Knowledge

Optical properties of carbon nanotubes

Source 📝

1545:, etc.) inside the tubes. Efficient energy transfer occurs between the encapsulated dye and nanotube — light is efficiently absorbed by the dye and without significant loss is transferred to the SWNT. Thus potentially, optical properties of a carbon nanotube can be controlled by encapsulating certain molecule inside it. Besides, encapsulation allows isolation and characterization of organic molecules which are unstable under ambient conditions. For example, Raman spectra are extremely difficult to measure from dyes because of their strong PL (efficiency close to 100%). However, encapsulation of dye molecules inside SWNTs completely quenches dye PL, thus allowing measurement and analysis of their Raman spectra. 433: 1428:. In particular, D mode is forbidden in the ideal nanotube and requires a structural defect, providing a phonon of certain angular momentum, to be induced. In contrast, G' mode involves a "self-annihilating" pair of phonons and thus does not require defects. The spectral position of G' mode depends on diameter, so it can be used roughly to estimate the SWNT diameter. In particular, G' mode is a doublet in double-wall carbon nanotubes, but the doublet is often unresolved due to line broadening. 251: 263: 1556:(CL) — light emission excited by electron beam — is a process commonly observed in TV screens. An electron beam can be finely focused and scanned across the studied material. This technique is widely used to study defects in semiconductors and nanostructures with nanometer-scale spatial resolution. It would be beneficial to apply this technique to carbon nanotubes. However, no reliable CL, i.e. sharp peaks assignable to certain ( 861: 819: 673: 622: 632: 36: 666: 993:) were grown by the super-growth CVD method to about 10 μm height. Two factors could contribute to strong light absorption by these structures: (i) a distribution of CNT chiralities resulted in various bandgaps for individual CNTs. Thus a compound material was formed with broadband absorption. (ii) Light might be trapped in those forests due to multiple reflections. 1289: 1106: 1500:
Photoluminescence is used for characterization purposes to measure the quantities of semiconducting nanotube species in a sample. Nanotubes are isolated (dispersed) using an appropriate chemical agent ("dispersant") to reduce the intertube quenching. Then PL is measured, scanning both the excitation
1296:
Raman spectroscopy has good spatial resolution (~0.5 micrometers) and sensitivity (single nanotubes); it requires only minimal sample preparation and is rather informative. Consequently, Raman spectroscopy is probably the most popular technique of carbon nanotube characterization. Raman scattering in
1423:
The name of this mode is misleading: it is given because in graphite, this mode is usually the second strongest after the G mode. However, it is actually the second overtone of the defect-induced D mode (and thus should logically be named D'). Its intensity is stronger than that of the D mode due to
1443:
scattering. As mentioned above, Raman scattering from CNTs is resonant in nature, i.e. only tubes whose band gap energy is similar to the laser energy are excited. The difference between those two energies, and thus the band gap of individual tubes, can be estimated from the intensity ratio of the
953:
The spectrum is analyzed in terms of intensities of nanotube-related peaks, background and pi-carbon peak; the latter two mostly originate from non-nanotube carbon in contaminated samples. However, it has been recently shown that by aggregating nearly single chirality semiconducting nanotubes into
1386:
Another very important mode is the G mode (G from graphite). This mode corresponds to planar vibrations of carbon atoms and is present in most graphite-like materials. G band in SWNT is shifted to lower frequencies relative to graphite (1580 cm) and is split into several peaks. The splitting
1226:
PL efficiency was first found to be low (~0.01%), but later studies measured much higher quantum yields. By improving the structural quality and isolation of nanotubes, emission efficiency increased. A quantum yield of 1% was reported in nanotubes sorted by diameter and length through gradient
372:
Apart from direct applications, the optical properties of carbon nanotubes can be very useful in their manufacture and application to other fields. Spectroscopic methods offer the possibility of quick and non-destructive characterization of relatively large amounts of carbon nanotubes, yielding
340:
are unique "one-dimensional" materials, whose hollow fibers (tubes) have a unique and highly ordered atomic and electronic structure, and can be made in a wide range of dimension. The diameter typically varies from 0.4 to 40 nm (i.e., a range of ~100 times). However, the length can reach
946:
Interactions between nanotubes, such as bundling, broaden optical lines. While bundling strongly affects photoluminescence, it has much weaker effect on optical absorption and Raman scattering. Consequently, sample preparation for the latter two techniques is relatively simple.
838:
to rationalize experimental findings. A Kataura plot relates the nanotube diameter and its bandgap energies for all nanotubes in a diameter range. The oscillating shape of every branch of the Kataura plot reflects the intrinsic strong dependence of the SWNT properties on the
1597:. They are difficult to study because their properties are determined by contributions and interactions of all individual shells, which have different structures. Moreover, the methods used to synthesize them are poorly selective and result in higher incidence of defects. 871:
in carbon nanotubes differs from absorption in conventional 3D materials by presence of sharp peaks (1D nanotubes) instead of an absorption threshold followed by an absorption increase (most 3D solids). Absorption in nanotubes originates from electronic transitions from the
795:
The energies between the Van Hove singularities depend on the nanotube structure. Thus by varying this structure, one can tune the optoelectronic properties of carbon nanotube. Such fine tuning has been experimentally demonstrated using UV illumination of polymer-dispersed
1206:
No excitonic luminescence can be produced in metallic tubes. Their electrons can be excited, thus resulting in optical absorption, but the holes are immediately filled by other electrons out of the many available in the metal. Therefore, no excitons are produced.
1309:) indices. Contrary to PL, Raman mapping detects not only semiconducting but also metallic tubes, and it is less sensitive to nanotube bundling than PL. However, requirement of a tunable laser and a dedicated spectrometer is a strong technical impediment. 341:
55.5 cm (21.9 in), implying a length-to-diameter ratio as high as 132,000,000:1; which is unequaled by any other material. Consequently, all the electronic, optical, electrochemical and mechanical properties of the carbon nanotubes are extremely
1471:
Another manifestation of Rayleigh scattering is the "antenna effect", an array of nanotubes standing on a substrate has specific angular and spectral distributions of reflected light, and both those distributions depend on the nanotube length.
1236:
Interaction between nanotubes or between a nanotube and another material may quench or increase PL. No PL is observed in multi-walled carbon nanotubes. PL from double-wall carbon nanotubes strongly depends on the preparation method:
1245:
into SWNTs and annealing show PL only from the outer shells. Isolated SWNTs lying on the substrate show extremely weak PL which has been detected in few studies only. Detachment of the tubes from the substrate drastically increases
1387:
pattern and intensity depend on the tube structure and excitation energy; they can be used, though with much lower accuracy compared to RBM mode, to estimate the tube diameter and whether the tube is metallic or semiconducting.
928:
energies, and thus significant overlap occurs in absorption spectra. This overlap is avoided in photoluminescence mapping measurements (see below), which instead of a combination of overlapped transitions identifies individual
648:
The optical properties of carbon nanotubes are largely determined by their unique electronic structure. The rolling up of the graphene lattice affects that structure in ways that depend strongly on the geometric structure type
356:
are still less developed than in other fields. Some properties that may lead to practical use include tuneability and wavelength selectivity. Potential applications that have been demonstrated include light emitting diodes
1577:(EL). Electroluminescent devices have been produced from single nanotubes and their macroscopic assemblies. Recombination appears to proceed via triplet-triplet annihilation giving distinct peaks corresponding to E 1216:
Photoluminescence from SWNT, as well as optical absorption and Raman scattering, is linearly polarized along the tube axis. This allows monitoring of the SWNTs orientation without direct microscopic observation.
