 2031:(19): 10410–88. 2025:Chemical Reviews 2020: 2014: 2013: 1995: 1963: 1957: 1956: 1916: 1910: 1909: 1875: 1866: 1860: 1859: 1834:(3): 1904–2074. 1827:Chemical Reviews 1820: 1814: 1813: 1773: 1732:Colloidal silver 1643:Nanotech studies 1598:(in particular, 1526:is treated with 1524:chloroauric acid 1514:Turkevich method 1506: 1501:chloroauric acid 1397:chloroauric acid 1289:biocompatibility 1253: 1251: 1250: 1245: 1243: 1242: 1227: 1225: 1224: 1219: 1103: 1101: 1100: 1086: 1084: 1083: 1073: 1071: 1070: 1060:hydrogen sulfide 819: 818: 810: 807: 801: 799: 765:"Colloidal gold" 758: 727: 726: 719: 715:Medical research 590:Theodor Svedberg 575:light scattering 548: 547: 543:(from the Greek 426:). Due to their 381: 374: 367: 351: 350: 339: 338: 290:Titanium dioxide 129:Carbon nanotubes 123: 104: 103: 81: 74: 70: 67: 61: 38: 37: 30: 21: 6945: 6944: 6940: 6939: 6938: 6936: 6935: 6934: 6910: 6909: 6878: 6873: 6840: 6838:Further reading 6835: 6788: 6784: 6753: 6749: 6728:(16): 7766–77. 6718: 6714: 6675: 6671: 6640: 6636: 6615:(33): 8344–51. 6604: 6600: 6569: 6565: 6530: 6526: 6505:(47): 17042–3. 6495: 6491: 6484: 6466: 6462: 6430:10.1.1.501.2383 6413: 6409: 6386: 6382: 6351: 6347: 6320: 6316: 6297: 6293: 6260: 6256: 6214: 6210: 6187: 6183: 6159: 6155: 6124: 6117: 6086: 6079: 6050:(32): 15700–7. 6040: 6036: 6005: 6001: 5969: 5965: 5913: 5909: 5878: 5869: 5838: 5821: 5776: 5772: 5717: 5713: 5682: 5678: 5657:(24): 4529–37. 5647: 5643: 5612: 5608: 5555: 5551: 5506: 5502: 5471: 5467: 5436: 5427: 5396: 5392: 5361: 5352: 5331:(31): 9863–73. 5321: 5317: 5264: 5255: 5204: 5200: 5169: 5165: 5110: 5106: 5085:(20): 9927–31. 5075: 5071: 5048: 5044: 5001: 4997: 4962: 4958: 4927: 4923: 4878: 4874: 4827: 4823: 4776: 4772: 4725: 4716: 4677: 4673: 4626: 4622: 4575: 4571: 4542:(13): 1449–56. 4532: 4528: 4481: 4477: 4422: 4418: 4397:(11): 4728–45. 4387: 4383: 4346:(7207): 981–3. 4335: 4331: 4308: 4304: 4257: 4253: 4230: 4226: 4203: 4199: 4152: 4148: 4125: 4121: 4082: 4078: 4055: 4051: 4012: 4008: 3985: 3981: 3950: 3946: 3917:(11): 1084–94. 3907: 3903: 3864: 3860: 3829: 3825: 3802: 3798: 3769: 3756: 3713: 3709: 3656: 3652: 3623:(18): N309–15. 3613: 3609: 3562: 3558: 3503: 3499: 3454: 3450: 3419: 3415: 3370: 3366: 3357: 3353: 3330: 3326: 3303:10.1038/nbt1377 3286: 3282: 3243: 3239: 3208: 3204: 3189: 3157: 3153: 3122: 3118: 3111: 3097: 3093: 3049:(14): 4339–43. 3035: 3031: 2976: 2972: 2953:Immunochemistry 2949: 2945: 2938: 2926: 2925: 2921: 2914: 2900: 2896: 2889: 2877: 2876: 2872: 2835: 2831: 2792: 2788: 2757: 2753: 2730: 2723: 2700: 2693: 2650: 2646: 2630:10.1.1.596.6328 2613: 2609: 2586: 2582: 2555: 2551: 2542: 2540: 2536: 2530: 2526: 2491: 2487: 2452: 2448: 2439: 2437: 2429: 2428: 2424: 2387: 2380: 2351: 2344: 2333: 2329: 2317: 2313: 2302: 2298: 2269: 2265: 2256: 2254: 2246: 2245: 2241: 2218: 2211: 2202: 2200: 2196: 2165: 2159: 2155: 2110: 2106: 2075: 2071: 2056: 2052: 2021: 2017: 1964: 1960: 1917: 1913: 1873: 1867: 1863: 1821: 1817: 1802: 1774: 1770: 1766: 1728: 1719: 1714: 1705: 1686:reducing agents 1679: 1670: 1657: 1645: 1638: 1634: 1629: 1621: 1616: 1614:Perrault method 1585: 1565:chlorauric acid 1553:organic liquids 1549: 1540: 1516: 1504: 1485: 1453: 1405: 1388: 1338: 1328: 1319: 1302: 1280: 1260: 1238: 1235: 1233: 1230: 1229: 1213: 1210: 1209: 1197: 1169: 1156: 1123: 1110: 1099: 1096: 1095: 1094: 1092: 1082: 1079: 1078: 1077: 1075: 1069: 1066: 1065: 1064: 1062: 1056: 1043: 1035:renal excretion 1025:conversion for 1015:renal excretion 996: 960: 942:contrast agents 907: 905:Tumor detection 871: 835: 829: 820: 816: 811: 805: 802: 759: 748: 744:primary sources 728: 724: 717: 705: 697:aluminium oxide 685:extinction peak 676: 651: 626: 621: 592:, who invented 506:Francis Anthony 479:cranberry glass 471: 385: 345: 333: 230:Aluminium oxide 82: 71: 65: 62: 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 6943: 6933: 6932: 6927: 6922: 6908: 6907: 6900: 6877: 6876:External links 6874: 6872: 6871: 6853:(6): 1759–82. 6841: 6839: 6836: 6834: 6833: 6782: 6763:(7): 4048–56. 6747: 6712: 6669: 6650:(4): 472–473. 6634: 6598: 6579:(21): 5356–8. 6563: 6540:(10): 7410–7. 6524: 6489: 6482: 6460: 6407: 6390:J. Mater. Chem 6380: 6361:(9): 4464–71. 6345: 6314: 6303:(7): 801–802. 