Knowledge

Action potential

Source 📝

1711:
not inactivate at all; this variability guarantees that there will be always an available source of current for repolarization, even if some of the potassium channels are inactivated because of preceding depolarization. On the other hand, all neuronal voltage-activated sodium channels inactivate within several milliseconds during strong depolarization, thus making following depolarization impossible until a substantial fraction of sodium channels have returned to their closed state. Although it limits the frequency of firing, the absolute refractory period ensures that the action potential moves in only one direction along an axon. The currents flowing in due to an action potential spread out in both directions along the axon. However, only the unfired part of the axon can respond with an action potential; the part that has just fired is unresponsive until the action potential is safely out of range and cannot restimulate that part. In the usual
353:; that is, they cause the membrane potential to rise or fall. Action potentials are triggered when enough depolarization accumulates to bring the membrane potential up to threshold. When an action potential is triggered, the membrane potential abruptly shoots upward and then equally abruptly shoots back downward, often ending below the resting level, where it remains for some period of time. The shape of the action potential is stereotyped; this means that the rise and fall usually have approximately the same amplitude and time course for all action potentials in a given cell. (Exceptions are discussed later in the article). In most neurons, the entire process takes place in about a thousandth of a second. Many types of neurons emit action potentials constantly at rates of up to 10–100 per second. However, some types are much quieter, and may go for minutes or longer without emitting any action potentials. 2630:
makes it easier to activate an action potential. Thus, when an insect lands on the trap of the plant, it triggers a hair-like mechanoreceptor. This receptor then activates an action potential that lasts around 1.5 ms. This causes an increase of positive calcium ions into the cell, slightly depolarizing it. However, the flytrap does not close after one trigger. Instead, it requires the activation of two or more hairs. If only one hair is triggered, it disregards the activation as a false positive. Further, the second hair must be activated within a certain time interval (0.75–40 s) for it to register with the first activation. Thus, a buildup of calcium begins and then slowly falls after the first trigger. When the second action potential is fired within the time interval, it reaches the calcium threshold to depolarize the cell, closing the trap on the prey within a fraction of a second.
1920: 2477: 884: 1263: 3316: 571: 1043: 2312: 1738: 458:) proceeds explosively. The time and amplitude trajectory of the action potential are determined by the biophysical properties of the voltage-gated ion channels that produce it. Several types of channels capable of producing the positive feedback necessary to generate an action potential do exist. Voltage-gated sodium channels are responsible for the fast action potentials involved in nerve conduction. Slower action potentials in muscle cells and some types of neurons are generated by voltage-gated calcium channels. Each of these types comes in multiple variants, with different voltage sensitivity and different temporal dynamics. 3187: 3439: 3050: 1006:. Although glial cells are not involved with the transmission of electrical signals, they communicate and provide important biochemical support to neurons. To be specific, myelin wraps multiple times around the axonal segment, forming a thick fatty layer that prevents ions from entering or escaping the axon. This insulation prevents significant signal decay as well as ensuring faster signal speed. This insulation, however, has the restriction that no channels can be present on the surface of the axon. There are, therefore, regularly spaced patches of membrane, which have no insulation. These 1679:, in which they cannot be made to open regardless of the membrane potential—this gives rise to the absolute refractory period. Even after a sufficient number of sodium channels have transitioned back to their resting state, it frequently happens that a fraction of potassium channels remains open, making it difficult for the membrane potential to depolarize, and thereby giving rise to the relative refractory period. Because the density and subtypes of potassium channels may differ greatly between different types of neurons, the duration of the relative refractory period is highly variable. 760:, the speed of transmission of an action potential was undefined and it was assumed that adjacent areas became depolarized due to released ion interference with neighbouring channels. Measurements of ion diffusion and radii have since shown this not to be possible. Moreover, contradictory measurements of entropy changes and timing disputed the capacitance model as acting alone. Alternatively, Gilbert Ling's adsorption hypothesis, posits that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto adsorption sites of cells. 1824: 5829: 629:. The sodium channels close at the peak of the action potential, while potassium continues to leave the cell. The efflux of potassium ions decreases the membrane potential or hyperpolarizes the cell. For small voltage increases from rest, the potassium current exceeds the sodium current and the voltage returns to its normal resting value, typically −70 mV. However, if the voltage increases past a critical threshold, typically 15 mV higher than the resting value, the sodium current dominates. This results in a runaway condition whereby the 442: 226: 3105: 2567:), which opens voltage-sensitive sodium channels; these become inactivated and the membrane is repolarized through the outward current of potassium ions. The resting potential prior to the action potential is typically −90mV, somewhat more negative than typical neurons. The muscle action potential lasts roughly 2–4 ms, the absolute refractory period is roughly 1–3 ms, and the conduction velocity along the muscle is roughly 5 m/s. The action potential releases 2899: 289:. The membrane potential starts out at approximately −70 mV at time zero. A stimulus is applied at time = 1 ms, which raises the membrane potential above −55 mV (the threshold potential). After the stimulus is applied, the membrane potential rapidly rises to a peak potential of +40 mV at time = 2 ms. Just as quickly, the potential then drops and overshoots to −90 mV at time = 3 ms, and finally the resting potential of −70 mV is reestablished at time = 5 ms. 282: 367: 1467:, and electrostatic effects (attraction of opposite charges) are responsible for the movement of ions in and out of the neuron. The inside of a neuron has a negative charge, relative to the cell exterior, from the movement of K out of the cell. The neuron membrane is more permeable to K than to other ions, allowing this ion to selectively move out of the cell, down its concentration gradient. This concentration gradient along with 33: 11444: 3503:, both of which have only two coupled ODEs. The properties of the Hodgkin–Huxley and FitzHugh–Nagumo models and their relatives, such as the Bonhoeffer–Van der Pol model, have been well-studied within mathematics, computation and electronics. However the simple models of generator potential and action potential fail to accurately reproduce the near threshold neural spike rate and spike shape, specifically for the 2864:. For comparison, a hormone molecule carried in the bloodstream moves at roughly 8 m/s in large arteries. Part of this function is the tight coordination of mechanical events, such as the contraction of the heart. A second function is the computation associated with its generation. Being an all-or-none signal that does not decay with transmission distance, the action potential has similar advantages to 1123:, an action potential can be transmitted directly from one cell to the next in either direction. The free flow of ions between cells enables rapid non-chemical-mediated transmission. Rectifying channels ensure that action potentials move only in one direction through an electrical synapse. Electrical synapses are found in all nervous systems, including the human brain, although they are a distinct minority. 245:. A typical voltage across an animal cell membrane is −70 mV. This means that the interior of the cell has a negative voltage relative to the exterior. In most types of cells, the membrane potential usually stays fairly constant. Some types of cells, however, are electrically active in the sense that their voltages fluctuate over time. In some types of electrically active cells, including 1482: ≈ –75 mV. Since Na ions are in higher concentrations outside of the cell, the concentration and voltage differences both drive them into the cell when Na channels open. Depolarization opens both the sodium and potassium channels in the membrane, allowing the ions to flow into and out of the axon, respectively. If the depolarization is small (say, increasing 1180:, which in turn alter the ionic permeabilities of the membrane and its voltage. These voltage changes can again be excitatory (depolarizing) or inhibitory (hyperpolarizing) and, in some sensory neurons, their combined effects can depolarize the axon hillock enough to provoke action potentials. Some examples in humans include the 2626:, also known as the Venus flytrap, is found in subtropical wetlands in North and South Carolina. When there are poor soil nutrients, the flytrap relies on a diet of insects and animals. Despite research on the plant, there lacks an understanding behind the molecular basis to the Venus flytraps, and carnivore plants in general. 1569:. At longer times, after some but not all of the ion channels have recovered, the axon can be stimulated to produce another action potential, but with a higher threshold, requiring a much stronger depolarization, e.g., to −30 mV. The period during which action potentials are unusually difficult to evoke is called the 2964:). These axons are so large in diameter (roughly 1 mm, or 100-fold larger than a typical neuron) that they can be seen with the naked eye, making them easy to extract and manipulate. However, they are not representative of all excitable cells, and numerous other systems with action potentials have been studied. 2629:
However, plenty of research has been done on action potentials and how they affect movement and clockwork within the Venus flytrap. To start, the resting membrane potential of the Venus flytrap (−120 mV) is lower than animal cells (usually −90 mV to −40 mV). The lower resting potential
1710:
corresponds to the time required for the voltage-activated sodium channels to recover from inactivation, i.e., to return to their closed state. There are many types of voltage-activated potassium channels in neurons. Some of them inactivate fast (A-type currents) and some of them inactivate slowly or
1090:
and, thus, the membrane potential. If the binding increases the voltage (depolarizes the membrane), the synapse is excitatory. If, however, the binding decreases the voltage (hyperpolarizes the membrane), it is inhibitory. Whether the voltage is increased or decreased, the change propagates passively
2480:
Phases of a cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing eflux of potassium ions. The characteristic plateau ("2") results from
1892:
The length of axons' myelinated segments is important to the success of saltatory conduction. They should be as long as possible to maximize the speed of conduction, but not so long that the arriving signal is too weak to provoke an action potential at the next node of Ranvier. In nature, myelinated
1697:
The action potential generated at the axon hillock propagates as a wave along the axon. The currents flowing inwards at a point on the axon during an action potential spread out along the axon, and depolarize the adjacent sections of its membrane. If sufficiently strong, this depolarization provokes
1682:
The absolute refractory period is largely responsible for the unidirectional propagation of action potentials along axons. At any given moment, the patch of axon behind the actively spiking part is refractory, but the patch in front, not having been activated recently, is capable of being stimulated
1274:
In sensory neurons, action potentials result from an external stimulus. However, some excitable cells require no such stimulus to fire: They spontaneously depolarize their axon hillock and fire action potentials at a regular rate, like an internal clock. The voltage traces of such cells are known as
1157:
Despite the classical view of the action potential as a stereotyped, uniform signal having dominated the field of neuroscience for many decades, newer evidence does suggest that action potentials are more complex events indeed capable of transmitting information through not just their amplitude, but
648:
Currents produced by the opening of voltage-gated channels in the course of an action potential are typically significantly larger than the initial stimulating current. Thus, the amplitude, duration, and shape of the action potential are determined largely by the properties of the excitable membrane
188:
ions, which changes the electrochemical gradient, which in turn produces a further rise in the membrane potential towards zero. This then causes more channels to open, producing a greater electric current across the cell membrane and so on. The process proceeds explosively until all of the available
140:
situated at the ends of an axon; these signals can then connect with other neurons at synapses, or to motor cells or glands. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events
800:
deflection at P0 than they do at P30. One consequence of the decreasing action potential duration is that the fidelity of the signal can be preserved in response to high frequency stimulation. Immature neurons are more prone to synaptic depression than potentiation after high frequency stimulation.
3606:
In general, while this simple description of action potential initiation is accurate, it does not explain phenomena such as excitation block (the ability to prevent neurons from eliciting action potentials by stimulating them with large current steps) and the ability to elicit action potentials by
3358:
refined Bernstein's hypothesis by considering that the axonal membrane might have different permeabilities to different ions; in particular, they demonstrated the crucial role of the sodium permeability for the action potential. They made the first actual recording of the electrical changes across
1897:
of saltatory conduction is high, allowing transmission to bypass nodes in case of injury. However, action potentials may end prematurely in certain places where the safety factor is low, even in unmyelinated neurons; a common example is the branch point of an axon, where it divides into two axons.
2609:
ions. In 1906, J. C. Bose published the first measurements of action potentials in plants, which had previously been discovered by Burdon-Sanderson and Darwin. An increase in cytoplasmic calcium ions may be the cause of anion release into the cell. This makes calcium a precursor to ion movements,
268:
of molecules in which larger protein molecules are embedded. The lipid bilayer is highly resistant to movement of electrically charged ions, so it functions as an insulator. The large membrane-embedded proteins, in contrast, provide channels through which ions can pass across the membrane. Action
1564:
The critical threshold voltage for this runaway condition is usually around −45 mV, but it depends on the recent activity of the axon. A cell that has just fired an action potential cannot fire another one immediately, since the Na channels have not recovered from the inactivated state. The
816:
of calcium channels during development are slower than those of the voltage-gated sodium channels that will carry the action potential in the mature neurons. The longer opening times for the calcium channels can lead to action potentials that are considerably slower than those of mature neurons.
2651:
Unlike the rising phase and peak, the falling phase and after-hyperpolarization seem to depend primarily on cations that are not calcium. To initiate repolarization, the cell requires movement of potassium out of the cell through passive transportation on the membrane. This differs from neurons
453:
loops: The membrane potential controls the state of the ion channels, but the state of the ion channels controls the membrane potential. Thus, in some situations, a rise in the membrane potential can cause ion channels to open, thereby causing a further rise in the membrane potential. An action
2879:
The common prokaryotic/eukaryotic ancestor, which lived perhaps four billion years ago, is believed to have had voltage-gated channels. This functionality was likely, at some later point, cross-purposed to provide a communication mechanism. Even modern single-celled bacteria can utilize action
3025:
The third problem, that of obtaining electrodes small enough to record voltages within a single axon without perturbing it, was solved in 1949 with the invention of the glass micropipette electrode, which was quickly adopted by other researchers. Refinements of this method are able to produce
2345:
Some synapses dispense with the "middleman" of the neurotransmitter, and connect the presynaptic and postsynaptic cells together. When an action potential reaches such a synapse, the ionic currents flowing into the presynaptic cell can cross the barrier of the two cell membranes and enter the
2276:
to be released into the synaptic cleft. Neurotransmitters are small molecules that may open ion channels in the postsynaptic cell; most axons have the same neurotransmitter at all of their termini. The arrival of the action potential opens voltage-sensitive calcium channels in the presynaptic
558:
channels are governed by a transition matrix whose rates are voltage-dependent in a complicated way. Since these channels themselves play a major role in determining the voltage, the global dynamics of the system can be quite difficult to work out. Hodgkin and Huxley approached the problem by
3367:
technique to determine the dependence of the axonal membrane's permeabilities to sodium and potassium ions on voltage and time, from which they were able to reconstruct the action potential quantitatively. Hodgkin and Huxley correlated the properties of their mathematical model with discrete
1489:
from −70 mV to −60 mV), the outward potassium current overwhelms the inward sodium current and the membrane repolarizes back to its normal resting potential around −70 mV. However, if the depolarization is large enough, the inward sodium current increases more than the outward
680:
The principal ions involved in an action potential are sodium and potassium cations; sodium ions enter the cell, and potassium ions leave, restoring equilibrium. Relatively few ions need to cross the membrane for the membrane voltage to change drastically. The ions exchanged during an action
3161:
snake inhibits the voltage-sensitive potassium channel. Such inhibitors of ion channels serve an important research purpose, by allowing scientists to "turn off" specific channels at will, thus isolating the other channels' contributions; they can also be useful in purifying ion channels by
2637:
loss of salt (KCl). Whereas, the animal action potential is osmotically neutral because equal amounts of entering sodium and leaving potassium cancel each other osmotically. The interaction of electrical and osmotic relations in plant cells appears to have arisen from an osmotic function of
437:
Thus, a voltage-gated ion channel tends to be open for some values of the membrane potential, and closed for others. In most cases, however, the relationship between membrane potential and channel state is probabilistic and involves a time delay. Ion channels switch between conformations at
2489:
The cardiac action potential differs from the neuronal action potential by having an extended plateau, in which the membrane is held at a high voltage for a few hundred milliseconds prior to being repolarized by the potassium current as usual. This plateau is due to the action of slower
2087:
along the length of the neuron, and where λ and τ are the characteristic length and time scales on which those voltages decay in response to a stimulus. Referring to the circuit diagram on the right, these scales can be determined from the resistances and capacitances per unit length.
1416:
considers only two types of voltage-sensitive ion channels, and makes several assumptions about them, e.g., that their internal gates open and close independently of one another. In reality, there are many types of ion channels, and they do not always open and close independently.
1880:
of an action potential, typically tenfold. Conversely, for a given conduction velocity, myelinated fibers are smaller than their unmyelinated counterparts. For example, action potentials move at roughly the same speed (25 m/s) in a myelinated frog axon and an unmyelinated
1600:. This lowers the membrane's permeability to sodium relative to potassium, driving the membrane voltage back towards the resting value. At the same time, the raised voltage opens voltage-sensitive potassium channels; the increase in the membrane's potassium permeability drives 213:. Sodium-based action potentials usually last for under one millisecond, but calcium-based action potentials may last for 100 milliseconds or longer. In some types of neurons, slow calcium spikes provide the driving force for a long burst of rapidly emitted sodium spikes. In 2704:
that does not transmit action potentials, although some studies have suggested that these organisms have a form of electrical signaling, too. The resting potential, as well as the size and duration of the action potential, have not varied much with evolution, although the
1320:
The course of the action potential can be divided into five parts: the rising phase, the peak phase, the falling phase, the undershoot phase, and the refractory period. During the rising phase the membrane potential depolarizes (becomes more positive). The point at which
1702:
in 1937. After crushing or cooling nerve segments and thus blocking the action potentials, he showed that an action potential arriving on one side of the block could provoke another action potential on the other, provided that the blocked segment was sufficiently short.
1885:, but the frog axon has a roughly 30-fold smaller diameter and 1000-fold smaller cross-sectional area. Also, since the ionic currents are confined to the nodes of Ranvier, far fewer ions "leak" across the membrane, saving metabolic energy. This saving is a significant 716:
Although action potentials are generated locally on patches of excitable membrane, the resulting currents can trigger action potentials on neighboring stretches of membrane, precipitating a domino-like propagation. In contrast to passive spread of electric potentials
3486:
Mathematical and computational models are essential for understanding the action potential, and offer predictions that may be tested against experimental data, providing a stringent test of a theory. The most important and accurate of the early neural models is the
3384:
to examine the conductance states of individual ion channels. In the 21st century, researchers are beginning to understand the structural basis for these conductance states and for the selectivity of channels for their species of ion, through the atomic-resolution
2859:
Given its conservation throughout evolution, the action potential seems to confer evolutionary advantages. One function of action potentials is rapid, long-range signaling within the organism; the conduction velocity can exceed 110 m/s, which is one-third the
1719:—is very rare. However, if a laboratory axon is stimulated in its middle, both halves of the axon are "fresh", i.e., unfired; then two action potentials will be generated, one traveling towards the axon hillock and the other traveling towards the synaptic knobs. 589:(2) of the neuron activates sodium channels, allowing sodium ions to pass through the cell membrane into the cell, resulting in a net positive charge in the neuron relative to the extracellular fluid. After the action potential peak is reached, the neuron begins 325:
different electrical properties. As a result, some parts of the membrane of a neuron may be excitable (capable of generating action potentials), whereas others are not. Recent studies have shown that the most excitable part of a neuron is the part after the
1325:
stops is called the peak phase. At this stage, the membrane potential reaches a maximum. Subsequent to this, there is a falling phase. During this stage the membrane potential becomes more negative, returning towards resting potential. The undershoot, or
2426:, located in the synapse. This enzyme quickly reduces the stimulus to the muscle, which allows the degree and timing of muscular contraction to be regulated delicately. Some poisons inactivate acetylcholinesterase to prevent this control, such as the 2062: 1330:, phase is the period during which the membrane potential temporarily becomes more negatively charged than when at rest (hyperpolarized). Finally, the time during which a subsequent action potential is impossible or difficult to fire is called the 2652:
because the movement of potassium does not dominate the decrease in membrane potential. To fully repolarize, a plant cell requires energy in the form of ATP to assist in the release of hydrogen from the cell – utilizing a transporter called
269:
potentials are driven by channel proteins whose configuration switches between closed and open states as a function of the voltage difference between the interior and exterior of the cell. These voltage-sensitive proteins are known as
969:. These spines have a thin neck connecting a bulbous protrusion to the dendrite. This ensures that changes occurring inside the spine are less likely to affect the neighboring spines. The dendritic spine can, with rare exception (see 461:
The most intensively studied type of voltage-dependent ion channels comprises the sodium channels involved in fast nerve conduction. These are sometimes known as Hodgkin-Huxley sodium channels because they were first characterized by
721:), action potentials are generated anew along excitable stretches of membrane and propagate without decay. Myelinated sections of axons are not excitable and do not produce action potentials and the signal is propagated passively as 3495:(ODEs). Although the Hodgkin–Huxley model may be a simplification with few limitations compared to the realistic nervous membrane as it exists in nature, its complexity has inspired several even-more-simplified models, such as the 1675:, during which a stronger-than-usual stimulus is required. These two refractory periods are caused by changes in the state of sodium and potassium channel molecules. When closing after an action potential, sodium channels enter an 3288:, who discovered in 1843 that stimulating these muscle and nerve preparations produced a notable diminution in their resting currents, making him the first researcher to identify the electrical nature of the action potential. The 990:. Multiple signals generated at the spines, and transmitted by the soma all converge here. Immediately after the axon hillock is the axon. This is a thin tubular protrusion traveling away from the soma. The axon is insulated by a 197:
channels are then activated, and there is an outward current of potassium ions, returning the electrochemical gradient to the resting state. After an action potential has occurred, there is a transient negative shift, called the
2193:
These time and length-scales can be used to understand the dependence of the conduction velocity on the diameter of the neuron in unmyelinated fibers. For example, the time-scale τ increases with both the membrane resistance
1777:. Myelin sheath reduces membrane capacitance and increases membrane resistance in the inter-node intervals, thus allowing a fast, saltatory movement of action potentials from node to node. Myelination is found mainly in 3065:
While glass micropipette electrodes measure the sum of the currents passing through many ion channels, studying the electrical properties of a single ion channel became possible in the 1970s with the development of the
1095:
and its refinements). Typically, the voltage stimulus decays exponentially with the distance from the synapse and with time from the binding of the neurotransmitter. Some fraction of an excitatory voltage may reach the
189:
ion channels are open, resulting in a large upswing in the membrane potential. The rapid influx of sodium ions causes the polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As the
2604:
are also electrically excitable. The fundamental difference from animal action potentials is that the depolarization in plant cells is not accomplished by an uptake of positive sodium ions, but by release of negative
1581:
The positive feedback of the rising phase slows and comes to a halt as the sodium ion channels become maximally open. At the peak of the action potential, the sodium permeability is maximized and the membrane voltage
1141:
of an action potential is often thought to be independent of the amount of current that produced it. In other words, larger currents do not create larger action potentials. Therefore, action potentials are said to be
1010:
can be considered to be "mini axon hillocks", as their purpose is to boost the signal in order to prevent significant signal decay. At the furthest end, the axon loses its insulation and begins to branch into several
836:
In order for the transition from a calcium-dependent action potential to a sodium-dependent action potential to proceed new channels must be added to the membrane. If Xenopus neurons are grown in an environment with
593:(3), where the sodium channels close and potassium channels open, allowing potassium ions to cross the membrane into the extracellular fluid, returning the membrane potential to a negative value. Finally, there is a 1307:
nerves. The external stimuli do not cause the cell's repetitive firing, but merely alter its timing. In some cases, the regulation of frequency can be more complex, leading to patterns of action potentials, such as
3511:. More modern research has focused on larger and more integrated systems; by joining action-potential models with models of other parts of the nervous system (such as dendrites and synapses), researchers can study 3178:, which prolongs the activation of the sodium channels involved in action potentials. The ion channels of insects are sufficiently different from their human counterparts that there are few side effects in humans. 2868:. The integration of various dendritic signals at the axon hillock and its thresholding to form a complex train of action potentials is another form of computation, one that has been exploited biologically to form 2638:
electrical excitability in a common unicellular ancestors of plants and animals under changing salinity conditions. Further, the present function of rapid signal transmission is seen as a newer accomplishment of
2932:
for their contribution to the description of the ionic basis of nerve conduction. It focused on three goals: isolating signals from single neurons or axons, developing fast, sensitive electronics, and shrinking
2350:. Thus, the ionic currents of the presynaptic action potential can directly stimulate the postsynaptic cell. Electrical synapses allow for faster transmission because they do not require the slow diffusion of 64:
occurs when K channels open and K moves out of the axon, creating a change in electric polarity between the outside of the cell and the inside. The impulse travels down the axon in one direction only, to the
3296:. Progress in electrophysiology stagnated thereafter due to the limitations of chemical theory and experimental practice. To establish that nervous tissue is made up of discrete cells, the Spanish physician 1799:
Action potentials cannot propagate through the membrane in myelinated segments of the axon. However, the current is carried by the cytoplasm, which is sufficient to depolarize the first or second subsequent
981:
organelles. Unlike the spines, the surface of the soma is populated by voltage activated ion channels. These channels help transmit the signals generated by the dendrites. Emerging out from the soma is the
1893:
segments are generally long enough for the passively propagated signal to travel for at least two nodes while retaining enough amplitude to fire an action potential at the second or third node. Thus, the
2188: 11434: 986:. This region is characterized by having a very high concentration of voltage-activated sodium channels. In general, it is considered to be the spike initiation zone for action potentials, i.e. the 2613:
The initial influx of calcium ions also poses a small cellular depolarization, causing the voltage-gated ion channels to open and allowing full depolarization to be propagated by chloride ions.
1196:, respectively. However, not all sensory neurons convert their external signals into action potentials; some do not even have an axon. Instead, they may convert the signal into the release of a 5251:
Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Electrical Potentials Across Nerve Cell Membranes. Available from:
3474:
of four types of ions. The two conductances on the left, for potassium (K) and sodium (Na), are shown with arrows to indicate that they can vary with the applied voltage, corresponding to the
788:
are added to the membrane, causing a decrease in input resistance. A mature neuron also undergoes shorter changes in membrane potential in response to synaptic currents. Neurons from a ferret
532:. This is only the population average behavior, however – an individual channel can in principle make any transition at any time. However, the likelihood of a channel's transitioning from the 1629:
The depolarized voltage opens additional voltage-dependent potassium channels, and some of these do not close right away when the membrane returns to its normal resting voltage. In addition,
345:. At the axon hillock of a typical neuron, the resting potential is around –70 millivolts (mV) and the threshold potential is around –55 mV. Synaptic inputs to a neuron cause the membrane to 11567: 8868:
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. (April 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity".