1572:
If appropriate electrical contacts are attached to a nanotube, electron-hole pairs (excitons) can be generated by injecting electrons and holes from the contacts. Subsequent exciton recombination results in
1406:
modes is conventionally used to quantify the structural quality of carbon nanotubes. High-quality nanotubes have this ratio significantly higher than 100. At a lower functionalisation of the nanotube, the
847:) index rather than on its diameter. For example, (10, 1) and (8, 3) tubes have almost the same diameter, but very different properties: the former is a metal, but the latter is a semiconductor. 1300:
Similar to photoluminescence mapping, the energy of the excitation light can be scanned in Raman measurements, thus producing Raman maps. Those maps also contain oval-shaped features uniquely identifying
914:) levels, etc. The transitions are relatively sharp and can be used to identify nanotube types. Note that the sharpness deteriorates with increasing energy, and that many nanotubes have very similar 1297:
SWNTs is resonant, i.e., only those tubes are probed which have one of the bandgaps equal to the exciting laser energy. Several scattering modes dominate the SWNT spectrum, as discussed below.
1233:
Excitons are apparently delocalized over several nanotubes in single chirality bundles as the photoluminescence spectrum displays a splitting consistent with intertube exciton tunneling.
3237:
R. B. Weisman & S. M. Bachilo (2003). "Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot".
1448:), which is often miscalculated – a focused laser beam is used in the measurement, which can locally heat the nanotubes without changing the overall temperature of the studied sample. 3274:
Paul Cherukuri; Sergei M. Bachilo; Silvio H. Litovsky & R. Bruce Weisman (2004). "Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells".
1339:+ B (where A and B are constants dependent on the environment in which the nanotube is present. For example, B=0 for individual nanotubes.) (in nanometers) and can be estimated as 1366:
for DWNT, which is very useful in deducing the CNT diameter from the RBM position. Typical RBM range is 100–350 cm. If RBM intensity is particularly strong, its weak second
1431:
Other overtones, such as a combination of RBM+G mode at ~1750 cm, are frequently seen in CNT Raman spectra. However, they are less important and are not considered here.
492:
of that frame are the displacements from atom 1 to atoms 3 and 5, respectively. Those two vectors have the same length, and their directions are 60 degrees apart. The vector
373:
detailed measurements of non-tubular carbon content, tube type and chirality, structural defects, and many other properties that are relevant to those other applications.
436:
A "sliced and unrolled" representation of a carbon nanotube as a strip of a graphene molecule, overlaid on a diagram of the full molecule (faint background). The vector
614:=0 (chiral angle = 0°) "zigzag". These tubes have mirror symmetry, and can be viewed as stacks of simple closed paths ("zigzag" and "armchair" paths, respectively). 1488:
based on a single nanotube have been produced in the lab. Their unique feature is not the efficiency, which is yet relatively low, but the narrow selectivity in the
400:) rolled and joined into a seamless cylinder. The structure of the nanotube can be characterized by the width of this hypothetical strip (that is, the circumference 366: 2029:
Y. Miyauchi; et al. (2006). "Cross-Polarized Optical Absorption of Single-Walled Nanotubes Probed by Polarized Photoluminescence Excitation Spectroscopy".
2876:
C. Fantini; et al. (2004). "Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects".
954:
closely packed Van der Waals bundles the absorption background can be attributed to free carrier transition originating from intertube charge transfer.
1593:
Multi-walled carbon nanotubes (MWNT) may consist of several nested single-walled tubes, or of a single graphene strip rolled up multiple times, like a
801:
Optical transitions are rather sharp (~10 meV) and strong. Consequently, it is relatively easy to selectively excite nanotubes having certain (
684:(DOS) is not a continuous function of energy, but it descends gradually and then increases in a discontinuous spike. These sharp peaks are called 3317: 2413: 3527:
Y. Saito; et al. (2006). "Vibrational Analysis of Organic Molecules Encapsulated in Carbon Nanotubes by Tip-Enhanced Raman Spectroscopy".
1657: 2325:
Jared J. Crochet; et al. (2011). "Electrodynamic and Excitonic Intertube Interactions in Semiconducting Carbon Nanotube Aggregates".
1683:
Xueshen Wang; et al. (2009). "Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates".
1230:
The spectral range of PL is rather wide. Emission wavelength can vary between 0.8 and 2.1 micrometers depending on the nanotube structure.
3107:
Y. Wang; et al. (2004). "Receiving and Transmitting Light-Like Radio Waves: Antenna Effect in Arrays of Aligned Carbon Nanotubes".
1647: 72: 1637: 62: 1468:) by straight CNTs has anisotropic angular dependence, and from its spectrum, the band gaps of individual nanotubes can be deduced. 3492: 3276: 3044:
Y. Wu; et al. (2007). "Variable Electron-Phonon Coupling in Isolated Metallic Carbon Nanotubes Observed by Raman Scattering".
2834: 2686:
S-Y Ju; et al. (2009). "Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization".
2651: 2287: 3440: 2785: 2250: 2199: 2085: 293: 3757: 3484: 2285:
M. E. Itkis; et al. (2005). "Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes".
1265:) PL peaks depends slightly (within 2%) on the nanotube environment (air, dispersant, etc.). However, the shift depends on the ( 2362:
Zu-Po Yang; et al. (2008). "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array".
1227:
centrifugation, and it was further increased to 20% by optimizing the procedure of isolating individual nanotubes in solution.
2129: 2926:
A. G. Souza Filho; et al. (2004). "Stokes and Anti-Stokes Raman Spectra of Small-Diameter Isolated Carbon Nanotubes".
2604:
F. Wang; et al. (2004). "Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes".
1138:
Semiconducting single-walled carbon nanotubes emit near-infrared light upon photoexcitation, described interchangeably as
3529: 2739:
B. C. Satishkumar; et al. (2007). "Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing".
3686:
D. Janas; et al. (2014). "Direct evidence of delayed electroluminescence from carbon nanotubes on the macroscale".
2649:
Jared Crochet; et al. (2007). "Quantum Yield Heterogeneities of Aqueous Single-Wall Carbon Nanotube Suspensions".
1822:
M. E. Itkis; et al. (2006). "Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films".
1492:
of emission and detection of light and the possibility of its fine tuning through the nanotube structure. In addition,
110: 2469: 1622: 868: 1378:
The bundling mode is a special form of RBM supposedly originating from collective vibration in a bundle of SWNTs.
1317:
Radial breathing mode (RBM) corresponds to radial expansion-contraction of the nanotube. Therefore, its frequency
2258: 2207: 1398:
mode is present in all graphite-like carbons and originates from structural defects. Therefore, the ratio of the
822:
In this Kataura plot, the energy of an electronic transition decreases as the diameter of the nanotube increases.
3147:
J. Chen; et al. (2005). "Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes".
1726:
R. Zhang; et al. (2013). "Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution".
1528:
Nanotube fluorescence has been investigated for the purposes of imaging and sensing in biomedical applications.
184: 3313:"Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window" 416:
graphene lattice. This angle, which may vary from 0 to 30 degrees, is called the "chiral angle" of the tube.
1146:(PL). The excitation of PL usually occurs as follows: an electron in a nanotube absorbs excitation light via 516:
is then interpreted as the circumference of the unrolled tube on the graphene lattice; it relates each point
204: 52: 1117:) indexes identify certain semiconducting nanotubes. Note that PL measurements do not detect nanotubes with 834:) indexes can be easily calculated. A theoretical graph based on these calculations was designed in 1999 by 1652: 144: 77: 3649:
D. Janas; et al. (2013). "Electroluminescence from carbon nanotube films resistively heated in air".
3572:
S. J. Pennycook; et al. (1980). "Observation of Cathodoluminescence at Single Dislocations by STEM".
978:. Vertically aligned "forests" of single-wall carbon nanotubes can have absorbances of 0.98–0.99 from the 286: 1766:
J. A. Misewich; et al. (2003). "Electrically Induced Optical Emission from a Carbon Nanotube FET".
3779: 1241:
grown DWCNTs show emission both from inner and outer shells. However, DWCNTs produced by encapsulating
570:
The type also determines the electronic structure of the tube. Specifically, the tube behaves like a
3774: 1496:
and optoelectronic memory devices have been realised on ensembles of single-walled carbon nanotubes.