6291: 6254: 6208: 6181: 6153: 6134:(105): 20–22. 6115: 6096:(7): 736–741. 6077: 6034: 5999: 5980:(2): 1800464. 5963: 5907: 5888:(12): 1912–9. 5867: 5819: 5770: 5711: 5692:(6): 1759–82. 5676: 5641: 5606: 5569:(8): 858–864. 5549: 5500: 5465: 5446:(4): 897–900. 5425: 5390: 5350: 5315: 5253: 5198: 5179:(5): 1907–21. 5163: 5104: 5069: 5042: 4995: 4956: 4937:(8): 4456–64. 4921: 4872: 4837:(48): 6462–7. 4821: 4770: 4714: 4671: 4636:(10): 6732–7. 4620: 4569: 4526: 4475: 4416: 4391:Chem. Soc. Rev 4381: 4329: 4302: 4251: 4224: 4197: 4146: 4119: 4076: 4049: 4022:(19): 6873–8. 4006: 3979: 3944: 3901: 3874:(1): 293–346. 3858: 3839:(16): 4208–9. 3823: 3796: 3754: 3707: 3650: 3607: 3576:(3): 531–537. 3556: 3497: 3448: 3413: 3384:(5): 1319–26. 3364: 3351: 3324: 3280: 3237: 3202: 3187: 3151: 3116: 3109: 3091: 3029: 2970: 2943: 2936: 2919: 2912: 2894: 2887: 2870: 2849:(4): 295–305. 2829: 2786: 2751: 2721: 2691: 2664:(5): 681–693. 2644: 2607: 2596:(3): 674–681. 2580: 2549: 2524: 2505:(6): 306–308. 2485: 2466:(8): 629–630. 2446: 2422: 2378: 2365:(11): 1791–2. 2342: 2327: 2311: 2296: 2283:(4): 270–277. 2263: 2252:British Museum 2239: 2209: 2176:(3): 491–506. 2153: 2124:(7): 2740–79. 2104: 2069: 2066:on 2004-10-28. 2050: 2015: 1972:Optics Express 1958: 1931:(1): 315–325. 1911: 1884:(2): 504–515. 1861: 1815: 1800: 1767: 1765: 1762: 1761: 1760: 1755: 1750: 1745: 1740: 1734: 1727: 1724: 1718: 1715: 1713: 1710: 1704: 1701: 1677: 1669: 1666: 1656: 1653: 1644: 1641: 1636: 1632: 1628: 1625: 1619: 1615: 1612: 1583: 1567:solution with 1548: 1545: 1539: 1538:Capping agents 1536: 1528:sodium citrate 1515: 1512: 1484: 1481: 1452: 1449: 1404: 1401: 1387: 1384: 1336:Nanotoxicology 1327: 1324: 1318: 1315: 1301: 1300:Ligand removal 1298: 1287:) to increase 1279: 1276: 1259: 1256: 1241: 1237: 1217: 1196: 1193: 1168: 1165: 1155: 1152: 1135:functionalised 1122: 1119: 1109: 1106: 1097: 1080: 1067: 1055: 1052: 1042: 1039: 995: 992: 976:Ionic approach 959: 956: 906: 903: 870: 867: 831:Main article: 828: 825: 822: 821: 814: 812: 731: 729: 722: 716: 713: 704: 701: 675: 672: 663:Mie scattering 650: 647: 625: 622: 620: 617: 529:Johann Kunckel 487:staining glass 470: 467: 440:nanotechnology 392:Colloidal gold 387: 386: 384: 383: 376: 369: 361: 358: 357: 356: 355: 343: 328: 327: 326: 325: 320: 315: 310: 302: 301: 295: 294: 293: 292: 287: 282: 277: 272: 267: 262: 257: 252: 247: 242: 237: 232: 227: 222: 214: 213: 206: 205: 204: 203: 198: 193: 188: 183: 175: 174: 168: 167: 166: 165: 160: 155: 150: 145: 140: 132: 131: 125: 124: 116: 115: 109: 108: 84: 83: 42: 40: 33: 26: 9: 6: 4: 3: 2: 6942: 6931: 6928: 6926: 6923: 6921: 6918: 6917: 6915: 6905: 6901: 6897: 6893: 6889: 6888:Sixty Symbols 6885: 6880: 6879: 6868: 6864: 6860: 6856: 6852: 6848: 6843: 6842: 6829: 6825: 6820: 6815: 6810: 6805: 6801: 6797: 6793: 6786: 6778: 6774: 6770: 6766: 6762: 6758: 6751: 6743: 6739: 6735: 6731: 6727: 6723: 6716: 6708: 6704: 6700: 6696: 6692: 6688: 6685:(7): 1116–9. 6684: 6680: 6673: 6665: 6661: 6657: 6653: 6649: 6645: 6638: 6630: 6626: 6622: 6618: 6614: 6610: 6602: 6594: 6590: 6586: 6582: 6578: 6574: 6567: 6561: 6555: 6551: 6547: 6543: 6539: 6535: 6528: 6520: 6516: 6512: 6508: 6504: 6500: 6493: 6485: 6479: 6475: 6471: 6464: 6456: 6452: 6448: 6444: 6440: 6436: 6431: 6426: 6422: 6418: 6411: 6403: 6399: 6395: 6391: 6384: 6376: 6372: 6368: 6364: 6360: 6356: 6349: 6341: 6337: 6333: 6329: 6325: 6318: 6310: 6306: 6302: 6301:Chem. Commun. 6295: 6286: 6281: 6277: 6273: 6269: 6265: 6258: 6250: 6246: 6241: 6236: 6232: 6228: 6224: 6220: 6212: 6204: 6200: 6196: 6192: 6185: 6177: 6173: 6169: 6165: 6157: 6149: 6145: 6141: 6137: 6133: 6129: 6122: 6120: 6111: 6107: 6103: 6099: 6095: 6091: 6084: 6082: 6073: 6069: 6065: 6061: 6057: 6053: 6049: 6045: 6038: 6030: 6026: 6022: 6018: 6014: 6010: 6003: 5995: 5991: 5987: 5983: 5979: 5975: 5967: 5959: 5955: 5951: 5947: 5943: 5939: 5935: 5931: 5927: 5923: 5919: 5911: 5903: 5899: 5895: 5891: 5887: 5883: 5876: 5874: 5872: 5863: 5859: 5855: 5851: 5848:(2): 274–80. 5847: 5843: 5836: 5834: 5832: 5830: 5828: 5826: 5824: 5815: 5811: 5806: 5801: 5797: 5793: 5790:(1–2): 10–8. 5789: 5785: 5781: 5774: 5766: 5762: 5757: 5752: 5747: 5742: 5738: 5734: 5731:(6): e66434. 