673:, which scale with the magnitude of the stimulus. A variety of action potential types exist in many cell types and cell compartments as determined by the types of voltage-gated channels, 1633:
open in response to the influx of calcium ions during the action potential. The intracellular concentration of potassium ions is transiently unusually low, making the membrane voltage
11432: 1820:
and Robert Stämpfli. By contrast, in unmyelinated axons, the action potential provokes another in the membrane immediately adjacent, and moves continuously down the axon like a wave.
253:. In some types of neurons, the entire up-and-down cycle takes place in a few thousandths of a second. In muscle cells, a typical action potential lasts about a fifth of a second. In 8734:
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (August 1981). "Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches".
1463:, while there is a high concentration of potassium ions in the intracellular fluid compared to the extracellular fluid. The difference in concentrations, which causes ions to move 1369:, which is a key part of the rising phase of the action potential. A complicating factor is that a single ion channel may have multiple internal "gates" that respond to changes in 2136: 1974: 681:
potential, therefore, make a negligible change in the interior and exterior ionic concentrations. The few ions that do cross are pumped out again by the continuous action of the
2563:
The action potential in a normal skeletal muscle cell is similar to the action potential in neurons. Action potentials result from the depolarization of the cell membrane (the
585:(1), sodium and potassium ions have limited ability to pass through the membrane, and the neuron has a net negative charge inside. Once the action potential is triggered, the 1039:. The basic requirement is that the membrane voltage at the hillock be raised above the threshold for firing. There are several ways in which this depolarization can occur. 9191:
Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (February 2001). "The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities".
2219:); as the resistance increases, less charge is transferred per unit time, making the equilibration slower. In a similar manner, if the internal resistance per unit length 852:
This maturation of electrical properties is seen across species. Xenopus sodium and potassium currents increase drastically after a neuron goes through its final phase of
8905:
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (November 2001). "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution".
821:
neurons initially have action potentials that take 60–90 ms. During development, this time decreases to 1 ms. There are two reasons for this drastic decrease. First, the
601:
while the Na and K ions return to their resting state distributions across the membrane (1), and the neuron is ready to repeat the process for the next action potential.
229:
Shape of a typical action potential. The membrane potential remains near a baseline level until at some point in time, it abruptly spikes upward and then rapidly falls.
11433: 1749:
causes inwards currents that depolarize the membrane at the next node, provoking a new action potential there; the action potential appears to "hop" from node to node.
249:
and muscle cells, the voltage fluctuations frequently take the form of a rapid upward (positive) spike followed by a rapid fall. These up-and-down cycles are known as
512:(closed) state. It tends then to stay inactivated for some time, but, if the membrane potential becomes low again, the channel will eventually transition back to the 6344: 6840:
Tasaki I, Takeuchi T (1942). "Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Übertragung des nervenimpulses".
3088:
technologies have been developed in recent years to measure action potentials, either via simultaneous multisite recordings or with ultra-spatial resolution. Using
4609: 4607: 4605: 9429:
Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL, Petersen J, Andersen JP, et al. (December 2007). "Crystal structure of the sodium-potassium pump".
845:
inhibitors that transition is prevented. Even the electrical activity of the cell itself may play a role in channel expression. If action potentials in Xenopus
1100:
and may (in rare cases) depolarize the membrane enough to provoke a new action potential. More typically, the excitatory potentials from several synapses must
5336:
Opritov, V A, et al. "Direct Coupling of Action Potential Generation in Cells of a Higher Plant (Cucurbita Pepo) with the Operation of an Electrogenic Pump."
4602: 2909: 1706:
Once an action potential has occurred at a patch of membrane, the membrane patch needs time to recover before it can fire again. At the molecular level, this
508:(open) state. The higher the membrane potential the greater the probability of activation. Once a channel has activated, it will eventually transition to the 1785:. Not all neurons in vertebrates are myelinated; for example, axons of the neurons comprising the autonomous nervous system are not, in general, myelinated. 567:. These equations have been extensively modified by later research, but form the starting point for most theoretical studies of action potential biophysics. 217:, on the other hand, an initial fast sodium spike provides a "primer" to provoke the rapid onset of a calcium spike, which then produces muscle contraction. 1792:
of action potentials and makes them more energy-efficient. Whether saltatory or not, the mean conduction velocity of an action potential ranges from 1 
1596:. However, the same raised voltage that opened the sodium channels initially also slowly shuts them off, by closing their pores; the sodium channels become 1337:
The course of the action potential is determined by two coupled effects. First, voltage-sensitive ion channels open and close in response to changes in the
3372:
that could exist in several different states, including "open", "closed", and "inactivated". Their hypotheses were confirmed in the mid-1970s and 1980s by
1812:. Although the mechanism of saltatory conduction was suggested in 1925 by Ralph Lillie, the first experimental evidence for saltatory conduction came from 1965:
in 1946. In simple cable theory, the neuron is treated as an electrically passive, perfectly cylindrical transmission cable, which can be described by a
1715:, the action potential propagates from the axon hillock towards the synaptic knobs (the axonal termini); propagation in the opposite direction—known as 2916:
The study of action potentials has required the development of new experimental methods. The initial work, prior to 1955, was carried out primarily by
1901:
Some diseases degrade myelin and impair saltatory conduction, reducing the conduction velocity of action potentials. The most well-known of these is
11564: 9052:
Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY (December 1999). "Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel".
11183: 11096: 11070: 942:
Several types of cells support an action potential, such as plant cells, muscle cells, and the specialized cells of the heart (in which occurs the
3034:), which also confers high input impedance. Action potentials may also be recorded with small metal electrodes placed just next to a neuron, with 2642:
cells in a more stable osmotic environment. It is likely that the familiar signaling function of action potentials in some vascular plants (e.g.
2525:. Conversely, anomalies in the cardiac action potential—whether due to a congenital mutation or injury—can lead to human pathologies, especially 3304:
to reveal the myriad shapes of neurons, which they rendered painstakingly. For their discoveries, Golgi and Ramón y Cajal were awarded the 1906
5532: 4578: 3950: 3948: 3946: 11146:"The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling" 11530: 11503: 1655:, that persists until the membrane potassium permeability returns to its usual value, restoring the membrane potential to the resting state. 1365:. Thus, the membrane potential affects the permeability, which then further affects the membrane potential. This sets up the possibility for 438:
unpredictable times: The membrane potential determines the rate of transitions and the probability per unit time of each type of transition.
4203: 4201: 4199: 3943: 2226:
is lower in one axon than in another (e.g., because the radius of the former is larger), the spatial decay length λ becomes longer and the
666: 504:(closed) state. If the membrane potential is raised above a certain level, the channel shows increased probability of transitioning to the 2575:
and allow the muscle to contract. Muscle action potentials are provoked by the arrival of a pre-synaptic neuronal action potential at the
8304:"Some factors affecting the time course of the recovery of contracture ability following a potassium contracture in frog striated muscle" 4196: 3433: 7823:
Gradmann D, Hoffstadt J (November 1998). "Electrocoupling of ion transporters in plants: interaction with internal ion concentrations".
2971:, which permitted experimenters to study the ionic currents underlying an action potential in isolation, and eliminated a key source of 1753:
In order to enable fast and efficient transduction of electrical signals in the nervous system, certain neuronal axons are covered with
6663:"Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons" 3607:
briefly hyperpolarizing the membrane. By analyzing the dynamics of a system of sodium and potassium channels in a membrane patch using
3416:
was identified in 1957 and its properties gradually elucidated, culminating in the determination of its atomic-resolution structure by
3359:
the neuronal membrane that mediate the action potential. This line of research culminated in the five 1952 papers of Hodgkin, Katz and
2622:) use sodium-gated channels to operate plant movements and "count" stimulation events to determine if a threshold for movement is met. 11485: 11476: 11122: 1945:) are not shown, since they are usually negligibly small; the extracellular medium may be assumed to have the same voltage everywhere. 1872:
Myelin has two important advantages: fast conduction speed and energy efficiency. For axons larger than a minimum diameter (roughly 1
1035:
and their termination at the synaptic knobs, it is helpful to consider the methods by which action potentials can be initiated at the
2463: 5880:
Golding NL, Kath WL, Spruston N (December 2001). "Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites".
2494:
channels opening and holding the membrane voltage near their equilibrium potential even after the sodium channels have inactivated.
2354:
across the synaptic cleft. Hence, electrical synapses are used whenever fast response and coordination of timing are crucial, as in
3014:
at a fixed value is a direct reflection of the current flowing through the membrane. Other electronic advances included the use of
10262:
Handbook of Physiology: a Critical, Comprehensive Presentation of Physiological Knowledge and Concepts: Section 1: Neurophysiology
4660: 3166:
or in assaying their concentration. However, such inhibitors also make effective neurotoxins, and have been considered for use as
1808:
provokes another action potential at the next node; this apparent "hopping" of the action potential from node to node is known as
8950:
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (May 2003). "X-ray structure of a voltage-dependent K+ channel".
6811:
Tasaki I, Takeuchi T (1941). "Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung".
2144: 1015:. These presynaptic terminals, or synaptic boutons, are a specialized area within the axon of the presynaptic cell that contains 7712:
Mummert H, Gradmann D (December 1991). "Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes".
4467: 3082:
in 1991. Patch-clamping verified that ionic channels have discrete states of conductance, such as open, closed and inactivated.
1788:
Myelin prevents ions from entering or leaving the axon along myelinated segments. As a general rule, myelination increases the
11521: 6391: 5922:
Sasaki, T., Matsuki, N., Ikegaya, Y. 2011 Action-potential modulation during axonal conduction Science 331 (6017), pp. 599–601
5548:, and Frederic L. Holmes. "Experiment, Quantification and Discovery: Helmholtz's Early Physiological Researches, 1843-50". In 11515: 11400: 11379: 11317: 11218: 10985: 10948: 10874: 10839: 10801: 10766: 10731: 10692: 10657: 10605: 10567: 10532: 10494: 10456: 10421: 10384: 10357: 10294: 10234: 10135: 10068: 8431:
Piccolino M (October 1997). "Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology".
7799: 7308:
Humeau Y, Doussau F, Grant NJ, Poulain B (May 2000). "How botulinum and tetanus neurotoxins block neurotransmitter release".
7235: 6531: 4942: 4132: 3758: 3305: 3079: 2929: 1409: 3346:
suggested that the action potential was generated as a threshold was crossed, what would be later shown as a product of the
2497:
The cardiac action potential plays an important role in coordinating the contraction of the heart. The cardiac cells of the
470:
in their Nobel Prize-winning studies of the biophysics of the action potential, but can more conveniently be referred to as
4138: 305:. This electrical polarization results from a complex interplay between protein structures embedded in the membrane called 193:
close, sodium ions can no longer enter the neuron, and they are then actively transported back out of the plasma membrane.
3865: 341:, which is the value the membrane potential maintains as long as nothing perturbs the cell, and a higher value called the 180:
of the cell, but they rapidly begin to open if the membrane potential increases to a precisely defined threshold voltage,
11606: 9339:"The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo" 5093:
Luken JO (December 2005). "Habitats of Dionaea muscipula (Venus' Fly Trap), Droseraceae, Associated with Carolina Bays".
4005:"Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems" 1868:). The red and blue curves are fits of experimental data, whereas the dotted lines are their theoretical extrapolations. 961:. Dendrites are cellular projections whose primary function is to receive synaptic signals. Their protrusions, known as 733:, this type of signal propagation provides a favorable tradeoff of signal velocity and axon diameter. Depolarization of 9882:, van der Mark J (1929). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". 9858:, Van der Mark J (1928). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". 7642:
Tamargo J, Caballero R, Delpón E (January 2004). "Pharmacological approaches in the treatment of atrial fibrillation".
3007:
fixed (zero rate of change) regardless of the currents flowing across the membrane. Thus, the current required to keep
9386:
Caldwell PC, Keynes RD (June 1957). "The utilization of phosphate bond energy for sodium extrusion from giant axons".
965:, are designed to capture the neurotransmitters released by the presynaptic neuron. They have a high concentration of 11360: 11336: 11295: 11237: 10913: 8362: 7128: 5866: 5508: 5422: 4163: 4105: 4072: 2267: 2263: 1954: 1204:, either of which may stimulate subsequent neuron(s) into firing an action potential. For illustration, in the human 1109: 1068: 1055: 1051: 750: 637:, producing an action potential. The frequency at which a neuron elicits action potentials is often referred to as a 430:
At least one of the conformations creates a channel through the membrane that is permeable to specific types of ions.
406: 384: 11157: 313:. In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the 285:
Approximate plot of a typical action potential shows its various phases as the action potential passes a point on a
8611:
Lapicque L (1907). "Recherches quantitatives sur l'excitationelectrique des nerfs traitee comme une polarisation".
4240: 1501:
increases, which in turn further increases the inward current. A sufficiently strong depolarization (increase in
826: 9242:
Skou JC (February 1957). "The influence of some cations on an adenosine triphosphatase from peripheral nerves".
8474:
Piccolino M (April 2000). "The bicentennial of the Voltaic battery (1800-2000): the artificial electric organ".
5106: 11611: 11535: 3736: 3572: 3492: 1664: 1331: 1304: 1176:, an external signal such as pressure, temperature, light, or sound is coupled with the opening and closing of 1082:. These neurotransmitters then bind to receptors on the postsynaptic cell. This binding opens various types of 598: 570: 388: 7599:
Kléber AG, Rudy Y (April 2004). "Basic mechanisms of cardiac impulse propagation and associated arrhythmias".
5697:"Vibrotactile sensitivity threshold: nonlinear stochastic mechanotransduction model of the Pacinian Corpuscle" 4999: 2610:
such as the influx of negative chloride ions and efflux of positive potassium ions, as seen in barley leaves.
1757:
sheaths. Myelin is a multilamellar membrane that enwraps the axon in segments separated by intervals known as
8689:, Sakmann B (April 1976). "Single-channel currents recorded from membrane of denervated frog muscle fibres". 7677:
Slayman CL, Long WS, Gradmann D (April 1976). ""Action potentials" in Neurospora crassa, a mycelial fungus".
3587: 3150: 2208:. As the capacitance increases, more charge must be transferred to produce a given transmembrane voltage (by 1966: 1213: 210: 206: 17: 7343:
Zoidl G, Dermietzel R (November 2002). "On the search for the electrical synapse: a glimpse at the future".
6784:
Tasaki I (1939). "Electro-saltatory transmission of nerve impulse and effect of narcosis upon nerve fiber".
2057:{\displaystyle \tau {\frac {\partial V}{\partial t}}=\lambda ^{2}{\frac {\partial ^{2}V}{\partial x^{2}}}-V} 579:
a) Sodium (Na) ion. b) Potassium (K) ion. c) Sodium channel. d) Potassium channel. e) Sodium-potassium pump.
11350: 6926:"Direct determination of membrane resting potential and action potential in single myelinated nerve fibers" 2633:
Together with the subsequent release of positive potassium ions the action potential in plants involves an
1464: 10099:
Elektrobiologie, die Lehre von den elektrischen Vorgängen im Organismus auf moderner Grundlage dargestellt
6296:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 5991:
Noble D (November 1960). "Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations".
4308:"Myelination Increases the Spatial Extent of Analog Modulation of Synaptic Transmission: A Modeling Study" 3662:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 3420:. The crystal structures of related ionic pumps have also been solved, giving a broader view of how these 2094: 1270:, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential. 970: 11616: 7977:
Meunier C, Segev I (November 2002). "Playing the devil's advocate: is the Hodgkin-Huxley model useful?".
1698:
a similar action potential at the neighboring membrane patches. This basic mechanism was demonstrated by
1648: 350: 90: 11179: 11092: 11066: 7470:
Hughes BW, Kusner LL, Kaminski HJ (April 2006). "Molecular architecture of the neuromuscular junction".
6575:
Poliak S, Peles E (December 2003). "The local differentiation of myelinated axons at nodes of Ranvier".
1158:
their duration and phase as well, sometimes even up to distances originally not thought to be possible.
11631: 11596: 11283: 7908: 6662: 3479: 3342:
and Howard Curtis, who showed that membrane conductance increases during an action potential. In 1907,
2418:) of the muscle fiber. However, the acetylcholine does not remain bound; rather, it dissociates and is 2318:
between excitable cells allow ions to pass directly from one cell to another, and are much faster than
1397:
is raised suddenly, the sodium channels open initially, but then close due to the slower inactivation.
1300: 813: 789: 10719: 9003:"Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy" 3280:
followed up Galvani's studies and demonstrated that injured nerves and muscles in frogs could produce
1621:
to drop quickly, repolarizing the membrane and producing the "falling phase" of the action potential.
1472: 1108:
to provoke a new action potential. Their joint efforts can be thwarted, however, by the counteracting
11621: 11601: 11468: 11449: 10103:
Electric Biology, the study of the electrical processes in the organism represented on a modern basis
8380:
Keynes RD, Ritchie JM (August 1984). "On the binding of labelled saxitoxin to the squid giant axon".
8247:"Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes" 3557: 3524: 3500: 3475: 3413: 3116: 2873: 2869: 1766: 1692: 1647:. The membrane potential goes below the resting membrane potential. Hence, there is an undershoot or 1522:≈ +55 mV. The increasing voltage in turn causes even more sodium channels to open, which pushes 1508:) causes the voltage-sensitive sodium channels to open; the increasing permeability to sodium drives 1181: 1046:
When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of
682: 677:, channel distributions, ionic concentrations, membrane capacitance, temperature, and other factors. 621:
ions from the cell. The inward flow of sodium ions increases the concentration of positively charged
581:
In the stages of an action potential, the permeability of the membrane of the neuron changes. At the
420: 270: 169: 125: 49: 10340: 10012: 9724:
Nagumo J, Arimoto S, Yoshizawa S (1962). "An active pulse transmission line simulating nerve axon".
6561: 5828: 5735: 3456:
represent the current through, and the voltage across, a small patch of membrane, respectively. The
3297: 3199: 449:
Voltage-gated ion channels are capable of producing action potentials because they can give rise to
89:
then causes adjacent locations to similarly depolarize. Action potentials occur in several types of
11626: 10593: 5141:"The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake" 4487: 3709:
Williams JA (February 1981). "Electrical correlates of secretion in endocrine and exocrine cells".
3488: 3390: 2459: 1413: 966: 943: 849:
are blocked, the typical increase in sodium and potassium current density is prevented or delayed.
757: 701: 564: 214: 118: 4260: 1400:
The voltages and currents of the action potential in all of its phases were modeled accurately by
953:
Neurons are electrically excitable cells composed, in general, of one or more dendrites, a single
804:
In the early development of many organisms, the action potential is actually initially carried by
10379:. Cambridge studies in mathematical biology. Vol. 6. Cambridge: Cambridge University Press. 10218: 10186: 3547: 3163: 1185: 838: 625:
in the cell and causes depolarization, where the potential of the cell is higher than the cell's
377: 56:. Na channels open at the beginning of the action potential, and Na moves into the axon, causing 10128:
The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System
6158:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 5974:
Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010.
5042:
Felle HH, Zimmermann MR (June 2007). "Systemic signalling in barley through action potentials".
3330:
The 20th century saw significant breakthroughs in electrophysiology. In 1902 and again in 1912,
11591: 10449:
Practical Electrophysiological Methods: A Guide for in Vitro Studies in Vertebrate Neurobiology
10007: 8345:
Ritchie JM, Rogart RB (1977). "The binding of saxitoxin and tetrodotoxin to excitable tissue".
5576:"Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons" 3537: 3496: 3471: 2921: 2665: 2576: 2554: 2505:
that synchronizes the heart. The action potentials of those cells propagate to and through the
2412:, which binds to the acetylcholine receptor, an integral membrane protein in the membrane (the 2393: 2383: 2379: 1774: 1712: 1652: 1468: 1327: 722: 718: 662: 331: 199: 10718:
Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, Williams SM (2001).
6518:. Novartis Foundation Symposia. Vol. 276. pp. 15–21, discussion 21–5, 54–7, 275–81. 5472: 2237:
is increased, that lowers the average "leakage" current across the membrane, likewise causing
1781:, but an analogous system has been discovered in a few invertebrates, such as some species of 11525: 9879: 9855: 9839: 8042:
Ling G, Gerard RW (December 1949). "The normal membrane potential of frog sartorius fibers".
5209:
Hedrich R, Neher E (March 2018). "Venus Flytrap: How an Excitable, Carnivorous Plant Works".
3582: 3417: 3386: 3293: 3243: 2506: 2387: 1953:
and its elaborations, such as the compartmental model. Cable theory was developed in 1855 by
1716: 1241: 842: 560: 4153: 205:
In animal cells, there are two primary types of action potentials. One type is generated by
11489: 11480: 11464: 11118: 11038: 10827: 10757:
Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, White LE (2008).
9999: 9811: 9686: 9629: 9438: 9200: 9153: 9061: 9014: 8959: 8914: 8877: 8826: 8783: 8698: 8559: 8389: 8258: 8166: 8020: 7182: 7041: 6359: 6000: 5375: 5276: 5218: 5152: 5051: 3990: 3773: 3577: 3339: 3312:
of the 19th century; Golgi himself had argued for the network model of the nervous system.
3285: 2423: 1809: 1742: 1732: 1193: 1146:
signals, since either they occur fully or they do not occur at all. This is in contrast to
730: 129: 114: 9955:
Keener JP (1983). "Analogue circuitry for the Van der Pol and FitzHugh-Nagumo equations".
5139:
Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, et al. (February 2016).
4754: 3226:
The role of electricity in the nervous systems of animals was first observed in dissected
3214:
emerges and moves generally downwards with a few branch points. The smaller cells labeled
3153:") block action potentials by inhibiting the voltage-sensitive sodium channel; similarly, 294: 8: 11586: 10352:. Applied Mathematical Sciences. Vol. 42 (2nd ed.). New York: Springer Verlag. 6250:"The dual effect of membrane potential on sodium conductance in the giant axon of Loligo" 5932:
Aur D, Connolly CI, Jog MS (November 2005). "Computing spike directivity with tetrodes".
5552:, ed. David Cahan, 50-108. Berkeley; Los Angeles; London: University of California, 1994. 5501:
Emil du Bois-Reymond : neuroscience, self, and society in nineteenth-century Germany
5019: 3608: 3289: 3089: 2956: 2904: 2865: 2706: 2592: 2502: 2434: 2227: 1877: 1828: 1789: 1460: 1456: 1449: 1276: 1267: 1257: 342: 53: 11554: 11042: 10003: 9815: 9690: 9633: 9442: 9204: 9157: 9065: 9018: 8963: 8918: 8881: 8830: 8787: 8702: 8393: 8262: 8170: 7186: 7045: 6363: 6004: 5379: 5280: 5222: 5156: 5055: 3777: 1889:, since the human nervous system uses approximately 20% of the body's metabolic energy. 745:. In addition, backpropagating action potentials have been recorded in the dendrites of 423:. A voltage-gated ion channel is a transmembrane protein that has three key properties: 11510:, by WK Purves, D Sadava, GH Orians, and HC Heller, 8th edition, New York: WH Freeman, 11498: 11390: 10902: 10328: 10191: 10057: 10033: 9972: 9827: 9785: 9760: 9741: 9707: 9674: 9650: 9617: 9598: 9573:
Kepler TB, Abbott LF, Marder E (1992). "Reduction of conductance-based neuron models".
9556: 9531: 9506: 9481: 9462: 9411: 9363: 9338: 9314: 9289: 9285: 9267: 9224: 9179: 9122: 9085: 9040: 8983: 8938: 8850: 8817:
Yellen G (September 2002). "The voltage-gated potassium channels and their relatives".
8759: 8722: 8663: 8638: 8630: 8588: 8563: 8541: 8499: 8456: 8413: 8328: 8303: 8279: 8246: 8187: 8154: 8130: 8105: 8002: 7848: 7737: 7624: 7541: 7529: 7495: 7411: 7368: 7285: 7260: 7166: 7148: 7110: 7067: 7002: 6977: 6950: 6925: 6904: 6879: 6857: 6828: 6756: 6731: 6643: 6618:
Simons M, Trotter J (October 2007). "Wrapping it up: the cell biology of myelination".
6600: 6549: 6491: 6466: 6462: 6445: 6420: 6416: 6383: 6320: 6295: 6291: 6274: 6249: 6245: 6228: 6203: 6199: 6182: 6157: 6153: 6136: 6111: 6103: 6071: 6046: 6024: 5957: 5905: 5812: 5785: 5724: 5600: 5575: 5526: 5297: 5264: 5173: 5140: 5118: 5075: 4451: 4426: 4407: 4353: 4326: 4031: 4004: 3833: 3808: 3789: 3686: 3661: 3512: 3508: 3351: 2917: 2558: 2476: 2332: 2315: 1958: 1902: 1699: 1455:
For a neuron at rest, there is a high concentration of sodium and chloride ions in the
1401: 1338: 1292: 1225: 1201: 1147: 1116: 1105: 777: 773: 670: 658: 463: 302: 260:
The electrical properties of a cell are determined by the structure of its membrane. A
242: 165:". A neuron that emits an action potential, or nerve impulse, is often said to "fire". 161:", and the temporal sequence of action potentials generated by a neuron is called its " 78: 11370:
Miller C (1987). "How ion channel proteins work". In Kaczmarek LK, Levitan IB (eds.).