1238: 315: 159: 57: 2000:
P. C. Eklund; et al. (1995). "Vibrational Modes of Carbon Nanotubes; Spectroscopy and Theory".
1918:
S. B. Sinnott & R. Andreys (2001). "Carbon Nanotubes: Synthesis, Properties, and Applications".
1440: 790:
and thus are extremely weak, but they were possibly observed using cross-polarized optical geometry.
564: 3574: 2158: 472:) that describe the width and direction of that hypothetical strip as coordinates in a fundamental 237: 189: 1523:) index of a tube. The data of Weisman and Bachilo are conventionally used for the identification. 691:
Van Hove singularities result in the following remarkable optical properties of carbon nanotubes:
3688: 3651: 3609:
M. Freitag; et al. (2004). "Hot Carrier Electroluminescence from a Single Carbon Nanotube".
3273: 3109: 3046: 2878: 2606: 2093: 2086:"Midgap Luminescence Centers in Single-Wall Carbon Nanotubes Created by Ultraviolet Illumination" 1415:
ratio remains almost unchanged. This ratio gives an idea of the functionalisation of a nanotube.
319: 179: 1537:
Optical properties, including the PL efficiency, can be modified by encapsulating organic dyes (
1273:) index, and thus the whole PL map not only shifts, but also warps upon changing the CNT medium. 1461: 676:
A bulk 3D material (blue) has continuous DOS, but a 1D wire (green) has Van Hove singularities.
524:
on the other edge that will be identified with it as the strip is rolled up. The chiral angle
279: 3381: 2741: 2251:"Optical Characterization of Double-wall Carbon Nanotubes: Evidence for Inner Tube Shielding" 194: 3724: 1460:, i.e., their length is much larger than their diameter. Consequently, as expected from the 3697: 3660: 3620: 3583: 3538: 3457: 3397: 3336: 3248: 3211: 3158: 3118: 3065: 3000: 2937: 2887: 2802: 2750: 2697: 2615: 2555: 2486: 2470:"Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes" 2422: 2373: 2102: 2050: 1927: 1889: 1833: 1777: 1692: 1607: 685: 382: 232: 154: 115: 95: 442:(large blue arrow) connects corresponding positions on the two edges of the strip. Since 8: 2964: 1961: 1574: 1553: 1465: 950:
Optical absorption is routinely used to quantify quality of the carbon nanotube powders.
787: 199: 164: 105: 3701: 3664: 3624: 3587: 3542: 3461: 3401: 3340: 3252: 3215: 3162: 3122: 3069: 3004: 2941: 2891: 2806: 2754: 2701: 2619: 2559: 2490: 2426: 2377: 2133: 2106: 2054: 1931: 1893: 1837: 1781: 1696: 723:, etc., states of semiconducting or metallic nanotubes and are traditionally labeled as 3554: 3421: 3359: 3326: 3312: 3182: 3089: 3055: 3026: 2721: 2578: 2543: 2510: 2445: 2408: 2200:"IR-Extended Photoluminescence Mapping of Single-Wall and Double-Wall Carbon Nanotubes" 2066: 2040: 1943: 1857: 1801: 1283: 331: 134: 2987:"Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering" 2830:"Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire" 2179: 567:, such as diameter, chiral angle, and symmetries, can be computed from these indices. 3751: 3558: 3509: 3448: 3413: 3364: 3293: 3174: 3149: 3081: 3018: 2991: 2928: 2903: 2851: 2793: 2766: 2713: 2688: 2668: 2631: 2583: 2502: 2477: 2450: 2389: 2344: 2304: 2224: 2031: 2015: 1979: 1849: 1824: 1793: 1768: 1743: 1708: 1632: 1143: 835: 681: 413: 323: 311: 267: 174: 3425: 3186: 3093: 2725: 2514: 2070: 1947: 1805: 3705: 3668: 3628: 3591: 3546: 3501: 3465: 3405: 3388: 3354: 3344: 3285: 3256: 3219: 3166: 3126: 3073: 3030: 3008: 2945: 2895: 2843: 2829: 2810: 2758: 2705: 2660: 2623: 2573: 2563: 2494: 2440: 2430: 2381: 2336: 2296: 2267: 2216: 2175: 2166: 2110: 2058: 2011: 2002: 1975: 1966: 1935: 1897: 1861: 1841: 1785: 1735: 1700: 1501:
and emission energies and thereby producing a PL map. The ovals in the map define (
1445: 680:
A characteristic feature of one-dimensional crystals is that their distribution of
3077: 2899: 2627: 1444:
Stokes/anti-Stokes lines. This estimate however relies on the temperature factor (
3386:(2005). "Near-infrared optical sensors based on single-walled carbon nanotubes". 1617: 1425: 979: 473: 337: 43: 3747:
Selection of free-download articles on carbon nanotubes (New Journal of Physics)
3200:
M. Freitag; et al. (2003). "Photoconductivity of Single Carbon Nanotubes".
3469: 3383: 2949: 2814: 2062: 255: 169: 3746: 3595: 2786:"Photoluminescence Quenching in Peapod-Derived Double-Walled Carbon Nanotubes" 2409:"A black body absorber from vertically aligned single-walled carbon nanotubes" 3768: 583: 432: 222: 213: 149: 100: 27: 3349: 3170: 3013: 2986: 2709: 2568: 2498: 2435: 1845: 1789: 744:, etc., or, if the "conductivity" of the tube is unknown or unimportant, as 3611: 3513: 3417: 3368: 3297: 3239: 3202: 3178: 3085: 3022: 2907: 2855: 2770: 2762: 2717: 2672: 2635: 2587: 2518: 2506: 2454: 2393: 2364: 2348: 2308: 2228: 1939: 1880: 1853: 1797: 1747: 1712: 1457: 1139: 983: 327: 125: 809:) indices, as well as to detect optical signals from individual nanotubes. 3550: 3310: 2045: 477: 392:
A single-walled carbon nanotubes (SWCNT) can be envisioned as strip of a
342: 139: 1878:
A. Star; et al. (2004). "Nanotube Optoelectronic Memory Devices".
1662: 1642: 1612: 1489: 1485: 1242: 1220: 990: 974:
of 1.0, which is difficult to attain in practice, especially in a wide
971: 967: 963: 864:
Optical absorption spectrum from dispersed single-wall carbon nanotubes
480:
of the graphene are numbered sequentially from 1 to 6, the two vectors
3709: 3672: 3632: 3505: 3289: 3260: 3223: 3130: 2847: 2664: 2385: 2340: 2300: 2271: 2220: 2114: 1901: 1739: 1704: 464:
Alternatively, the structure can be described by two integer indices (
250: 3409: 1493: 362: 353: 86: 1665:, a substance produced in 2014; one of the blackest substances known 2327: 1627: 1542: 1538: 1367: 975: 397: 393: 227: 3331: 3060: 262: 3485:"Photosensitive Function of Encapsulated Dye in Carbon Nanotubes" 3441:"Light-Harvesting Function of β-Carotene Inside Carbon Nanotubes" 1154: 688:. In contrast, three-dimensional materials have continuous DOS. 860: 1594: 1158: 349: 818: 672: 621: 571: 631: 551:) that describe distinct tube structures are those with 0 ≤ 3311:
Kevin Welsher; Sarah P. Sherlock & Hongjie Dai (2011).