5730: 5726: 5722: 5715: 5707: 5703: 5699: 5695: 5691: 5687: 5680: 5672: 5668: 5664: 5660: 5656: 5652: 5645: 5637: 5633: 5629: 5625: 5621: 5617: 5610: 5602: 5598: 5593: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5553: 5545: 5541: 5536: 5531: 5527: 5523: 5520:(2): 106–17. 5519: 5515: 5511: 5504: 5496: 5492: 5488: 5484: 5480: 5476: 5469: 5461: 5457: 5453: 5449: 5445: 5441: 5434: 5432: 5430: 5421: 5417: 5413: 5409: 5405: 5401: 5394: 5386: 5382: 5378: 5374: 5370: 5366: 5359: 5357: 5355: 5346: 5342: 5338: 5334: 5330: 5326: 5319: 5311: 5307: 5302: 5297: 5293: 5289: 5285: 5281: 5277: 5273: 5269: 5262: 5260: 5258: 5249: 5245: 5241: 5237: 5233: 5229: 5225: 5221: 5217: 5213: 5209: 5202: 5194: 5190: 5186: 5182: 5178: 5174: 5167: 5159: 5155: 5150: 5145: 5140: 5135: 5131: 5127: 5123: 5119: 5115: 5108: 5100: 5096: 5092: 5088: 5084: 5080: 5073: 5065: 5061: 5057: 5053: 5046: 5038: 5034: 5030: 5026: 5022: 5018: 5015:(7): 577–88. 5014: 5010: 5006: 4999: 4991: 4987: 4983: 4979: 4976:(3): 1414–8. 4975: 4971: 4967: 4960: 4952: 4948: 4944: 4940: 4936: 4932: 4925: 4917: 4913: 4908: 4903: 4899: 4895: 4891: 4887: 4883: 4876: 4868: 4864: 4860: 4856: 4852: 4848: 4844: 4840: 4836: 4832: 4825: 4817: 4813: 4808: 4803: 4798: 4793: 4789: 4785: 4781: 4774: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4738: 4734: 4730: 4723: 4721: 4719: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4675: 4667: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4635: 4631: 4624: 4616: 4612: 4608: 4604: 4600: 4596: 4592: 4588: 4585:(2): 826–30. 4584: 4580: 4573: 4565: 4561: 4557: 4553: 4549: 4545: 4541: 4537: 4530: 4522: 4518: 4514: 4510: 4506: 4502: 4498: 4494: 4491:(9): 656–60. 4490: 4486: 4479: 4471: 4467: 4462: 4457: 4452: 4447: 4443: 4439: 4436:(8): e73027. 4435: 4431: 4427: 4420: 4412: 4408: 4404: 4400: 4396: 4392: 4385: 4377: 4373: 4369: 4365: 4361: 4357: 4353: 4349: 4345: 4341: 4333: 4325: 4321: 4317: 4313: 4306: 4298: 4294: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4262: 4255: 4247: 4243: 4239: 4235: 4228: 4220: 4216: 4212: 4208: 4201: 4193: 4189: 4185: 4181: 4177: 4173: 4169: 4165: 4161: 4157: 4150: 4142: 4138: 4134: 4130: 4123: 4115: 4111: 4107: 4103: 4099: 4095: 4091: 4087: 4080: 4072: 4068: 4064: 4060: 4053: 4045: 4041: 4037: 4033: 4029: 4025: 4021: 4017: 4010: 4002: 3998: 3994: 3990: 3983: 3975: 3971: 3967: 3963: 3959: 3955: 3948: 3940: 3936: 3932: 3928: 3924: 3920: 3916: 3912: 3905: 3897: 3893: 3889: 3885: 3881: 3877: 3873: 3869: 3862: 3854: 3850: 3846: 3842: 3838: 3834: 3827: 3819: 3815: 3811: 3807: 3800: 3791: 3786: 3782: 3778: 3777:Gold Bulletin 3774: 3771:Xu S (2010). 3767: 3765: 3763: 3761: 3759: 3750: 3746: 3742: 3738: 3734: 3730: 3727:(9): 6300–7. 3726: 3722: 3718: 3711: 3703: 3699: 3694: 3689: 3685: 3681: 3677: 3673: 3669: 3665: 3661: 3654: 3646: 3642: 3638: 3634: 3630: 3626: 3622: 3618: 3611: 3603: 3599: 3594: 3589: 3584: 3579: 3575: 3571: 3567: 3560: 3552: 3548: 3543: 3538: 3534: 3530: 3525: 3520: 3516: 3512: 3508: 3501: 3493: 3489: 3485: 3481: 3476: 3471: 3467: 3463: 3459: 3452: 3444: 3440: 3436: 3432: 3428: 3424: 3417: 3409: 3405: 3400: 3395: 3391: 3387: 3383: 3379: 3375: 3368: 3361: 3355: 3347: 3343: 3340:(2): 021002. 3339: 3335: 3328: 3320: 3316: 3312: 3308: 3304: 3300: 3296: 3292: 3284: 3276: 3272: 3268: 3264: 3260: 3256: 3252: 3248: 3241: 3233: 3229: 3225: 3221: 3218:(2): 94–101. 3217: 3213: 3206: 3198: 3194: 3190: 3184: 3180: 3176: 3172: 3168: 3163: 3155: 3147: 3143: 3139: 3135: 3132:(1): 113–23. 3131: 3127: 3120: 3112: 3106: 3102: 3095: 3088: 3084: 3080: 3075: 3070: 3065: 3060: 3056: 3052: 3048: 3044: 3040: 3033: 3025: 3021: 3016: 3011: 3006: 3001: 2997: 2993: 2989: 2985: 2981: 2974: 2966: 2962: 2958: 2954: 2947: 2939: 2933: 2929: 2923: 2915: 2909: 2905: 2898: 2890: 2884: 2880: 2874: 2866: 2862: 2857: 2852: 2848: 2844: 2840: 2833: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2790: 2782: 2778: 2774: 2770: 2766: 2762: 2755: 2747: 2743: 2739: 2735: 2728: 2726: 2717: 2713: 2709: 2705: 2698: 2696: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2655: 2648: 2640: 2636: 2631: 2626: 2622: 2618: 2611: 2603: 2599: 2595: 2591: 2584: 2576: 2572: 2569:: 1128–1133. 