10021: 9698: 9641: 8795: 8487: 8444: 8222: 8205: 8178: 7990: 7791: 7321: 6112:"Measurement of current-voltage relations in the membrane of the giant axon of Loligo" 5786:"Oscillations, intercellular coupling, and insulin secretion in pancreatic beta cells" 3260:
In the 19th century scientists studied the propagation of electrical signals in whole
1957:
to model the transatlantic telegraph cable and was shown to be relevant to neurons by
1823: 1676: 500:
state. When the membrane potential is low, the channel spends most of its time in the
11511: 11396: 11375: 11356: 11332: 11313: 11291: 11270: 11265: 11233: 11214: 10999: 10991: 10981: 10962: 10954: 10944: 10927: 10919: 10909: 10888: 10880: 10870: 10853: 10845: 10835: 10815: 10807: 10797: 10780: 10772: 10762: 10745: 10737: 10727: 10706: 10698: 10688: 10671: 10663: 10653: 10636: 10619: 10611: 10601: 10581: 10573: 10563: 10546: 10538: 10528: 10508: 10500: 10490: 10470: 10462: 10452: 10435: 10427: 10417: 10411: 10398: 10390: 10380: 10363: 10353: 10316: 10308: 10300: 10290: 10273: 10265: 10248: 10240: 10230: 10223: 10206: 10198: 10174: 10166: 10149: 10141: 10131: 10114: 10106: 10082: 10074: 10064: 10025: 9941: 9790: 9712: 9655: 9590: 9561: 9511: 9454: 9415: 9403: 9368: 9319: 9259: 9255: 9216: 9171: 9114: 9077: 9032: 8975: 8942: 8930: 8893: 8842: 8799: 8751: 8714: 8668: 8593: 8491: 8448: 8405: 8368: 8358: 8333: 8284: 8227: 8192: 8135: 8059: 7994: 7959: 7924: 7889: 7884: 7867: 7840: 7805: 7795: 7729: 7694: 7690: 7659: 7616: 7576: 7545: 7533: 7487: 7452: 7403: 7360: 7325: 7290: 7241: 7231: 7200: 7152: 7102: 7059: 7007: 6955: 6909: 6797: 6761: 6716: 6682: 6635: 6592: 6537: 6527: 6496: 6450: 6375: 6325: 6279: 6233: 6187: 6141: 6076: 6016: 5949: 5897: 5858: 5817: 5716: 5605: 5514: 5504: 5418: 5393: 5302: 5234: 5178: 5110: 5067: 5024: 4956: 4948: 4938: 4929:
Segev I, Fleshman JW, Burke RE (1989). "Compartmental Models of Complex Neurons". In
4456: 4399: 4358: 4307: 4159: 4128: 4101: 4078: 4068: 4036: 3838: 3718: 3691: 3421: 3401: 2925: 2893: 2713:
Comparison of action potentials (APs) from a representative cross-section of animals
2618: 2514: 2467: 1886: 1491: 1366: 1280: 1101: 1016: 869: 830: 780:
of a neuron changes as the result of a current impulse is a function of the membrane
630: 626: 614: 450: 441: 338: 337:
Each excitable patch of membrane has two important levels of membrane potential: the
177: 10687:. Developments in Plant Biology. Vol. 4. Amsterdam: Elsevier Biomedical Press. 10037: 9976: 9831: 9745: 9271: 9126: 8763: 8545: 8460: 8417: 7852: 7741: 7628: 7415: 7372: 7114: 7071: 6861: 6647: 6604: 5961: 5728: 3442:
Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential.
1919: 1150:, whose amplitudes are dependent on the intensity of a stimulus. In both cases, the 1050:
molecules that open ion channels in the post-synaptic neuron (bottom). The combined
973:), act as an independent unit. The dendrites extend from the soma, which houses the 419:
Action potentials result from the presence in a cell's membrane of special types of
11260: 11046: 10094: 10017: 9964: 9937: 9914: 9867: 9819: 9780: 9772: 9733: 9702: 9694: 9645: 9637: 9602: 9582: 9551: 9543: 9501: 9493: 9466: 9446: 9399: 9395: 9358: 9354: 9350: 9309: 9305: 9301: 9251: 9228: 9208: 9183: 9161: 9106: 9089: 9069: 9044: 9022: 8987: 8967: 8922: 8885: 8854: 8834: 8791: 8743: 8726: 8706: 8658: 8654: 8650: 8583: 8575: 8533: 8517: 8483: 8440: 8397: 8350: 8323: 8315: 8274: 8266: 8217: 8206:"A new generation of Ca2+ indicators with greatly improved fluorescence properties" 8182: 8174: 8125: 8121: 8117: 8086: 8051: 8006: 7986: 7951: 7916: 7879: 7832: 7787: 7764: 7721: 7686: 7651: 7608: 7568: 7525: 7499: 7479: 7442: 7395: 7352: 7317: 7280: 7272: 7223: 7190: 7140: 7094: 7049: 6997: 6993: 6989: 6973: 6945: 6941: 6937: 6899: 6895: 6891: 6849: 6832: 6820: 6793: 6751: 6743: 6712: 6674: 6627: 6584: 6519: 6486: 6482: 6478: 6440: 6436: 6432: 6387: 6367: 6315: 6311: 6307: 6269: 6265: 6261: 6223: 6219: 6215: 6177: 6173: 6169: 6131: 6127: 6123: 6066: 6058: 6028: 6008: 5975: 5945: 5941: 5909: 5889: 5807: 5797: 5708: 5595: 5591: 5587: 5383: 5292: 5284: 5226: 5168: 5160: 5122: 5102: 5079: 5059: 5014: 4725: 4723: 4721: 4446: 4438: 4411: 4389: 4348: 4338: 4026: 4016: 3828: 3824: 3820: 3793: 3781: 3681: 3677: 3673: 3504: 3409: 3405: 3347: 3331: 3235: 3167: 2972: 2941: 2526: 2471: 2351: 2319: 2278: 2273: 2259: 2255: 1962: 1882: 1793: 1758: 1441: 1348: 1347:. This changes the membrane's permeability to those ions. Second, according to the 1217: 1197: 1072: 1047: 1020: 1007: 999: 738: 726: 654: 9110: 9097:
Bezanilla F (April 2000). "The voltage sensor in voltage-dependent ion channels".
8503: 7386:
Brink PR, Cronin K, Ramanan SV (August 1996). "Gap junctions in excitable cells".
5230: 763: 184:
the transmembrane potential. When the channels open, they allow an inward flow of
11571: 11549: 10975: 8639:"The effect of sodium ions on the electrical activity of giant axon of the squid" 5802: 5412: 4427:"Analog transmission of action potential fine structure in spiral ganglion axons" 4122: 4098:
Calcium Channels: Their Properties, Functions, Regulation, and Clinical relevance
3397: 3322:
of the sodium–potassium pump in its E2-Pi state. The estimated boundaries of the
3277: 3085: 3043: 3019: 2950: 2498: 2297: 1805: 1801: 1770: 1746: 1284: 1233: 1173: 1143: 1132: 962: 913: 857: 805: 781: 686: 650: 516:
state. During an action potential, most channels of this type go through a cycle
306: 298: 173: 9497: 8889: 8077:
Nastuk WL, Hodgkin A (1950). "The electrical activity of single muscle fibers".
7227: 5979: 4718: 3334:
advanced the hypothesis that the action potential resulted from a change in the
1855:), whereas the speed of unmyelinated neurons varies roughly as the square root ( 1536:. This positive feedback continues until the sodium channels are fully open and 1086:. This opening has the further effect of changing the local permeability of the 11346: 10794:
Modeling in the Neurosciences: from Biological Systems to Neuromimetic Robotics
10482: 9919: 9902: 9737: 8270: 8106:"The recording of potentials from motoneurones with an intracellular electrode" 7612: 6631: 5545: 5252: 4967: 4787: 4785: 4689: 4687: 4685: 4683: 4566: 4288: 3857: 3621: 3542: 3343: 3319: 3281: 3269: 3251: 3207: 3146: 2861: 2522: 2510: 2286: 1445: 1322: 1167: 1092: 954: 822: 809: 746: 742: 606: 346: 322: 225: 190: 181: 86: 82: 61: 57: 11051: 11026: 9968: 9871: 7572: 7356: 7054: 7029: 6523: 5893: 5388: 5363: 5164: 5063: 4394: 4377: 1671:, during which it is impossible to evoke another action potential, and then a 1440:
into the cell; these cations can come from a wide variety of sources, such as
11580: 10966: 10819: 10784: 10749: 10675: 10640: 10520: 10367: 10304: 10277: 7942:
Keynes RD (1989). "The role of giant axons in studies of the nerve impulse".
7655: 7276: 6921: 6875: 6732:"Factors Affecting Transmission and Recovery in the Passive Iron Nerve Model" 5712: 5518: 5114: 5028: 4930: 4343: 4124:
Cellular and Molecular Biology of Neuronal Development | Ira Black | Springer
4082: 4021: 3625: 3520: 3364: 3360: 3323: 3301: 3231: 3191: 3093: 3027: 2968: 2653: 2644: 2529:. Several anti-arrhythmia drugs act on the cardiac action potential, such as 2518: 2409: 2355: 2293: 1894: 1817: 1813: 1796:(m/s) to over 100 m/s, and, in general, increases with axonal diameter. 1405: 1237: 1087: 1012: 995: 958: 920: 793: 749:, which are ubiquitous in the neocortex. These are thought to have a role in 734: 674: 467: 455: 433:
The transition between conformations is influenced by the membrane potential.
286: 265: 261: 234: 176:. These channels are shut when the membrane potential is near the (negative) 137: 66: 41: 11541:
Production of the action potential: voltage and current clamping simulations
10857: 10550: 10512: 10474: 10402: 10320: 10153: 10118: 10086: 6678: 4960: 4782: 4770: 4680: 4542: 3292:
of action potentials was then measured in 1850 by du Bois-Reymond's friend,
3022:, so that the measurement itself did not affect the voltage being measured. 1058:
of such inputs can begin a new action potential in the post-synaptic neuron.
633:
from the sodium current activates even more sodium channels. Thus, the cell
11494: 11305: 11274: 11003: 10931: 10869:. Inter-University Electronics Series. Vol. 9. New York: McGraw-Hill. 10710: 10439: 10350:
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
10252: 10029: 9794: 9716: 9675:"Impulses and Physiological States in Theoretical Models of Nerve Membrane" 9565: 9515: 9458: 9407: 9372: 9323: 9263: 9220: 9175: 9118: 9081: 9036: 8979: 8934: 8846: 8672: 8634: 8597: 8495: 8401: 8288: 8139: 8090: 8063: 8055: 7998: 7955: 7928: 7920: 7893: 7809: 7663: 7620: 7580: 7537: 7491: 7456: 7364: 7329: 7294: 7245: 7204: 7195: 7170: 7144: 7106: 7063: 7011: 6959: 6913: 6765: 6686: 6639: 6596: 6541: 6500: 6454: 6379: 6329: 6283: 6237: 6191: 6145: 6107: 6080: 6020: 5953: 5901: 5862: 5821: 5720: 5609: 5397: 5306: 5238: 5182: 5071: 4908: 4520: 4518: 4460: 4403: 4362: 4040: 3842: 3695: 3567: 3377: 3355: 3309: 3247: 3239: 3219: 3128: 3108: 3075: 3015: 2673: 2538: 2405: 2401: 2336: 1950: 1914: 1762: 1429:
with a sufficiently strong depolarization, e.g., a stimulus that increases
1426: 1229: 1177: 1120: 1097: 1036: 987: 983: 974: 925: 908: 903: 709: 327: 10623: 10210: 10178: 9659: 9594: 8897: 8803: 8755: 8718: 8452: 8409: 8337: 8231: 8196: 7963: 7844: 7836: 7733: 7407: 5846: 4442: 4276: 3897: 3895: 3893: 3891: 3889: 3887: 3885: 3883: 3722: 2711: 11145: 10892: 10792:
Reeke GN, Poznanski RR, Sporns O, Rosenberg JR, Lindsay KA, eds. (2005).
9928:
Evans JW, Feroe J (1977). "Local stability theory of the nerve impulse".
9547: 8771: 8686: 8579: 8382:
Proceedings of the Royal Society of London. Series B, Biological Sciences
8372: 8319: 8023:(1949). "Dynamic electrical characteristics of the squid axon membrane". 7698: 7447: 7430: 7030:"Rapid conduction and the evolution of giant axons and myelinated fibers" 6880:"Evidence for saltatory conduction in peripheral myelinated nerve fibres" 5288: 3381: 3373: 3369: 3171: 3154: 3127:, both natural and synthetic, function by blocking the action potential. 3071: 3067: 3058: 3054: 2983: 2597: 2572: 2427: 2209: 1728: 1245: 1083: 1003: 785: 310: 94: 11452:
was created from a revision of this article dated 22 June 2005
9776: 9450: 8971: 8838: 6747: 6371: 6062: 4821: 4797: 4530: 4515: 3338:
of the axonal membrane to ions. Bernstein's hypothesis was confirmed by
2230:
of an action potential should increase. If the transmembrane resistance
772:'s ability to generate and propagate an action potential changes during 689:, maintains the normal ratio of ion concentrations across the membrane. 11546:
Open-source software to simulate neuronal and cardiac action potentials
11522:
Ionic motion and the Goldman voltage for arbitrary ionic concentrations
10585: 9823: 9586: 8747: 8537: 8354: 7725: 7559:
Costa LG (April 2006). "Current issues in organophosphate toxicology".
7399: 7222:. Handbook of Experimental Pharmacology. Vol. 184. pp. 1–21. 6853: 6824: 5550:
Hermann von Helmholtz and the Foundations of Nineteenth Century Science
4858: 4744: 4742: 4327:"Past and Future of Analog-Digital Modulation of Synaptic Transmission" 3880: 3785: 3633: 3335: 3175: 3170:. Neurotoxins aimed at the ion channels of insects have been effective 3132: 3124: 3112: 3104: 2681: 2580: 2564: 2419: 2414: 2363: 2311: 2290: 2282: 1949:
The flow of currents within an axon can be described quantitatively by
1924: 1873: 1778: 1630: 1565:
period during which no new action potential can be fired is called the
1436:. This depolarization is often caused by the injection of extra sodium 1376:
in opposite ways, or at different rates. For example, although raising
1296: 893: 391: in this section. Unsourced material may be challenged and removed. 297:– in other words, they maintain a voltage difference across the cell's 254: 106: 7483: 7261:"Ca2+-dependent mechanisms of presynaptic control at central synapses" 3092:, action potentials have been optically recorded from a tiny patch of 1262: 1119:. Due to the direct connection between excitable cells in the form of 1042: 11540: 9212: 9166: 9141: 8926: 8710: 6703:
Hursh JB (1939). "Conduction velocity and diameter of nerve fibers".
6012: 4230: 4228: 4226: 4224: 3562: 3141: 3136: 3061:
has two states: open (high conductance) and closed (low conductance).
3035: 3031: 2967:
The second problem was addressed with the crucial development of the
2934: 2701: 2659: 2542: 2534: 2530: 2509:(AV node), which is normally the only conduction pathway between the 2442: 1614:. Combined, these changes in sodium and potassium permeability cause 1209: 1189: 1154:
of action potentials is correlated with the intensity of a stimulus.
1151: 1138: 978: 883: 618: 330:(the point where the axon leaves the cell body), which is called the 241:
difference between the exterior and interior of the cell, called the
194: 142: 110: 11248: 9428: 8521: 7768: 6588: 6345:"Unique features of action potential initiation in cortical neurons" 6204:"The components of membrane conductance in the giant axon of Loligo" 4870: 4833: 4739: 2272:
In general, action potentials that reach the synaptic knobs cause a
563:
for the parameters that govern the ion channel states, known as the
366: 9761:"Activation of passive iron as a model for the excitation of nerve" 9482:"What the structure of a calcium pump tells us about its mechanism" 7868:"Electrical signals and their physiological significance in plants" 7786:. International Review of Cytology. Vol. 257. pp. 43–82. 7098: 5696: 5265:"Closing of venus flytrap by electrical stimulation of motor cells" 4425:
Liu, Wenke; Liu, Qing; Crozier, Robert A.; Davis, Robin L. (2021).
4172: 3552: 3463:
represents the capacitance of the membrane patch, whereas the four
3203: 2639: 2438: 2347: 2340: 2305: 1390:
the channel's "inactivation gate", albeit more slowly. Hence, when
1309: 888: 694: 314: 281: 146: 32: 10958: 10811: 10776: 10667: 9290:"Active transport of cations in giant axons from Sepia and Loligo" 9073: 9027: 9002: 5873: 4221: 3438: 2898: 2281:
filled with neurotransmitter to migrate to the cell's surface and
1923:
Cable theory's simplified view of a neuronal fiber. The connected
1291:
provide a good example. Although such pacemaker potentials have a
950:, which also has the simplest mechanism for the action potential. 11486:
Action potential propagation in myelinated and unmyelinated axons
11372:
Neuromodulation: The Biochemical Control of Neuronal Excitability
8904: 7561:
Clinica Chimica Acta; International Journal of Clinical Chemistry
5467:
Some Electrical Properties of Fine-Tipped Pipette Microelectrodes
3933: 3931: 3856:
Purves D, Augustine GJ, Fitzpatrick D, et al., eds. (2001).
3326:
are shown as blue (intracellular) and red (extracellular) planes.
3254: 3049: 2881: 2685: 2634: 2568: 2491: 2482: 2301: 1928: 1905:, in which the breakdown of myelin impairs coordinated movement. 1843:
of myelinated neurons varies roughly linearly with axon diameter
1076: 853: 846: 818: 797: 690: 496:. The channel is permeable only to sodium ions when it is in the 238: 150: 102: 10995: 10923: 10884: 10849: 10741: 10702: 10615: 10577: 10542: 10504: 10466: 10431: 10394: 10312: 10269: 10244: 10202: 10170: 10145: 10110: 10078: 4952: 3491:, which describes the action potential by a coupled set of four 2937:
enough that the voltage inside a single cell could be recorded.
1351:, this change in permeability changes the equilibrium potential 11561:(electronic neuroscience textbook by UT Houston Medical School) 11545: 10264:. Vol. 1. Washington, DC: American Physiological Society. 9532:"Thresholds and plateaus in the Hodgkin-Huxley nerve equations" 8347:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 79
3629: 3516: 3265: 3234:, who studied it from 1791 to 1797. Galvani's results inspired 3186: 3039: 2697: 2693: 2689: 2677: 2359: 1782: 1754: 1437: 1221: 1079: 991: 947: 930: 769: 764:
Maturation of the electrical properties of the action potential
622: 610: 334:, but the axon and cell body are also excitable in most cases. 246: 185: 98: 45: 10756: 10717: 10229:. A series of books in biology. San Francisco: W. H. Freeman. 10197:. A series of books in biology. San Francisco: W. H. Freeman. 10193:
Structure and Function in the Nervous Systems of Invertebrates
8867: 8155:"A large change in dye absorption during the action potential" 5443: 4973: 4791: 4776: 4693: 4666: 4617: 4613: 4584: 4572: 4548: 4294: 4282: 4207: 3954: 3928: 1299:
can be altered by pharmaceuticals as well as signals from the
1031:
Before considering the propagation of action potentials along
700:
are involved in a few types of action potentials, such as the
11182:(Press release). The Royal Swedish Academy of Science. 1997. 11121:(Press release). The Royal Swedish Academy of Science. 1906. 11095:(Press release). The Royal Swedish Academy of Science. 1991. 11069:(Press release). The Royal Swedish Academy of Science. 1963. 10791: 8522:"Untersuchungen zur Thermodynamik der bioelektrischen Ströme" 7085:
Miller RH, Mi S (November 2007). "Dissecting demyelination".
6514:
Zalc B (2006). "The Acquisition of Myelin: A Success Story".
5635: 4067:(Third ed.). Elsevier Academic Press. pp. 211–214. 3261: 3158: 2945: 2709:
does vary dramatically with axonal diameter and myelination.
2669: 2648:) arose independently from that in metazoan excitable cells. 2601: 2430: 2367: 1804:. Instead, the ionic current from an action potential at one 1288: 705: 697: 9051: 8564:"Electric Impedance of the Squid Giant Axon During Activity" 5343: 1386:
most gates in the voltage-sensitive sodium channel, it also
1002:(in the central nervous system), both of which are types of 8153:
Ross WN, Salzberg BM, Cohen LB, Davila HV (December 1974).
6978:"A theory of the effects of fibre size in medullated nerve" 5107:
10.1656/1528-7092(2005)004[0573:HODMVF]2.0.CO;2
4937:. Cambridge, Massachusetts: The MIT Press. pp. 63–96. 4708: 4706: 4704: 4702: 3227: 3211: 2397: 2183:{\displaystyle \lambda ={\sqrt {\frac {r_{m}}{r_{\ell }}}}} 1832: 1212:
convert the incoming sound into the opening and closing of
1032: 898: 729:, generate action potentials to boost the signal. Known as 318: 133: 37: 11331:. Cambridge, Massachusetts: Bradford Book, The MIT Press. 9001:
Cha A, Snyder GE, Selvin PR, Bezanilla F (December 1999).
6868: 5694: 5650:
Mathematical models of axcitation and propagation in nerve
4554: 4184: 3855: 2880:
potentials to communicate with other bacteria in the same
1737: 1220:
molecules to be released. In similar manner, in the human
825:
becomes primarily carried by sodium channels. Second, the
544:
state is refractory until it has transitioned back to the
132:, assisting—the propagation of signals along the neuron's 9618:"Voltage oscillations in the barnacle giant muscle fiber" 9337:
Caldwell PC, Hodgkin AL, Keynes RD, Shaw TL (July 1960).
9336: 7307: 5616: 3918: 3916: 3914: 3912: 3910: 3308:. Their work resolved a long-standing controversy in the 1836: 1205: 597:(4), during which the voltage-dependent ion channels are 9000: 7755:
Gradmann D (2001). "Models for oscillations in plants".
6568: 6467:"Evidence for electrical transmission in nerve: Part II" 4979: 4809: 4699: 4503: 2517:. Action potentials from the AV node travel through the 1475:
of potassium ions making the resting potential close to
1295:, it can be adjusted by external stimuli; for instance, 860:
increases by 600% within the first two postnatal weeks.
649:
and not the amplitude or duration of the stimulus. This
11281: 10834:(5th ed.). Cambridge: Cambridge University Press. 10525:
Methods in Neuronal Modeling: From Synapses to Networks
10489:(2nd ed.). Cambridge: Cambridge University Press. 10416:(2nd ed.). Sunderland, Mass.: Sinauer Associates. 9878: 9854: 8774:, Sakmann B (March 1992). "The patch clamp technique". 8733: 8152: 6421:"Evidence for electrical transmission in nerve: Part I" 5431: 5138: 4935:
Methods in Neuronal Modeling: From Synapses to Networks
3478:. The two conductances on the right help determine the 3315: 1091:
to nearby regions of the membrane (as described by the
613:
ions into the cell. This is followed by the opening of
36:
As an action potential (nerve impulse) travels down an
9990:
Hooper SL (March 2000). "Central pattern generators".
9723: 8203: 7641: 7171:"The electrical constants of a crustacean nerve fibre" 6047:"Potential, Impedance, and Rectification in Membranes" 5661: 5555: 3972: 3907: 3268:) and demonstrated that nervous tissue was made up of 2993:
times the rate of change of the transmembrane voltage
2241:
to become longer, increasing the conduction velocity.
1494:) results: the more inward current there is, the more 1244:, produce action potentials, which then travel up the 833:
current, increases to 3.5 times its initial strength.
257:, an action potential may last three seconds or more. 11374:. New York: Oxford University Press. pp. 39–63. 11345: 10557: 10289:(15th ed.). Norwalk, Conn.: Appleton and Lange. 10217: 9752: 9190: 6804: 6342: 5462: 5000:"Jagdish Chandra Bose and Plant Neurobiology: Part I" 4876: 4839: 4827: 4803: 4760: 4748: 4729: 4670: 4648: 4621: 4588: 4536: 4524: 4497: 4493: 4477: 4266: 4246: 4211: 4178: 4002: 3958: 3901: 3396:
Julius Bernstein was also the first to introduce the
3284:. Matteucci's work inspired the German physiologist, 2147: 2097: 1977: 427:
It is capable of assuming more than one conformation.
124:
In neurons, action potentials play a central role in
11312:(3rd ed.). Sunderland, MA: Sinauer Associates. 10761:(4th ed.). Sunderland, MA: Sinauer Associates. 10726:(2nd ed.). Sunderland, MA: Sinauer Associates. 10682: 9802:
Bonhoeffer KF (1953). "Modelle der Nervenerregung".
