Knowledge

Noncommutative ring

Source 📝

1788:
Because noncommutative rings of scientific interest are more complicated than commutative rings, their structure, properties and behavior are less well understood. A great deal of work has been done successfully generalizing some results from commutative rings to noncommutative rings. A major
1739:
arising from geometry, the study of noncommutative rings has grown into a major area of modern algebra. The theory and exposition of noncommutative rings was expanded and refined in the 19th and 20th centuries by numerous authors. An incomplete list of such contributors includes
1687: 1469: 1189: 706:
to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative. Generally, this is for emphasizing that the studied properties are not restricted to commutative rings, as, in many contexts,
1059: 1793:. It is common for noncommutative ring theorists to enforce a condition on one of these types of ideals while not requiring it to hold for the opposite side. For commutative rings, the left–right distinction does not exist. 1911:
A ring is said to be (left)-semisimple if it is semisimple as a left module over itself. Surprisingly, a left-semisimple ring is also right-semisimple and vice versa. The left/right distinction is therefore unnecessary.
834: 923: 1546: 1323: 235: 2772:
One case for non-commutative rings where localization has a clear interest is for rings of differential operators. It has the interpretation, for example, of adjoining a formal inverse
527: 1231: 1515: 966: 480: 443: 1328: 1259: 189: 2295:
of a vector space. This theorem first appeared in the literature in 1945, in the famous paper "Structure Theory of Simple Rings Without Finiteness Assumptions" by
1070: 1535: 1279: 2246:
As a direct corollary, the Artin–Wedderburn theorem implies that every simple ring that is finite-dimensional over a division ring (a simple algebra) is a
971: 3472: 1192: 718:
Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise.
632: 3196: 3115:
right ideals. This is sufficient to guarantee that a right-Noetherian ring is right Goldie. The converse does not hold: every right
782: 3294: 3233: 839: 3167: 1682:{\displaystyle \mathbb {C} \langle \theta _{1},\ldots ,\theta _{m}\rangle /(\theta _{i}\theta _{j}+\theta _{j}\theta _{i})} 695:
devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings.
89: 3532: 2719:* to be the 'best possible' or 'most general' way to do this – in the usual fashion this should be expressed by a 3540: 3458: 3157: 1900:
over a (not necessarily commutative) ring with unity is said to be semisimple (or completely reducible) if it is the
625: 577: 1882:. Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields". 3162: 1288: 199: 3267:. For Artinian rings, the two notions are equivalent, so "Artinian" is included here to eliminate that ambiguity. 2102: 1938:
still provide enough information about the ring. Rings such as the ring of integers are semiprimitive, and an
1875: 494: 1718:
over the field with two elements; it has eight elements and all noncommutative rings with eight elements are
1198: 3101: 2146: 2028: 618: 485: 3097: 1474: 933: 335: 3147: 3127: 95: 1464:{\displaystyle \mathbb {F} \langle e_{1},\ldots ,e_{n}\rangle /(e_{i}e_{j}+e_{j}e_{i}-q(e_{i},e_{j}))} 456: 419: 110: 3075: 3071: 2621: 2606:), is sufficient to guarantee the conclusion. This is essentially the statement of Nakayama's lemma. 2583: 2024:), but has nontrivial left ideals (namely, the sets of matrices which have some fixed zero columns). 1715: 772:
Some examples of rings that are not typically commutative (but may be commutative in simple cases):