2568: 2564: 2560: 2553: 2535: 2528: 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2489: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2450: 2436: 2432: 2426: 2417: 2412: 2408: 2404: 2400: 2396: 2392: 2385: 2383: 2373: 2368: 2364: 2360: 2356: 2349: 2347: 2338: 2331: 2323: 2315: 2307: 2300: 2291: 2286: 2282: 2278: 2277:Gold Bulletin 2274: 2267: 2253: 2249: 2243: 2235: 2231: 2228:(1–3): 1–38. 2227: 2223: 2216: 2214: 2199:on 2017-08-09 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2164: 2157: 2149: 2145: 2140: 2135: 2131: 2127: 2123: 2119: 2115: 2108: 2100: 2096: 2092: 2088: 2084: 2080: 2073: 2065: 2061: 2054: 2046: 2042: 2038: 2034: 2030: 2026: 2019: 2011: 2007: 2003: 1999: 1994: 1989: 1985: 1981: 1977: 1973: 1969: 1962: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1872: 1865: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1828: 1819: 1811: 1807: 1803: 1797: 1793: 1789: 1785: 1781: 1780: 1772: 1768: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1743:Gold nanorods 1741: 1738: 1735: 1733: 1730: 1729: 1723: 1709: 1700: 1698: 1694: 1691: 1687: 1683: 1675: 1665: 1663: 1652: 1649: 1640: 1627:Martin method 1624: 1611: 1609: 1605: 1601: 1597: 1591: 1589: 1580: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1544: 1535: 1533: 1529: 1525: 1521: 1511: 1508: 1502: 1498: 1489: 1480: 1477: 1473: 1470: 1466: 1462: 1458: 1448: 1446: 1442: 1438: 1434: 1433:translocation 1430: 1426: 1422: 1418: 1414: 1410: 1400: 1398: 1394: 1383: 1382:experiments. 1381: 1377: 1373: 1369: 1365: 1361: 1356: 1352: 1351: 1346: 1345: 1337: 1333: 1323: 1314: 1312: 1308: 1297: 1294: 1290: 1286: 1275: 1273: 1269: 1265: 1255: 1239: 1236: 1215: 1205: 1203: 1192: 1190: 1186: 1182: 1178: 1174: 1164: 1162: 1151: 1144: 1140: 1136: 1132: 1127: 1118: 1115: 1105: 1090: 1061: 1051: 1049: 1038: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1007: 1004: 1003:Gold nanorods 1000: 999:Gold nanorods 991: 989: 985: 977: 973: 967: 963: 950: 946: 943: 938: 936: 932: 928: 924: 920: 916: 912: 902: 900: 896: 892: 887: 885: 881: 877: 866: 862: 860: 859:nucleic acids 856: 852: 851:superantigens 848: 844: 840: 834: 813: 809: 798: 795: 791: 788: 784: 781: 777: 774: 770: 767: –  766: 762: 761:Find sources: 756: 752: 746: 745: 741: 737: 732:This section 730: 721: 720: 712: 710: 700: 698: 694: 690: 686: 682: 671: 669: 664: 660: 656: 646: 644: 635: 634:cross section 630: 616: 614: 610: 605: 603: 599: 595: 591: 587: 582: 580: 576: 572: 567: 563: 559: 555: 550: 542: 538: 537:John Herschel 534: 530: 525: 523: 519: 515: 511: 507: 503: 499: 494: 492: 488: 480: 475: 466: 464: 463:self-assembly 460: 456: 451: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 404:nanoparticles 401: 397: 393: 382: 377: 375: 370: 368: 363: 362: 360: 359: 354: 349: 344: 342: 337: 332: 331: 330: 329: 324: 321: 319: 316: 314: 311: 309: 308:Nanocomposite 306: 305: 304: 303: 300: 297: 296: 291: 288: 286: 283: 281: 278: 276: 273: 271: 270:Iron–platinum 268: 266: 263: 261: 258: 256: 253: 251: 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 217: 216: 215: 212: 211:nanoparticles 208: 207: 202: 199: 197: 196:Health impact 194: 192: 189: 187: 186:C70 fullerene 184: 182: 179: 178: 177: 176: 173: 170: 169: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 135: 134: 133: 130: 127: 126: 122: 118: 117: 114: 113:Nanomaterials 111: 110: 106: 105: 95: 90: 80: 77: 69: 59: 53: 52: 48: 41: 32: 31: 19: 6887: 6850: 6846: 6799: 6795: 6785: 6760: 6756: 6750: 6725: 6721: 6715: 6682: 6678: 6672: 6647: 6643: 6637: 6612: 6609:Biomaterials 6608: 6601: 6576: 6572: 6566: 6537: 6533: 6527: 6502: 6498: 6492: 6473: 6463: 6423:(1): 27–36. 6420: 6416: 6410: 6393: 6389: 6383: 6358: 6354: 6348: 6334:(1): 20–28. 6331: 6327: 6317: 6300: 6294: 6267: 6263: 6257: 6225:(6): 45829. 6222: 6218: 6211: 6194: 6190: 6184: 6167: 6163: 6156: 6131: 6127: 6093: 6089: 6047: 6043: 6037: 6012: 6008: 6002: 5977: 5973: 5966: 5925: 5921: 5910: 5885: 5882:Biomaterials 5881: 5845: 5841: 5787: 5783: 5773: 5728: 5724: 5714: 5689: 5685: 5679: 5654: 5651:Biomaterials 5650: 5644: 5622:(1): 16–24. 5619: 5615: 5609: 5566: 5562: 5552: 5517: 5514:Nanomedicine 5513: 5503: 5481:(3): 325–7. 5478: 5474: 5468: 5443: 5439: 5403: 5399: 5393: 5371:(6): 701–8. 