9422: 8510: 8244: 7469: 5640:
Bifurcation Analysis of the Hodgkin-Huxley Equations
5320: 5262: 3864:(2nd ed.). Sunderland, MA: Sinauer Associates. 1126: 725:. Regularly spaced unmyelinated patches, called the 653:
property of the action potential sets it apart from
551:
The outcome of all this is that the kinetics of the
454:
potential occurs when this positive feedback cycle (
168:
Action potentials are generated by special types of
11227: 10973: 10685:
Plant Membrane Transport: Current Conceptual Issues
7676: 7131:(1855). "On the theory of the electric telegraph". 5879: 5486: 4376:Clark, Beverley; Häusser, Michael (8 August 2006). 3272:, instead of an interconnected network of tubes (a 3246:—with which he studied animal electricity (such as 1938:(the counterparts of the intracellular resistances 11024: 10901: 10347: 10222: 10190: 10056: 9957:IEEE Transactions on Systems, Man, and Cybernetics 9572: 8245:Bu G, Adams H, Berbari EJ, Rubart M (March 2009). 7679:Biochimica et Biophysica Acta (BBA) - Biomembranes 7385: 5655: 5573: 4928: 4424: 4155:Current Topics in Developmental Biology, Volume 39 2660:Taxonomic distribution and evolutionary advantages 2408:. In such cases, the released neurotransmitter is 2182: 2130: 2056: 1722: 1589:is nearly equal to the sodium equilibrium voltage 153:. Action potentials in neurons are also known as " 44:of the axon. In response to a signal from another 40:there is a change in electric polarity across the 10446: 10163:A History of the Electrical Activity of the Brain 10054: 8103: 7822: 6516:Purinergic Signalling in Neuron–Glia Interactions 6102: 5745: 5449: 5414:The Brain, the Nervous System, and Their Diseases 4894:Multiple Sclerosis as a Neurodegenerative Disease 3611:, however, these phenomena are readily explained. 3000:, the solution was to design a circuit that kept 1683:by the depolarization from the action potential. 1640:even closer to the potassium equilibrium voltage 1067:Action potentials are most commonly initiated by 11578: 11119:"The Nobel Prize in Physiology or Medicine 1906" 11093:"The Nobel Prize in Physiology or Medicine 1991" 11067:"The Nobel Prize in Physiology or Medicine 1963" 10720:"Release of Transmitters from Synaptic Vesicles" 10558:Lavallée M, Schanne OF, Hébert NC, eds. (1969). 9903:"Nerve axon equations. I. Linear approximations" 8949: 8204:Grynkiewicz G, Poenie M, Tsien RY (March 1985). 7023: 7021: 5783: 5683:Analysis of Neural Excitability and Oscillations 4003:Tamagawa H, Funatani M, Ikeda K (January 2016). 3809:"The Axon Initial Segment: An Updated Viewpoint" 1471:present on the membrane of the neuron causes an 1019:enclosed in small membrane-bound spheres called 11565:Khan Academy: Electrotonic and action potential 11208: 10826: 10683:Spanswick RM, Lucas WJ, Dainty J, eds. (1980). 10630: 10185: 8467: 8424: 8301: 7906: 7711: 7342: 7218:Süudhof TC (2008). "Neurotransmitter Release". 6098: 6096: 6094: 6092: 6090: 6040: 6038: 5482: 5349: 5041: 4864: 4674: 4473: 4270: 4250: 4234: 4215: 3962: 3937: 2079:) is the voltage across the membrane at a time 1420: 10974:Worden FG, Swazey JP, Adelman G, eds. (1975). 10943:. Burlington, Mass.: Elsevier Academic Press. 9385: 9379: 9330: 8104:Brock LG, Coombs JS, Eccles JC (August 1952). 8079:Journal of Cellular and Comparative Physiology 8044:Journal of Cellular and Comparative Physiology 7816: 7748: 7431:"Neuromuscular junction in health and disease" 7165: 7027: 6920: 6874: 6839: 6810: 6343:Naundorf B, Wolf F, Volgushev M (April 2006). 5931: 5844: 5840: 5838: 5695:Biswas A, Manivannan M, Srinivasan MA (2015). 5313: 1236:) do not produce action potentials; only some 276: 10832:Animal Physiology: Adaptation and Environment 10377:An Introduction to the Mathematics of Neurons 9983: 9284: 9278: 8623: 8379: 8344: 8238: 8076: 7705: 7670: 7018: 6698: 6696: 6617: 6290: 6244: 6198: 6152: 5628: 3659: 3404:across the membrane; this was generalized by 3250:) and the physiological responses to applied 2940:The first problem was solved by studying the 2548: 1927:correspond to adjacent segments of a passive 477:channels. (The "V" stands for "voltage".) An 11253:Progress in Biophysics and Molecular Biology 10481: 10374: 9948: 9609: 8810: 8770: 8685: 8679: 8070: 7976: 7935: 7865: 7775: 7175:Proceedings of the Royal Society of Medicine 7159: 6966: 6771: 6087: 6035: 5622: 5263:Volkov AG, Adesina T, Jovanov E (May 2007). 5208: 4904: 4902: 4375: 4324: 3984: 3078:. For this discovery, they were awarded the 2453: 2392:A special case of a chemical synapse is the 704:and the action potential in the single-cell 667:subthreshold membrane potential oscillations 484:channel has three possible states, known as 11531:A cartoon illustrating the action potential 11111: 11085: 10980:. Cambridge, Massachusetts: The MIT Press. 10647: 10600:. Cambridge, Massachusetts: The MIT Press. 10527:. Cambridge, Massachusetts: The MIT Press. 10125: 10063:. Cambridge, Massachusetts: The MIT Press. 9838: 9615: 8861: 8629: 8526:Pflügers Archiv für die gesamte Physiologie 8097: 7121: 6842:Pflügers Archiv für die gesamte Physiologie 6813:Pflügers Archiv für die gesamte Physiologie 6777: 6574: 5835: 5777: 5668: 5498: 4631: 4378:"Neural Coding: Analog Signalling in Axons" 4190: 3434:Quantitative models of the action potential 3300:and his students used a stain developed by 2289:. This complex process is inhibited by the 1490:potassium current and a runaway condition ( 1334:, which may overlap with the other phases. 946:). However, the main excitable cell is the 52:open and close as the membrane reaches its 11326: 11059: 10796:. Boca Raton, Fla.: Taylor & Francis. 9927: 9801: 9758: 8558: 8041: 8035: 8013: 7598: 7516:Newmark J (January 2007). "Nerve agents". 7511: 7509: 6693: 6660: 5984: 5531:: CS1 maint: location missing publisher ( 4922: 2989:of the membrane. Since the current equals 2902:Giant axons of the longfin inshore squid ( 2586: 2373: 1557:and sodium permeability correspond to the 445:Action potential propagation along an axon 11395:(5th ed.). New York: W. H. Freeman. 11388: 11264: 11228:Bear MF, Connors BW, Paradiso MA (2001). 11213:. Cambridge: Cambridge University Press. 11050: 10592: 10519: 10093: 10011: 9918: 9784: 9706: 9666: 9649: 9555: 9505: 9362: 9313: 9165: 9139: 9096: 9026: 8662: 8587: 8516: 8473: 8430: 8327: 8295: 8278: 8221: 8186: 8129: 7907:Leys SP, Mackie GO, Meech RW (May 1999). 7883: 7594: 7592: 7590: 7446: 7388:Journal of Bioenergetics and Biomembranes 7284: 7194: 7053: 7001: 6949: 6903: 6755: 6490: 6444: 6319: 6273: 6227: 6181: 6135: 6070: 5811: 5801: 5784:MacDonald PE, Rorsman P (February 2006). 5758: 5741: 5678: 5599: 5574:Baranauskas G, Martina M (January 2006). 5561: 5387: 5296: 5172: 5018: 4912: 4899: 4450: 4393: 4352: 4342: 4095: 4030: 4020: 3832: 3806: 3685: 3624:are muscle fibers and not related to the 3389:, fluorescence distance measurements and 2464:Electrical conduction system of the heart 2346:postsynaptic cell through pores known as 2127: 1624: 1515:closer to the sodium equilibrium voltage 1425:A typical action potential begins at the 1408:in 1952, for which they were awarded the 1115:Neurotransmission can also occur through 758:Hodgkin–Huxley membrane capacitance model 407:Learn how and when to remove this message 27:Neuron communication by electric impulses 11460:, and does not reflect subsequent edits. 11443: 11369: 10652:(5th ed.). San Francisco: Pearson. 10650:Human Physiology: An Integrated Approach 10635:. Springfield, Ill.: Charles C. Thomas. 9672: 9529: 8610: 7970: 7754: 7220:Pharmacology of Neurotransmitter Release 7084: 5968: 5634:Sato, S; Fukai, H; Nomura, T; Doi, S in 5330: 4151: 4062: 3708: 3437: 3314: 3185: 3103: 3048: 2897: 2475: 2310: 1918: 1822: 1736: 1261: 1228:and the next layer of cells (comprising 1041: 605:As the membrane potential is increased, 574:Ion movement during an action potential. 569: 440: 280: 237:in animals, plants and fungi maintain a 224: 48:, sodium- (Na) and potassium- (K)–gated 31: 11355:(4th ed.). New York: McGraw-Hill. 11329:Foundations of Cellular Neurophysiology 11290:. New York: New York University Press. 10899: 10864: 10348:Guckenheimer J, Holmes P, eds. (1986). 10160: 10059:Neurocomputing: Foundations of Research 10055:Anderson JA, Rosenfeld E, eds. (1988). 9479: 9133: 7515: 7506: 7258: 7217: 7028:Hartline DK, Colman DR (January 2007). 6972: 6461: 6415: 6044: 5763:Reconstruction of Small Neural Networks 5645: 5478: 5410: 5361: 4815: 4764: 4712: 4654: 4625: 4596: 4560: 4481: 4254: 3978: 3756: 3702: 3026:electrode tips that are as fine as 100 2887: 2664:Action potentials are found throughout 2277:membrane; the influx of calcium causes 1761:. It is produced by specialized cells: 1663:Each action potential is followed by a 1251: 14: 11579: 11143: 10938: 10447:Kettenmann H, Grantyn R, eds. (1992). 10284: 10105:]. Braunschweig: Vieweg und Sohn. 9989: 9954: 9842:(1926). "On relaxation-oscillations". 8816: 7941: 7859: 7781: 7587: 7428: 7127: 6783: 6729: 5916: 5204: 5202: 5200: 5198: 5196: 5194: 5192: 5134: 5132: 4997: 4985: 4889: 4638: 3427: 2326: 1188:, which are critical for the sense of 1071:from a presynaptic neuron. Typically, 998:(in the peripheral nervous system) or 874: 737:, in general, triggers the release of 11304: 10977:The Neurosciences, Paths of Discovery 10409: 10259: 9900: 8994: 8146: 7558: 6702: 5990: 5677:* Rinzel, J & Ermentrout, GB; in 5437: 5092: 4852: 4733: 4592: 4509: 4120: 4058: 4056: 4054: 4052: 4050: 3966: 3922: 3660:Hodgkin AL, Huxley AF (August 1952). 3080:Nobel Prize in Physiology or Medicine 2930:Nobel Prize in Physiology or Medicine 1410:Nobel Prize in Physiology or Medicine 994:sheath. Myelin is composed of either 293:All cells in animal body tissues are 11555:Introduction to the Action Potential 11392:Lehninger Principles of Biochemistry 11246: 11186:from the original on 23 October 2009 11156:(3). BMJ Publishing Group: 192–197. 11125:from the original on 4 December 2008 9241: 8302:Milligan JV, Edwards C (July 1965). 8019: 6513: 6507: 5845:Barnett MW, Larkman PM (June 2007). 5751: 5340:, vol. 49, no. 1, 2002, pp. 142–147. 5007:Indian Journal of History of Science 3759:"Action Potentials in Higher Plants" 2249: 2131:{\displaystyle \tau =\ r_{m}c_{m}\,} 1658: 863: 856:. The sodium current density of rat 540:state is very low: A channel in the 389:adding citations to reliable sources 360: 356: 11310:Ion Channels of Excitable Membranes 11180:"The Nobel Prize in Chemistry 1997" 8210:The Journal of Biological Chemistry 7913:The Journal of Experimental Biology 6667:The Journal of Experimental Biology 5925: 5771: 5463:Lavallée, Schanne & Hébert 1969 5338:Russian Journal of Plant Physiology 5189: 5129: 4877:Bullock, Orkand & Grinnell 1977 4840:Bullock, Orkand & Grinnell 1977 4828:Bullock, Orkand & Grinnell 1977 4804:Bullock, Orkand & Grinnell 1977 4761:Bullock, Orkand & Grinnell 1977 4749:Bullock, Orkand & Grinnell 1977 4730:Bullock, Orkand & Grinnell 1977 4671:Bullock, Orkand & Grinnell 1977 4622:Bullock, Orkand & Grinnell 1977 4589:Bullock, Orkand & Grinnell 1977 4537:Bullock, Orkand & Grinnell 1977 4525:Bullock, Orkand & Grinnell 1977 4498:Bullock, Orkand & Grinnell 1977 4494:Bullock, Orkand & Grinnell 1977 4478:Bullock, Orkand & Grinnell 1977 4267:Bullock, Orkand & Grinnell 1977 4247:Bullock, Orkand & Grinnell 1977 4212:Bullock, Orkand & Grinnell 1977 4179:Bullock, Orkand & Grinnell 1977 4063:Sanes DH, Reh TA (1 January 2012). 3959:Bullock, Orkand & Grinnell 1977 3902:Bullock, Orkand & Grinnell 1977 2912:to understand the action potential. 2448: 128:by providing for—or with regard to 24: 11430: 11349:, Schwartz JH, Jessell TM (2000). 11201: 11160:from the original on 14 March 2012 11099:from the original on 24 March 2010 7530:10.1097/01.nrl.0000252923.04894.53 5321:Spanswick, Lucas & Dainty 1980 4917:Cable Theory for Dendritic Neurons 4480:, pp. 49–56, 76–93, 247–255; 4331:Frontiers in Cellular Neuroscience 4312:Frontiers in Cellular Neuroscience 4141:from the original on 17 July 2017. 4047: 3042:, or optically with dyes that are 2032: 2018: 1992: 1984: 1465:from a high to a low concentration 1358:, and, thus, the membrane voltage 1161: 1110:inhibitory postsynaptic potentials 1069:excitatory postsynaptic potentials 1056:inhibitory postsynaptic potentials 25: 11643: 11495:Generation of AP in cardiac cells 11411: 11230:Neuroscience: Exploring the Brain 11211:Ion Channels: Molecules in Action 11073:from the original on 16 July 2007 11025:Fitzhugh R, Izhikevich E (2006). 10908:. New York: John Wiley and Sons. 9765:The Journal of General Physiology 9536:The Journal of General Physiology 8796:10.1038/scientificamerican0392-44 8568:The Journal of General Physiology 8308:The Journal of General Physiology 7866:Fromm J, Lautner S (March 2007). 6736:The Journal of General Physiology 6051:The Journal of General Physiology 5869:from the original on 8 July 2011. 5744:, pp. 19–39, 46–66, 72–141; 5487:Worden, Swazey & Adelman 1975 4998:Tandon, Prakash N (1 July 2019). 4065:Development of the nervous system 3380:, who developed the technique of 2481:the opening of voltage-sensitive 2268:Inhibitory postsynaptic potential 2264:Excitatory postsynaptic potential 751:spike-timing-dependent plasticity 11499:generation of AP in neuron cells 11442: 11266:10.1016/j.pbiomolbio.2003.12.004 11209:Aidley DJ, Stanfield PR (1996). 11172: 11137: 10631:McHenry LC, Garrison FH (1969). 9894: 9759:Bonhoeffer KF (September 1948). 9522: 9473: 9235: 8604: 8552: 7909:"Impulse conduction in a sponge" 7900: 7885:10.1111/j.1365-3040.2006.01614.x 7635: 7133:Proceedings of the Royal Society 6798:10.1152/ajplegacy.1939.127.2.211 6717:10.1152/ajplegacy.1939.127.1.131 6661:Xu K, Terakawa S (August 1999). 5827: 5688: 5567: 5539: 5492: 5455: 5404: 5355: 5256: 5245: 5086: 5035: 4991: 3868:from the original on 5 June 2018 3350:of ionic conductances. In 1949, 3117:voltage-sensitive sodium channel 1931:. The extracellular resistances 957:, a single axon and one or more 882: 365: 11477:Ionic flow in action potentials 11249:"Axonal excitability revisited" 11018: 10633:Garrison's History of Neurology 10225:Introduction to Nervous Systems 10221:, Orkand R, Grinnell A (1977). 9616:Morris C, Lecar H (July 1981). 8349:. Vol. 79. pp. 1–50. 7825:The Journal of Membrane Biology 7784:Action potential in charophytes 7714:The Journal of Membrane Biology 7552: 7463: 7422: 7379: 7336: 7301: 7252: 7211: 7078: 6723: 6654: 6620:Current Opinion in Neurobiology 6611: 6409: 6336: 5934:Journal of Neuroscience Methods 4882: 4845: 4643:Neuronal Channels and Receptors 4418: 4369: 4325:Zbili, M.; Debanne, D. (2019). 4318: 4300: 4145: 4114: 4100:. CRC Press. pp. 138–142. 4089: 3996: 3614: 3600: 3493:ordinary differential equations 3174:; one example is the synthetic 2579:, which is a common target for 1908: 1831:of myelinated and unmyelinated 1723:Myelin and saltatory conduction 1667:, which can be divided into an 1214:mechanically gated ion channels 376:needs additional citations for 69:where it signals other neurons. 10130:. Santa Clara, Calif.: TELOS. 9400:10.1113/jphysiol.1957.sp005830 9355:10.1113/jphysiol.1960.sp006509 9306:10.1113/jphysiol.1955.sp005290 9142:"A 3D view of sodium channels" 9140:Catterall WA (February 2001). 8655:10.1113/jphysiol.1949.sp004310 8122:10.1113/jphysiol.1952.sp004759 7435:British Journal of Anaesthesia 7169:, Rushton WA (December 1946). 6994:10.1113/jphysiol.1951.sp004655 6942:10.1113/jphysiol.1951.sp004545 6924:, Stampfli R (February 1951). 6896:10.1113/jphysiol.1949.sp004335 6705:American Journal of Physiology 6483:10.1113/jphysiol.1937.sp003508 6437:10.1113/jphysiol.1937.sp003507 6312:10.1113/jphysiol.1952.sp004764 6266:10.1113/jphysiol.1952.sp004719 6220:10.1113/jphysiol.1952.sp004718 6174:10.1113/jphysiol.1952.sp004717 6128:10.1113/jphysiol.1952.sp004716 5946:10.1016/j.jneumeth.2005.05.006 5656:Guckenheimer & Holmes 1986 5592:10.1523/jneurosci.2283-05.2006 5269:Plant Signaling & Behavior 5020:10.16943/ijhs/2019/v54i2/49660 3849: 3825:10.1523/JNEUROSCI.1922-17.2018 3800: 3750: 3729: 3678:10.1113/jphysiol.1952.sp004764 3653: 3573:Law of specific nerve energies 3476:voltage-sensitive ion channels 3099: 2244: 1686: 1075:molecules are released by the 211:voltage-gated calcium channels 85:rapidly rises and falls. This 13: 1: 10022:10.1016/S0960-9822(00)00367-5 9699:10.1016/S0006-3495(61)86902-6 9642:10.1016/S0006-3495(81)84782-0 9480:Lee AG, East JM (June 2001). 9244:Biochimica et Biophysica Acta 9111:10.1152/physrev.2000.80.2.555 8488:10.1016/S0166-2236(99)01544-1 8445:10.1016/S0166-2236(97)01101-6 8223:10.1016/S0021-9258(19)83641-4 8179:10.1016/S0006-3495(74)85963-1 7991:10.1016/S0166-2236(02)02278-6 7872:Plant, Cell & Environment 7792:10.1016/S0074-7696(07)57002-6 7322:10.1016/S0300-9084(00)00216-9 6045:Goldman DE (September 1943). 5746:Anderson & Rosenfeld 1988 5450:Kettenmann & Grantyn 1992 5231:10.1016/j.tplants.2017.12.004 3807:Leterrier C (February 2018). 3642: 3588:Soliton model in neuroscience 1967:partial differential equation 1876:), myelination increases the 1745:, an action potential at one 1576: 1026: 937:Structure of a typical neuron 207:voltage-gated sodium channels 11536:Action potential propagation 11508:Life: The Science of Biology 11352:Principles of Neural Science 11012: 10287:Review of Medical Physiology 9942:10.1016/0025-5564(77)90076-1 9256:10.1016/0006-3002(57)90343-8 7691:10.1016/0005-2736(76)90138-3 6577:Nature Reviews. Neuroscience 5803:10.1371/journal.pbio.0040049 5701:IEEE Transactions on Haptics 5503:. Cambridge, Massachusetts. 5364:"Early evolution of neurons" 3858:"Voltage-Gated Ion Channels" 3737:"Cardiac Muscle Contraction" 3647: 3363:, in which they applied the 3119:, halting action potentials. 2960:, at the time classified as 2944:found in the neurons of the 2300:, which are responsible for 1816:and Taiji Takeuchi and from 1421:Stimulation and rising phase 814:opening and closing kinetics 609:open, allowing the entry of 7: 10413:Nerve and Muscle Excitation 10126:Bower JM, Beeman D (1995). 8890:10.1126/science.280.5360.69 7915:. 202 (Pt 9) (9): 1139–50. 7644:Current Medicinal Chemistry 7228:10.1007/978-3-540-74805-2_1 6294:, Huxley AF (August 1952). 5980:10.3233/978-1-60750-473-3-i 5580:The Journal of Neuroscience 5483:McHenry & Garrison 1969 5362:Kristan WB (October 2016). 5350:Bullock & Horridge 1965 5319:Gradmann, D; Mummert, H in 4158:. Elsevier Academic Press. 3813:The Journal of Neuroscience 3530: 3111:is a lethal toxin found in 1062: 977:, and many of the "normal" 277:Process in a typical neuron 220: 141:leading to contraction. In 117:, and certain cells of the 10: 11648: 11607:Computational neuroscience 11504:Resting membrane potential 11389:Nelson DL, Cox MM (2008). 11327:Johnston D, Wu SM (1995). 9920:10.1512/iumj.1972.21.21071 9738:10.1109/JRPROC.1962.288235 9288:, Keynes RD (April 1955). 8271:10.1016/j.bpj.2008.12.3896 7613:10.1152/physrev.00025.2003 7259:Rusakov DA (August 2006). 6632:10.1016/j.conb.2007.08.003 6248:, Huxley AF (April 1952). 6202:, Huxley AF (April 1952). 6156:, Huxley AF (April 1952). 