2300: 2267: 1955: 1789:
difference between rings which are and are not commutative is the necessity to separately consider
570: 373: 323: 2594:, and the conclusion is satisfied. Somewhat remarkable is that the weaker assumption, namely that 1242: 172: 3152: 382: 116: 75: 3286: 3524: 2969: 2911: 2668: 2152: 2130: 1829: 1817: 1753: 539: 390: 341: 122: 968:, being the ring of polynomial differential operators defined over affine space; for example, 2977: 2781: 2292: 1901: 1184:{\displaystyle \mathbb {C} \langle x_{1},\ldots ,x_{n}\rangle /(x_{i}x_{j}-q_{ij}x_{j}x_{i})} 3573: 2935: 2758: 2111: 1989: 1897: 658: 263: 137: 3243: 8: 3034: 2896: 2785: 2414: 2115: 2067: 1997: 1977: 1867: 353: 304: 249: 143: 129: 57: 25: 3134:
principal right ideal rings. Every prime principal right ideal ring is isomorphic to a
2814:
that preserves many ring-theoretic properties. It is named after Japanese mathematician
3510: 3491: 3279: 3060: 2984: 2965: 2907: 2811: 2805: 2747: 2720: 2707: 2674: 2160: 1973: 1921: 1813: 1520: 1264: 654: 558: 44: 2765:
of prospective units. One condition which ensures that the localization exists is the
1926:
A semiprimitive ring or Jacobson semisimple ring or J-semisimple ring is a ring whose
3536: 3454: 3290: 3229: 3067: 2931: 2690: 2495: 2251: 1947: 1790: 1777: 599: 396: 161: 102: 3502: 3481: 3319: 3264: 3239: 3111:, since by definition right Noetherian rings have the ascending chain condition on 2961: 2923: 2878: 2424: 2168: 2134: 1927: 1236: 1062: 682: 605: 591: 405: 347: 310: 83: 69: 2084:
An example of a simple ring that is not a matrix ring over a division ring is the
1054:{\displaystyle A_{1}(\mathbb {C} )\cong \mathbb {C} \langle x,y\rangle /(xy-yx-1)} 3557: 3467: 3256: 3225: 3120: 3108: 3090: 2939: 2743: 2571: 2296: 2156: 1943: 1931: 1891: 1761: 367: 317: 155: 3126:
A consequence of Goldie's theorem, again due to Goldie, is that every semiprime
3100:. The structure of this ring of quotients is then completely determined by the 3086: 2927: 2919: 2793: 2288: 2052: 1985: 1951: 1860: 1757: 1745: 411: 2957: 1773: 3567: 3549: 3442: 3260: 3093: 3070:(also called "finite rank") as a right module over itself, and satisfies the 3052: 2951: 2903: 2766: 2511: 2307: 2277: 2229: 2214: 2189: 2123: 2075: 2063: 2040: 2032: 1939: 1935: 1905: 1807: 1783: 1736: 1723: 766: 552: 448: 63: 3470:(1945), "Structure theory of simple rings without finiteness assumptions", 2890: 2815: 2673:
Localization is a systematic method of adding multiplicative inverses to a
2649: 2085: 2044: 1879: 1769: 1765: 1704: 1540: 928: 584: 359: 255: 3450: 3186: 3135: 3048: 3040: 2304: 2247: 2225: 2210: 2185: 2119: 2048: 2036: 1993: 1967: 1871: 743: 731: 692: 646: 564: 275: 149: 31: 3495: 3131: 3116: 2738:; however other notations are used in some important special cases. If 2255: 2205:, both of which are uniquely determined up to permutation of the index 2108: 2056: 1981: 1749: 1741: 1719: 762: 756: 329: 2043:. In particular, the only simple rings that are a finite-dimensional 1543:
are another example of noncommutative rings; they can be presented as
836:
generated by a finite set, an example of two non-equal elements being
3191:"Sequence A127708 (Number of non-commutative rings with 1)" 1821: 777: 289: 194: 3486: 2648:
A version of the lemma holds for right modules over non-commutative
1239:
can be described explicitly using an algebra presentation: given an
1859:. Stated differently, a ring is a division ring if and only if its 283: 269: 2837:
if there is an equivalence of the category of (left) modules over
2818:
who defined equivalence and a similar notion of duality in 1958.