5368: 5364: 5328: 5324: 5318: 5275: 5271: 5215: 5211: 5201: 5176: 5172: 5166: 5121: 5117: 5107: 5082: 5078: 5072: 5058:(1): 72–83. 5055: 5051: 5045: 5012: 5008: 4998: 4973: 4969: 4959: 4934: 4930: 4924: 4889: 4885: 4875: 4834: 4830: 4824: 4790:(3): 35–63. 4787: 4783: 4773: 4732: 4728: 4684: 4680: 4674: 4633: 4630:Nano Letters 4629: 4623: 4582: 4579:Nano Letters 4578: 4572: 4539: 4535: 4529: 4488: 4484: 4478: 4433: 4429: 4419: 4394: 4390: 4384: 4343: 4339: 4332: 4315: 4311: 4305: 4264: 4260: 4254: 4237: 4233: 4227: 4210: 4206: 4200: 4159: 4155: 4149: 4132: 4128: 4122: 4092:(6): 372–4. 4089: 4085: 4079: 4065:(38): 9071. 4062: 4058: 4052: 4019: 4015: 4009: 3992: 3988: 3982: 3960:(40): 8410. 3957: 3953: 3947: 3914: 3910: 3904: 3871: 3867: 3861: 3836: 3832: 3826: 3812:(19): 5739. 3809: 3805: 3799: 3780: 3776: 3724: 3720: 3710: 3667: 3663: 3653: 3620: 3616: 3610: 3573: 3569: 3559: 3514: 3510: 3500: 3465: 3461: 3451: 3429:(3): 343–7. 3426: 3422: 3416: 3381: 3377: 3367: 3359: 3354: 3337: 3333: 3327: 3297:(1): 83–90. 3294: 3290: 3283: 3250: 3246: 3240: 3215: 3211: 3205: 3166: 3154: 3129: 3126:Nanomedicine 3125: 3119: 3100: 3094: 3086: 3046: 3042: 3032: 2987: 2983: 2973: 2956: 2952: 2946: 2927: 2922: 2903: 2897: 2878: 2873: 2846: 2842: 2832: 2799: 2795: 2789: 2767:(20): 3286. 2764: 2760: 2754: 2737: 2733: 2707: 2703: 2661: 2658:Nanomedicine 2657: 2647: 2620: 2616: 2610: 2593: 2589: 2583: 2566: 2562: 2552: 2541:. Retrieved 2527: 2502: 2498: 2488: 2463: 2459: 2449: 2438:. Retrieved 2435:www.rigb.org 2434: 2425: 2398: 2394: 2362: 2358: 2336: 2330: 2320: 2314: 2305: 2299: 2280: 2276: 2266: 2255:. Retrieved 2251: 2242: 2225: 2221: 2201:. Retrieved 2194:the original 2173: 2169: 2156: 2121: 2117: 2107: 2085:(1): 27–35. 2082: 2078: 2072: 2064:the original 2053: 2028: 2024: 2018: 1975: 1971: 1961: 1928: 1924: 1914: 1881: 1878:Nano Futures 1877: 1864: 1831: 1825: 1818: 1778: 1771: 1720: 1712:Applications 1706: 1697:cyclodextrin 1671: 1658: 1647: 1646: 1630: 1617: 1600:alkanethiols 1592: 1581: 1550: 1541: 1520:monodisperse 1517: 1509: 1494: 1474: 1468: 1454: 1440: 1436: 1428: 1424: 1406: 1389: 1379: 1375: 1371: 1367: 1359: 1354: 1348: 1342: 1339: 1320: 1303: 1281: 1261: 1206: 1198: 1170: 1157: 1148: 1111: 1087:into a weak 1057: 1044: 1031:photothermal 1027:hyperthermia 1023:photothermal 1008: 997: 981: 975: 971: 961: 958:Gene therapy 939: 926: 919:quantum dots 914: 908: 888: 872: 863: 836: 803: 793: 786: 779: 772: 760: 740:verification 733: 706: 693:biomolecules 677: 652: 639: 606: 583: 551: 532: 526: 521: 509: 495: 491:Lycurgus Cup 484: 452: 391: 390: 254: 245:Cobalt oxide 225:Quantum dots 158:Applications 72: 63: 44: 6892:Brady Haran 6644:Experientia 6285:10356/91753 6270:: 155–161. 6240:10220/49931 4681:Soft Matter 4213:(5): 1674. 4135:(5): 1154. 3593:11384/77439 3468:(1): 4–16. 2401:: 145–181. 1465:macrophages 1131:Glutathione 806:August 2017 734:needs more 668:fluorescein 498:Middle Ages 496:During the 448:biomedicine 436:electronics 420:blue-purple 66:August 2017 6914:Categories 6607:therapy". 5406:(1): 2–5. 4318:(5): 473. 4240:(2): 129. 3995:(3): 788. 2543:2022-09-19 2440:2015-12-04 2257:2015-12-04 2203:2015-09-16 2170:Plasmonics 1784:De Gruyter 1764:References 1604:solubility 1461:fibroblast 1330:See also: 1195:Thin films 1189:antibodies 1185:diagnostic 1141:through a 1114:biosensors 891:Paclitaxel 874:unstable ( 843:antibodies 776:newspapers 709:dielectric 670:molecule. 598:Gustav Mie 562:phosphorus 541:chrysotype 459:anisotropy 457:peak, and 455:absorption 265:Iron oxide 172:Fullerenes 6425:CiteSeerX 6249:103854124 6197:: 72–83. 6015:: 55–75. 5994:104434042 5958:204266885 5942:2576-6422 5248:199538860 5232:1520-6106 4867:205247206 4615:207673690 4564:206491859 3783:: 29–41. 3749:206794098 3602:2051-6347 3533:2296-4185 3484:1043-1802 2678:1743-5889 2625:CiteSeerX 2324:. London. 