5882:Journal of Neurophysiology 4431:Journal of Neurophysiology 3525:central pattern generators 3480:resting membrane potential 3431: 3181: 3018:and electronics with high 2891: 2874:artificial neural networks 2870:central pattern generators 2590: 2552: 2549:Muscular action potentials 2457: 2377: 2330: 2253: 1912: 1839:. The conduction velocity 1726: 1708:absolute refractory period 1690: 1673:relative refractory period 1669:absolute refractory period 1631:further potassium channels 1571:relative refractory period 1567:absolute refractory period 1255: 1165: 1130: 867: 790:lateral geniculate nucleus 421:voltage-gated ion channels 271:voltage-gated ion channels 170:voltage-gated ion channels 149:, they provoke release of 121:are also excitable cells. 11232:. Baltimore: Lippincott. 11052:10.4249/scholarpedia.1349 10904:Neurophysiology: A Primer 9969:10.1109/TSMC.1983.6313098 9872:10.1080/14786441108564652 9498:10.1042/0264-6021:3560665 9388:The Journal of Physiology 9343:The Journal of Physiology 9294:The Journal of Physiology 8643:The Journal of Physiology 8110:The Journal of Physiology 7573:10.1016/j.cca.2005.10.008 7357:10.1007/s00441-002-0632-x 7055:10.1016/j.cub.2006.11.042 6982:The Journal of Physiology 6930:The Journal of Physiology 6884:The Journal of Physiology 6878:, Stämpfli R (May 1949). 6524:10.1002/9780470032244.ch3 6471:The Journal of Physiology 6425:The Journal of Physiology 6300:The Journal of Physiology 6254:The Journal of Physiology 6208:The Journal of Physiology 6162:The Journal of Physiology 6116:The Journal of Physiology 5894:10.1152/jn.2001.86.6.2998 5667:Nelson, ME; Rinzel, J in 5417:. ABC-Clio. p. 532. 5389:10.1016/j.cub.2016.05.030 5165:10.1016/j.cub.2015.11.057 5064:10.1007/s00425-006-0458-y 4395:10.1016/j.cub.2006.07.007 4127:. Springer. p. 103. 3666:The Journal of Physiology 3558:Central pattern generator 3523:and others controlled by 3306:Nobel Prize in Physiology 2454:Cardiac action potentials 1767:peripheral nervous system 1693:Nerve conduction velocity 1561:of the action potential. 1315: 1240:and the third layer, the 1182:olfactory receptor neuron 967:ligand-gated ion channels 10865:Schwann HP, ed. (1969). 10523:, Segev I, eds. (1989). 10375:Hoppensteadt FC (1986). 10047: 9673:Fitzhugh R (July 1961). 8562:, Curtis HJ (May 1939). 7656:10.2174/0929867043456241 7345:Cell and Tissue Research 7277:10.1177/1073858405284672 6772:Keynes & Aidley 1991 6730:Lillie RS (March 1925). 5713:10.1109/TOH.2014.2369422 5673:The Hodgkin-Huxley Model 4344:10.3389/fncel.2019.00160 4022:10.3390/membranes6010011 3594: 3391:cryo-electron microscopy 3202:in 1899. Large trees of 2460:Cardiac action potential 944:cardiac action potential 784:. As a cell grows, more 702:cardiac action potential 617:that permit the exit of 565:Hodgkin-Huxley equations 119:anterior pituitary gland 11027:"FitzHugh-Nagumo model" 10939:Waxman SG, ed. (2007). 10648:Silverthorn DU (2010). 9530:Fitzhugh R (May 1960). 9486:The Biochemical Journal 8613:J. Physiol. Pathol. Gen 8476:Trends in Neurosciences 8433:Trends in Neurosciences 7979:Trends in Neurosciences 7429:Hirsch NP (July 2007). 6679:10.1242/jeb.202.15.1979 5669:Bower & Beeman 1995 5499:Finkelstein GW (2013). 5325:Plant action potentials 5211:Trends in Plant Science 5095:Southeastern Naturalist 3757:Pickard B (June 1973). 3548:Biological neuron model 3164:affinity chromatography 3149:genus responsible for " 2733:Conduction speed (m/s) 2666:multicellular organisms 2587:Plant action potentials 2437:, and the insecticides 2374:Neuromuscular junctions 1469:potassium leak channels 1127:"All-or-none" principle 663:electrotonic potentials 126:cell–cell communication 11438: 11418:Listen to this article 11144:Warlow C (June 2007). 10867:Biological Engineering 10189:, Horridge GA (1965). 9860:Philosophical Magazine 9844:Philosophical Magazine 9726:Proceedings of the IRE 9575:Biological Cybernetics 8402:10.1098/rspb.1984.0055 8091:10.1002/jcp.1030350105 8056:10.1002/jcp.1030340304 7956:10.1002/bies.950100213 7921:10.1242/jeb.202.9.1139 7757:Aust. J. Plant Physiol 7196:10.1098/rspb.1946.0024 7145:10.1098/rspl.1854.0093 5847:"The action potential" 3538:Anode break excitation 3483: 3327: 3298:Santiago Ramón y Cajal 3223: 3210:, from which a single 3200:Santiago Ramón y Cajal 3120: 3090:voltage-sensitive dyes 3062: 2922:Andrew Fielding Huxley 2913: 2910:crucial for scientists 2724:Resting potential (mV) 2577:neuromuscular junction 2571:ions that free up the 2555:Neuromuscular junction 2486: 2394:neuromuscular junction 2384:Acetylcholine receptor 2380:Neuromuscular junction 2323: 2283:release their contents 2184: 2132: 2058: 1946: 1869: 1775:central nervous system 1750: 1713:orthodromic conduction 1653:afterhyperpolarization 1625:Afterhyperpolarization 1529:still further towards 1328:afterhyperpolarization 1271: 1059: 723:electrotonic potential 719:electrotonic potential 615:potassium ion channels 602: 561:differential equations 536:state directly to the 446: 332:axonal initial segment 295:electrically polarized 290: 230: 200:afterhyperpolarization 70: 11612:Cellular neuroscience 11526:University of Arizona 11437: 11288:Neuroelectric Systems 10560:Glass Microelectrodes 10260:Field J, ed. (1959). 9907:Indiana Univ. Math. J 9099:Physiological Reviews 7837:10.1007/s002329900446 7601:Physiological Reviews 5759:Koch & Segev 1989 5679:Koch & Segev 1989 4913:Koch & Segev 1989 4443:10.1152/jn.00237.2021 3583:Single-unit recording 3501:FitzHugh–Nagumo model 3441: 3418:X-ray crystallography 3414:sodium–potassium pump 3318: 3294:Hermann von Helmholtz 3189: 3107: 3052: 2901: 2507:atrioventricular node 2479: 2388:Cholinesterase enzyme 2314: 2185: 2133: 2059: 1922: 1829:conduction velocities 1826: 1740: 1717:antidromic conduction 1265: 1200:, or into continuous 1045: 683:sodium–potassium pump 573: 444: 284: 228: 172:embedded in a cell's 115:pancreatic beta cells 35: 11490:Blackwell Publishing 11481:Blackwell Publishing 11469:More spoken articles 11247:Clay JR (May 2005). 10485:, Aidley DJ (1991). 9884:Arch. Neerl. Physiol 9548:10.1085/jgp.43.5.867 9152:(6823): 988–9, 991. 8580:10.1085/jgp.22.5.649 8320:10.1085/jgp.48.6.975 5289:10.4161/psb.2.3.4217 4865:Schmidt-Nielsen 1997 4763:, pp. 147–149; 4675:Schmidt-Nielsen 1997 4624:, pp. 147–148; 4591:, pp. 149–150; 4476:, pp. 535–580; 4474:Schmidt-Nielsen 1997 4271:Schmidt-Nielsen 1997 4269:, pp. 178–180; 4253:, pp. 490–499; 4251:Schmidt-Nielsen 1997 4249:, pp. 177–240; 4235:Schmidt-Nielsen 1997 4216:Schmidt-Nielsen 1997 4214:, pp. 140–141; 4096:Partridge D (1991). 3963:Schmidt-Nielsen 1997 3938:Schmidt-Nielsen 1997 3766:The Botanical Review 3609:computational models 3578:Neural accommodation 3489:Hodgkin–Huxley model 3286:Emil du Bois-Reymond 3242:—the earliest-known 2982:associated with the 2888:Experimental methods 2696:seem to be the main 2424:acetylcholinesterase 2145: 2095: 1975: 1810:saltatory conduction 1743:saltatory conduction 1733:Saltatory conduction 1550:. The sharp rise in 1450:pacemaker potentials 1277:pacemaker potentials 1268:pacemaker potentials 1252:Pacemaker potentials 1186:Meissner's corpuscle 1106:nearly the same time 731:saltatory conduction 685:, which, with other 559:developing a set of 385:improve this article 215:cardiac muscle cells 130:saltatory conduction 11570:2 July 2014 at the 11559:Neuroscience Online 11150:Practical Neurology 11043:2006SchpJ...1.1349I 10941:Molecular Neurology 10900:Stevens CF (1966). 10598:Embodiments of Mind 10562:. New York: Wiley. 10451:. New York: Wiley. 10285:Ganong, WF (1991). 10161:Brazier MA (1961). 10004:2000CBio...10.R176H 9816:1953NW.....40..301B 9804:Naturwissenschaften 9777:10.1085/jgp.32.1.69 9691:1961BpJ.....1..445F 9679:Biophysical Journal 9634:1981BpJ....35..193M 9622:Biophysical Journal 9451:10.1038/nature06419 9443:2007Natur.450.1043M 9205:2001Natur.409.1047S 9158:2001Natur.409..988C 9066:1999Natur.402..813G 9019:1999Natur.402..809C 8972:10.1038/nature01580 8964:2003Natur.423...33J 8919:2001Natur.414...43Z 8882:1998Sci...280...69D 8839:10.1038/nature00978 8831:2002Natur.419...35Y 8788:1992SciAm.266c..44N 8776:Scientific American 8703:1976Natur.260..799N 8394:1984RSPSB.222..147K 8263:2009BpJ....96.2532B 8251:Biophysical Journal 8171:1974BpJ....14..983R 8159:Biophysical Journal 7187:1946RSPSB.133..444H 7087:Nature Neuroscience 7046:2007CBio...17R..29H 6748:10.1085/jgp.7.4.473 6397:on 20 December 2018 6372:10.1038/nature04610 6364:2006Natur.440.1060N 6063:10.1085/jgp.27.1.37 6005:1960Natur.188..495N 5851:Practical Neurology 5411:Hellier JL (2014). 5380:2016CBio...26.R949K 5281:2007PlSiB...2..139V 5223:2018TPS....23..220H 5157:2016CBio...26..286B 5056:2007Plant.226..203F 4830:, pp. 161–164. 4806:, pp. 160–164. 4767:, pp. 126–127. 4677:, pp. 478–480. 4599:, pp. 152–158. 4563:, pp. 127–128. 4539:, pp. 444–445. 4527:, pp. 152–153. 4512:, pp. 115–132. 4500:, pp. 122–124. 4273:, pp. 490–491. 4237:, pp. 483–484. 4218:, pp. 480–481. 4152:Pedersen R (1998). 3904:, pp. 150–151. 3778:1973BotRv..39..172P 3428:Quantitative models 3290:conduction velocity 2957:Doryteuthis pealeii 2928:, awarded the 1963 2905:Doryteuthis pealeii 2866:digital electronics 2841:Spinal motor neuron 2714: 2707:conduction velocity 2593:Variation potential 2503:pacemaker potential 2327:Electrical synapses 2316:Electrical synapses 2228:conduction velocity 1887:selective advantage 1878:conduction velocity 1790:conduction velocity 1773:exclusively in the 1765:exclusively in the 1677:"inactivated" state 1461:intracellular fluid 1457:extracellular fluid 1258:Pacemaker potential 1226:photoreceptor cells 1148:receptor potentials 1117:electrical synapses 875:Anatomy of a neuron 671:synaptic potentials 659:receptor potentials 607:sodium ion channels 343:threshold potential 54:threshold potential 11617:Cellular processes 11439: 11284:Micheli-Tzanakou E 10165:. London: Pitman. 9824:10.1007/BF00632438 9587:10.1007/BF00197717 8748:10.1007/BF00656997 8538:10.1007/BF01790181 8532:(10–12): 521–562. 8355:10.1007/BFb0037088 8025:Arch. Sci. Physiol 7782:Beilby MJ (2007). 7726:10.1007/BF01994359 7472:Muscle & Nerve 7448:10.1093/bja/aem144 7400:10.1007/BF02110111 7265:The Neuroscientist 6976:(September 1951). 6854:10.1007/BF01755237 6825:10.1007/BF01755414 6673:(Pt 15): 1979–89. 5546:Olesko, Kathryn M. 4974:Purves et al. 2008 4933:, Segev I (eds.). 4792:Purves et al. 2008 4777:Purves et al. 2008 4694:Purves et al. 2008 4667:Purves et al. 2008 4618:Purves et al. 2008 4614:Purves et al. 2008 4595:, pp. 84–85; 4587:, pp. 64–74; 4585:Purves et al. 2008 4573:Purves et al. 2008 4549:Purves et al. 2008 4295:Purves et al. 2008 4283:Purves et al. 2001 4210:, pp. 49–50; 4208:Purves et al. 2008 3957:, pp. 48–49; 3955:Purves et al. 2008 3786:10.1007/BF02859299 3513:neural computation 3509:Pacinian corpuscle 3497:Morris–Lecar model 3484: 3422:molecular machines 3387:crystal structures 3328: 3264:(i.e., bundles of 3224: 3121: 3115:that inhibits the 3063: 2924:, who were, along 2918:Alan Lloyd Hodgkin 2914: 2817:Sciatic nerve axon 2769:Median giant fiber 2712: 2616:Some plants (e.g. 2559:Muscle contraction 2521:and thence to the 2487: 2333:Electrical synapse 2324: 2180: 2128: 2054: 1947: 1903:multiple sclerosis 1870: 1827:Comparison of the 1751: 1700:Alan Lloyd Hodgkin 1412:in 1963. However, 1402:Alan Lloyd Hodgkin 1272: 1216:, which may cause 1060: 778:membrane potential 643:neural firing rate 603: 447: 303:membrane potential 291: 243:membrane potential 231: 105:, as well as some 79:membrane potential 71: 11632:Action potentials 11597:Electrophysiology 11516:978-0-7167-7671-0 11435: 11402:978-0-7167-7108-1 11381:978-0-19-504097-5 11319:978-0-87893-321-1 11220:978-0-521-49882-1 10987:978-0-262-23072-8 10950:978-0-12-369509-3 10876:978-0-07-055734-5 10841:978-0-521-57098-5 10828:Schmidt-Nielsen K 10803:978-0-415-32868-5 10768:978-0-87893-697-7 10733:978-0-87893-742-4 10694:978-0-444-80192-0 10659:978-0-321-55980-7 10607:978-0-262-63114-3 10569:978-0-471-51885-3 10534:978-0-262-11133-1 10496:978-0-521-41042-7 10458:978-0-471-56200-9 10423:978-0-87893-410-2 10386:978-0-521-31574-6 10359:978-0-387-90819-9 10296:978-0-8385-8418-7 10236:978-0-7167-0030-2 10137:978-0-387-94019-9 10070:978-0-262-01097-9 9901:Evans JW (1972). 9732:(10): 2061–2070. 9199:(6823): 1047–51. 8697:(5554): 799–802. 7801:978-0-12-373701-4 7484:10.1002/mus.20440 7237:978-3-540-74804-5 6533:978-0-470-03224-4 5748:, pp. 15–41. 5644:* FitzHugh, R in 5636:Reeke et al. 2005 5623:Hoppensteadt 1986 5440:, pp. 63–82. 5374:(20): R949–R954. 4988:, pp. 59–60. 4976:, pp. 52–53. 4944:978-0-262-11133-1 4855:, pp. 75–121 4818:, pp. 21–23. 4715:, pp. 19–20. 4575:, pp. 61–65. 4484:, pp. 69–79. 4388:(15): R585–R588. 4297:, pp. 26–28. 4134:978-1-4613-2717-2 3925:, pp. 89–90. 3408:to the eponymous 3402:resting potential 3348:dynamical systems 3053:As revealed by a 2926:John Carew Eccles 2894:Electrophysiology 2857: 2856: 2700:of multicellular 2624:Dionaea muscipula 2619:Dionaea muscipula 2468:Cardiac pacemaker 2352:neurotransmitters 2320:chemical synapses 2250:Chemical synapses 2178: 2177: 2106: 2046: 1999: 1665:refractory period 1659:Refractory period 1649:hyperpolarization 1492:positive feedback 1442:chemical synapses 1367:positive feedback 1332:refractory period 1281:cardiac pacemaker 1202:graded potentials 1021:synaptic vesicles 1017:neurotransmitters 870:Neurotransmission 864:Neurotransmission 843:protein synthesis 831:potassium channel 827:delayed rectifier 747:pyramidal neurons 655:graded potentials 631:positive feedback 627:resting potential 595:refractory period 451:positive feedback 417: 416: 409: 357:Biophysical basis 339:resting potential 251:action potentials 178:resting potential 16:(Redirected from 11639: 11622:Membrane biology 11602:Electrochemistry 11459: 11457: 11446: 11445: 11436: 11426: 11424: 11419: 11406: 11385: 11366: 11342: 11323: 11301: 11278: 11268: 11243: 11224: 11196: 11195: 11193: 11191: 11176: 11170: 11169: 11167: 11165: 11141: 11135: 11134: 11132: 11130: 11115: 11109: 11108: 11106: 11104: 11089: 11083: 11082: 11080: 11078: 11063: 11057: 11056: 11054: 11022: 11007: 10970: 10935: 10907: 10896: 10861: 10823: 10788: 10753: 10714: 10679: 10644: 10627: 10589: 10554: 10516: 10487:Nerve and Muscle 10478: 10443: 10410:Junge D (1981). 10406: 10371: 10344: 10338: 10334: 10332: 10324: 10281: 10256: 10228: 10214: 10196: 10182: 10157: 10122: 10090: 10062: 10042: 10041: 10015: 9998:(5): R176–R179. 9987: 9981: 9980: 9963:(5): 1010–1014. 9952: 9946: 9945: 9924: 9922: 9898: 9892: 9891: 9875: 9851: 9835: 9798: 9788: 9756: 9750: 9749: 9720: 9710: 9670: 9664: 9663: 9653: 9613: 9607: 9606: 9569: 9559: 9526: 9520: 9519: 9509: 9492:(Pt 3): 665–83. 9477: 9471: 9470: 9437:(7172): 1043–9. 9426: 9420: 9419: 9383: 9377: 9376: 9366: 9334: 9328: 9327: 9317: 9282: 9276: 9275: 9239: 9233: 9232: 9213:10.1038/35059098 9187: 9169: 9167:10.1038/35059188 9137: 9131: 9130: 9093: 9048: 9030: 9013:(6763): 809–13. 8998: 8992: 8991: 8946: 8927:10.1038/35102009 8901: 8865: 8859: 8858: 8814: 8808: 8807: 8767: 8730: 8711:10.1038/260799a0 8683: 8677: 8676: 8666: 8627: 8621: 8620: 8608: 8602: 8601: 8591: 8556: 8550: 8549: 8514: 8508: 8507: 8471: 8465: 8464: 8428: 8422: 8421: 8388:(1227): 147–53. 8376: 8341: 8331: 8299: 8293: 8292: 8282: 8242: 8236: 8235: 8225: 8200: 8190: 8150: 8144: 8143: 8133: 8101: 8095: 8094: 8074: 8068: 8067: 8039: 8033: 8032: 8017: 8011: 8010: 7974: 7968: 7967: 7939: 7933: 7932: 7904: 7898: 7897: 7887: 7863: 7857: 7856: 7820: 7814: 7813: 7779: 7773: 7772: 7752: 7746: 7745: 7709: 7703: 7702: 7674: 7668: 7667: 7639: 7633: 7632: 7596: 7585: 7584: 7556: 7550: 7549: 7513: 7504: 7503: 7467: 7461: 7460: 7450: 7426: 7420: 7419: 7383: 7377: 7376: 7340: 7334: 7333: 7305: 7299: 7298: 7288: 7256: 7250: 7249: 7215: 7209: 7208: 7198: 7163: 7157: 7156: 7125: 7119: 7118: 7082: 7076: 7075: 7057: 7025: 7016: 7015: 7005: 6970: 6964: 6963: 6953: 6917: 6907: 6872: 6866: 6865: 6836: 6808: 6802: 6801: 6781: 6775: 6769: 6759: 6727: 6721: 6720: 6700: 6691: 6690: 6658: 6652: 6651: 6615: 6609: 6608: 6572: 6566: 6565: 6559: 6555: 6553: 6545: 6511: 6505: 6504: 6494: 6458: 6448: 6413: 6407: 6406: 6404: 6402: 6396: 6390:. Archived from 6358:(7087): 1060–3. 6349: 6340: 6334: 6333: 6323: 6287: 6277: 6241: 6231: 6195: 6185: 6149: 6139: 6100: 6085: 6084: 6074: 6042: 6033: 6032: 6013:10.1038/188495b0 5988: 5982: 5972: 5966: 5965: 5929: 5923: 5920: 5914: 5913: 5888:(6): 2998–3010. 5877: 5871: 5870: 5842: 5833: 5832: 5831: 5825: 5815: 5805: 5781: 5772:Journal articles 5766: 5755: 5749: 5739: 5733: 5732: 5692: 5686: 5665: 5659: 5658:, pp. 12–16 5632: 5626: 5620: 5614: 5613: 5603: 5571: 5565: 5559: 5553: 5543: 5537: 5536: 5530: 5522: 5496: 5490: 5476: 5470: 5459: 5453: 5447: 5441: 5435: 5429: 5428: 5408: 5402: 5401: 5391: 5359: 5353: 5347: 5341: 5334: 5328: 5317: 5311: 5310: 5300: 5260: 5254: 5249: 5243: 5242: 5206: 5187: 5186: 5176: 5136: 5127: 5126: 5090: 5084: 5083: 5039: 5033: 5032: 5022: 5004: 4995: 4989: 4983: 4977: 4971: 4965: 4964: 4926: 4920: 4906: 4897: 4886: 4880: 4874: 4868: 4862: 4856: 4849: 4843: 4837: 4831: 4825: 4819: 4813: 4807: 4801: 4795: 4789: 4780: 4774: 4768: 4758: 4752: 4746: 4737: 4727: 4716: 4710: 4697: 4691: 4678: 4664: 4658: 4652: 4646: 4635: 4629: 4611: 4600: 4582: 4576: 4570: 4564: 4558: 4552: 4546: 4540: 4534: 4528: 4522: 4513: 4507: 4501: 4491: 4485: 4471: 4465: 4464: 4454: 4422: 4416: 4415: 4397: 4373: 4367: 4366: 4356: 4346: 4322: 4316: 4315: 4304: 4298: 4292: 4286: 4280: 4274: 4264: 4258: 4257:, p. 47–68. 4244: 4238: 4232: 4219: 4205: 4194: 4191:Silverthorn 2010 4188: 4182: 4176: 4170: 4169: 4149: 4143: 4142: 4121:Black I (1984). 4118: 4112: 4111: 4093: 4087: 4086: 4060: 4045: 4044: 4034: 4024: 4000: 3994: 3988: 3982: 3976: 3970: 3952: 3941: 3935: 3926: 3920: 3905: 3899: 3878: 3877: 3875: 3873: 3853: 3847: 3846: 3836: 3819:(9): 2135–2145. 3804: 3798: 3797: 3763: 3754: 3748: 3747: 3745: 3743: 3733: 3727: 3726: 3706: 3700: 3699: 3689: 3657: 3637: 3618: 3612: 3604: 3505:mechanoreceptors 3469: 3410:Goldman equation 3406:David E. Goldman 3332:Julius Bernstein 3244:electric battery 3236:Alessandro Volta 3168:chemical weapons 2973:electronic noise 2872:and mimicked in 2730:AP duration (ms) 2727:AP increase (mV) 2715: 2472:Heart arrhythmia 2449:Other cell types 2404:terminates on a 2308:, respectively. 2274:neurotransmitter 2260:Neurotransmitter 2256:Chemical synapse 2201:and capacitance 2189: 2187: 2186: 2181: 2179: 2176: 2175: 2166: 2165: 2156: 2155: 2137: 2135: 2134: 2129: 2126: 2125: 2116: 2115: 2104: 2063: 2061: 2060: 2055: 2047: 2045: 2044: 2043: 2030: 2026: 2025: 2015: 2013: 2012: 2000: 1998: 1990: 1982: 1883:squid giant axon 1867: 1866: 1794:meter per second 1771:oligodendrocytes 1759:nodes of Ranvier 1459:compared to the 1349:Goldman equation 1339:membrane voltage 1234:horizontal cells 1218:neurotransmitter 1198:neurotransmitter 1073:neurotransmitter 1048:neurotransmitter 1008:nodes of Ranvier 1000:oligodendrocytes 963:dendritic spines 886: 858:cortical neurons 782:input resistance 739:neurotransmitter 727:nodes of Ranvier 713:, respectively. 