2761:
is more difficult; the localization does not exist for every set
167: 51: 3263:. Some authors use "semisimple" to mean the ring has a trivial 829:{\displaystyle \mathbb {Z} \langle x_{1},\ldots ,x_{n}\rangle } 3021:. A domain that satisfies the right Ore condition is called a 2869:
are equivalent. Further it can be shown that any functor from
3119:
is a right Goldie domain, and hence so is every commutative
2677:, and is usually applied to commutative rings. Given a ring 3190: 3107:
In particular, Goldie's theorem applies to semiprime right
2784:. There is now a large mathematical theory about it, named 2455:
to be the set of all (finite) sums of elements of the form
2861:
are equivalent if and only if the right module categories
2000:
does not have any nontrivial ideals (since any ideal of M(
1784:
Differences between commutative and noncommutative algebra
3222:
Points and lines. Characterizing the classical geometries
2163:. The theorem states that an (Artinian) semisimple ring 2299:. This can be viewed as a kind of generalization of the 2051:
are rings of matrices over either the real numbers, the
1984:
and itself. A simple ring can always be considered as a
1878:
all finite division rings are commutative and therefore
1870:
only in that their multiplication is not required to be
1691:
There are finite noncommutative rings: for example, the
3318:
Such rings of linear transformations are also known as
2566:
need not contain any maximal submodules. Naturally, if
1325:, the associated Clifford algebra has the presentation 3185: 2960:, in connection with the question of extending beyond 1714:. The smallest noncommutative ring is the ring of the 918:{\displaystyle 2x_{1}x_{2}+x_{2}x_{1}\neq 3x_{1}x_{2}} 2810:
Morita equivalence is a relationship defined between
2313:
More formally, the theorem can be stated as follows:
1549: 1523: 1477: 1331: 1291: 1267: 1245: 1201: 1073: 974: 936: 842: 785: 497: 459: 422: 202: 175: 2554:. However, this need not hold for arbitrary modules 2258:
later generalized it to the case of Artinian rings.
1930:
is zero. This is a type of ring more general than a
3089:right Goldie rings are precisely those that have a 2655:. The resulting theorem is sometimes known as the 2137:: every finite simple alternative ring is a field. 3278: 2922:of algebras. It arose out of attempts to classify 2853:. It can be shown that the left module categories 2542:contains at least one (proper) maximal submodule, 2291:can be viewed as a "dense" subring of the ring of 1681: 1529: 1509: 1463: 1317: 1273: 1253: 1225: 1183: 1053: 960: 917: 828: 521: 474: 437: 229: 183: 3473:Transactions of the American Mathematical Society 3565: 1812:A division ring, also called a skew field, is a 2956:The Ore condition is a condition introduced by 2926:over a field and is named after the algebraist 2788:, connecting with numerous other branches. The 2780:. This is done in many contexts in methods for 3276: 2662: 2107:Wedderburn's little theorem states that every 2096: 1988:. Rings which are simple as rings but not as 3055:during the 1950s. What is now termed a right 2930:. The group may also be defined in terms of 626: 2877:that yields an equivalence is automatically 2287:The theorem can be applied to show that any 1946:. Semiprimitive rings can be understood as 1622: 1590: 1369: 1337: 1318:{\displaystyle q:V\otimes V\to \mathbb {F} } 1111: 1079: 1016: 1004: 823: 791: 230:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 2261: 2140: 2122:, there is no distinction between domains, 3428:. Vol. 3 (2nd ed.). p. 351. 