2002:1094-4087 1906:247095942 1856:206896854 1810:219789607 1753:Nanozymes 1690:pyrolysis 1674:sonolysis 1668:Sonolysis 1532:nanowires 1497:reduction 1483:Synthesis 1476:Biosafety 1459:), mouse 1264:interface 1216:± 1019:plasmonic 988:nucleases 984:antisense 584:In 1898, 527:In 1676, 502:gold salt 235:Cellulose 191:Chemistry 143:Chemistry 138:Synthesis 47:citations 6930:Colloids 6894:for the 6867:19587967 6828:27330535 6777:21366279 6757:Langmuir 6742:16851902 6707:16389606 6664:32998274 6629:23915950 6593:19574037 6554:20392108 6534:Langmuir 6519:19891442 6455:36704243 6447:10639073 6375:22276658 6355:Langmuir 6110:92726968 6072:11729630 6064:16898714 6029:97664009 5950:35021406 5902:18242692 5862:18722754 5814:17643544 5765:23799103 5725:PLOS ONE 5706:19587967 5671:12922162 5636:19162059 5601:20596373 5544:19071065 5495:17193451 5460:15264879 5420:16378388 5400:Langmuir 5385:19226599 5345:23848382 5325:Langmuir 5310:21170131 5240:31401833 5193:24422457 5158:26929334 5099:16706449 5037:26139144 4990:17241067 4970:Langmuir 4951:21413796 4931:Langmuir 4916:22816317 4859:22968900 4816:23977421 4757:20156828 4709:28397901 4666:29849022 4658:26313627 4607:24467462 4556:20521265 4513:17643104 4470:24014084 4430:PLOS ONE 4411:23288339 4368:18719586 4297:21287894 4207:Langmuir 4192:40388898 4184:12649477 4114:18059883 4086:Opt Lett 4044:13373307 4036:17007509 3989:Langmuir 3974:40012876 3931:17057837 3896:29293663 3888:14719978 3853:11960439 3806:Langmuir 3741:24754960 3702:22355537 3645:28457097 3637:15509078 3551:30349817 3492:29186662 3443:16876898 3408:24433049 3319:15309464 3311:18157119 3275:12034022 3267:17718495 3232:10673317 3197:18217334 3146:17716197 2824:46326525 2816:17999554 2781:96293198 2734:Langmuir 2686:17976030 2590:Langmuir 2190:34796473 2148:22109657 2099:59025862 2045:26293344 2010:20721027 1953:96824985 1848:23432378 1737:Fiveling 1726:See also 1693:radicals 1557:miscible 1445:fibrosis 1437:in vitro 1429:in vitro 1376:in vitro 1368:In vitro 1355:In vitro 1344:in vitro 1307:ablation 1272:moieties 1173:peptides 1089:alkaline 876:proteins 424:nanorods 412:wine red 313:Nanofoam 280:Platinum 163:Timeline 6819:4908860 6802:. 607. 6687:Bibcode 6560:YouTube 6136:Bibcode 5805:1994820 5756:3682981 5733:Bibcode 5592:2894102 5571:Bibcode 5535:3683956 5301:2988217 5280:Bibcode 5149:4801306 5126:Bibcode 5017:Bibcode 4907:4624284 4839:Bibcode 4807:3746278 4765:1666203 4737:Bibcode 4689:Bibcode 4638:Bibcode 4587:Bibcode 4493:Bibcode 4461:3754922 4438:Bibcode 4376:4355469 4348:Bibcode 4289:9733505 4269:Bibcode 4261:Science 4164:Bibcode 4156:Science 4094:Bibcode 3939:2259806 3693:3216506 3672:Bibcode 3542:6186777 3517:: 143. 3399:3983380 3083:6308616 3051:Bibcode 3024:1961763 2992:Bibcode 2507:Bibcode 2468:Bibcode 2403:Bibcode 2359:Synlett 2139:5876014 1980:Bibcode 1933:Bibcode 1886:Bibcode 1682:glucose 1573:toluene 1561:toluene 1469:in vivo 1441:in vivo 1425:in vivo 1380:in vivo 1372:in vivo 1360:In vivo 1350:in vivo 1177:glycans 927:in vivo 915:in vivo 855:glycans 847:lectins 790:scholar 755:removed 681:solvent 624:Optical 514:potable 469:History 428:optical 240:Ceramic 6865:  6826:  6816:  6775:  6740:  6705:  6662:  6627:  6591:  6552:  6517:  6480:  6453:  6445:  6427:  6373:  6247:  6128:Nature 6108:  6070:  6062:  6027:  5992:  5956:  5948:  5940:  5900:  5860:  5812:  5802:  5763:  5753:  5704:  5669:  5634:  5599:  5589:  5542:  5532:  5493:  5458:  5418:  5383:  5343:  5308:  5298:  5246:  5238:  5230:  5191:  5156:  5146:  5097:  5035:  4988:  4949:  4914:  4904:  4865:  4857:  4814:  4804:  4763:  4755:  4707:  4664:  4656:  4613:  4605:  4562:  4554:  4521:444592 4519:  4511:  4468:  4458:  4409:  4374:  4366:  4340:Nature 4295:  4287:  4190:  4182:  4112:  4042:  4034:  3972:  3937:  3929:  3894:  3886:  3851:  3747:  3739:  3700:  3690:  3670:: 18. 3643:  3635:  3600:  3549:  3539:  3531:  3490:  3482:  3441:  3406:  3396:  3317:  3309:  3273:  3265:  3230:  3195:  3185:  3144:  3107:  3081:  3074:384033 3071:  3022:  3012:  2934:  2910:  2885:  2865:323352 2863:  2822:  2814:  2779:  2684:  2676:  2627:  2188:  2146:  2136:  2097:  2043:  2008:  2000:  1951:  1904:  1854:  1846:  1808:  1798:  1684:, the 1421:Caco-2 792:  785:  778:  771:  763:  689:silica 596:, and 566:reduce 546:χρῡσός 446:, and 285:Silver 250:Copper 209:Other 6660:S2CID 6451:S2CID 6245:S2CID 6106:S2CID 6068:S2CID 6025:S2CID 5990:S2CID 5954:S2CID 5475:Small 5365:Small 5244:S2CID 4863:S2CID 4761:S2CID 4662:S2CID 4611:S2CID 4560:S2CID 4536:Small 4517:S2CID 4372:S2CID 4293:S2CID 4188:S2CID 4040:S2CID 3970:S2CID 3935:S2CID 3892:S2CID 3745:S2CID 3641:S2CID 3315:S2CID 