Knowledge

Nodal precession

Source 📝

117:. Because of the bulge of the central body, the gravitational force on a satellite is not directed toward the center of the central body, but is offset toward its equator. Whichever hemisphere of the central body the satellite lies over, it is preferentially pulled slightly toward the equator of the central body. This creates a torque on the satellite. This torque does not reduce the inclination; rather, it causes a torque-induced gyroscopic 764: 106: 525: 759:{\displaystyle {\begin{aligned}\omega _{\mathrm {p} }&=-{\frac {3}{2}}\cdot {\frac {6\,378\,137^{2}}{\left(7\,178\,137\left(1-0^{2}\right)\right)^{2}}}\cdot \left(1.082\,626\,68\times 10^{-3}\right)\cdot 0.001\,038\cdot \cos 56^{\circ }\\&=-7.44\times 10^{-7}{\text{ rad/s}}\end{aligned}}} 283: 498: 772:
The apparent motion of the sun is approximately +1° per day (360° per year / 365.2422 days per tropical year ≈ 0.9856473° per day), so apparent motion of the sun relative to the orbit plane is about 2.8° per day, resulting in a complete cycle in about 127 days. For retrograde orbits
781:
can be thought of as positive but the inclination is greater than 90°, so the cosine of the inclination is negative.) In this case it is possible to make the precession approximately match the apparent motion of the sun, resulting in a
150: 386: 900: 113:
A non-rotating body of planetary scale or larger would be pulled by gravity into a spherical shape. Virtually all bodies rotate, however. The centrifugal force deforms the body so that it has an
530: 391: 73:
The direction of precession is opposite the direction of revolution. For a typical prograde orbit around Earth (that is, in the direction of primary body's rotation), the
144:
around Earth, the precession is westward (nodal regression), that is, the node and satellite move in opposite directions. A good approximation of the precession rate is
814: 1003: 278:{\displaystyle \omega _{\mathrm {p} }=-{\frac {3}{2}}{\frac {{R_{\mathrm {E} }}^{2}}{\left(a\left(1-e^{2}\right)\right)^{2}}}J_{2}\omega \cos i} 493:{\displaystyle {\begin{aligned}R_{\mathrm {E} }&=6.378\,137\times 10^{6}{\text{ m}}\\J_{2}&=1.082\,626\,68\times 10^{-3}\end{aligned}}} 819: 376:
The nodal progression of low Earth orbits is typically a few degrees per day to the west (negative). For a satellite in a circular (
969: 70:. This bulge creates a gravitational effect that causes orbits to precess around the rotational axis of the primary body. 51:
of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive,
769:
This is equivalent to −3.683° per day, so the orbit plane will make one complete turn (in inertial space) in 98 days.
979: 74: 78: 915: 370: 82: 43:. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform 24: 939: 1018: 62:
Around a spherical body, an orbital plane would remain fixed in space around the gravitational
925: 783: 90: 792: 8: 1023: 998: 63: 44: 36: 921: 903: 975: 52: 931: 137:
of the orbital plane to the equatorial plane, as well as the orbital eccentricity.
114: 67: 333: 48: 141: 1012: 122: 86: 935: 134: 948: 943: 118: 109:
Equatorial bulge torques a satellite orbit, leading to nodal precession
94: 20: 89:, that is the node precesses eastward. This nodal precession enables 28: 105: 32: 895:{\displaystyle {\tilde {J_{2}}}=-{\frac {J_{2}}{GM_{E}R_{E}^{2}}}} 777:
is negative, so the precession becomes positive. (Alternatively,
380:= 0) 800 km altitude orbit at 56° inclination about Earth: 77:
decreases, that is the node precesses westward. If the orbit is
301: 40: 56: 924:, another kind of orbital precession (the change in the 1004:
Discussion of nodal regression from Analytical Graphics
816:
used in this equation is the dimensionless coefficient
822: 795: 528: 389: 153: 348:
is the angular velocity of the satellite's motion (2
894: 808: 758: 492: 277: 1010: 66:. However, most bodies rotate, which causes an 342:is the eccentricity of the satellite's orbit, 918:, or "precession of the equinoxes" for Earth 352:radians divided by its period in seconds), 692: 661: 657: 603: 599: 578: 574: 466: 462: 416: 999:Nodal regression description from USENET 104: 1011: 133:The rate of precession depends on the 47:. The following discussion relates to 967: 906:or gravity field model for the body. 13: 539: 400: 192: 160: 14: 1035: 992: 315:is the body's equatorial radius ( 75:longitude of the ascending node 961: 836: 519:. The precession is therefore 100: 93:to maintain a nearly constant 1: 971:Elements of spacecraft design 954: 938:on the lunistices depends on 511:, so the angular velocity is 7: 909: 300:is the precession rate (in 128: 10: 1040: 371:second dynamic form factor 336:of the satellite's orbit, 95:angle relative to the Sun 968:Brown, Charles (2002). 91:heliosynchronous orbits 934:, in which the Moon's 896: 810: 784:heliosynchronous orbit 760: 503:The orbital period is 494: 279: 110: 926:argument of periapsis 897: 811: 809:{\displaystyle J_{2}} 761: 495: 280: 140:For a satellite in a 108: 81:, this increases the 820: 793: 526: 387: 151: 125:to drift with time. 888: 358:is its inclination, 121:, which causes the 45:gravitational field 922:Apsidal precession 904:geopotential model 892: 874: 806: 756: 754: 490: 488: 275: 111: 53:natural satellites 944:its orbital nodes 890: 839: 750: 644: 563: 436: 251: 180: 59:is more complex. 37:astronomical body 1031: 986: 985: 965: 932:Lunar standstill 916:Axial precession 901: 899: 898: 893: 891: 889: 887: 882: 873: 872: 859: 858: 849: 841: 840: 835: 834: 825: 815: 813: 812: 807: 805: 804: 780: 776: 765: 763: 762: 757: 755: 751: 748: 746: 745: 718: 714: 713: 685: 681: 680: 679: 645: 643: 642: 637: 633: 632: 628: 627: 626: 589: 588: 587: 569: 564: 556: 544: 543: 542: 518: 516: 510: 508: 499: 497: 496: 491: 489: 485: 484: 451: 450: 437: 434: 432: 431: 405: 404: 403: 379: 368: 357: 351: 347: 341: 331: 325: 323: 320: 314: 299: 284: 282: 281: 276: 262: 261: 252: 250: 249: 244: 240: 239: 235: 234: 233: 204: 203: 198: 197: 196: 195: 183: 181: 173: 165: 164: 163: 115:equatorial bulge 68:equatorial bulge 17:Nodal precession 1039: 1038: 1034: 1033: 1032: 1030: 1029: 1028: 1009: 1008: 995: 990: 989: 982: 974:. p. 106. 966: 962: 957: 912: 883: 878: 868: 864: 860: 854: 850: 848: 830: 826: 824: 823: 821: 818: 817: 800: 796: 794: 791: 790: 778: 774: 753: 752: 747: 738: 734: 716: 715: 709: 705: 672: 668: 653: 649: 638: 622: 618: 611: 607: 595: 591: 590: 583: 579: 570: 568: 555: 545: 538: 537: 533: 529: 527: 524: 523: 514: 512: 506: 504: 487: 486: 477: 473: 452: 446: 442: 439: 438: 433: 427: 423: 406: 399: 398: 394: 390: 388: 385: 384: 377: 367: 361: 355: 349: 345: 339: 334:semi-major axis 329: 321: 318: 316: 313: 307: 298: 292: 257: 253: 245: 229: 225: 218: 214: 210: 206: 205: 199: 191: 190: 186: 185: 184: 182: 172: 159: 158: 154: 152: 149: 148: 131: 103: 49:low Earth orbit 12: 11: 5: 1037: 1027: 1026: 1021: 1007: 1006: 1001: 994: 993:External links 991: 988: 987: 980: 959: 958: 956: 953: 952: 951: 946: 940:the precession 929: 919: 911: 908: 886: 881: 877: 871: 867: 863: 857: 853: 847: 844: 838: 833: 829: 803: 799: 767: 766: 744: 741: 737: 733: 730: 727: 724: 721: 719: 717: 712: 708: 704: 701: 698: 695: 