1288: 476:
of the graphene lattice. If the atoms around any 6-member
318:
is unique in many respects, as evidenced by their peculiar
35: 3236: 1109:
Photoluminescence map from single-wall carbon nanotubes. (
610:(chiral angle = 30°) are called "armchair" and those with 3725:"MIT engineers develop "blackest black" material to date" 1481: 1105: 665: 358: 1564:) indices, has been detected from carbon nanotubes yet. 3382:
Paul W. Barone; Seunghyun Baik; Daniel A. Heller &
1917: 826:
The band structure of carbon nanotubes having certain (
412:
of the strip relative to the main symmetry axes of the
2130:"Shigeo Maruyama's Fullerene and Carbon Nanotube Site" 1920:
Critical Reviews in Solid State and Materials Sciences
1964:; et al. (1995). "Physics of Carbon Nanotubes". 2159:"Optical Properties of Single-Wall Carbon Nanotubes" 1219:
PL is quick: relaxation typically occurs within 100
1189:
states, respectively. Then they recombine through a
1133: 957: 1439:All the above Raman modes can be observed both as 2925: 2738: 1960: 3766: 3758:Carbon Nanotube Black Body (AIST nano tech 2009) 2965:"Bundle Effects of Single-Wall Carbon Nanotubes" 2324: 1588: 3571: 3318:Proceedings of the National Academy of Sciences 2548:Proceedings of the National Academy of Sciences 2414:Proceedings of the National Academy of Sciences 2248: 2197: 2083: 1765: 1658:Selective chemistry of single-walled nanotubes 1292:Raman spectrum of single-wall carbon nanotubes 2648: 1157:). Both electron and hole rapidly relax (via 287: 3722: 1999: 1682: 1153:transition, creating an electron-hole pair ( 589: 2984: 2827: 2284: 2028: 1821: 3608: 3199: 2962: 2875: 2871: 2869: 2867: 2865: 2783: 2361: 2156: 2152: 2150: 1995: 1993: 1991: 1989: 1913: 1911: 1873: 1871: 1817: 1815: 1648:Potential applications of carbon nanotubes 294: 280: 3482: 3438: 3358: 3348: 3330: 3267: 3059: 3012: 2577: 2567: 2541: 2444: 2434: 2406: 2044: 1638:Mechanical properties of carbon nanotubes 1434: 1324:(in cm) depends on the nanotube diameter 660: 314:. The way those materials interact with 3685: 3648: 3526: 3493:Journal of the American Chemical Society 3277:Journal of the American Chemical Society 2921: 2919: 2917: 2835:Journal of the American Chemical Society 2652:Journal of the American Chemical Society 2599: 2597: 2288:Journal of the American Chemical Society 2244: 2242: 2240: 2238: 2193: 2191: 2189: 1725: 1312: 1287: 1203:transition resulting in light emission. 1104: 859: 817: 671: 630: 620: 431: 3304: 3230: 3146: 3142: 3140: 3106: 2862: 2603: 2467: 2147: 2127: 1986: 1954: 1908: 1877: 1868: 1812: 1719: 643: 460:, the tube is said to be of type (3,1). 345:(directionally dependent) and tunable. 3767: 3644: 3642: 3375: 2685: 2320: 2318: 1761: 1759: 1757: 1676: 1567: 1548: 1451: 695:Optical transitions occur between the 520:on one edge of the strip to the point 376: 308:optical properties of carbon nanotubes 3754:— many of older ones are downloadable 3043: 2914: 2594: 2249:K. Iakoubovskii; et al. (2008). 2235: 2198:K. Iakoubovskii; et al. (2006). 2186: 2084:K. Iakoubovskii; et al. (2006). 1370:can be observed at double frequency. 1210: 855: 850: 419: 3137: 2642: 2077: 348:Applications of carbon nanotubes in 3723:Jennifer Chu (September 12, 2019). 3679: 3639: 3530:Japanese Journal of Applied Physics 2315: 1754: 1277: 13: 664: 16:Optical properties of the material 14: 3791: 3740: 2985:M. Y. Sfeir; et al. (2004). 2828:N. Ishigami; et al. (2008). 1623:Carbon nanotubes in photovoltaics 1456:Carbon nanotubes have very large 582:| is a multiple of 3, and like a 2963:H. Kataura; et al. (2000). 2784:T. Okazaki; et al. (2006). 2157:H. Kataura; et al. (1999). 1532: 1515:) pairs, which unique identify ( 1462:classical electromagnetic theory 1373: 1134:Photoluminescence (fluorescence) 958:Carbon nanotubes as a black body 565:geometric properties of the tube 383:Carbon nanotube § Structure 261: 249: 34: 3716: 3602: 3565: 3520: 3483:K. Yanagi; et al. (2007). 3476: 3439:K. Yanagi; et al. (2006). 3432: 3193: 3100: 3037: 2978: 2956: 2821: 2777: 2732: 2679: 2542:L. Mizuno; et al. (2009). 2535: 2461: 2407:K. Mizuno; et al. (2009). 2400: 2355: 2278: 2259:Journal of Physical Chemistry C 2208:Journal of Physical Chemistry B 2121: 1475: 1464:, elastic light scattering (or 1100: 813: 387: 22:Part of a series of articles on 2022: 1: 3078:10.1103/PhysRevLett.99.027402 2974:. Vol. 544. p. 262. 2900:10.1103/PhysRevLett.93.147406 2628:10.1103/PhysRevLett.92.177401 2468:K. Hata; et al. (2004). 2180:10.1016/S0379-6779(98)00278-1 1670: 1589:Multi-walled carbon nanotubes 758:, etc. Crossover transitions 2016:10.1016/0008-6223(95)00035-C 1980:10.1016/0008-6223(95)00017-8 1653:Resonance Raman spectroscopy 396:molecule (a single sheet of 7: 1600: 1060:White reflectance standard 995: 408:of the tube) and the angle 10: 3796: 3752:Publications of H. Kataura 3470:10.1103/PhysRevB.74.155420 2972:AIP Conference Proceedings 2950:10.1103/PhysRevB.69.115428 2815:10.1103/PhysRevB.74.153404 2063:10.1103/PhysRevB.74.205440 1418: 1281: 1161:-assisted processes) from 1049:Hemispherical-directional 1046:Hemispherical-directional 528:is then the angle between 380: 3596:10.1080/01418618008239335 1390: 1381: 997:Reflectance measurements 590:Zigzag and armchair tubes 316:electromagnetic radiation 3575:Philosophical Magazine A 2544:"Supporting Information" 310:are highly relevant for 238:Nanocrystalline material 214:Nanostructured materials 3689:Applied Physics Letters 3652:Applied Physics Letters 3350:10.1073/pnas.1014501108 3171:10.1126/science.1119177 3110:Applied Physics Letters 3047:Physical Review Letters 3014:10.1126/science.1103294 2879:Physical Review Letters 2710:10.1126/science.1166265 2607:Physical Review Letters 2569:10.1073/pnas.0900155106 2499:10.1126/science.1104962 2436:10.1073/pnas.0900155106 2094:Applied Physics Letters 1846:10.1126/science.1125695 1790:10.1126/science.1081294 1480:Light emitting diodes ( 2763:10.1038/nnano.2007.261 1940:10.1080/20014091104189 1441:Stokes and anti-Stokes 1435:Anti-Stokes scattering 1293: 1130: 986:(200 μm) wavelengths. 