3271:S2CID 3171:48–56 3015:53043 2820:S2CID 2777:S2CID 2537:(PDF) 2197:(PDF) 2186:S2CID 2166:(PDF) 2095:S2CID 1949:S2CID 1902:S2CID 1874:(PDF) 1852:S2CID 1806:S2CID 1680:with 1596:thiol 1313:off. 1181:ELISA 880:siRNA 797:JSTOR 783:books 695:, or 477:This 418:) or 394:is a 275:Lipid 6920:Gold 6904:here 6863:PMID 6824:PMID 6773:PMID 6738:PMID 6703:PMID 6625:PMID 6589:PMID 6550:PMID 6515:PMID 6478:ISBN 6443:PMID 6371:PMID 6060:PMID 5946:PMID 5938:ISSN 5898:PMID 5858:PMID 5810:PMID 5761:PMID 5702:PMID 5667:PMID 5632:PMID 5597:PMID 5540:PMID 5491:PMID 5456:PMID 5416:PMID 5381:PMID 5341:PMID 5306:PMID 5236:PMID 5228:ISSN 5189:PMID 5154:PMID 5095:PMID 5033:PMID 4986:PMID 4947:PMID 4912:PMID 4855:PMID 4812:PMID 4753:PMID 4705:PMID 4654:PMID 4603:PMID 4552:PMID 4509:PMID 4466:PMID 4407:PMID 4364:PMID 4316:2001 4285:PMID 4180:PMID 4110:PMID 4032:PMID 3927:PMID 3884:PMID 3849:PMID 3737:PMID 3698:PMID 3633:PMID 3598:ISSN 3547:PMID 3529:ISSN 3488:PMID 3480:ISSN 3439:PMID 3404:PMID 3307:PMID 3263:PMID 3228:PMID 3193:PMID 3183:ISBN 3142:PMID 3105:ISBN 3079:PMID 3020:PMID 2932:ISBN 2908:ISBN 2883:ISBN 2861:PMID 2812:PMID 2682:PMID 2674:ISSN 2363:2006 2322:wife 2144:PMID 2041:PMID 2006:PMID 1998:ISSN 1844:PMID 1796:ISBN 1575:and 1457:HeLa 1427:and 1413:K562 1409:CTAB 1347:and 1334:and 1175:and 769:news 738:for 611:and 408:gold 260:Iron 255:Gold 6855:doi 6814:PMC 6804:doi 6765:doi 6730:doi 6726:109 6695:doi 6652:doi 6617:doi 6581:doi 6577:100 6542:doi 6507:doi 6503:131 6435:doi 6398:doi 6363:doi 6336:doi 6305:doi 6280:hdl 6272:doi 6268:259 6235:hdl 6227:doi 6223:135 6199:doi 6172:doi 6168:111 6144:doi 6132:241 6098:doi 6094:250 6052:doi 6048:110 6017:doi 5982:doi 5930:doi 5890:doi 5850:doi 5800:PMC 5792:doi 5788:121 5751:PMC 5741:doi 5694:doi 5659:doi 5624:doi 5620:236 5587:PMC 5579:doi 5530:PMC 5522:doi 5483:doi 5448:doi 5408:doi 5373:doi 5333:doi 5296:PMC 5288:doi 5220:doi 5216:123 5181:doi 5177:136 5144:PMC 5134:doi 5122:113 5087:doi 5083:110 5060:doi 5025:doi 4978:doi 4939:doi 4902:PMC 4894:doi 4890:134 4847:doi 4802:PMC 4792:doi 4745:doi 4733:368 4697:doi 4646:doi 4595:doi 4544:doi 4501:doi 4456:PMC 4446:doi 4399:doi 4356:doi 4344:454 4320:doi 4277:doi 4265:281 4242:doi 4215:doi 4172:doi 4160:299 4137:doi 4133:118 4102:doi 4067:doi 4063:122 4024:doi 3997:doi 3962:doi 3958:103 3919:doi 3876:doi 3872:104 3841:doi 3837:124 3814:doi 3785:doi 3729:doi 3688:PMC 3680:doi 3625:doi 3588:hdl 3578:doi 3537:PMC 3519:doi 3470:doi 3431:doi 3427:114 3394:PMC 3386:doi 3382:118 3342:doi 3299:doi 3255:doi 3251:129 3220:doi 3175:doi 3134:doi 3069:PMC 3059:doi 3010:PMC 3000:doi 2961:doi 2851:doi 2804:doi 2800:107 2769:doi 2742:doi 2712:doi 2708:108 2666:doi 2635:doi 2621:103 2598:doi 2571:doi 2567:176 2515:doi 2476:doi 2464:101 2411:doi 2399:147 2367:doi 2285:doi 2230:doi 2178:doi 2134:PMC 2126:doi 2087:doi 2033:doi 2029:115 1988:doi 1941:doi 1929:118 1894:doi 1882:103 1836:doi 1832:113 1788:doi 1499:of 1285:PEG 884:DNA 571:tin 564:to 406:of 402:of 398:or 396:sol 49:to 6916:: 6890:. 6886:. 6861:. 6851:38 6849:. 6822:. 6812:. 6798:. 6794:. 6771:. 6761:27 6759:. 6736:. 6724:. 6701:. 6693:. 6683:45 6681:. 6658:. 6648:36 6646:. 6623:. 6613:34 6611:. 6587:. 6575:. 6548:. 6538:26 6536:. 6513:. 6501:. 6449:. 6441:. 6433:. 6421:33 6419:. 6394:22 6392:. 6369:. 6359:28 6357:. 6332:15 6330:. 6326:. 6278:. 6266:. 6243:. 6233:. 6221:. 6195:26 6193:. 6166:. 6142:. 6130:. 6118:^ 6104:. 6092:. 6080:^ 6066:. 6058:. 6046:. 6023:. 6013:11 6011:. 5988:. 5978:36 5976:. 5952:. 5944:. 5936:. 5924:. 5920:. 5896:. 5886:29 5884:. 5870:^ 5856:. 5846:66 5844:. 5822:^ 5808:. 5798:. 5786:. 5782:. 5759:. 5749:. 5739:. 5727:. 5723:. 5700:. 5690:38 5688:. 5665:. 5655:24 5653:. 5630:. 5618:. 5595:. 5585:. 5577:. 5565:. 5561:. 5538:. 5528:. 5516:. 5512:. 5489:. 5477:. 5454:. 5444:15 5442:. 5428:^ 5414:. 5404:22 5402:. 5379:. 5367:. 5353:^ 5339:. 5329:29 5327:. 5304:. 5294:. 5286:. 5276:12 5274:. 5270:. 5256:^ 5242:. 5234:. 5226:. 5214:. 5210:. 5187:. 5175:. 5152:. 5142:. 5132:. 5120:. 5116:. 5093:. 5081:. 5056:26 5054:. 5031:. 5023:. 5013:10 5011:. 5007:. 4984:. 4974:23 4972:. 4968:. 4945:. 4935:27 4933:. 4910:. 4900:. 4888:. 4884:. 4861:. 4853:. 4845:. 4835:24 4833:. 4810:. 4800:. 4786:. 4782:. 4759:. 