3281:Introductory Lectures on Rings and Modules 2845:, and the category of (left) modules over 2742:is the set of the non zero elements of an 2031:, every simple ring that is left or right 633: 619: 3485: 3395: 3393: 3270: 3197:On-Line Encyclopedia of Integer Sequences 2934:. More generally, the Brauer group of a 2602:-module (and no finiteness assumption on 1551: 1333: 1311: 1247: 1219: 1075: 1000: 989: 951: 787: 522:{\displaystyle \mathbb {Z} (p^{\infty })} 499: 462: 425: 223: 210: 177: 3466: 3340: 3325: 3130:is isomorphic to a finite direct sum of 726:Some examples of noncommutative rings: 3566: 3554:A First Course in Noncommutative Rings 3501: 3441: 3411: 3399: 3390: 3384: 3372: 3360: 3285:. Cambridge University Press. p.  3025:. The left case is defined similarly. 2829:(associative, with 1) are said to be ( 1915: 1226:{\displaystyle q_{ij}\in \mathbb {C} } 3219: 2799: 2303:'s conclusion about the structure of 2091: 1061:, where the ideal corresponds to the 765:constructed from a group that is not 3423: 3168:Representation theory (group theory) 1863:is the set of all nonzero elements. 1824:ring in which every nonzero element 1796: 90:Free product of associative algebras 3533:Mathematical Association of America 3028: 2792:tag is to do with connections with 2685:, one wants to construct some ring 2408: 2066:is a simple ring. In particular, a 1885: 1820:is possible. Specifically, it is a 1510:{\displaystyle e_{1},\ldots ,e_{n}} 961:{\displaystyle A_{n}(\mathbb {C} )} 13: 3517: 2609:Precisely, one has the following. 2151:The Artin–Wedderburn theorem is a 511: 14: 3585: 3424:Cohn, P. M. (1991). "Chap. 9.1". 3158:Noncommutative algebraic geometry 3085:Goldie's theorem states that the 2945: 1801: 578:Noncommutative algebraic geometry 3210:In this article, rings have a 1. 3163:Noncommutative harmonic analysis 3047:is a basic structural result in 475:{\displaystyle \mathbb {Q} _{p}} 438:{\displaystyle \mathbb {Z} _{p}} 3417: 3405: 3378: 3366: 3354: 3345: 3331:Isaacs, Corollary 13.16, p. 187 2918:and addition is induced by the 2884: 2776:for a differentiation operator 2746:, then the localization is the 2435:is a right module over a ring, 1961: 677:are different. Equivalently, a 3334: 3312: 3303: 3250: 3213: 3204: 3179: 2750:and thus usually denoted Frac( 2356:-linearly independent set. If 1676: 1630: 1587: 1555: 1458: 1455: 1429: 1377: 1307: 1178: 1119: 1048: 1024: 993: 985: 955: 947: 516: 503: 1: 3435: 3351:Isaacs, Theorem 13.14, p. 185 2522:) is necessarily a subset of 2318:The Jacobson Density Theorem. 