865: 823: 686:Van Hove singularities 677: 669: 661:Van Hove singularities 636: 626: 461: 2742:Nature Nanotechnology 1313:Radial breathing mode 1291: 1108: 863: 821: 675: 668: 634: 624: 435: 367:optoelectronic memory 268:Technology portal 63:Mechanical properties 3551:10.1143/JJAP.45.9286 1608:Allotropes of carbon 1071:Average reflectance 989:These SWNT forests ( 644:Electronic structure 233:Nanoporous materials 96:Buckminsterfullerene 3702:2014ApPhL.104z1107J 3665:2013ApPhL.102r1104J 3625:2004NanoL...4.1063F 3588:1980PMagA..41..589P 3543:2006JaJAP..45.9286S 3462:2006PhRvB..74o5420Y 3402:2005NatMa...4...86B 3341:2011PNAS..108.8943W 3284:(48): 15638–15639. 3253:2003NanoL...3.1235W 3216:2003NanoL...3.1067F 3163:2005Sci...310.1171C 3157:(5751): 1171–1174. 3123:2004ApPhL..85.2607W 3070:2007PhRvL..99b7402W 3005:2004Sci...306.1540S 2999:(5701): 1540–1543. 2942:2004PhRvB..69k5428S 2892:2004PhRvL..93n7406F 2807:2006PhRvB..74o3404O 2755:2007NatNa...2..560S 2702:2009Sci...323.1319J 2696:(5919): 1319–1323. 2620:2004PhRvL..92q7401W 2560:2009PNAS..106.6044M 2491:2004Sci...306.1362H 2485:(5700): 1362–1364. 2427:2009PNAS..106.6044M 2378:2008NanoL...8..446Y 2266:(30): 11194–11198. 2215:(35): 17420–17424. 2107:2006ApPhL..89q3108I 2055:2006PhRvB..74t5440M 1932:2001CRSSM..26..145S 1894:2004NanoL...4.1587S 1838:2006Sci...312..413I 1782:2003Sci...300..783M 1697:2009NanoL...9.3137W 1575:electroluminescence 1568:Electroluminescence 1554:Cathodoluminescence 1549:Cathodoluminescence 1466:Rayleigh scattering 1452:Rayleigh scattering 1085:Standard deviation 998: 377:Geometric structure 135:Carbon quantum dots 2174:(1–3): 2555–2558. 1294: 1284:Raman spectroscopy 1211:Salient properties 1131: 1029:Incident angle, ° 996: 869:Optical absorption 866: 856:Optical absorption 851:Optical properties 824: 678: 670: 637: 627: 462: 256:Science portal 68:Optical properties 3780:Optical materials 3710:10.1063/1.4886800 3673:10.1063/1.4804296 3633:10.1021/nl049607u 3537:(12): 9286–9289. 3506:10.1021/ja067351j 3500:(16): 4992–4997. 3449:Physical Review B 3384:Michael S. Strano 3325:(22): 8943–8948. 3290:10.1021/ja0466311 3261:10.1021/nl034428i 3224:10.1021/nl034313e 3131:10.1063/1.1797559 3117:(13): 2607–2609. 2929:Physical Review B 2848:10.1021/ja8024752 2842:(30): 9918–9924. 2794:Physical Review B 2665:10.1021/ja071553d 2421:(15): 6044–6077. 2386:10.1021/nl072369t 2341:10.1021/nn200427r 2301:10.1021/ja043061w 2272:10.1021/jp8018414 2221:10.1021/jp062653t 2115:10.1063/1.2364157 2032:Physical Review B 1962:M. S. Dresselhaus 1902:10.1021/nl049337f 1832:(5772): 413–416. 1776:(5620): 783–786. 1740:10.1021/nn401995z 1705:10.1021/nl901260b 1633:Hiromichi Kataura 1251:Position of the ( 1144:photoluminescence 1098: 1097: 982:(200 nm) to 836:Hiromichi Kataura 682:density of states 641: 640: 625:Armchair nanotube 324:photoluminescence 312:materials science 304: 303: 116:Carbon allotropes 3787: 3775:Carbon nanotubes 3735: 3734: 3732: 3731: 3720: 3714: 3713: 3683: 3677: 3676: 3646: 3637: 3636: 3619:(6): 1063–1066. 3606: 3600: 3599: 3569: 3563: 3562: 3524: 3518: 3517: 3489: 3480: 3474: 3473: 3445: 3436: 3430: 3429: 3410:10.1038/nmat1276 3389:Nature Materials 3379: 3373: 3372: 3362: 3352: 3334: 3308: 3302: 3301: 3271: 3265: 3264: 3247:(9): 1235–1238. 3234: 3228: 3227: 3210:(8): 1067–1071. 3197: 3191: 3190: 3144: 3135: 3134: 3104: 3098: 3097: 3063: 3041: 3035: 3034: 3016: 2982: 2976: 2975: 2969: 2960: 2954: 2953: 2923: 2912: 2911: 2873: 2860: 2859: 2825: 2819: 2818: 2790: 2781: 2775: 2774: 2736: 2730: 2729: 2683: 2677: 2676: 2659:(26): 8058–805. 2646: 2640: 2639: 2601: 2592: 2591: 2581: 2571: 2539: 2533: 2532: 2530: 2529: 2523: 2517:. Archived from 2474: 2465: 2459: 2458: 2448: 2438: 2404: 2398: 2397: 2359: 2353: 2352: 2335:(4): 2611–2618. 2322: 2313: 2312: 2282: 2276: 2275: 2255: 2246: 2233: 2232: 2204: 2195: 2184: 2183: 2167:Synthetic Metals 2163: 2154: 2145: 2144: 2142: 2141: 2132:. Archived from 2125: 2119: 2118: 2090: 2081: 2075: 2074: 2048: 2046:cond-mat/0608073 2026: 2020: 2019: 1997: 1984: 1983: 1958: 1952: 1951: 1915: 1906: 1905: 1888:(9): 1587–1591. 1875: 1866: 1865: 1819: 1810: 1809: 1763: 1752: 1751: 1723: 1717: 1716: 1680: 1446:Boltzmann factor 1365: 1352: 1278:Raman scattering 1066:Aluminum mirror 999: 788:dipole-forbidden 617: 616: 338:Carbon nanotubes 296: 289: 282: 266: 265: 254: 253: 205:Titanium dioxide 44:Carbon nanotubes 38: 19: 18: 3795: 3794: 3790: 3789: 3788: 3786: 3785: 3784: 3765: 3764: 3743: 3738: 3729: 3727: 3721: 3717: 3684: 3680: 3647: 3640: 3607: 3603: 3570: 3566: 3525: 3521: 3487: 3481: 3477: 3443: 3437: 3433: 3380: 3376: 3309: 3305: 3272: 3268: 3235: 3231: 3198: 3194: 3145: 3138: 3105: 3101: 3042: 3038: 2983: 2979: 2967: 2961: 2957: 2924: 2915: 2874: 2863: 2826: 2822: 2788: 2782: 2778: 2737: 2733: 2684: 2680: 2647: 2643: 2602: 2595: 2540: 2536: 2527: 2525: 2521: 2472: 2466: 2462: 2405: 2401: 2360: 2356: 2323: 2316: 2295:(10): 3439–48. 