4751:. 4743:. 4731:. 4717:^ 4703:. 4695:. 4685:13 4683:. 4660:. 4652:. 4644:. 4634:15 4632:. 4609:. 4601:. 4593:. 4583:14 4581:. 4558:. 4550:. 4538:. 4515:. 4507:. 4499:. 4487:. 4464:. 4454:. 4444:. 4432:. 4428:. 4405:. 4395:42 4393:. 4370:. 4362:. 4354:. 4342:. 4314:. 4291:. 4283:. 4275:. 4263:. 4238:25 4236:. 4211:17 4209:. 4186:. 4178:. 4170:. 4158:. 4131:. 4108:. 4100:. 4090:25 4088:. 4061:. 4038:. 4030:. 4020:78 4018:. 3993:12 3991:. 3968:. 3956:. 3933:. 3925:. 3915:35 3913:. 3890:. 3882:. 3870:. 3847:. 3835:. 3810:17 3808:. 3781:43 3779:. 3775:. 3757:^ 3743:. 3735:. 3723:. 3719:. 3696:. 3686:. 3678:. 3666:. 3662:. 3639:. 3631:. 3621:49 3619:. 3596:. 3586:. 3572:. 3568:. 3545:. 3535:. 3527:. 3513:. 3509:. 3486:. 3478:. 3466:29 3464:. 3460:. 3437:. 3425:. 3402:. 3392:. 3380:. 3376:. 3336:. 3313:. 3305:. 3295:26 3293:. 3269:. 3261:. 3249:. 3226:. 3216:33 3214:. 3191:. 3181:. 3173:. 3165:. 3140:. 3128:. 3085:. 3077:. 3067:. 3057:. 3047:80 3045:. 3041:. 3018:. 3008:. 2998:. 2988:88 2986:. 2982:. 2957:14 2955:. 2859:. 2847:25 2845:. 2841:. 2818:. 2810:. 2798:. 2775:. 2765:19 2763:. 2738:10 2736:. 2724:^ 2706:. 2694:^ 2680:. 2672:. 2660:. 2656:. 2633:. 2619:. 2594:15 2592:. 2565:. 2561:. 2513:. 2503:98 2501:. 2497:. 2474:. 2462:. 2458:. 2433:. 2409:. 2397:. 2393:. 2381:^ 2361:. 2357:. 2345:^ 2281:40 2279:. 2275:. 2250:. 2226:65 2224:. 2212:^ 2184:. 2172:. 2168:. 2142:. 2132:. 2122:41 2120:. 2116:. 2093:. 2083:29 2081:. 2039:. 2027:. 2004:. 1996:. 1986:. 1976:18 1974:. 1970:. 1947:. 1939:. 1927:. 1923:. 1900:. 1892:. 1880:. 1876:. 1850:. 1842:. 1830:. 1804:. 1794:. 1786:. 1782:. 1610:. 1447:. 1366:. 1353:. 1104:. 1050:. 913:) 901:. 882:, 878:, 857:, 853:, 849:, 845:, 757:. 699:. 691:, 581:. 465:. 450:. 442:, 438:, 434:, 416:nm 6906:. 6898:. 6869:. 6857:: 6830:. 6806:: 6800:7 6779:. 6767:: 6744:. 6732:: 6709:. 6697:: 6689:: 6666:. 6654:: 6631:. 6619:: 6595:. 6583:: 6556:. 6544:: 6521:. 6509:: 6486:. 6457:. 6437:: 6404:. 6400:: 6377:. 6365:: 6342:. 6338:: 6311:. 6307:: 6288:. 6282:: 6274:: 6251:. 6237:: 6229:: 6205:. 6201:: 6178:. 6174:: 6150:. 6146:: 6138:: 6112:. 6100:: 6074:. 6054:: 6031:. 6019:: 5996:. 5984:: 5960:. 5932:: 5926:2 5904:. 5892:: 5864:. 5852:: 5816:. 5794:: 5767:. 5743:: 5735:: 5729:8 5708:. 5696:: 5673:. 5661:: 5638:. 5626:: 5603:. 5581:: 5573:: 5567:4 5546:. 5524:: 5518:5 5497:. 5485:: 5479:1 5462:. 5450:: 5422:. 5410:: 5387:. 5375:: 5369:5 5347:. 5335:: 5312:. 5290:: 5282:: 5250:. 5222:: 5195:. 5183:: 5160:. 5136:: 5128:: 5101:. 5089:: 5066:. 5062:: 5039:. 5027:: 5019:: 4992:. 4980:: 4953:. 4941:: 4918:. 4896:: 4869:. 4849:: 4841:: 4818:. 4794:: 4788:4 4767:. 4747:: 4739:: 4711:. 4699:: 4691:: 4668:. 4648:: 4640:: 4617:. 4597:: 4589:: 4566:. 4546:: 4540:6 4523:. 4503:: 4495:: 4489:6 4472:. 4448:: 4440:: 4434:8 4413:. 4401:: 4378:. 4358:: 4350:: 4326:. 4322:: 4299:. 4279:: 4271:: 4248:. 4244:: 4221:. 4217:: 4194:. 4174:: 4166:: 4143:. 4139:: 4116:. 4104:: 4096:: 4073:. 4069:: 4046:. 4026:: 4003:. 3999:: 3976:. 3964:: 3941:. 3921:: 3898:. 3878:: 3855:. 3843:: 3820:. 3816:: 3793:. 3787:: 3751:. 3731:: 3725:6 3704:. 3682:: 3674:: 3668:1 3647:. 3627:: 3604:. 3590:: 3580:: 3574:6 3553:. 3521:: 3515:6 3494:. 3472:: 3445:. 3433:: 3410:. 3388:: 3348:. 3344:: 3338:3 3321:. 3301:: 3277:. 3257:: 3234:. 3222:: 3199:. 3177:: 3148:. 3136:: 3130:2 3113:. 3061:: 3053:: 3026:. 3002:: 2994:: 2967:. 2963:: 2940:. 2916:. 2891:. 2867:. 2853:: 2826:. 2806:: 2783:. 2771:: 2748:. 2744:: 2718:. 2714:: 2688:. 2668:: 2662:2 2641:. 2637:: 2604:. 2600:: 2577:. 2573:: 2546:. 2521:. 2517:: 2509:: 2482:. 2478:: 2470:: 2443:. 2419:. 2413:: 2405:: 2375:. 2369:: 2293:. 2287:: 2260:. 2236:. 2232:: 2206:. 2180:: 2174:6 2150:. 2128:: 2101:. 2089:: 2047:. 2035:: 2012:. 1990:: 1982:: 1955:. 1943:: 1935:: 1908:. 1896:: 1888:: 1858:. 1838:: 1812:. 1790:: 1678:4 1637:4 1633:4 1620:4 1584:4 1505:H 1503:( 1240:5 1145:. 1102:S 1098:2 1093:H 1085:S 1081:2 1076:H 1072:S 1068:2 1063:H 808:) 804:( 794:· 787:· 780:· 773:· 747:. 380:e 373:t 366:v 79:) 73:( 68:) 64:( 54:. 20:)

Index

Gold nanoparticle
citations
secondary or tertiary sources
primary research articles
Learn how and when to remove this message


Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.