2074:is simple if and only if its 1954:, which are described by the 1942:semiprimitive ring is just a 2598:is finitely generated as an 2590:is a Noetherian module over 2062:Any quotient of a ring by a 1972:A simple ring is a non-zero 1791:right ideals and left ideals 1254:{\displaystyle \mathbb {F} } 657:whose multiplication is not 184:{\displaystyle \mathbb {Z} } 7: 3141: 3098:classical ring of quotients 2663:Noncommutative localization 2640:) is a proper submodule of 2632:is a non-zero module, then 2550:) is a proper submodule of 2133:generalizes the theorem to 2103:Wedderburn's little theorem 2097:Wedderburn's little theorem 1876:Wedderburn's little theorem 1866:Division rings differ from 721: 711:is used as a shorthand for 336:Unique factorization domain 10: 3590: 3447:Algebra, a graduate course 3187:Sloane, N. J. A. 3148:Derived algebraic geometry 3128:principal right ideal ring 3032: 2949: 2888: 2803: 2701:*, such that the image of 2666: 2412: 2364:-linear transformation on 2265: 2144: 2100: 1965: 1919: 1908:(irreducible) submodules. 1889: 1805: 1730: 96:Tensor product of algebras 3220:Shult, Ernest E. (2011). 3138:over a right Ore domain. 3072:ascending chain condition 2711:(invertible elements) in 2624:right module over a ring 2526:, by the definition of J( 2243:are uniquely determined. 2070:is a simple ring. A ring 1716:upper triangular matrices 3224:. Universitext. Berlin: 3173: 3102:Artin–Wedderburn theorem 2657:Jacobson–Azumaya theorem 2467:is simply the action of 2301:Artin-Wedderburn theorem 2276:is a theorem concerning 2274:Jacobson density theorem 2268:Jacobson density theorem 2262:Jacobson density theorem 2147:Artin–Wedderburn theorem 2141:Artin–Wedderburn theorem 2029:Artin–Wedderburn theorem 1956:Jacobson density theorem 681:is a ring that is not a 374:Formal power series ring 324:Integrally closed domain 3402:, Theorem 13.11, p. 183 3387:, Theorem 12.19, p. 172 3277:John A. Beachy (1999). 3153:Noncommutative geometry 2938:is defined in terms of 2912:central simple algebras 2574:module, this holds. If 661:; that is, there exist 383:Algebraic number theory 76:Total ring of fractions 2970:localization of a ring 2964:the construction of a 2895:The Brauer group of a 2782:differential equations 2731:is usually denoted by 2723:. The localization of 2669:Localization of a ring 2293:linear transformations 2209:. In particular, any 2153:classification theorem 2118:. In other words, for 1976:that has no two-sided 1830:multiplicative inverse 1683: 1531: 1511: 1465: 1319: 1285:with a quadratic form 1275: 1255: 1227: 1185: 1055: 962: 919: 830: 689:Noncommutative algebra 669:in the ring such that 540:Noncommutative algebra 523: 476: 439: 391:Algebraic number field 342:Principal ideal domain 231: 185: 123:Frobenius endomorphism 2978:multiplicative subset 2759:non-commutative rings 2715:*. Further one wants 2254:'s original result. 1684: 1532: 1512: 1466: 1320: 1276: 1256: 1228: 1186: 1056: 963: 920: 831: 524: 477: 440: 232: 186: 3529:Noncommutative Rings 2968:, or more generally 2914:of finite rank over 2538:is simple. Thus, if 2530:) and the fact that 2443:is a right ideal in 2217:is isomorphic to an 2198:, for some integers 1547: 1521: 1475: 1329: 1289: 1265: 1243: 1199: 1071: 972: 934: 840: 783: 546:Noncommutative rings 495: 457: 420: 264:Non-associative ring 200: 173: 130:Algebraic structures 3010:, the intersection 2974:right Ore condition 2906:whose elements are 2578:is Noetherian, and 2167:is isomorphic to a 2161:semisimple algebras 2008:) is of the form M( 1992:do exist: the full 1916:Semiprimitive rings 1832:, i.e., an element 702:is used instead of 700:noncommutative ring 698:Sometimes the term 679:noncommutative ring 651:noncommutative ring 305:Commutative algebra 144:Associative algebra 26:Algebraic structure 16:Algebraic structure 3511:Wiley-Interscience 3200:. OEIS Foundation. 