687:ion transporters 412: 405: 401: 398: 392: 369: 361: 138:synaptic boutons 93:, which include 77:occurs when the 75:action potential 21: 11647: 11646: 11642: 11641: 11640: 11638: 11637: 11636: 11627:Plant cognition 11577: 11576: 11572:Wayback Machine 11550:SourceForge.net 11473: 11472: 11461: 11455: 11453: 11450:This audio file 11447: 11440: 11431: 11428: 11422: 11421: 11417: 11414: 11409: 11403: 11382: 11363: 11339: 11320: 11298: 11240: 11221: 11204: 11202:Further reading 11199: 11189: 11187: 11178: 11177: 11173: 11163: 11161: 11142: 11138: 11128: 11126: 11117: 11116: 11112: 11102: 11100: 11091: 11090: 11086: 11076: 11074: 11065: 11064: 11060: 11023: 11019: 11015: 11010: 10988: 10951: 10916: 10877: 10842: 10804: 10769: 10734: 10695: 10660: 10608: 10570: 10535: 10497: 10459: 10424: 10387: 10360: 10336: 10335: 10326: 10325: 10297: 10237: 10138: 10071: 10050: 10045: 10013:10.1.1.133.3378 9992:Current Biology 9988: 9984: 9953: 9949: 9925: 9899: 9895: 9876: 9852: 9836: 9810:(11): 301–311. 9799: 9757: 9753: 9721: 9671: 9667: 9614: 9610: 9570: 9527: 9523: 9478: 9474: 9427: 9423: 9384: 9380: 9335: 9331: 9283: 9279: 9240: 9236: 9188: 9138: 9134: 9094: 9060:(6763): 813–7. 9049: 8999: 8995: 8958:(6935): 33–41. 8947: 8902: 8876:(5360): 69–77. 8866: 8862: 8825:(6902): 35–42. 8815: 8811: 8768: 8736:Pflügers Archiv 8731: 8684: 8680: 8628: 8624: 8609: 8605: 8557: 8553: 8515: 8511: 8472: 8468: 8429: 8425: 8377: 8365: 8342: 8300: 8296: 8243: 8239: 8201: 8151: 8147: 8102: 8098: 8075: 8071: 8040: 8036: 8018: 8014: 7975: 7971: 7940: 7936: 7905: 7901: 7864: 7860: 7821: 7817: 7802: 7780: 7776: 7769:10.1071/pp01017 7753: 7749: 7710: 7706: 7675: 7671: 7640: 7636: 7597: 7588: 7557: 7553: 7518:The Neurologist 7514: 7507: 7468: 7464: 7427: 7423: 7384: 7380: 7341: 7337: 7306: 7302: 7257: 7253: 7238: 7216: 7212: 7181:(873): 444–79. 7164: 7160: 7126: 7122: 7083: 7079: 7034:Current Biology 7026: 7019: 6971: 6967: 6936:(3–4): 476–95. 6918: 6873: 6869: 6837: 6809: 6805: 6782: 6778: 6728: 6724: 6701: 6694: 6659: 6655: 6616: 6612: 6589:10.1038/nrn1253 6573: 6569: 6557: 6556: 6547: 6546: 6534: 6512: 6508: 6459: 6414: 6410: 6400: 6398: 6394: 6347: 6341: 6337: 6288: 6242: 6196: 6150: 6101: 6088: 6043: 6036: 5999:(4749): 495–7. 5989: 5985: 5973: 5969: 5930: 5926: 5921: 5917: 5878: 5874: 5843: 5836: 5826: 5782: 5778: 5774: 5769: 5757:Getting, PA in 5756: 5752: 5740: 5736: 5693: 5689: 5676: 5666: 5662: 5653: 5643: 5633: 5629: 5621: 5617: 5572: 5568: 5560: 5556: 5544: 5540: 5524: 5523: 5511: 5497: 5493: 5477: 5473: 5460: 5456: 5448: 5444: 5436: 5432: 5425: 5409: 5405: 5368:Current Biology 5360: 5356: 5348: 5344: 5335: 5331: 5318: 5314: 5261: 5257: 5250: 5246: 5207: 5190: 5145:Current Biology 5137: 5130: 5091: 5087: 5040: 5036: 5002: 4996: 4992: 4984: 4980: 4972: 4968: 4945: 4927: 4923: 4907: 4900: 4887: 4883: 4875: 4871: 4867:, Figure 12.13. 4863: 4859: 4850: 4846: 4838: 4834: 4826: 4822: 4814: 4810: 4802: 4798: 4790: 4783: 4775: 4771: 4759: 4755: 4747: 4740: 4736:, pp. 4–5. 4732:, p. 151; 4728: 4719: 4711: 4700: 4692: 4681: 4673:, p. 134; 4665: 4661: 4653: 4649: 4636: 4632: 4612: 4603: 4583: 4579: 4571: 4567: 4559: 4555: 4547: 4543: 4535: 4531: 4523: 4516: 4508: 4504: 4496:, pp. 53; 4492: 4488: 4472: 4468: 4423: 4419: 4382:Current Biology 4374: 4370: 4323: 4319: 4306: 4305: 4301: 4293: 4289: 4281: 4277: 4265: 4261: 4245: 4241: 4233: 4222: 4206: 4197: 4189: 4185: 4177: 4173: 4166: 4150: 4146: 4135: 4119: 4115: 4108: 4094: 4090: 4075: 4061: 4048: 4001: 3997: 3991:Schmidt-Nielsen 3989: 3985: 3977: 3973: 3965:, p. 483; 3961:, p. 141; 3953: 3944: 3936: 3929: 3921: 3908: 3900: 3881: 3871: 3869: 3854: 3850: 3805: 3801: 3761: 3755: 3751: 3741: 3739: 3735: 3734: 3730: 3707: 3703: 3658: 3654: 3650: 3645: 3640: 3622:Purkinje fibers 3619: 3615: 3605: 3601: 3597: 3592: 3533: 3521:escape reflexes 3467: 3461: 3454: 3447: 3436: 3430: 3398:Nernst equation 3278:Carlo Matteucci 3238:to develop the 3184: 3102: 3086:Optical imaging 3046:or to voltage. 3044:sensitive to Ca 3020:input impedance 3012: 3005: 2998: 2980: 2951:Loligo forbesii 2896: 2890: 2662: 2595: 2589: 2561: 2553:Main articles: 2551: 2523:Purkinje fibers 2499:sinoatrial node 2474: 2458:Main articles: 2456: 2451: 2422:by the enzyme, 2396:, in which the 2390: 2378:Main articles: 2376: 2356:escape reflexes 2343: 2331:Main articles: 2329: 2298:botulinum toxin 2270: 2254:Main articles: 2252: 2247: 2235: 2224: 2206: 2199: 2171: 2167: 2161: 2157: 2154: 2146: 2143: 2142: 2121: 2117: 2111: 2107: 2096: 2093: 2092: 2083:and a position 2039: 2035: 2031: 2021: 2017: 2016: 2014: 2008: 2004: 1991: 1983: 1981: 1976: 1973: 1972: 1943: 1936: 1917: 1911: 1862: 1860: 1806:node of Ranvier 1802:node of Ranvier 1747:node of Ranvier 1735: 1727:Main articles: 1725: 1695: 1689: 1661: 1646: 1638: 1627: 1619: 1613: 1605: 1595: 1587: 1579: 1555: 1549: 1541: 1535: 1527: 1521: 1513: 1506: 1499: 1487: 1481: 1446:sensory neurons 1434: 1423: 1395: 1381: 1374: 1363: 1356: 1345: 1318: 1305:parasympathetic 1285:sinoatrial node 1260: 1254: 1174:sensory neurons 1170: 1164: 1162:Sensory neurons 1135: 1133:All-or-none law 1129: 1065: 1029: 940: 939: 938: 935: 934: 933: 928: 923: 918: 915: 911: 906: 901: 896: 891: 877: 872: 866: 806:calcium current 776:. How much the 766: 580: 575: 557: 483: 476: 413: 402: 396: 393: 382: 370: 359: 301:, known as the 299:plasma membrane 279: 223: 209:, the other by 191:sodium channels 174:plasma membrane 91:excitable cells 28: 23: 22: 15: 12: 11: 5: 11645: 11635: 11634: 11629: 11624: 11619: 11614: 11609: 11604: 11599: 11594: 11589: 11575: 11574: 11562: 11552: 11543: 11538: 11533: 11528: 11519: 11501: 11492: 11483: 11462: 11448: 11441: 11429: 11416: 11415: 11413: 11412:External links 11410: 11408: 11407: 11401: 11386: 11380: 11367: 11361: 11343: 11337: 11324: 11318: 11302: 11296: 11279: 11244: 11238: 11225: 11219: 11205: 11203: 11200: 11198: 11197: 11171: 11136: 11110: 11084: 11058: 11016: 11014: 11011: 11009: 11008: 10986: 10971: 10949: 10936: 10914: 10897: 10875: 10862: 10840: 10824: 10802: 10789: 10767: 10754: 10732: 10715: 10693: 10680: 10658: 10645: 10628: 10606: 10590: 10568: 10555: 10533: 10517: 10495: 10479: 10457: 10444: 10422: 10407: 10385: 10372: 10358: 10345: 10337:|journal= 10295: 10282: 10257: 10235: 10215: 10183: 10158: 10136: 10123: 10091: 10069: 10051: 10049: 10046: 10044: 10043: 9982: 9947: 9913:(9): 877–885. 9893: 9751: 9665: 9628:(1): 193–213. 9608: 9521: 9472: 9421: 9378: 9329: 9277: 9250:(2): 394–401. 9234: 9132: 8993: 8913:(6859): 43–8. 8860: 8809: 8678: 8637:(March 1949). 8622: 8603: 8551: 8509: 8466: 8423: 8363: 8294: 8257:(6): 2532–46. 8237: 8216:(6): 3440–50. 8145: 8096: 8069: 8034: 8012: 7985:(11): 558–63. 7969: 7934: 7899: 7878:(3): 249–257. 7858: 7815: 7800: 7774: 7763:(7): 577–590. 7747: 7704: 7669: 7634: 7586: 7551: 7505: 7462: 7421: 7378: 7335: 7300: 7251: 7236: 7210: 7158: 7120: 7099:10.1038/nn1995 7093:(11): 1351–4. 7077: 7017: 6965: 6867: 6819:(6): 696–711. 6803: 6786:Am. J. Physiol 6776: 6742:(4): 473–507. 6722: 6692: 6653: 6610: 6583:(12): 968–80. 6567: 6558:|journal= 6532: 6506: 6431:(2): 183–210. 6408: 6335: 6260:(4): 497–506. 6110:(April 1952). 6086: 6034: 5983: 5967: 5924: 5915: 5872: 5834: 5775: 5773: 5770: 5768: 5767: 5765:, pp. 171–194. 5750: 5742:McCulloch 1988 5734: 5687: 5685:, pp. 135–169. 5660: 5642:, pp. 459–478. 5627: 5615: 5566: 5562:Bernstein 1912 5554: 5538: 5509: 5491: 5471: 5454: 5442: 5430: 5423: 5403: 5354: 5342: 5329: 5327:, pp. 333–344. 5312: 5255: 5244: 5217:(3): 220–234. 5188: 5128: 5101:(4): 573–584. 5085: 5034: 4990: 4978: 4966: 4943: 4921: 4898: 4896:, pp. 333–346. 4888:Waxman, SG in 4881: 4879:, p. 163. 4869: 4857: 4844: 4842:, p. 509. 4832: 4820: 4808: 4796: 4781: 4769: 4753: 4751:, p. 152. 4738: 4717: 4698: 4679: 4669:, p. 34; 4659: 4647: 4637:Goldin, AL in 4630: 4628:, p. 128. 4620:, p. 65; 4616:, p. 47; 4601: 4577: 4565: 4553: 4541: 4529: 4514: 4502: 4486: 4466: 4437:(3): 888–905. 4417: 4368: 4317: 4299: 4287: 4275: 4259: 4239: 4220: 4195: 4193:, p. 253. 4183: 4171: 4164: 4144: 4133: 4113: 4106: 4088: 4073: 4046: 3995: 3983: 3981:, p. 127. 3971: 3942: 3940:, p. 484. 3927: 3906: 3879: 3848: 3799: 3749: 3728: 3701: 3651: 3649: 3646: 3644: 3641: 3639: 3638: 3626:Purkinje cells 3613: 3598: 3596: 3593: 3591: 3590: 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3543:Bioelectricity 3540: 3534: 3532: 3529: 3470:represent the 3459: 3452: 3445: 3432:Main article: 3429: 3426: 3382:patch clamping 3344:Louis Lapicque 3320:Ribbon diagram 3282:direct current 3252:direct-current 3206:feed into the 3192:Purkinje cells 3183: 3180: 3147:dinoflagellate 3101: 3098: 3057:electrode, an 3010: 3003: 2996: 2978: 2975:, the current 2962:Loligo pealeii 2889: 2886: 2862:speed of sound 2855: 2854: 2851: 2848: 2845: 2842: 2839: 2831: 2830: 2827: 2824: 2821: 2818: 2815: 2807: 2806: 2803: 2800: 2797: 2794: 2791: 2783: 2782: 2779: 2776: 2773: 2770: 2767: 2759: 2758: 2755: 2752: 2749: 2746: 2743: 2735: 2734: 2731: 2728: 2725: 2722: 2719: 2661: 2658: 2588: 2585: 2550: 2547: 2455: 2452: 2450: 2447: 2375: 2372: 2328: 2325: 2287:synaptic cleft 2251: 2248: 2246: 2243: 2233: 2222: 2204: 2197: 2191: 2190: 2174: 2170: 2164: 2160: 2153: 2150: 2139: 2138: 2124: 2120: 2114: 2110: 2103: 2100: 2065: 2064: 2053: 2050: 2042: 2038: 2034: 2029: 2024: 2020: 2011: 2007: 2003: 1997: 1994: 1989: 1986: 1980: 1941: 1934: 1913:Main article: 1910: 1907: 1724: 1721: 1691:Main article: 1688: 1685: 1660: 1657: 1644: 1636: 1626: 1623: 1617: 1611: 1603: 1593: 1585: 1578: 1575: 1553: 1547: 1539: 1533: 1525: 1519: 1511: 1504: 1497: 1485: 1479: 1432: 1422: 1419: 1393: 1379: 1372: 1361: 1354: 1343: 1323:depolarization 1317: 1314: 1293:natural rhythm 1256:Main article: 1253: 1250: 1242:ganglion cells 1238:amacrine cells 1224:, the initial 1168:Sensory neuron 1166:Main article: 1163: 1160: 1131:Main article: 1128: 1125: 1093:cable equation 1064: 1061: 1028: 1025: 1013:axon terminals 959:axon terminals 936: 929: 924: 919: 912: 907: 902: 897: 892: 887: 881: 880: 879: 878: 876: 873: 868:Main article: 865: 862: 823:inward current 810:sodium current 792:have a longer 765: 762: 743:synaptic cleft 735:axon terminals 651:all-or-nothing 591:repolarization 587:depolarization 555: 481: 474: 435: 434: 431: 428: 415: 414: 373: 371: 364: 358: 355: 278: 275: 264:consists of a 235:cell membranes 222: 219: 155:nerve impulses 113:cells such as 87:depolarization 81:of a specific 62:Repolarization 58:depolarization 26: 9: 6: 4: 3: 2: 11644: 11633: 11630: 11628: 11625: 11623: 11620: 11618: 11615: 11613: 11610: 11608: 11605: 11603: 11600: 11598: 11595: 11593: 11592:Neural coding 11590: 11588: 11585: 11584: 11582: 11573: 11569: 11566: 11563: 11560: 11556: 11553: 11551: 11547: 11544: 11542: 11539: 11537: 11534: 11532: 11529: 11527: 11523: 11520: 11517: 11513: 11509: 11505: 11502: 11500: 11496: 11493: 11491: 11487: 11484: 11482: 11478: 11475: 11474: 11470: 11466: 11451: 11404: 11398: 11394: 11393: 11387: 11383: 11377: 11373: 11368: 11364: 11362:0-8385-7701-6 11358: 11354: 11353: 11348: 11344: 11340: 11338:0-262-10053-3 11334: 11330: 11325: 11321: 11315: 11311: 11307: 11303: 11299: 11297:0-8147-1782-9 11293: 11289: 11285: 11280: 11276: 11272: 11267: 11262: 11258: 11254: 11250: 11245: 11241: 11239:0-7817-3944-6 11235: 11231: 11226: 11222: 11216: 11212: 11207: 11206: 11185: 11181: 11175: 11159: 11155: 11151: 11147: 11140: 11124: 11120: 11114: 11098: 11094: 11088: 11072: 11068: 11062: 11053: 11048: 11044: 11040: 11036: 11032: 11028: 11021: 11017: 11005: 11001: 10997: 10993: 10989: 10983: 10979: 10978: 10972: 10968: 10964: 10960: 10956: 10952: 10946: 10942: 10937: 10933: 10929: 10925: 10921: 10917: 10915:9780471824367 10911: 10906: 10905: 10898: 10894: 10890: 10886: 10882: 10878: 10872: 10868: 10863: 10859: 10855: 10851: 10847: 10843: 10837: 10833: 10829: 10825: 10821: 10817: 10813: 10809: 10805: 10799: 10795: 10790: 10786: 10782: 10778: 10774: 10770: 10764: 10760: 10755: 10751: 10747: 10743: 10739: 10735: 10729: 10725: 10721: 10716: 10712: 10708: 10704: 10700: 10696: 10690: 10686: 10681: 10677: 10673: 10669: 10665: 10661: 10655: 10651: 10646: 10642: 10638: 10634: 10629: 10625: 10621: 10617: 10613: 10609: 10603: 10599: 10595: 10591: 10587: 10583: 10579: 10575: 10571: 10565: 10561: 10556: 10552: 10548: 10544: 10540: 10536: 10530: 10526: 10522: 10518: 10514: 10510: 10506: 10502: 10498: 10492: 10488: 10484: 10480: 10476: 10472: 10468: 10464: 10460: 10454: 10450: 10445: 10441: 10437: 10433: 10429: 10425: 10419: 10415: 10414: 10408: 10404: 10400: 10396: 10392: 10388: 10382: 10378: 10373: 10369: 10365: 10361: 10355: 10351: 10346: 10342: 10330: 10322: 10318: 10314: 10310: 10306: 10302: 10298: 10292: 10288: 10283: 10279: 10275: 10271: 10267: 10263: 10258: 10254: 10250: 10246: 10242: 10238: 10232: 10227: 10226: 10220: 10216: 10212: 10208: 10204: 10200: 10195: 10194: 10188: 10184: 10180: 10176: 10172: 10168: 10164: 10159: 10155: 10151: 10147: 10143: 10139: 10133: 10129: 10124: 10120: 10116: 10112: 10108: 10104: 10100: 10096: 10092: 10088: 10084: 10080: 10076: 10072: 10066: 10061: 10060: 10053: 10052: 10039: 10035: 10031: 10027: 10023: 10019: 10014: 10009: 10005: 10001: 9997: 9993: 9986: 9978: 9974: 9970: 9966: 9962: 9958: 9951: 9943: 9939: 9935: 9931: 9921: 9916: 9912: 9908: 9904: 9897: 9889: 9885: 9881: 9880:Van der Pol B 9873: 9869: 9865: 9861: 9857: 9856:Van der Pol B 9849: 9845: 9841: 9840:Van der Pol B 9833: 9829: 9825: 9821: 9817: 9813: 9809: 9805: 9796: 9792: 9787: 9782: 9778: 9774: 9770: 9766: 9762: 9755: 9747: 9743: 9739: 9735: 9731: 9727: 9718: 9714: 9709: 9704: 9700: 9696: 9692: 9688: 9685:(6): 445–66. 9684: 9680: 9676: 9669: 9661: 9657: 9652: 9647: 9643: 9639: 9635: 9631: 9627: 9623: 9619: 9612: 9604: 9600: 9596: 9592: 9588: 9584: 9580: 9576: 9567: 9563: 9558: 9553: 9549: 9545: 9542:(5): 867–96. 9541: 9537: 9533: 9525: 9517: 9513: 9508: 9503: 9499: 9495: 9491: 9487: 9483: 9476: 9468: 9464: 9460: 9456: 9452: 9448: 9444: 9440: 9436: 9432: 9425: 9417: 9413: 9409: 9405: 9401: 9397: 9393: 9389: 9382: 9374: 9370: 9365: 9360: 9356: 9352: 9349:(3): 561–90. 9348: 9344: 9340: 9333: 9325: 9321: 9316: 9311: 9307: 9303: 9299: 9295: 9291: 9287: 9281: 9273: 9269: 9265: 9261: 9257: 9253: 9249: 9245: 9238: 9230: 9226: 9222: 9218: 9214: 9210: 9206: 9202: 9198: 9194: 9185: 9181: 9177: 9173: 9168: 9163: 9159: 9155: 9151: 9147: 9143: 9136: 9128: 9124: 9120: 9116: 9112: 9108: 9105:(2): 555–92. 9104: 9100: 9091: 9087: 9083: 9079: 9075: 9074:10.1038/45561 9071: 9067: 9063: 9059: 9055: 9046: 9042: 9038: 9034: 9029: 9028:10.1038/45552 9024: 9020: 9016: 9012: 9008: 9004: 8997: 8989: 8985: 8981: 8977: 8973: 8969: 8965: 8961: 8957: 8953: 8944: 8940: 8936: 8932: 8928: 8924: 8920: 8916: 8912: 8908: 8899: 8895: 8891: 8887: 8883: 8879: 8875: 8871: 8864: 8856: 8852: 8848: 8844: 8840: 8836: 8832: 8828: 8824: 8820: 8813: 8805: 8801: 8797: 8793: 8789: 8785: 8781: 8777: 8773: 8765: 8761: 8757: 8753: 8749: 8745: 8742:(2): 85–100. 8741: 8737: 8728: 8724: 8720: 8716: 8712: 8708: 8704: 8700: 8696: 8692: 8688: 8682: 8674: 8670: 8665: 8660: 8656: 8652: 8648: 8644: 8640: 8636: 8632: 8626: 8618: 8614: 8607: 8599: 8595: 8590: 8585: 8581: 8577: 8574:(5): 649–70. 8573: 8569: 8565: 8561: 8555: 8547: 8543: 8539: 8535: 8531: 8527: 8523: 8519: 8513: 8505: 8501: 8497: 8493: 8489: 8485: 8482:(4): 147–51. 8481: 8477: 8470: 8462: 8458: 8454: 8450: 8446: 8442: 8439:(10): 443–8. 8438: 8434: 8427: 8419: 8415: 8411: 8407: 8403: 8399: 8395: 8391: 8387: 8383: 8374: 8370: 8366: 8364:0-387-08326-X 8360: 8356: 8352: 8348: 8339: 8335: 8330: 8325: 8321: 8317: 8314:(6): 975–83. 8313: 8309: 8305: 8298: 8290: 8286: 8281: 8276: 8272: 8268: 8264: 8260: 8256: 8252: 8248: 8241: 8233: 8229: 8224: 8219: 8215: 8211: 8207: 8198: 8194: 8189: 8184: 8180: 8176: 8172: 8168: 8165:(12): 983–6. 8164: 8160: 8156: 8149: 8141: 8137: 8132: 8127: 8123: 8119: 8116:(4): 431–60. 8115: 8111: 8107: 8100: 8092: 8088: 8084: 8080: 8073: 8065: 8061: 8057: 8053: 8050:(3): 383–96. 8049: 8045: 8038: 8030: 8026: 8022: 8016: 8008: 8004: 8000: 7996: 7992: 7988: 7984: 7980: 7973: 7965: 7961: 7957: 7953: 7950:(2–3): 90–3. 7949: 7945: 7938: 7930: 7926: 7922: 7918: 7914: 7910: 7903: 7895: 7891: 7886: 7881: 7877: 7873: 7869: 7862: 7854: 7850: 7846: 7842: 7838: 7834: 7830: 7826: 7819: 7811: 7807: 7803: 7797: 7793: 7789: 7785: 7778: 7770: 7766: 7762: 7758: 7751: 7743: 7739: 7735: 7731: 7727: 7723: 7720:(3): 265–73. 7719: 7715: 7708: 7700: 7696: 7692: 7688: 7685:(4): 732–44. 7684: 7680: 7673: 7665: 7661: 7657: 7653: 7649: 7645: 7638: 7630: 7626: 7622: 7618: 7614: 7610: 7607:(2): 431–88. 7606: 7602: 7595: 7593: 7591: 7582: 7578: 7574: 7570: 7567:(1–2): 1–13. 7566: 7562: 7555: 7547: 7543: 7539: 7535: 7531: 7527: 7523: 7519: 7512: 7510: 7501: 7497: 7493: 7489: 7485: 7481: 7478:(4): 445–61. 7477: 7473: 7466: 7458: 7454: 7449: 7444: 7440: 7436: 7432: 7425: 7417: 7413: 7409: 7405: 7401: 7397: 7393: 7389: 7382: 7374: 7370: 7366: 7362: 7358: 7354: 7351:(2): 137–42. 7350: 7346: 7339: 7331: 7327: 7323: 7319: 7316:(5): 427–46. 7315: 7311: 7304: 7296: 7292: 7287: 7282: 7278: 7274: 7271:(4): 317–26. 7270: 7266: 7262: 7255: 7247: 7243: 7239: 7233: 7229: 7225: 7221: 7214: 7206: 7202: 7197: 7192: 7188: 7184: 7180: 7176: 7172: 7168: 7162: 7154: 7150: 7146: 7142: 7138: 7134: 7130: 7124: 7116: 7112: 7108: 7104: 7100: 7096: 7092: 7088: 7081: 7073: 7069: 7065: 7061: 7056: 7051: 7047: 7043: 7040:(1): R29-35. 7039: 7035: 7031: 7024: 7022: 7013: 7009: 7004: 6999: 6995: 6991: 6988:(1): 101–22. 6987: 6983: 6979: 6975: 6969: 6961: 6957: 6952: 6947: 6943: 6939: 6935: 6931: 6927: 6923: 6915: 6911: 6906: 6901: 6897: 6893: 6890:(3): 315–39. 6889: 6885: 6881: 6877: 6871: 6863: 6859: 6855: 6851: 6848:(5): 764–82. 6847: 6843: 6834: 6830: 6826: 6822: 6818: 6814: 6807: 6799: 6795: 6791: 6787: 6780: 6773: 6767: 6763: 6758: 6753: 6749: 6745: 6741: 6737: 6733: 6726: 6718: 6714: 6710: 6706: 6699: 6697: 6688: 6684: 6680: 6676: 6672: 6668: 6664: 6657: 6649: 6645: 6641: 6637: 6633: 6629: 6626:(5): 533–40. 6625: 6621: 6614: 6606: 6602: 6598: 6594: 6590: 6586: 6582: 6578: 6571: 6563: 6551: 6543: 6539: 6535: 6529: 6525: 6521: 6517: 6510: 6502: 6498: 6493: 6488: 6484: 6480: 6477:(2): 211–32. 6476: 6472: 6468: 6465:(July 1937). 6464: 6456: 6452: 6447: 6442: 6438: 6434: 6430: 6426: 6422: 6419:(July 1937). 6418: 6412: 6393: 6389: 6385: 6381: 6377: 6373: 6369: 6365: 6361: 6357: 6353: 6346: 6339: 6331: 6327: 6322: 6317: 6313: 6309: 6306:(4): 500–44. 6305: 6301: 6297: 6293: 6285: 6281: 6276: 6271: 6267: 6263: 6259: 6255: 6251: 6247: 6239: 6235: 6230: 6225: 6221: 6217: 6214:(4): 473–96. 6213: 6209: 6205: 6201: 6193: 6189: 6184: 6179: 6175: 6171: 6168:(4): 449–72. 6167: 6163: 6159: 6155: 6147: 6143: 6138: 6133: 6129: 6125: 6122:(4): 424–48. 6121: 6117: 6113: 6109: 6106:, Huxley AF, 6105: 6099: 6097: 6095: 6093: 6091: 6082: 6078: 6073: 6068: 6064: 6060: 6056: 6052: 6048: 6041: 6039: 6030: 6026: 6022: 6018: 6014: 6010: 6006: 6002: 5998: 5994: 5987: 5981: 5977: 5971: 5963: 5959: 5955: 5951: 5947: 5943: 5939: 5935: 5928: 5919: 5911: 5907: 5903: 5899: 5895: 5891: 5887: 5883: 5876: 5868: 5864: 5860: 5856: 5852: 5848: 5841: 5839: 5830: 5823: 5819: 5814: 5809: 5804: 5799: 5795: 5791: 5787: 5780: 5776: 5764: 5760: 5754: 5747: 5743: 5738: 5730: 5726: 5722: 5718: 5714: 5710: 5707:(1): 102–13. 