691: 688: 684: 678: 675: 671: 667: 664: 660: 656: 652: 648: 641: 636: 631: 625: 621: 617: 614: 610: 606: 602: 598: 594: 586: 582: 577: 573: 567: 562: 559: 554: 551: 548: 546: 541: 536: 532: 531: 501: 500: 483: 480: 476: 472: 469: 465: 461: 458: 455: 453: 449: 445: 441: 440: 430: 426: 422: 419: 415: 412: 409: 407: 402: 397: 393: 392: 374: 373: 369:is the body's 365: 359: 353: 343: 337: 327: 311: 305: 296: 286: 285: 274: 271: 268: 265: 260: 256: 248: 243: 238: 232: 228: 224: 221: 217: 213: 209: 202: 194: 189: 179: 176: 171: 168: 162: 157: 142:prograde orbit 130: 127: 102: 99: 87:ascending node 9: 6: 4: 3: 2: 1036: 1025: 1022: 1020: 1019:Astrodynamics 1017: 1016: 1014: 1005: 1002: 1000: 997: 996: 983: 981:9781600860515 977: 973: 972: 964: 960: 950: 947: 945: 941: 937: 933: 930: 927: 923: 920: 917: 914: 913: 907: 905: 884: 879: 875: 869: 865: 861: 855: 851: 845: 842: 831: 827: 801: 797: 787: 785: 770: 742: 739: 735: 731: 728: 725: 722: 720: 710: 706: 702: 699: 696: 693: 689: 686: 682: 676: 673: 669: 665: 662: 658: 654: 650: 646: 639: 634: 629: 623: 619: 615: 612: 608: 604: 600: 596: 592: 584: 580: 575: 571: 565: 560: 557: 552: 549: 547: 534: 522: 521: 520: 481: 478: 474: 470: 467: 463: 459: 456: 454: 447: 443: 428: 424: 420: 417: 413: 410: 408: 395: 383: 382: 381: 372: 364: 360: 354: 344: 338: 335: 328: 310: 306: 303: 295: 291: 290: 289: 272: 269: 266: 263: 258: 254: 246: 241: 236: 230: 226: 222: 219: 215: 211: 207: 200: 187: 177: 174: 169: 166: 155: 147: 146: 145: 143: 138: 136: 126: 124: 123:orbital nodes 120: 116: 107: 98: 96: 92: 88: 84: 80: 76: 71: 69: 65: 60: 58: 54: 50: 46: 42: 38: 34: 30: 26: 25:orbital plane 22: 18: 970: 963: 788: 771: 768: 502: 375: 362: 308: 293: 287: 139: 132: 112: 72: 64:primary body 61: 16: 15: 936:declination 749: rad/s 517: rad/s 326:for Earth), 135:inclination 101:Description 35:axis of an 31:around the 1024:Precession 1013:Categories 955:References 949:Lunar node 119:precession 79:retrograde 33:rotational 21:precession 902:from the 846:− 837:~ 740:− 732:× 726:− 711:∘ 703:⁡ 697:⋅ 687:⋅ 674:− 666:× 647:⋅ 616:− 566:⋅ 553:− 535:ω 509:.4 s 479:− 471:× 421:× 270:⁡ 264:ω 223:− 170:− 156:ω 83:longitude 55:like the 29:satellite 910:See also 129:Equation 39:such as 435: m 332:is the 324: m 85:of the 23:of the 19:is the 978:  288:where 690:0.001 655:1.082 513:0.001 460:1.082 414:6.378 41:Earth 27:of a 976:ISBN 789:The 729:7.44 304:/s), 57:Moon 942:of 700:cos 694:038 659:626 605:137 601:178 581:137 576:378 515:038 507:052 464:626 418:137 322:137 319:378 302:rad 267:cos 1015:: 786:. 736:10 707:56 670:10 663:68 475:10 468:68 425:10 97:. 984:. 928:) 885:2 880:E 876:R 870:E 866:M 862:G 856:2 852:J 843:= 832:2 828:J 802:2 798:J 779:ω 775:ω 743:7 723:= 683:) 677:3 651:( 640:2 635:) 630:) 624:2 620:0 613:1 609:( 597:7 593:( 585:2 572:6 561:2 558:3 550:= 540:p 505:6 482:3 457:= 448:2 444:J 429:6 411:= 401:E 396:R 378:e 366:2 363:J 356:i 350:π 346:ω 340:e 330:a 317:6 312:E 309:R 297:p 294:ω 273:i 259:2 255:J 247:2 242:) 237:) 231:2 227:e 220:1 216:( 212:a 208:( 201:2 193:E 188:R 178:2 175:3 167:= 161:p

Index

precession
orbital plane
satellite
rotational
astronomical body
Earth
gravitational field
low Earth orbit
natural satellites
Moon
primary body
equatorial bulge
longitude of the ascending node
retrograde
longitude
ascending node
heliosynchronous orbits
angle relative to the Sun

equatorial bulge
precession
orbital nodes
inclination
prograde orbit
rad
semi-major axis
second dynamic form factor
heliosynchronous orbit
geopotential model
Axial precession

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.