2966:field of fractions 2908:Morita equivalence 2806:Morita equivalence 2800:Morita equivalence 2748:field of fractions 2721:universal property 2622:finitely generated 2584:finitely generated 2483:is a submodule of 2368:then there exists 2324:be a simple right 2131:Artin–Zorn theorem 2092:Important theorems 1948:subdirect products 1922:Semiprimitive ring 1679: 1527: 1507: 1461: 1315: 1271: 1251: 1223: 1181: 1067:The quotient ring 1051: 958: 915: 826: 742:matrices over the 559:Semiprimitive ring 519: 472: 435: 243:Related structures 227: 181: 117:Inner automorphism 103:Ring homomorphisms 3443:Isaacs, I. Martin 3320:full linear rings 3296:978-0-521-64407-5 3235:978-3-642-15626-7 3068:uniform dimension 2962:commutative rings 2932:Galois cohomology 2924:division algebras 2796:, in particular. 2786:microlocalization 2691:ring homomorphism 2496:maximal submodule 2252:Joseph Wedderburn 2171:of finitely many 2135:alternative rings 2027:According to the 1797:Important classes 1530:{\displaystyle V} 1274:{\displaystyle V} 643: 642: 600:Geometric algebra 311:Commutative rings 162:Category of rings 3581: 3560: 3545: 3513: 3498: 3489: 3463: 3449:(1st ed.), 3430: 3429: 3421: 3415: 3409: 3403: 3397: 3388: 3382: 3376: 3370: 3364: 3358: 3352: 3349: 3343: 3338: 3332: 3329: 3323: 3316: 3310: 3307: 3301: 3300: 3284: 3274: 3268: 3265:Jacobson radical 3259:are necessarily 3257:Semisimple rings 3254: 3248: 3247: 3217: 3211: 3208: 3202: 3201: 3183: 3109:Noetherian rings 3066:that has finite 3045:Goldie's theorem 3035:Goldie's theorem 3029:Goldie's theorem 3023:right Ore domain 3020: 3009: 2999: 2940:Azumaya algebras 2614:Nakayama's lemma 2425:Jacobson radical 2415:Nakayama's lemma 2409:Nakayama's lemma 2403: 2399: 2395: 2377: 2367: 2363: 2359: 2355: 2351: 2341: 2327: 2323: 2283: 2157:semisimple rings 1928:Jacobson radical 1886:Semisimple rings 1858: 1722:to it or to its 1713: 1703:matrices over a 1702: 1696: 1688: 1686: 1685: 1680: 1675: 1674: 1665: 1664: 1652: 1651: 1642: 1641: 1629: 1621: 1620: 1602: 1601: 1586: 1585: 1567: 1566: 1554: 1536: 1534: 1533: 1528: 1516: 1514: 1513: 1508: 1506: 1505: 1487: 1486: 1470: 1468: 1467: 1462: 1454: 1453: 1441: 1440: 1422: 1421: 1412: 1411: 1399: 1398: 1389: 1388: 1376: 1368: 1367: 1349: 1348: 1336: 1324: 1322: 1321: 1316: 1314: 1284: 1280: 1278: 1277: 1272: 1260: 1258: 1257: 1252: 1250: 1237:Clifford algebra 1232: 1230: 1229: 1224: 1222: 1214: 1213: 1190: 1188: 1187: 1182: 1177: 1176: 1167: 1166: 1157: 1156: 1141: 1140: 1131: 1130: 1118: 1110: 1109: 1091: 1090: 1078: 1060: 1058: 1057: 1052: 1023: 1003: 992: 984: 983: 967: 965: 964: 959: 954: 946: 945: 924: 922: 921: 916: 914: 913: 904: 903: 888: 887: 878: 877: 865: 864: 855: 854: 835: 833: 832: 827: 822: 821: 803: 802: 790: 752: 713:commutative ring 