5706: 5702: 5698: 5691: 5684: 5680: 5674: 5670: 5664: 5657: 5651: 5647: 5641: 5637: 5631: 5624: 5619: 5611: 5607: 5602: 5597: 5593: 5589: 5586:(2): 671–84. 5585: 5581: 5577: 5570: 5563: 5558: 5551: 5547: 5542: 5534: 5528: 5520: 5516: 5512: 5510:9781461950325 5506: 5502: 5495: 5488: 5484: 5480: 5475: 5468: 5464: 5461:Snell, FM in 5458: 5451: 5446: 5439: 5434: 5426: 5424:9781610693387 5420: 5416: 5415: 5407: 5399: 5395: 5390: 5385: 5381: 5377: 5373: 5369: 5365: 5358: 5351: 5346: 5339: 5333: 5326: 5322: 5316: 5308: 5304: 5299: 5294: 5290: 5286: 5282: 5278: 5275:(3): 139–45. 5274: 5270: 5266: 5259: 5253: 5248: 5240: 5236: 5232: 5228: 5224: 5220: 5216: 5212: 5205: 5203: 5201: 5199: 5197: 5195: 5193: 5184: 5180: 5175: 5170: 5166: 5162: 5158: 5154: 5151:(3): 286–95. 5150: 5146: 5142: 5135: 5133: 5124: 5120: 5116: 5112: 5108: 5104: 5100: 5096: 5089: 5081: 5077: 5073: 5069: 5065: 5061: 5057: 5053: 5050:(1): 203–14. 5049: 5045: 5038: 5030: 5026: 5021: 5016: 5012: 5008: 5001: 4994: 4987: 4982: 4975: 4970: 4962: 4958: 4954: 4950: 4946: 4940: 4936: 4932: 4925: 4918: 4914: 4910: 4905: 4903: 4895: 4891: 4885: 4878: 4873: 4866: 4861: 4854: 4851:Tasaki, I in 4848: 4841: 4836: 4829: 4824: 4817: 4812: 4805: 4800: 4794:, p. 56. 4793: 4788: 4786: 4779:, p. 37. 4778: 4773: 4766: 4762: 4757: 4750: 4745: 4743: 4735: 4731: 4726: 4724: 4722: 4714: 4709: 4707: 4705: 4703: 4696:, p. 49. 4695: 4690: 4688: 4686: 4684: 4676: 4672: 4668: 4663: 4657:, p. 49. 4656: 4651: 4644: 4640: 4634: 4627: 4623: 4619: 4615: 4610: 4608: 4606: 4598: 4594: 4590: 4586: 4581: 4574: 4569: 4562: 4557: 4551:, p. 38. 4550: 4545: 4538: 4533: 4526: 4521: 4519: 4511: 4506: 4499: 4495: 4490: 4483: 4479: 4475: 4470: 4462: 4458: 4453: 4448: 4444: 4440: 4436: 4432: 4428: 4421: 4413: 4409: 4405: 4401: 4396: 4391: 4387: 4383: 4379: 4372: 4364: 4360: 4355: 4350: 4345: 4340: 4336: 4332: 4328: 4321: 4313: 4309: 4303: 4296: 4291: 4284: 4279: 4272: 4268: 4263: 4256: 4252: 4248: 4243: 4236: 4231: 4229: 4227: 4225: 4217: 4213: 4209: 4204: 4202: 4200: 4192: 4187: 4181:, p. 11. 4180: 4175: 4167: 4165:9780080584621 4161: 4157: 4156: 4148: 4140: 4136: 4130: 4126: 4125: 4117: 4109: 4107:9780849388071 4103: 4099: 4092: 4084: 4080: 4076: 4074:9780080923208 4070: 4066: 4059: 4057: 4055: 4053: 4051: 4042: 4038: 4033: 4028: 4023: 4018: 4014: 4010: 4006: 3999: 3992: 3987: 3980: 3975: 3969:, p. 89. 3968: 3964: 3960: 3956: 3951: 3949: 3947: 3939: 3934: 3932: 3924: 3919: 3917: 3915: 3913: 3911: 3903: 3898: 3896: 3894: 3892: 3890: 3888: 3886: 3884: 3867: 3863: 3859: 3852: 3844: 3840: 3835: 3830: 3826: 3822: 3818: 3814: 3810: 3803: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3760: 3753: 3738: 3732: 3724: 3720: 3717:(2): 128–34. 3716: 3712: 3705: 3697: 3693: 3688: 3683: 3679: 3675: 3672:(4): 500–44. 3671: 3667: 3663: 3656: 3652: 3635: 3632:found in the 3631: 3627: 3623: 3617: 3610: 3603: 3599: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3535: 3528: 3526: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3490: 3481: 3477: 3473: 3466: 3462: 3455: 3448: 3440: 3435: 3425: 3423: 3419: 3415: 3412:in 1943. The 3411: 3407: 3403: 3399: 3394: 3392: 3388: 3383: 3379: 3375: 3371: 3366: 3365:voltage clamp 3362: 3361:Andrew Huxley 3357: 3353: 3349: 3345: 3341: 3337: 3333: 3325: 3324:lipid bilayer 3321: 3317: 3313: 3311: 3307: 3303: 3302:Camillo Golgi 3299: 3295: 3291: 3287: 3283: 3279: 3275: 3271: 3267: 3263: 3258: 3256: 3253: 3249: 3248:electric eels 3245: 3241: 3237: 3233: 3232:Luigi Galvani 3229: 3221: 3220:granule cells 3217: 3213: 3209: 3205: 3201: 3197: 3193: 3190:Image of two 3188: 3179: 3177: 3173: 3169: 3165: 3160: 3156: 3152: 3148: 3144: 3143: 3138: 3134: 3130: 3126: 3118: 3114: 3110: 3106: 3097: 3095: 3094:cardiomyocyte 3091: 3087: 3083: 3081: 3077: 3073: 3069: 3060: 3056: 3051: 3047: 3045: 3041: 3037: 3033: 3029: 3023: 3021: 3017: 3016:Faraday cages 3013: 3006: 2999: 2992: 2988: 2985: 2981: 2974: 2970: 2969:voltage clamp 2965: 2963: 2959: 2958: 2953: 2952: 2947: 2943: 2938: 2936: 2931: 2927: 2923: 2919: 2911: 2907: 2906: 2900: 2895: 2885: 2883: 2877: 2875: 2871: 2867: 2863: 2852: 2849: 2846: 2843: 2840: 2837: 2833: 2832: 2828: 2825: 2822: 2819: 2816: 2813: 2809: 2808: 2804: 2801: 2798: 2795: 2792: 2789: 2785: 2784: 2780: 2777: 2774: 2771: 2768: 2765: 2761: 2760: 2756: 2753: 2750: 2747: 2744: 2741: 2737: 2736: 2732: 2729: 2726: 2723: 2720: 2717: 2716: 2710: 2708: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2674:invertebrates 2671: 2667: 2657: 2655: 2654:proton ATPase 2649: 2647: 2646: 2645:Mimosa pudica 2641: 2636: 2631: 2627: 2625: 2621: 2620: 2614: 2611: 2608: 2603: 2599: 2594: 2584: 2582: 2578: 2574: 2570: 2566: 2560: 2556: 2546: 2544: 2540: 2539:beta blockers 2536: 2532: 2528: 2524: 2520: 2519:bundle of His 2516: 2512: 2508: 2504: 2500: 2495: 2493: 2484: 2478: 2473: 2469: 2465: 2461: 2446: 2444: 2440: 2436: 2432: 2429: 2425: 2421: 2417: 2416: 2411: 2410:acetylcholine 2407: 2403: 2399: 2395: 2389: 2385: 2381: 2371: 2369: 2365: 2361: 2357: 2353: 2349: 2342: 2338: 2334: 2321: 2317: 2313: 2309: 2307: 2303: 2299: 2295: 2294:tetanospasmin 2292: 2288: 2284: 2280: 2275: 2269: 2265: 2261: 2257: 2242: 2240: 2236: 2229: 2225: 2218: 2217: 2214: =  2213: 2210:the equation 2207: 2200: 2172: 2168: 2162: 2158: 2151: 2148: 2141: 2140: 2122: 2118: 2112: 2108: 2101: 2098: 2091: 2090: 2089: 2086: 2082: 2078: 2074: 2070: 2051: 2048: 2040: 2036: 2027: 2022: 2009: 2005: 2001: 1995: 1987: 1978: 1971: 1970: 1969: 1968: 1964: 1960: 1956: 1952: 1944: 1937: 1930: 1926: 1921: 1916: 1906: 1904: 1899: 1896: 1895:safety factor 1890: 1888: 1884: 1879: 1875: 1865: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1825: 1821: 1819: 1818:Andrew Huxley 1815: 1814:Ichiji Tasaki 1811: 1807: 1803: 1797: 1795: 1791: 1786: 1784: 1780: 1776: 1772: 1768: 1764: 1763:Schwann cells 1760: 1756: 1748: 1744: 1739: 1734: 1730: 1720: 1718: 1714: 1709: 1704: 1701: 1694: 1684: 1680: 1678: 1674: 1670: 1666: 1656: 1654: 1650: 1643: 1639: 1632: 1622: 1620: 1610: 1606: 1599: 1592: 1588: 1574: 1572: 1568: 1562: 1560: 1556: 1546: 1542: 1532: 1528: 1518: 1514: 1507: 1500: 1493: 1488: 1478: 1474: 1470: 1466: 1462: 1458: 1453: 1451: 1447: 1443: 1439: 1435: 1428: 1418: 1415: 1411: 1407: 1406:Andrew Huxley 1403: 1398: 1396: 1389: 1385: 1382: 1375: 1368: 1364: 1357: 1350: 1346: 1340: 1335: 1333: 1329: 1324: 1313: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1283:cells of the 1282: 1278: 1269: 1264: 1259: 1249: 1247: 1243: 1239: 1235: 1231: 1230:bipolar cells 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1169: 1159: 1155: 1153: 1149: 1145: 1140: 1134: 1124: 1122: 1121:gap junctions 1118: 1113: 1111: 1107: 1103: 1102:work together 1099: 1094: 1089: 1088:cell membrane 1085: 1081: 1078: 1074: 1070: 1057: 1053: 1049: 1044: 1040: 1038: 1034: 1024: 1022: 1018: 1014: 1009: 1005: 1001: 997: 996:Schwann cells 993: 989: 985: 980: 976: 972: 968: 964: 960: 956: 951: 949: 945: 932: 931:Myelin sheath 927: 922: 921:Axon terminal 917: 910: 905: 900: 895: 890: 885: 871: 861: 859: 855: 850: 848: 844: 840: 839:RNA synthesis 834: 832: 828: 824: 820: 815: 811: 807: 802: 799: 795: 794:time constant 791: 787: 783: 779: 775: 771: 761: 759: 754: 752: 748: 744: 740: 736: 732: 728: 724: 720: 714: 712: 711: 707: 703: 699: 696: 692: 688: 684: 678: 676: 675:leak channels 672: 668: 664: 660: 656: 652: 646: 644: 640: 636: 632: 628: 624: 620: 616: 612: 608: 600: 596: 592: 588: 584: 583:resting state 578: 572: 568: 566: 562: 554: 549: 547: 543: 539: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 487: 480: 473: 469: 468:Andrew Huxley 465: 459: 457: 456:Hodgkin cycle 452: 443: 439: 432: 429: 426: 425: 424: 422: 411: 408: 400: 397:February 2014 390: 386: 380: 379: 374:This section 372: 368: 363: 362: 354: 352: 351:hyperpolarize 348: 344: 340: 335: 333: 329: 324: 320: 316: 312: 308: 304: 300: 296: 288: 287:cell membrane 283: 274: 272: 267: 266:lipid bilayer 263: 262:cell membrane 258: 256: 252: 248: 244: 240: 236: 227: 218: 216: 212: 208: 203: 201: 196: 192: 187: 183: 179: 175: 171: 166: 164: 160: 156: 152: 148: 144: 139: 135: 131: 127: 122: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 68: 67:axon terminal 63: 59: 55: 51: 47: 43: 39: 34: 30: 19: 18:Neural firing 11558: 11507: 11391: 11371: 11351: 11328: 11309: 11287: 11259:(1): 59–90. 11256: 11252: 11229: 11210: 11188:. Retrieved 11174: 11162:. Retrieved 11153: 11149: 11139: 11127:. Retrieved 11113: 11101:. Retrieved 11087: 11075:. Retrieved 11061: 11034: 11031:Scholarpedia 11030: 11020: 10976: 10940: 10903: 10866: 10831: 10793: 10759:Neuroscience 10758: 10724:Neuroscience 10723: 10684: 10649: 10632: 10597: 10594:McCulloch WS 10559: 10524: 10486: 10448: 10412: 10376: 10349: 10286: 10261: 10224: 10192: 10162: 10127: 10102: 10098: 10058: 9995: 9991: 9985: 9960: 9956: 9950: 9933: 9930:Math. Biosci 9929: 9910: 9906: 9896: 9887: 9883: 9863: 9859: 9847: 9843: 9807: 9803: 9771:(1): 69–91. 9768: 9764: 9754: 9729: 9725: 9682: 9678: 9668: 9625: 9621: 9611: 9581:(5): 381–7. 9578: 9574: 9539: 9535: 9524: 9489: 9485: 9475: 9434: 9430: 9424: 9394:(1): 12–3P. 9391: 9387: 9381: 9346: 9342: 9332: 9300:(1): 28–60. 9297: 9293: 9280: 9247: 9243: 9237: 9196: 9192: 9149: 9145: 9135: 9102: 9098: 9057: 9053: 9010: 9006: 8996: 8955: 8951: 8910: 8906: 8873: 8869: 8863: 8822: 8818: 8812: 8782:(3): 44–51. 8779: 8775: 8739: 8735: 8694: 8690: 8681: 8649:(1): 37–77. 8646: 8642: 8625: 8616: 8612: 8606: 8571: 8567: 8554: 8529: 8525: 8512: 8479: 8475: 8469: 8436: 8432: 8426: 8385: 8381: 8346: 8311: 8307: 8297: 8254: 8250: 8240: 8213: 8209: 8162: 8158: 8148: 8113: 8109: 8099: 8082: 8078: 8072: 8047: 8043: 8037: 8028: 8024: 8015: 7982: 7978: 7972: 7947: 7943: 7937: 7912: 7902: 7875: 7871: 7861: 7828: 7824: 7818: 7783: 7777: 7760: 7756: 7750: 7717: 7713: 7707: 7682: 7678: 7672: 7650:(1): 13–28. 7647: 7643: 7637: 7604: 7600: 7564: 7560: 7554: 7524:(1): 20–32. 7521: 7517: 7475: 7471: 7465: 7441:(1): 132–8. 7438: 7434: 7424: 7394:(4): 351–8. 7391: 7387: 7381: 7348: 7344: 7338: 7313: 7309: 7303: 7268: 7264: 7254: 7219: 7213: 7178: 7174: 7161: 7136: 7132: 7123: 7090: 7086: 7080: 7037: 7033: 6985: 6981: 6968: 6933: 6929: 6887: 6883: 6870: 6845: 6841: 6816: 6812: 6806: 6789: 6785: 6779: 6774:, p. 78 6739: 6735: 6725: 6708: 6704: 6670: 6666: 6656: 6623: 6619: 6613: 6580: 6576: 6570: 6515: 6509: 6474: 6470: 6428: 6424: 6411: 6401:24 September 6399:. Retrieved 6392:the original 6355: 6351: 6338: 6303: 6299: 6257: 6253: 6211: 6207: 6165: 6161: 6119: 6115: 6057:(1): 37–60. 6054: 6050: 5996: 5992: 5986: 5970: 5940:(1): 57–63. 5937: 5933: 5927: 5918: 5885: 5881: 5875: 5857:(3): 192–7. 5854: 5850: 5793: 5790:PLOS Biology 5789: 5779: 5762: 5753: 5737: 5704: 5700: 5690: 5682: 5675:, pp. 29–49. 5672: 5663: 5652:, pp. 12–16. 5649: 5646:Schwann 1969 5639: 5630: 5618: 5583: 5579: 5569: 5557: 5549: 5541: 5500: 5494: 5479:Brazier 1961 5474: 5466: 5457: 5445: 5433: 5413: 5406: 5371: 5367: 5357: 5345: 5337: 5332: 5324: 5315: 5272: 5268: 5258: 5247: 5214: 5210: 5148: 5144: 5098: 5094: 5088: 5047: 5043: 5037: 5010: 5006: 4993: 4981: 4969: 4934: 4924: 4916: 4893: 4884: 4872: 4860: 4847: 4835: 4823: 4816:Stevens 1966 4811: 4799: 4772: 4765:Stevens 1966 4756: 4713:Stevens 1966 4662: 4655:Stevens 1966 4650: 4645:, pp. 43–58. 4642: 4633: 4626:Stevens 1966 4597:Stevens 1966 4580: 4568: 4561:Stevens 1966 4556: 4544: 4532: 4505: 4489: 4482:Stevens 1966 4469: 4434: 4430: 4420: 4385: 4381: 4371: 4334: 4330: 4320: 4311: 4302: 4290: 4278: 4262: 4255:Stevens 1966 4242: 4186: 4174: 4154: 4147: 4123: 4116: 4097: 4091: 4064: 4012: 4008: 3998: 3986: 3979:Stevens 1966 3974: 3870:. Retrieved 3862:Neuroscience 3861: 3851: 3816: 3812: 3802: 3769: 3765: 3752: 3740:. Retrieved 3731: 3714: 3710: 3704: 3669: 3665: 3655: 3628:, which are 3616: 3602: 3568:Frog battery 3485: 3472:conductances 3464: 3457: 3450: 3443: 3395: 3378:Bert Sakmann 3370:ion channels 3356:Bernard Katz 3352:Alan Hodgkin 3336:permeability 3329: 3310:neuroanatomy 3273: 3259: 3240:Voltaic pile 3225: 3215: 3195: 3194:(labeled as 3172:insecticides 3140: 3129:Tetrodotoxin 3122: 3109:Tetrodotoxin 3084: 3076:Bert Sakmann 3064: 3024: 3008: 3001: 2994: 2990: 2986: 2976: 2966: 2961: 2955: 2949: 2939: 2915: 2903: 2878: 2858: 2835: 2811: 2787: 2763: 2739: 2668:, including 2663: 2650: 2643: 2632: 2628: 2623: 2617: 2615: 2612: 2606: 2602:fungal cells 2596: 2562: 2501:provide the 2496: 2488: 2428:nerve agents 2413: 2406:muscle fiber 2402:motor neuron 2391: 2344: 2337:Gap junction 2271: 2238: 2231: 2220: 2215: 2211: 2202: 2195: 2192: 2084: 2080: 2076: 2072: 2068: 2066: 1951:cable theory 1948: 1939: 1932: 1915:Cable theory 1909:Cable theory 1900: 1891: 1871: 1863: 1856: 1852: 1848: 1844: 1840: 1798: 1787: 1752: 1707: 1705: 1696: 1681: 1672: 1668: 1662: 1651:, termed an 1641: 1634: 1628: 1615: 1608: 1601: 1597: 1590: 1583: 1580: 1570: 1566: 1563: 1559:rising phase 1558: 1551: 1544: 1543:is close to 1537: 1530: 1523: 1516: 1509: 1502: 1495: 1483: 1476: 1454: 1430: 1427:axon hillock 1424: 1399: 1391: 1387: 1383: 1377: 1370: 1359: 1352: 1341: 1336: 1319: 1273: 1178:ion channels 1171: 1156: 1136: 1114: 1098:axon hillock 1084:ion channels 1066: 1037:axon hillock 1030: 988:trigger zone 984:axon hillock 952: 941: 926:Schwann cell 904:Axon hillock 851: 835: 808:rather than 803: 767: 755: 715: 710:Acetabularia 708: 693:cations and 679: 647: 642: 638: 634: 604: 594: 590: 586: 582: 576: 552: 550: 545: 541: 537: 533: 529: 525: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 478: 471: 464:Alan Hodgkin 460: 448: 436: 418: 403: 394: 383:Please help 378:verification 375: 336: 328:axon hillock 311:ion channels 292: 259: 250: 232: 204: 182:depolarising 167: 162: 158: 154: 123: 103:muscle cells 95:animal cells 74: 72: 50:ion channels 29: 11282:Deutsch S, 11190:21 February 11129:21 February 11103:21 February 11077:21 February 11037:(9): 1349. 10095:Bernstein J 9866:: 763–775. 8518:Bernstein J 7831:(1): 51–9. 4986:Ganong 1991 4919:, pp. 9–62. 4890:Waxman 2007 4639:Waxman 2007 3515:and simple 3374:Erwin Neher 3198:) drawn by 3159:black mamba 3155:dendrotoxin 3125:neurotoxins 3100:Neurotoxins 3072:Erwin Neher 3068:patch clamp 3059:ion channel 3055:patch clamp 3038:containing 2984:capacitance 2942:giant axons 2793:Giant fiber 2788:Periplaneta 2786:Cockroach ( 2762:Earthworm ( 2682:vertebrates 2581:neurotoxins 2573:tropomyosin 2527:arrhythmias 2364:vertebrates 2291:neurotoxins 2245:Termination 1955:Lord Kelvin 1925:RC circuits 1779:vertebrates 1729:Myelination 1687:Propagation 1598:inactivated 1414:their model 1301:sympathetic 1246:optic nerve 1144:all-or-none 1077:presynaptic 1004:glial cells 796:and larger 774:development 639:firing rate 599:inactivated 546:deactivated 542:inactivated 534:inactivated 530:deactivated 526:inactivated 518:deactivated 514:deactivated 510:inactivated 502:deactivated 494:inactivated 486:deactivated 255:plant cells 233:Nearly all 163:spike train 107:plant cells 11587:Capacitors 11581:Categories 11465:Audio help 11456:2005-06-22 10959:2008357317 10812:2005298022 10777:2007024950 10668:2008050369 10219:Bullock TH 10187:Bullock TH 9890:: 418–443. 9850:: 977–992. 9286:Hodgkin AL 8631:Hodgkin AL 8619:: 620–635. 7167:Hodgkin AL 7139:: 382–99. 6974:Rushton WA 6792:: 211–27. 6711:: 131–39. 6463:Hodgkin AL 6417:Hodgkin AL 6292:Hodgkin AL 6246:Hodgkin AL 6200:Hodgkin AL 6154:Hodgkin AL 6104:Hodgkin AL 5796:(2): e49. 5438:Junge 1981 4853:Field 1959 4734:Junge 1981 4593:Junge 1981 4510:Junge 1981 3967:Junge 1981 3923:Junge 1981 3772:(2): 188. 3643:References 3634:cerebellum 3519:, such as 3176:permethrin 3133:pufferfish 3113:pufferfish 3096:membrane. 3036:neurochips 2935:electrodes 2892:See also: 2844:−55 to −80 2820:−60 to −80 2745:Giant axon 2702:eukaryotes 2591:See also: 2565:sarcolemma 2515:ventricles 2420:hydrolyzed 2415:sarcolemma 2366:, and the 1874:micrometre 1847:(that is, 1577:Peak phase 1297:heart rate 1210:hair cells 1052:excitatory 1027:Initiation 979:eukaryotic 347:depolarize 143:beta cells 109:. Certain 11347:Kandel ER 11013:Web pages 10967:154760295 10820:489024131 10785:144771764 10750:806472664 10676:268788623 10641:429733931 10483:Keynes RD 10368:751129941 10339:ignored ( 10329:cite book 10305:0892-1253 10278:830755894 10008:CiteSeerX 9936:: 23–50. 9416:222188054 8943:205022645 8085:: 39–73. 7944:BioEssays 7546:211234081 7310:Biochimie 7153:178547827 7129:Kelvin WT 6922:Huxley AF 6876:Huxley AF 6770:See also 6560:ignored ( 6550:cite book 5527:cite book 5519:864592470 5115:1528-7092 5029:0019-5235 4083:762720374 4015:(1): 11. 4009:Membranes 3993:, p. 484. 3872:29 August 3648:Footnotes 3563:Chronaxie 3507:like the 3393:studies. 3274:reticulum 3204:dendrites 3157:from the 3151:red tides 3142:Gonyaulax 3139:from the 3137:saxitoxin 3131:from the 2764:Lumbricus 2721:Cell type 2543:verapamil 2535:lidocaine 2531:quinidine 2485:channels. 2443:malathion 2348:connexons 2285:into the 2173:ℓ 2149:λ 2099:τ 2049:− 2033:∂ 2019:∂ 2006:λ 1993:∂ 1985:∂ 1979:τ 1152:frequency 1139:amplitude 741:into the 619:potassium 538:activated 522:activated 506:activated 498:activated 490:activated 323:cell body 315:dendrites 307:ion pumps 195:Potassium 111:endocrine 11568:Archived 11467: · 11308:(2001). 11286:(1987). 11275:15561301 11184:Archived 11164:23 March 11158:Archived 11123:Archived 11097:Archived 11071:Archived 10996:75016379 10924:66015872 10885:68027513 10858:35744403 10850:96039295 10830:(1997). 10742:00059496 10703:79025719 10616:88002987 10596:(1988). 10578:68009252 10551:18384545 10543:88008279 10513:25204483 10505:90015167 10475:25204689 10467:92000179 10432:80018158 10403:12052275 10395:85011013 10321:23761261 10313:87642343 10270:60004587 10245:76003735 10203:65007965 10171:62001407 10154:30518469 10146:94017624 10119:11358569 10111:12027986 10097:(1912). 10087:15860311 10079:87003022 10038:11388348 10030:10713861 9977:20077648 9832:19149460 9795:18885679 9746:51648050 9717:19431309 9566:13823315 9516:11389676 9459:18075585 9408:13439598 9373:13806926 9324:14368574 9272:32516710 9264:13412736 9221:11234014 9176:11234048 9127:18629998 9119:10747201 9082:10617202 9037:10617201 8980:12721618 8935:11689936 8847:12214225 8764:12014433 8673:18128147 8598:19873125 8546:33229139 8520:(1902). 8496:10717671 8461:23394494 8418:11465181 8289:19289075 8140:12991232 8064:15410483 8031:: 253–8. 