2283: 2279: 2253: 2247: 2236: 2202: 2196: 2187: 2161: 2155: 2148: 2139: 2137: 2126: 2122: 2088: 2082: 2078: 2027: 2023: 1998: 1987: 1959: 1955: 1916: 1909: 1876: 1869: 1820: 1813: 1764: 1755: 1724: 1720: 1681: 1677: 1673: 1668: 1618:Carbon nanotube 1603: 1591: 1584: 1580: 1570: 1551: 1535: 1514: 1507: 1486:photo-detectors 1478: 1454: 1437: 1426:selection rules 1421: 1393: 1384: 1376: 1360: 1354: 1346: 1340: 1334: 1323: 1315: 1286: 1280: 1264: 1257: 1213: 1202: 1195: 1188: 1181: 1174: 1167: 1152: 1136: 1103: 1015:Wavelength, μm 1007:Near-to-mid IR 980:far-ultraviolet 960: 942: 935: 927: 920: 913: 906: 899: 892: 885: 878: 858: 853: 816: 785: 778: 771: 764: 757: 750: 743: 736: 729: 722: 715: 708: 701: 663: 646: 635:Zigzag nanotube 594:Tubes of type ( 592: 474:reference frame 430: 390: 385: 379: 300: 260: 248: 145:Aluminium oxide 17: 12: 11: 5: 3793: 3783: 3782: 3777: 3761: 3760: 3755: 3749: 3742: 3741:External links 3739: 3737: 3736: 3715: 3696:(26): 261107. 3678: 3659:(18): 181104. 3638: 3601: 3582:(4): 589–600. 3564: 3519: 3475: 3456:(15): 155420. 3431: 3374: 3303: 3266: 3229: 3192: 3136: 3099: 3036: 2977: 2955: 2936:(11): 115428. 2913: 2886:(14): 147406. 2861: 2820: 2801:(15): 153404. 2776: 2749:(9): 560–564. 2731: 2678: 2641: 2614:(17): 177401. 2593: 2554:(15): 6044–7. 2534: 2460: 2399: 2372:(2): 446–451. 2354: 2314: 2277: 2234: 2185: 2146: 2120: 2101:(17): 173108. 2076: 2039:(20): 205440. 2021: 2010:(7): 959–972. 1985: 1974:(7): 883–891. 1953: 1926:(3): 145–249. 1907: 1867: 1811: 1753: 1734:(7): 6156–61. 1718: 1691:(9): 3137–41. 1674: 1672: 1669: 1667: 1666: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1604: 1602: 1599: 1590: 1587: 1582: 1578: 1569: 1566: 1550: 1547: 1534: 1531: 1530: 1529: 1525: 1524: 1512: 1505: 1477: 1474: 1453: 1450: 1436: 1433: 1420: 1417: 1392: 1389: 1383: 1380: 1375: 1372: 1358: 1344: 1332: 1321: 1314: 1311: 1282:Main article: 1279: 1276: 1275: 1274: 1262: 1255: 1248: 1247: 1234: 1231: 1228: 1224: 1217: 1212: 1209: 1200: 1193: 1186: 1179: 1172: 1165: 1150: 1135: 1132: 1102: 1099: 1096: 1095: 1092: 1089: 1086: 1082: 1081: 1078: 1075: 1072: 1068: 1067: 1064: 1061: 1058: 1054: 1053: 1050: 1047: 1044: 1040: 1039: 1036: 1033: 1030: 1026: 1025: 1022: 1019: 1016: 1012: 1011: 1010:Mid-to-far IR 1008: 1005: 1004:UV-to-near IR 1002: 976:spectral range 959: 956: 940: 933: 925: 918: 911: 904: 897: 890: 883: 876: 857: 854: 852: 849: 815: 812: 811: 810: 798: 797: 792: 791: 783: 776: 769: 762: 755: 748: 741: 734: 727: 720: 713: 706: 699: 662: 659: 645: 642: 639: 638: 628: 591: 588: 429: 418: 389: 386: 381:Main article: 378: 375: 302: 301: 299: 298: 291: 284: 276: 273: 272: 271: 270: 258: 243: 242: 241: 240: 235: 230: 225: 217: 216: 210: 209: 208: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 137: 129: 128: 121: 120: 119: 118: 113: 108: 103: 98: 90: 89: 83: 82: 81: 80: 75: 70: 65: 60: 55: 47: 46: 40: 39: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 3792: 3781: 3778: 3776: 3773: 3772: 3770: 3763: 3759: 3756: 3753: 3750: 3748: 3745: 3744: 3726: 3719: 3711: 3707: 3703: 3699: 3695: 3691: 3690: 3682: 3674: 3670: 3666: 3662: 3658: 3654: 3653: 3645: 3643: 3634: 3630: 3626: 3622: 3618: 3614: 3613: 3605: 3597: 3593: 3589: 3585: 3581: 3577: 3576: 3568: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3531: 3523: 3515: 3511: 3507: 3503: 3499: 3495: 3494: 3486: 3479: 3471: 3467: 3463: 3459: 3455: 3451: 3450: 3442: 3435: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3390: 3385: 3378: 3370: 3366: 3361: 3356: 3351: 3346: 3342: 3338: 3333: 3328: 3324: 3320: 3319: 3314: 3307: 3299: 3295: 3291: 3287: 3283: 3279: 3278: 3270: 3262: 3258: 3254: 3250: 3246: 3242: 3241: 3233: 3225: 3221: 3217: 3213: 3209: 3205: 3204: 3196: 3188: 3184: 3180: 3176: 3172: 3168: 3164: 3160: 3156: 3152: 3151: 3143: 3141: 3132: 3128: 3124: 3120: 3116: 3112: 3111: 3103: 3095: 3091: 3087: 3083: 3079: 3075: 3071: 3067: 3062: 3057: 3054:(2): 027402. 3053: 3049: 3048: 3040: 3032: 3028: 3024: 3020: 3015: 3010: 3006: 3002: 2998: 2994: 2993: 2988: 2981: 2973: 2966: 2959: 2951: 2947: 2943: 2939: 2935: 2931: 2930: 2922: 2920: 2918: 2909: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2880: 2872: 2870: 2868: 2866: 2857: 2853: 2849: 2845: 2841: 2837: 2836: 2831: 2824: 2816: 2812: 2808: 2804: 2800: 2796: 2795: 2787: 2780: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2743: 2735: 2727: 2723: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2690: 2682: 2674: 2670: 2666: 2662: 2658: 2654: 2653: 2645: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2608: 2600: 2598: 2589: 2585: 2580: 2575: 2570: 2565: 2561: 2557: 2553: 2549: 2545: 2538: 2524:on 2014-05-13 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2492: 2488: 2484: 2480: 2479: 2471: 2464: 2456: 2452: 2447: 2442: 2437: 2432: 2428: 2424: 2420: 2416: 2415: 2410: 2403: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2367: 2366: 2358: 2350: 2346: 2342: 2338: 2334: 2330: 2329: 2321: 2319: 2310: 2306: 2302: 2298: 2294: 2290: 2289: 2281: 2273: 2269: 2265: 2261: 2260: 2252: 2245: 2243: 2241: 2239: 2230: 2226: 2222: 2218: 2214: 2210: 2209: 2201: 2194: 2192: 2190: 2181: 2177: 2173: 2169: 2168: 2160: 2153: 2151: 2136:on 2012-12-20 2135: 2131: 2128:S. Maruyama. 2124: 2116: 2112: 2108: 2104: 2100: 2096: 2095: 2087: 2080: 2072: 2068: 2064: 2060: 2056: 2052: 2047: 2042: 2038: 2034: 2033: 2025: 2017: 2013: 2009: 2005: 2004: 1996: 1994: 1992: 1990: 1981: 1977: 1973: 1969: 1968: 1963: 1957: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1914: 1912: 1903: 1899: 1895: 1891: 1887: 1883: 1882: 1874: 1872: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1826: 1818: 1816: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1770: 1762: 1760: 1758: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1679: 1675: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1605: 1598: 1596: 1586: 1585:transitions. 1576: 1565: 1563: 1559: 1555: 1546: 1544: 1540: 1533:Sensitization 1527: 1526: 1522: 1518: 1511: 1504: 1499: 1498: 1497: 1495: 1491: 1487: 1483: 1473: 1469: 1467: 1463: 1459: 1449: 1447: 1442: 1432: 1429: 1427: 1416: 1414: 1410: 1405: 1401: 1397: 1388: 1379: 1374:Bundling mode 1371: 1369: 1364: 1357: 1350: 1343: 1338: 1331: 1327: 1320: 1310: 1308: 1304: 1298: 1290: 1285: 1272: 1268: 1261: 1254: 1250: 1249: 1244: 1240: 1235: 1232: 1229: 1225: 1222: 1218: 1215: 1214: 1208: 1204: 1199: 1196: −  1192: 1185: 1178: 1171: 1164: 1160: 1156: 1149: 1145: 1141: 1128: 1124: 1120: 1116: 1112: 1107: 1093: 1090: 1087: 1084: 1083: 1079: 1076: 1073: 1070: 1069: 1065: 1062: 1059: 1056: 1055: 1051: 1048: 1045: 1042: 1041: 1037: 1034: 1031: 1028: 1027: 1023: 1020: 1017: 1014: 1013: 1009: 1006: 1003: 1001: 1000: 994: 992: 987: 985: 981: 977: 973: 969: 965: 955: 951: 948: 944: 939: 932: 924: 917: 910: 903: 896: 889: 882: 875: 870: 862: 848: 846: 842: 837: 833: 829: 820: 808: 804: 800: 799: 794: 793: 789: 782: 779: −  775: 768: 765: −  761: 754: 747: 740: 733: 726: 719: 716: −  712: 705: 702: −  698: 694: 693: 692: 689: 687: 683: 674: 667: 658: 656: 652: 633: 629: 623: 619: 618: 615: 613: 609: 605: 601: 597: 587: 585: 584:semiconductor 581: 577: 573: 568: 566: 563:> 0. All 562: 558: 554: 550: 546: 541: 539: 538: 533: 532: 527: 523: 519: 515: 514: 510: 506: 505: 501: 497: 496: 491: 490: 485: 484: 479: 475: 471: 467: 459: 458: 453: 452: 447: 446: 441: 440: 434: 427: 423: 417: 415: 411: 407: 403: 399: 395: 384: 374: 370: 368: 364: 360: 355: 351: 346: 344: 339: 335: 333: 329: 325: 321: 317: 313: 309: 297: 292: 290: 285: 283: 278: 277: 275: 274: 269: 264: 259: 257: 252: 247: 246: 245: 244: 239: 236: 234: 231: 229: 226: 224: 223:Nanocomposite 221: 220: 219: 218: 215: 212: 211: 206: 203: 201: 198: 196: 193: 191: 188: 186: 185:Iron–platinum 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 136: 133: 132: 131: 130: 127: 126:nanoparticles 123: 122: 117: 114: 112: 111:Health impact 109: 107: 104: 102: 101:C70 fullerene 99: 97: 94: 93: 92: 91: 88: 85: 84: 79: 76: 74: 71: 69: 66: 64: 61: 59: 56: 54: 51: 50: 49: 48: 45: 42: 41: 37: 33: 32: 29: 28:Nanomaterials 26: 25: 21: 20: 3762: 3728:. Retrieved 3718: 3693: 3687: 3681: 3656: 3650: 3616: 3612:Nano Letters 3610: 3604: 3579: 3573: 3567: 3534: 3528: 3522: 3497: 3491: 3478: 3453: 3447: 3434: 3396:(1): 86–92. 3393: 3387: 3377: 3322: 3316: 3306: 3281: 3275: 3269: 3244: 3240:Nano Letters 3238: 3232: 3207: 3203:Nano Letters 3201: 3195: 3154: 3148: 3114: 3108: 3102: 3051: 3045: 3039: 2996: 2990: 2980: 2971: 2958: 2933: 2927: 2883: 2877: 2839: 2833: 2823: 2798: 2792: 2779: 2746: 2740: 2734: 2693: 2687: 2681: 2656: 2650: 2644: 2611: 2605: 2551: 2547: 2537: 2526:. Retrieved 2519:the original 2482: 2476: 2463: 2418: 2412: 2402: 2369: 2365:Nano Letters 2363: 2357: 2332: 2326: 2292: 2286: 2280: 2263: 2257: 2212: 2206: 2171: 2165: 2138:. Retrieved 2134:the original 2123: 2098: 2092: 2079: 2036: 2030: 2024: 2007: 2001: 1971: 1965: 1956: 1923: 1919: 1885: 1881:Nano Letters 1879: 1829: 1823: 1773: 1767: 1731: 1727: 1721: 1688: 1685:Nano Letters 1684: 1678: 1592: 1571: 1561: 1557: 1552: 1536: 1520: 1516: 1509: 1502: 1479: 1476:Applications 1470: 1458:aspect ratio 1455: 1438: 1430: 1422: 1412: 1408: 1403: 1399: 1395: 1394: 1385: 1377: 1362: 1355: 1353:for SWNT or 1348: 1341: 1336: 1329: 1325: 1318: 1316: 1306: 1302: 1299: 1295: 1270: 1266: 1259: 1252: 1205: 1197: 1190: 1183: 1176: 1169: 1162: 1147: 1140:fluorescence 1137: 1126: 1122: 1118: 1114: 1110: 1101:Luminescence 1063:Gold mirror 988: 984:far-infrared 966:should have 961: 952: 949: 945: 937: 930: 922: 915: 908: 901: 894: 887: 880: 873: 867: 844: 840: 831: 827: 825: 814:Kataura plot 806: 802: 786:, etc., are 780: 773: 766: 759: 752: 745: 738: 731: 724: 717: 710: 703: 696: 690: 679: 654: 650: 647: 611: 607: 603: 599: 595: 593: 579: 575: 569: 560: 556: 552: 548: 544: 542: 536: 535: 530: 529: 525: 521: 517: 512: 511: 508: 503: 502: 499: 494: 493: 488: 487: 482: 481: 469: 465: 463: 456: 455: 450: 449: 444: 443: 438: 437: 425: 421: 409: 405: 404:or diameter 401: 391: 388:Chiral angle 371: 347: 336: 328:fluorescence 307: 305: 160:Cobalt oxide 140:Quantum dots 73:Applications 67: 1221:picoseconds 1043:Reflection 586:otherwise. 543:The pairs ( 343:anisotropic 3769:Categories 3730:2019-12-04 2528:2013-03-05 2140:2008-12-08 1671:References 1663:Vantablack 1643:Nanoflower 1613:Buckypaper 1490:wavelength 1424:different 1243:fullerenes 1057:Reference 991:buckypaper 972:absorbance 968:emissivity 964:black body 428:) notation 363:bolometers 320:absorption 180:Iron oxide 87:Fullerenes 3559:122152101 3332:1105.3536 3061:0705.3986 1494:bolometer 1175:and from 1052:Specular 962:An ideal 943:) pairs. 414:hexagonal 354:photonics 334:spectra. 150:Cellulose 106:Chemistry 58:Chemistry 53:Synthesis 3514:17402730 3426:43558342 3418:15592477 3369:21576494 3298:15571374 3187:21960183 3179:16293757 3094:15090006 3086:17678258 3023:15514117 2908:15524844 2856:18597459 2771:18654368 2726:25110300 2718:19265015 2673:17552526 2636:15169189 2588:19339498 2515:34377168 2507:15550668 2455:19339498 2394:18181658 2349:21391554 2328:ACS Nano 2309:15755163 2229:16942079 2071:16144784 1948:95444574 1854:16627739 1806:36336745 1798:12730598 1748:23806050 1728:ACS Nano 1713:19650638 1628:Graphene 1601:See also 1543:lycopene 1539:carotene 1368:overtone 886:(energy 398:graphite 394:graphene 228:Nanofoam 195:Platinum 78:Timeline 3698:Bibcode 3661:Bibcode 3621:Bibcode 3584:Bibcode 3539:Bibcode 3458:Bibcode 3398:Bibcode 3360:3107273 3337:Bibcode 3249:Bibcode 3212:Bibcode 3159:Bibcode 3150:Science 3119:Bibcode 3066:Bibcode 3031:7515760 3001:Bibcode 2992:Science 2938:Bibcode 2888:Bibcode 2803:Bibcode 2751:Bibcode 2698:Bibcode 2689:Science 