7999:12392930 7929:10101111 7894:17263772 7853:24190001 7810:17280895 7742:22063907 7664:14754423 7629:21823003 7621:15044680 7581:16337171 7538:17215724 7492:16228970 7457:17573397 7416:46371790 7373:22414506 7365:12397368 7330:10865130 7295:16840708 7246:18064409 7205:20281590 7115:12441377 7107:17965654 7072:10033356 7064:17208176 7012:14889433 6960:14825228 6914:16991863 6862:44315437 6766:19872151 6687:10395528 6648:45470194 6640:17923405 6605:14720760 6597:14682359 6542:16805421 6501:16994886 6455:16994885 6380:16625198 6330:12991237 6284:14946715 6238:14946714 6192:14946713 6146:14946712 6081:19873371 6021:13729365 5962:34131910 5954:15978667 5902:11731556 5867:Archived 5863:17515599 5822:16464129 5729:15326972 5721:25398183 5610:16407565 5398:27780067 5307:19516982 5239:29336976 5183:26804557 5072:17226028 4961:18384545 4953:88008279 4461:34346782 4404:16890514 4363:31105529 4139:Archived 4041:26821050 3866:Archived 3843:29378864 3711:Fed Proc 3696:12991237 3553:Bursting 3531:See also 3517:reflexes 3499:and the 3340:Ken Cole 3255:voltages 3123:Several 2686:reptiles 2684:such as 2676:such as 2640:metazoan 2607:chloride 2513:and the 2439:diazinon 2341:Connexin 2306:botulism 2279:vesicles 1607:towards 1310:bursting 1063:Dynamics 889:Dendrite 847:myocytes 786:channels 695:chloride 657:such as 221:Overview 147:pancreas 42:membrane 11524:at The 11454: ( 11425:minutes 11306:Hille B 11039:Bibcode 11004:1500233 10932:1175605 10711:5799924 10440:6486925 10253:2048177 10000:Bibcode 9812:Bibcode 9786:2213747 9708:1366333 9687:Bibcode 9660:7260316 9651:1327511 9630:Bibcode 9603:6789007 9595:1562643 9557:2195039 9507:1221895 9467:4344526 9439:Bibcode 9364:1363339 9315:1365754 9229:4430165 9201:Bibcode 9184:4371677 9154:Bibcode 9090:4417476 9062:Bibcode 9045:4353978 9015:Bibcode 8988:4347957 8960:Bibcode 8915:Bibcode 8898:9525859 8878:Bibcode 8870:Science 8855:4420877 8827:Bibcode 8804:1374932 8784:Bibcode 8772:Neher E 8756:6270629 8727:4204985 8719:1083489 8699:Bibcode 8687:Neher E 8664:1392331 8589:2142006 8560:Cole KS 8453:9347609 8410:6148754 8390:Bibcode 8338:5855511 8329:2195447 8280:2907679 8259:Bibcode 8232:3838314 8197:4429774 8188:1334592 8167:Bibcode 8131:1392415 8021:Cole KS 8007:1355280 7964:2541698 7845:9784585 7734:1664861 7500:1888352 7408:8844332 7286:2684670 7183:Bibcode 7042:Bibcode 7003:1392008 6951:1393015 6905:1392492 6833:8628858 6757:2140733 6492:1395062 6446:1395060 6388:1328840 6360:Bibcode 6321:1392413 6275:1392212 6229:1392209 6183:1392213 6137:1392219 6072:2142582 6029:4147174 6001:Bibcode 5910:2915815 5813:1363709 5601:6674426 5376:Bibcode 5298:2634039 5277:Bibcode 5219:Bibcode 5174:4751343 5153:Bibcode 5123:9246114 5080:5059716 5052:Bibcode 4909:Rall, W 4452:8461829 4412:8295969 4354:6492051 4337:: 160. 4032:4812417 3834:6596274 3794:5026557 3774:Bibcode 3723:6257554 3687:1392413 3630:neurons 3266:neurons 3182:History 3040:EOSFETs 2908:) were 2882:biofilm 2853:30–120 2823:110–130 2738:Squid ( 2694:Sponges 2690:mammals 2678:insects 2635:osmotic 2569:calcium 2492:calcium 2483:calcium 2302:tetanus 1963:Rushton 1959:Hodgkin 1929:neurite 1861:√ 1835:in the 1438:cations 1287:in the 975:nucleus 916:Ranvier 914:Node of 909:Nucleus 854:mitosis 819:Xenopus 798:voltage 756:In the 691:Calcium 623:cations 548:state. 247:neurons 239:voltage 151:insulin 145:of the 136:toward 99:neurons 11514:  11399:  11378:  11359:  11335:  11316:  11294:  11273:  11236:  11217:  11002:  10994:  10984:  10965:  10957:  10947:  10930:  10922:  10912:  10891:  10883:  10873:  10856:  10848:  10838:  10818:  10810:  10800:  10783:  10775:  10765:  10748:  10740:  10730:  10709:  10701:  10691:  10674:  10666:  10656:  10639:  10624:237280 10622:  10614:  10604:  10584:  10576:  10566:  10549:  10541:  10531:  10521:Koch C 10511:  10503:  10493:  10473:  10465:  10455:  10438:  10430:  10420:  10401:  10393:  10383:  10366:  10356:  10319:  10311:  10303:  10293:  10276:  10268:  10251:  10243:  10233:  10211:558128 10209:  10201:  10179:556863 10177:  10169:  10152:  10144:  10134:  10117:  10109:  10085:  10077:  10067:  10036:  10028:  10010:  9975:  9830:  9793:  9783:  9744:  9715:  9705:  9658:  9648:  9601:  9593:  9564:  9554:  9514:  9504:  9465:  9457:  9431:Nature 9414:  9406:  9371:  9361:  9322:  9312:  9270:  9262:  9227:  9219:  9193:Nature 9182:  9174:  9146:Nature 9125:  9117:  9088:  9080:  9054:Nature 9043:  9035:  9007:Nature 8986:  8978:  8952:Nature 8941:  8933:  8907:Nature 8896:  8853:  8845:  8819:Nature 8802:  8762:  8754:  8725:  8717:  8691:Nature 8671:  8661:  8635:Katz B 8596:  8586:  8544:  8504:393323 8502:  8494:  8459:  8451:  8416:  8408:  8373:335473 8371:  8361:  8336:  8326:  8287:  8277:  8230:  8195:  8185:  8138:  8128:  8062:  8005:  7997:  7962:  7927:  7892:  7851:  7843:  7808:  7798:  7740:  7732:  7699:130926 7697:  7662:  7627:  7619:  7579:  7544:  7536:  7498:  7490:  7455:  7414:  7406:  7371:  7363:  7328:  7293:  7283:  7244:  7234:  7203:  7151:  7113:  7105:  7070:  7062:  7010:  7000:  6958:  6948:  6912:  6902:  6860:  6831:  6764:  6754:  6685:  6646:  6638:  6603:  6595:  6540:  6530:  6499:  6489:  6453:  6443:  6386:  6378:  6352:Nature 6328:  6318:  6282:  6272:  6236:  6226:  6190:  6180:  6144:  6134:  6108:Katz B 6079:  6069:  6027:  6019:  5993:Nature 5960:  5952:  5908:  5900:  5861:  5820:  5810:  5727:  5719:  5608:  5598:  5517:  5507:  5421:  5396:  5305:  5295:  5237:  5181:  5171:  5121:  5113:  5078:  5070:  5044:Planta 5027:  4959:  4951:  4941:  4931:Koch C 4459:  4449:  4410:  4402:  4361:  4351:  4162:  4131:  4104:  4081:  4071:  4039:  4029:  3841:  3831:  3792:  3742:28 May 3721:  3694:  3684:  3620:These 3468:'s 3424:work. 3262:nerves 2847:80–110 2810:Frog ( 2799:80–104 2740:Loligo 2718:Animal 2698:phylum 2680:, and 2670:plants 2541:, and 2470:, and 2386:, and 2360:retina 2358:, the 2339:, and 2266:, and 2105:  2067:where 1783:shrimp 1769:, and 1755:myelin 1473:efflux 1388:closes 1316:Phases 1279:. The 1222:retina 1080:neuron 992:myelin 948:neuron 812:. The 770:neuron 698:anions 669:, and 611:sodium 492:, and 321:, and 186:sodium 159:spikes 157:" or " 46:neuron 11506:from 10893:51993 10101:[ 10048:Books 10034:S2CID 9973:S2CID 9828:S2CID 9742:S2CID 9599:S2CID 9463:S2CID 9412:S2CID 9268:S2CID 9225:S2CID 9180:S2CID 9123:S2CID 9086:S2CID 9041:S2CID 8984:S2CID 8939:S2CID 8851:S2CID 8760:S2CID 8723:S2CID 8542:S2CID 8500:S2CID 8457:S2CID 8414:S2CID 8003:S2CID 7849:S2CID 7738:S2CID 7625:S2CID 7542:S2CID 7496:S2CID 7412:S2CID 7369:S2CID 7149:S2CID 7111:S2CID 7068:S2CID 6858:S2CID 6829:S2CID 6644:S2CID 6601:S2CID 6395:(PDF) 6384:S2CID 6348:(PDF) 6025:S2CID 5958:S2CID 5906:S2CID 5725:S2CID 5119:S2CID 5076:S2CID 5013:(2). 5003:(PDF) 4408:S2CID 3790:S2CID 3762:(PDF) 3595:Notes 3270:cells 3228:frogs 3145:(the 2946:squid 2850:1–1.5 2836:Felis 2834:Cat ( 2829:7–30 2598:Plant 2511:atria 2435:tabun 2431:sarin 2400:of a 2368:heart 1833:axons 1384:opens 1289:heart 1194:touch 1190:smell 1033:axons 635:fires 97:like 11512:ISBN 11497:and 11397:ISBN 11376:ISBN 11357:ISBN 11333:ISBN 11314:ISBN 11292:ISBN 11271:PMID 11234:ISBN 11215:ISBN 11192:2010 11166:2013 11131:2010 11105:2010 11079:2010 11000:OCLC 10992:LCCN 10982:ISBN 10963:OCLC 10955:LCCN 10945:ISBN 10928:OCLC 10920:LCCN 10910:ISBN 10889:OCLC 10881:LCCN 10871:ISBN 10854:OCLC 10846:LCCN 10836:ISBN 10816:OCLC 10808:LCCN 10798:ISBN 10781:OCLC 10773:LCCN 10763:ISBN 10746:OCLC 10738:LCCN 10728:ISBN 10707:OCLC 10699:LCCN 10689:ISBN 10672:OCLC 10664:LCCN 10654:ISBN 10637:OCLC 10620:OCLC 10612:LCCN 10602:ISBN 10582:OCLC 10574:LCCN 10564:ISBN 10547:OCLC 10539:LCCN 10529:ISBN 10509:OCLC 10501:LCCN 10491:ISBN 10471:OCLC 10463:LCCN 10453:ISBN 10436:OCLC 10428:LCCN 10418:ISBN 10399:OCLC 10391:LCCN 10381:ISBN 10364:OCLC 10354:ISBN 10341:help 10317:OCLC 10309:LCCN 10301:ISSN 10291:ISBN 10274:OCLC 10266:LCCN 10249:OCLC 10241:LCCN 10231:ISBN 10207:OCLC 10199:LCCN 10175:OCLC 10167:LCCN 10150:OCLC 10142:LCCN 10132:ISBN 10115:OCLC 10107:LCCN 10083:OCLC 10075:LCCN 10065:ISBN 10026:PMID 9791:PMID 9713:PMID 9656:PMID 9591:PMID 9562:PMID 9512:PMID 9455:PMID 9404:PMID 9369:PMID 9320:PMID 9260:PMID 9217:PMID 9172:PMID 9115:PMID 9078:PMID 9033:PMID 8976:PMID 8931:PMID 8894:PMID 8843:PMID 8800:PMID 8752:PMID 8715:PMID 8669:PMID 8594:PMID 8492:PMID 8449:PMID 8406:PMID 8369:PMID 8359:ISBN 8334:PMID 8285:PMID 8228:PMID 8193:PMID 8136:PMID 8060:PMID 7995:PMID 7960:PMID 7925:PMID 7890:PMID 7841:PMID 7806:PMID 7796:ISBN 7730:PMID 7695:PMID 7660:PMID 7617:PMID 7577:PMID 7534:PMID 7488:PMID 7453:PMID 7404:PMID 7361:PMID 7326:PMID 7291:PMID 7242:PMID 7232:ISBN 7201:PMID 7103:PMID 7060:PMID 7008:PMID 6956:PMID 6910:PMID 6762:PMID 6683:PMID 6636:PMID 6593:PMID 6562:help 6538:PMID 6528:ISBN 6497:PMID 6451:PMID 6403:2019 6376:PMID 6326:PMID 6280:PMID 6234:PMID 6188:PMID 6142:PMID 6077:PMID 6017:PMID 5950:PMID 5898:PMID 5859:PMID 5818:PMID 5717:PMID 5606:PMID 5533:link 5515:OCLC 5505:ISBN 5419:ISBN 5394:PMID 5303:PMID 5235:PMID 5179:PMID 5111:ISSN 5068:PMID 5025:ISSN 4957:OCLC 4949:LCCN 4939:ISBN 4457:PMID 4400:PMID 4359:PMID 4160:ISBN 4129:ISBN 4102:ISBN 4079:OCLC 4069:ISBN 4037:PMID 3874:2017 3839:PMID 3744:2021 3719:PMID 3692:PMID 3449:and 3400:for 3376:and 3354:and 3218:are 3212:axon 3208:soma 3135:and 3074:and 3030:(10 2954:and 2920:and 2812:Rana 2754:0.75 2688:and 2600:and 2557:and 2441:and 2433:and 2398:axon 2304:and 2296:and 1961:and 1731:and 1404:and 1303:and 1232:and 1192:and 1184:and 1137:The 1054:and 955:soma 899:Axon 894:Soma 829:, a 706:alga 577:Key: 466:and 319:axon 309:and 134:axon 101:and 83:cell 38:axon 11548:at 11488:at 11479:at 11261:doi 11047:doi 10586:686 10018:doi 9965:doi 9938:doi 9915:doi 9868:doi 9820:doi 9781:PMC 9773:doi 9734:doi 9703:PMC 9695:doi 9646:PMC 9638:doi 9583:doi 9552:PMC 9544:doi 9502:PMC 9494:doi 9490:356 9447:doi 9435:450 9396:doi 9392:137 9359:PMC 9351:doi 9347:152 9310:PMC 9302:doi 9298:128 9252:doi 9209:doi 9197:409 9162:doi 9150:409 9107:doi 9070:doi 9058:402 9023:doi 9011:402 8968:doi 8956:423 8923:doi 8911:414 8886:doi 8874:280 8835:doi 8823:419 8792:doi 8780:266 8744:doi 8740:391 8707:doi 8695:260 8659:PMC 8651:doi 8647:108 8584:PMC 8576:doi 8534:doi 8484:doi 8441:doi 8398:doi 8386:222 8351:doi 8324:PMC 8316:doi 8275:PMC 8267:doi 8218:doi 8214:260 8183:PMC 8175:doi 8126:PMC 8118:doi 8114:117 8087:doi 8052:doi 7987:doi 7952:doi 7917:doi 7880:doi 7833:doi 7829:166 7788:doi 7765:doi 7722:doi 7718:124 7687:doi 7683:426 7652:doi 7609:doi 7569:doi 7565:366 7526:doi 7480:doi 7443:doi 7396:doi 7353:doi 7349:310 7318:doi 7281:PMC 7273:doi 7224:doi 7191:doi 7179:134 7141:doi 7095:doi 7050:doi 6998:PMC 6990:doi 6986:115 6946:PMC 6938:doi 6934:112 6900:PMC 6892:doi 6888:108 6850:doi 6846:245 6821:doi 6817:244 6794:doi 6790:127 6752:PMC 6744:doi 6713:doi 6709:127 6675:doi 6671:202 6628:doi 6585:doi 6520:doi 6487:PMC 6479:doi 6441:PMC 6433:doi 6368:doi 6356:440 6316:PMC 6308:doi 6304:117 6270:PMC 6262:doi 6258:116 6224:PMC 6216:doi 6212:116 6178:PMC 6170:doi 6166:116 6132:PMC 6124:doi 6120:116 6067:PMC 6059:doi 6009:doi 5997:188 5976:doi 5942:doi 5938:149 5890:doi 5808:PMC 5798:doi 5709:doi 5596:PMC 5588:doi 5384:doi 5293:PMC 5285:doi 5227:doi 5169:PMC 5161:doi 5103:doi 5060:doi 5048:226 5015:doi 4911:in 4447:PMC 4439:doi 4435:126 4390:doi 4349:PMC 4339:doi 4027:PMC 4017:doi 3829:PMC 3821:doi 3782:doi 3682:PMC 3674:doi 3670:117 3276:). 3230:by 3070:by 2826:1.0 2805:10 2802:0.4 2796:−70 2781:30 2778:1.0 2775:100 2772:−70 2757:35 2751:120 2748:−60 2362:of 1837:cat 1741:In 1448:or 1266:In 1206:ear 1172:In 1104:at 971:LTP 841:or 641:or 387:by 349:or 73:An 11583:: 11557:, 11423:10 11269:. 11257:88 11255:. 11251:. 11152:. 11148:. 11045:. 11033:. 11029:. 10998:. 10990:. 10961:. 10953:. 10926:. 10918:. 10887:. 10879:. 10852:. 10844:. 10814:. 10806:. 10779:. 10771:. 10744:. 10736:. 10722:. 10705:. 10697:. 10670:. 10662:. 10618:. 10610:. 10580:. 10572:. 10545:. 10537:. 10507:. 10499:. 10469:. 10461:. 10434:. 10426:. 10397:. 10389:. 10362:. 10333:: 10331:}} 10327:{{ 10315:. 10307:. 10299:. 10272:. 10247:. 10239:. 10205:. 10173:. 10148:. 10140:. 10113:. 10081:. 10073:. 10032:. 10024:. 10016:. 10006:. 9996:10 9994:. 9971:. 9961:13 9959:. 9934:37 9932:. 9926:* 9911:21 9909:. 9905:. 9888:14 9886:. 9877:* 9862:. 9853:* 9846:. 9837:* 9826:. 9818:. 9808:40 9806:. 9800:* 9789:. 9779:. 9769:32 9767:. 9763:. 9740:. 9730:50 9728:. 9722:* 9711:. 9701:. 9693:. 9681:. 9677:. 9654:. 9644:. 9636:. 9626:35 9624:. 9620:. 9597:. 9589:. 9579:66 9577:. 9571:* 9560:. 9550:. 9540:43 9538:. 9534:. 9528:* 9510:. 9500:. 9488:. 9484:. 9461:. 9453:. 9445:. 9433:. 9410:. 9402:. 9390:. 9367:. 9357:. 9345:. 9341:. 9318:. 9308:. 9296:. 9292:. 9266:. 9258:. 9248:23 9246:. 9223:. 9215:. 9207:. 9195:. 9189:* 9178:. 9170:. 9160:. 9148:. 9144:. 9121:. 9113:. 9103:80 9101:. 9095:* 9084:. 9076:. 9068:. 9056:. 9050:* 9039:. 9031:. 9021:. 9009:. 9005:. 8982:. 8974:. 8966:. 8954:. 8948:* 8937:. 8929:. 8921:. 8909:. 8903:* 8892:. 8884:. 8872:. 8849:. 8841:. 8833:. 8821:. 8798:. 8790:. 8778:. 8769:* 8758:. 8750:. 8738:. 8732:* 8721:. 8713:. 8705:. 8693:. 8667:. 8657:. 8645:. 8641:. 8633:, 8615:. 8592:. 8582:. 8572:22 8570:. 8566:. 8540:. 8530:92 8528:. 8524:. 8498:. 8490:. 8480:23 8478:. 8455:. 8447:. 8437:20 8435:. 8412:. 8404:. 8396:. 8384:. 8378:* 8367:. 8357:. 8343:* 8332:. 8322:. 8312:48 8310:. 8306:. 8283:. 8273:. 8265:. 8255:96 8253:. 8249:. 8226:. 8212:. 8208:. 8202:* 8191:. 8181:. 8173:. 8163:14 8161:. 8157:. 8134:. 8124:. 8112:. 8108:. 8083:35 8081:. 8058:. 8048:34 8046:. 8027:. 8001:. 7993:. 7983:25 7981:. 7958:. 7948:10 7946:. 7923:. 7911:. 7888:. 7876:30 7874:. 7870:. 7847:. 7839:. 7827:. 7804:. 7794:. 7761:28 7759:. 7736:. 7728:. 7716:. 7693:. 7681:. 7658:. 7648:11 7646:. 7623:. 7615:. 7605:84 7603:. 7589:^ 7575:. 7563:. 7540:. 7532:. 7522:13 7520:. 7508:^ 7494:. 7486:. 7476:33 7474:. 7451:. 7439:99 7437:. 7433:. 7410:. 7402:. 7392:28 7390:. 7367:. 7359:. 7347:. 7324:. 7314:82 7312:. 7289:. 7279:. 7269:12 7267:. 7263:. 7240:. 7230:. 7199:. 7189:. 7177:. 7173:. 7147:. 7135:. 7109:. 7101:. 7091:10 7089:. 7066:. 7058:. 7048:. 7038:17 7036:. 7032:. 7020:^ 7006:. 6996:. 6984:. 6980:. 6954:. 6944:. 6932:. 6928:. 6919:* 6908:. 6898:. 6886:. 6882:. 6856:. 6844:. 6838:* 6827:. 6815:. 6788:. 6760:. 6750:. 6738:. 6734:. 6707:. 6695:^ 6681:. 6669:. 6665:. 6642:. 6634:. 6624:17 6622:. 6599:. 6591:. 6579:. 6554:: 6552:}} 6548:{{ 6536:. 6526:. 6495:. 6485:. 6475:90 6473:. 6469:. 6460:* 6449:. 6439:. 6429:90 6427:. 6423:. 6382:. 6374:. 6366:. 6354:. 6350:. 6324:. 6314:. 6302:. 6298:. 6289:* 6278:. 6268:. 6256:. 6252:. 6243:* 6232:. 6222:. 6210:. 6206:. 6197:* 6186:. 6176:. 6164:. 6160:. 6151:* 6140:. 6130:. 6118:. 6114:. 6089:^ 6075:. 6065:. 6055:27 6053:. 6049:. 6037:^ 6023:. 6015:. 6007:. 5995:. 5956:. 5948:. 5936:. 5904:. 5896:. 5886:86 5884:. 5865:. 5853:. 5849:. 5837:^ 5816:. 5806:. 5792:. 5788:. 5761:, 5723:. 5715:. 5703:. 5699:. 5681:, 5671:, 5654:* 5648:, 5638:, 5604:. 5594:. 5584:26 5582:. 5578:. 5529:}} 5525:{{ 5513:. 5485:; 5481:; 5465:, 5392:. 5382:. 5372:26 5370:. 5366:. 5323:, 5301:. 5291:. 5283:. 5271:. 5267:. 5233:. 5225:. 5215:23 5213:. 5191:^ 5177:. 5167:. 5159:. 5149:26 5147:. 5143:. 5131:^ 5117:. 5109:. 5097:. 5074:. 5066:. 5058:. 5046:. 5023:. 5011:54 5009:. 5005:. 4955:. 4947:. 4915:, 4901:^ 4892:, 4784:^ 4741:^ 4720:^ 4701:^ 4682:^ 4641:, 4604:^ 4517:^ 4455:. 4445:. 4433:. 4429:. 4406:. 4398:. 4386:16 4384:. 4380:. 4357:. 4347:. 4335:13 4333:. 4329:. 4310:. 4223:^ 4198:^ 4137:. 4077:. 4049:^ 4035:. 4025:. 4011:. 4007:. 3945:^ 3930:^ 3909:^ 3882:^ 3860:. 3837:. 3827:. 3817:38 3815:. 3811:. 3788:. 3780:. 3770:39 3768:. 3764:. 3715:40 3713:. 3690:. 3680:. 3668:. 3664:. 3527:. 3257:. 3032:nm 2884:. 2876:. 2692:. 2672:, 2656:. 2583:. 2545:. 2537:, 2533:, 2466:, 2462:, 2445:. 2382:, 2370:. 2335:, 2262:, 2258:, 2216:CV 2075:, 1851:∝ 1594:Na 1573:. 1548:Na 1534:Na 1520:Na 1452:. 1444:, 1312:. 1248:. 1208:, 1112:. 1023:. 768:A 753:. 665:, 661:, 645:. 553:Na 488:, 479:Na 472:Na 317:, 273:. 202:. 60:. 11518:. 11471:) 11463:( 11458:) 11427:) 11420:( 11405:. 11384:. 11365:. 11341:. 11322:. 11300:. 11277:. 11263:: 11242:. 11223:. 11194:. 11168:. 11154:7 11133:. 11107:. 11081:. 11055:. 11049:: 11041:: 11035:1 11006:. 10969:. 10934:. 10895:. 10860:. 10822:. 10787:. 10752:. 10713:. 10678:. 10643:. 10626:. 10588:. 10553:. 10515:. 10477:. 10442:. 10405:. 10370:. 10343:) 10323:. 10280:. 10255:. 10213:. 10181:. 10156:. 10121:. 10089:. 10040:. 10020:: 10002:: 9979:. 9967:: 9944:. 9940:: 9923:. 9917:: 9874:. 9870:: 9864:6 9848:2 9834:. 9822:: 9814:: 9797:. 9775:: 9748:. 9736:: 9719:. 9697:: 9689:: 9683:1 9662:. 9640:: 9632:: 9605:. 9585:: 9568:. 9546:: 9518:. 9496:: 9469:. 9449:: 9441:: 9418:. 9398:: 9375:. 9353:: 9326:. 9304:: 9274:. 9254:: 9231:. 9211:: 9203:: 9186:. 9164:: 9156:: 9129:. 9109:: 9092:. 9072:: 9064:: 9047:. 9025:: 9017:: 8990:. 8970:: 8962:: 8945:. 8925:: 8917:: 8900:. 8888:: 8880:: 8857:. 8837:: 8829:: 8806:. 8794:: 8786:: 8766:. 8746:: 8729:. 8709:: 8701:: 8675:. 8653:: 8617:9 8600:. 8578:: 8548:. 8536:: 8506:. 8486:: 8463:. 8443:: 8420:. 8400:: 8392:: 8375:. 8353:: 8340:. 8318:: 8291:. 8269:: 8261:: 8234:. 8220:: 8199:. 8177:: 8169:: 8142:. 8120:: 8093:. 8089:: 8066:. 8054:: 8029:3 8009:. 7989:: 7966:. 7954:: 7931:. 7919:: 7896:. 7882:: 7855:. 7835:: 7812:. 7790:: 7771:. 7767:: 7744:. 7724:: 7701:. 7689:: 7666:. 7654:: 7631:. 7611:: 7583:. 7571:: 7548:. 7528:: 7502:. 7482:: 7459:. 7445:: 7418:. 7398:: 7375:. 7355:: 7332:. 7320:: 7297:. 7275:: 7248:. 7226:: 7207:. 7193:: 7185:: 7155:. 7143:: 7137:7 7117:. 7097:: 7074:. 7052:: 7044:: 7014:. 6992:: 6962:. 6940:: 6916:. 6894:: 6864:. 6852:: 6835:. 6823:: 6800:. 6796:: 6768:. 6746:: 6740:7 6719:. 6715:: 6689:. 6677:: 6650:. 6630:: 6607:. 6587:: 6581:4 6564:) 6544:. 6522:: 6503:. 6481:: 6457:. 6435:: 6405:. 6370:: 6362:: 6332:. 6310:: 6286:. 6264:: 6240:. 6218:: 6194:. 6172:: 6148:. 6126:: 6083:. 6061:: 6031:. 6011:: 6003:: 5978:: 5964:. 5944:: 5912:. 5892:: 5855:7 5824:. 5800:: 5794:4 5731:. 5711:: 5705:8 5625:. 5612:. 5590:: 5564:. 5535:) 5521:. 5489:. 5469:. 5452:. 5427:. 5400:. 5386:: 5378:: 5352:. 5309:. 5287:: 5279:: 5273:2 5241:. 5229:: 5221:: 5185:. 5163:: 5155:: 5125:. 5105:: 5099:4 5082:. 5062:: 5054:: 5031:. 5017:: 4963:. 4463:. 4441:: 4414:. 4392:: 4365:. 4341:: 4314:. 4285:. 4168:. 4110:. 4085:. 4043:. 4019:: 4013:6 3876:. 3845:. 3823:: 3796:. 3784:: 3776:: 3746:. 3725:. 3698:. 3676:: 3636:. 3482:. 3465:g 3460:m 3458:C 3453:m 3451:V 3446:m 3444:I 3222:. 3216:B 3196:A 3028:Å 3011:m 3009:V 3004:m 3002:V 2997:m 2995:V 2991:C 2987:C 2979:C 2977:I 2948:( 2838:) 2814:) 2790:) 2766:) 2742:) 2322:. 2239:λ 2234:m 2232:r 2223:i 2221:r 2212:Q 2205:m 2203:c 2198:m 2196:r 2169:r 2163:m 2159:r 2152:= 2123:m 2119:c 2113:m 2109:r 2102:= 2085:x 2081:t 2077:t 2073:x 2071:( 2069:V 2052:V 2041:2 2037:x 2028:V 2023:2 2010:2 2002:= 1996:t 1988:V 1942:i 1940:r 1935:e 1933:r 1864:d 1859:∝ 1857:v 1853:d 1849:v 1845:d 1841:v 1645:K 1642:E 1637:m 1635:V 1618:m 1616:V 1612:K 1609:E 1604:m 1602:V 1591:E 1586:m 1584:V 1554:m 1552:V 1545:E 1540:m 1538:V 1531:E 1526:m 1524:V 1517:E 1512:m 1510:V 1505:m 1503:V 1498:m 1496:V 1486:m 1484:V 1480:K 1477:E 1433:m 1431:V 1394:m 1392:V 1380:m 1378:V 1373:m 1371:V 1362:m 1360:V 1355:m 1353:E 1344:m 1342:V 717:( 556:V 528:→ 524:→ 520:→ 482:V 475:V 410:) 404:( 399:) 395:( 381:. 20:)

Index

Neural firing

axon
membrane
neuron
ion channels
threshold potential
depolarization
Repolarization
axon terminal
membrane potential
cell
depolarization
excitable cells
animal cells
neurons
muscle cells
plant cells
endocrine
pancreatic beta cells
anterior pituitary gland
cell–cell communication
saltatory conduction
axon
synaptic boutons
beta cells
pancreas
insulin
voltage-gated ion channels
plasma membrane

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.