2616:Bibcode 2579:2669394 2556:Bibcode 2487:Bibcode 2478:Science 2446:2669394 2423:Bibcode 2374:Bibcode 2103:Bibcode 2051:Bibcode 1928:Bibcode 1890:Bibcode 1862:8365578 1834:Bibcode 1825:Science 1778:Bibcode 1769:Science 1693:Bibcode 1560:,  1519:,  1508:,  1419:G' mode 1305:,  1269:,  1258:,  1155:exciton 1113:,  1094:0.0027 1091:0.0041 1088:0.0048 1080:0.0017 1077:0.0097 1074:0.0160 1024:25–200 936:,  843:,  830:,  805:,  602:) with 330:), and 155:Ceramic 3557:  3512:  3424:  3416:  3367:  3357:  3296:  3185:  3177:  3092:  3084:  3029:  3021:  2906:  2854:  2769:  2724:  2716:  2671:  2634:  2586:  2576:  2513:  2505:  2453:  2443:  2392:  2347:  2307:  2227:  2069:  2003:Carbon 1967:Carbon 1946:  1860:  1852:  1804:  1796:  1746:  1711:  1595:scroll 1484:) and 1391:D mode 1382:G mode 1361:= 248/ 1347:= 234/ 1159:phonon 1018:0.2-2 350:optics 200:Silver 165:Copper 124:Other 3555:S2CID 3488:(PDF) 3444:(PDF) 3422:S2CID 3327:arXiv 3183:S2CID 3090:S2CID 3056:arXiv 3027:S2CID 2968:(PDF) 2789:(PDF) 2722:S2CID 2522:(PDF) 2511:S2CID 2473:(PDF) 2254:(PDF) 2203:(PDF) 2162:(PDF) 2089:(PDF) 2067:S2CID 2041:arXiv 1944:S2CID 1858:S2CID 1802:S2CID 1581:and E 1328:as, 1021:2–20 893:) or 796:CNTs. 572:metal 420:The ( 332:Raman 190:Lipid 3510:PMID 3414:PMID 3365:PMID 3294:PMID 3175:PMID 3082:PMID 3019:PMID 2904:PMID 2852:PMID 2767:PMID 2714:PMID 2669:PMID 2632:PMID 2584:PMID 2503:PMID 2451:PMID 2390:PMID 2345:PMID 2305:PMID 2225:PMID 1850:PMID 1794:PMID 1744:PMID 1709:PMID 1482:LEDs 1351:+ 10 1335:= A/ 1129:= 0. 574:if | 559:and 534:and 486:and 478:ring 365:and 359:LEDs 352:and 306:The 175:Iron 170:Gold 3706:doi 3694:104 3669:doi 3657:102 3629:doi 3592:doi 3547:doi 3502:doi 3498:129 3466:doi 3406:doi 3355:PMC 3345:doi 3323:108 3286:doi 3282:126 3257:doi 3220:doi 3167:doi 3155:310 3127:doi 3074:doi 3009:doi 2997:306 2946:doi 2896:doi 2844:doi 2840:130 2811:doi 2759:doi 2706:doi 2694:323 2661:doi 2657:129 2624:doi 2574:PMC 2564:doi 2552:106 2495:doi 2483:306 2441:PMC 2431:doi 2419:106 2382:doi 2337:doi 2297:doi 2293:127 2268:doi 2264:112 2217:doi 2213:110 2176:doi 2172:103 2111:doi 2059:doi 2012:doi 1976:doi 1936:doi 1898:doi 1842:doi 1830:312 1786:doi 1774:300 1736:doi 1701:doi 1359:RBM 1345:RBM 1333:RBM 1322:RBM 1246:PL. 1239:CVD 1182:to 1168:to 1142:or 1125:or 1038:10 970:or 921:or 900:to 879:to 657:). 540:. 454:+ 1 448:= 3 361:), 3771:: 3704:. 3692:. 3667:. 3655:. 3641:^ 3627:. 3615:. 3590:. 3580:41 3578:. 3553:. 3545:. 3535:45 3533:. 3508:. 3496:. 3490:. 3464:. 3454:74 3452:. 3446:. 3420:. 3412:. 3404:. 3392:. 3363:. 3353:. 3343:. 3335:. 3321:. 3315:. 3292:. 3280:. 3255:. 3243:. 3218:. 3206:. 3181:. 3173:. 3165:. 3153:. 3139:^ 3125:. 3115:85 3113:. 3088:. 3080:. 3072:. 3064:. 3052:99 3050:. 3025:. 3017:. 3007:. 2995:. 2989:. 2970:. 2944:. 2934:69 2932:. 2916:^ 2902:. 2894:. 2884:93 2882:. 2864:^ 2850:. 2838:. 2832:. 2809:. 2799:74 2797:. 2791:. 2765:. 2757:. 2745:. 2720:. 2712:. 2704:. 2692:. 2667:. 2655:. 2630:. 2622:. 2612:92 2610:. 2596:^ 2582:. 2572:. 2562:. 2550:. 2546:. 2509:. 2501:. 2493:. 2481:. 2475:. 2449:. 2439:. 2429:. 2417:. 2411:. 2388:. 2380:. 2368:. 2343:. 2331:. 2317:^ 2303:. 2291:. 2262:. 2256:. 2237:^ 2223:. 2211:. 2205:. 2188:^ 2170:. 2164:. 2149:^ 2109:. 2099:89 2097:. 2091:. 2065:. 2057:. 2049:. 2037:74 2035:. 2008:33 2006:. 1988:^ 1972:33 1970:. 1942:. 1934:. 1924:26 1922:. 1910:^ 1896:. 1884:. 1870:^ 1856:. 1848:. 1840:. 1828:. 1814:^ 1800:. 1792:. 1784:. 1772:. 1756:^ 1742:. 1730:. 1707:. 1699:. 1687:. 1583:22 1579:11 1541:, 1513:11 1506:22 1263:11 1256:22 1151:22 1121:= 1035:5 1032:8 941:11 934:22 926:11 919:22 912:11 891:22 772:, 756:22 751:, 749:11 742:11 737:, 735:22 730:, 728:11 709:, 555:≤ 522:A2 518:A1 507:+ 498:= 369:. 322:, 3733:. 3712:. 3708:: 3700:: 3675:. 3671:: 3663:: 3635:. 3631:: 3623:: 3617:4 3598:. 3594:: 3586:: 3561:. 3549:: 3541:: 3516:. 3504:: 3472:. 3468:: 3460:: 3428:. 3408:: 3400:: 3394:4 3371:. 3347:: 3339:: 3329:: 3300:. 3288:: 3263:. 3259:: 3251:: 3245:3 3226:. 3222:: 3214:: 3208:3 3189:. 3169:: 3161:: 3133:. 3129:: 3121:: 3096:. 3076:: 3068:: 3058:: 3033:. 3011:: 3003:: 2952:. 2948:: 2940:: 2910:. 2898:: 2890:: 2858:. 2846:: 2817:. 2813:: 2805:: 2773:. 2761:: 2753:: 2747:2 2728:. 2708:: 2700:: 2675:. 2663:: 2638:. 2626:: 2618:: 2590:. 2566:: 2558:: 2531:. 2497:: 2489:: 2457:. 2433:: 2425:: 2396:. 2384:: 2376:: 2370:8 2351:. 2339:: 2333:5 2311:. 2299:: 2274:. 2270:: 2231:. 2219:: 2182:. 2178:: 2143:. 2117:. 2113:: 2105:: 2073:. 2061:: 2053:: 2043:: 2018:. 2014:: 1982:. 1978:: 1950:. 1938:: 1930:: 1904:. 1900:: 1892:: 1886:4 1864:. 1844:: 1836:: 1808:. 1788:: 1780:: 1750:. 1738:: 1732:7 1715:. 1703:: 1695:: 1689:9 1562:m 1558:n 1521:m 1517:n 1510:S 1503:S 1413:D 1411:/ 1409:G 1404:D 1402:/ 1400:G 1396:D 1363:d 1356:ν 1349:d 1342:ν 1337:d 1330:ν 1326:d 1319:ν 1307:m 1303:n 1301:( 1271:m 1267:n 1260:S 1253:S 1223:. 1201:1 1198:v 1194:1 1191:c 1187:1 1184:v 1180:2 1177:v 1173:1 1170:c 1166:2 1163:c 1148:S 1127:m 1123:m 1119:n 1115:m 1111:n 938:E 931:E 929:( 923:E 916:E 909:E 907:( 905:1 902:c 898:1 895:v 888:E 884:2 881:c 877:2 874:v 845:m 841:n 839:( 832:m 828:n 807:m 803:n 784:1 781:v 777:2 774:c 770:2 767:v 763:1 760:c 753:E 746:E 739:M 732:S 725:S 721:2 718:c 714:2 711:v 707:1 704:c 700:1 697:v 655:m 653:, 651:n 649:( 612:m 608:m 606:= 604:n 600:m 598:, 596:n 580:n 578:– 576:m 561:n 557:n 553:m 549:m 547:, 545:n 537:w 531:u 526:α 513:v 509:m 504:u 500:n 495:w 489:v 483:u 470:m 468:, 466:n 457:v 451:u 445:w 439:w 426:m 424:, 422:n 410:α 406:d 402:c 357:( 326:( 295:e 288:t 281:v

Index

Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum
Silver

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.