683:commutative ring 635: 628: 621: 606:Operator algebra 592:Clifford algebra 528: 526: 525: 520: 515: 514: 502: 481: 479: 478: 473: 471: 470: 465: 444: 442: 441: 436: 434: 433: 428: 406:Ring of integers 400: 397:Integers modulo 348:Euclidean domain 236: 234: 233: 228: 226: 218: 213: 190: 188: 187: 182: 180: 84:Product of rings 70:Fractional ideal 29: 21: 20: 3589: 3588: 3584: 3583: 3582: 3580: 3579: 3578: 3564: 3563: 3558:Springer-Verlag 3548: 3543: 3525:Herstein, I. N. 3523: 3520: 3518:Further reading 3487:10.2307/1990204 3461: 3438: 3433: 3422: 3418: 3410: 3406: 3398: 3391: 3383: 3379: 3371: 3367: 3359: 3355: 3350: 3346: 3339: 3335: 3330: 3326: 3317: 3313: 3308: 3304: 3297: 3275: 3271: 3255: 3251: 3236: 3228:. p. 123. 3226:Springer-Verlag 3218: 3214: 3209: 3205: 3184: 3180: 3176: 3144: 3121:integral domain 3037: 3031: 3011: 3001: 2991: 2954: 2948: 2893: 2887: 2808: 2802: 2744:integral domain 2671: 2665: 2475:. Necessarily, 2417: 2411: 2401: 2397: 2379: 2369: 2365: 2361: 2357: 2353: 2343: 2338: 2329: 2325: 2321: 2297:Nathan Jacobson 2281: 2270: 2264: 2203: 2196: 2183: 2176: 2149: 2143: 2105: 2099: 2094: 2053:complex numbers 1970: 1964: 1952:primitive rings 1944:semisimple ring 1932:semisimple ring 1924: 1918: 1894: 1892:Semisimple ring 1888: 1837: 1810: 1804: 1799: 1786: 1735:Beginning with 1733: 1708: 1698: 1692: 1670: 1666: 1660: 1656: 1647: 1643: 1637: 1633: 1625: 1616: 1612: 1597: 1593: 1581: 1577: 1562: 1558: 1550: 1548: 1545: 1544: 1522: 1519: 1518: 1501: 1497: 1482: 1478: 1476: 1473: 1472: 1449: 1445: 1436: 1432: 1417: 1413: 1407: 1403: 1394: 1390: 1384: 1380: 1372: 1363: 1359: 1344: 1340: 1332: 1330: 1327: 1326: 1310: 1290: 1287: 1286: 1282: 1266: 1263: 1262: 1246: 1244: 1241: 1240: 1218: 1206: 1202: 1200: 1197: 1196: 1172: 1168: 1162: 1158: 1149: 1145: 1136: 1132: 1126: 1122: 1114: 1105: 1101: 1086: 1082: 1074: 1072: 1069: 1068: 1019: 999: 988: 979: 975: 973: 970: 969: 950: 941: 937: 935: 932: 931: 909: 905: 899: 895: 883: 879: 873: 869: 860: 856: 850: 846: 841: 838: 837: 817: 813: 798: 794: 786: 784: 781: 780: 747: 724: 691:is the part of 639: 610: 609: 542: 532: 531: 510: 506: 498: 496: 493: 492: 466: 461: 460: 458: 455: 454: 429: 424: 423: 421: 418: 417: 398: 368:Polynomial ring 318:Integral domain 307: 297: 296: 222: 214: 209: 201: 198: 197: 176: 174: 171: 170: 156:Involutive ring 41: 30: 24: 17: 12: 11: 5: 3587: 3577: 3576: 3562: 3561: 3546: 3541: 3519: 3516: 3515: 3514: 3499: 3464: 3459: 3437: 3434: 3432: 3431: 3416: 3404: 3389: 3377: 3365: 3353: 3344: 3333: 3324: 3311: 3309:Isaacs, p. 184 3302: 3295: 3269: 3261:Artinian rings 3249: 3234: 3212: 3203: 3177: 3175: 3172: 3171: 3170: 3165: 3160: 3155: 3150: 3143: 3140: 3078:of subsets of 3033:Main article: 3030: 3027: 2950:Main article: 2947: 2946:Ore conditions 2944: 2928:Richard Brauer 2920:tensor product 2889:Main article: 2886: 2883: 2804:Main article: 2801: 2798: 2794:Fourier theory 2667:Main article: 2664: 2661: 2646: 2645: 2447:, then define 2413:Main article: 2410: 2407: 2406: 2405: 2336: 2308:Artinian rings 2289:primitive ring 2278:simple modules 2266:Main article: 2263: 2260: 2213:left or right 2201: 2194: 2190:division rings 2181: 2174: 2145:Main article: 2142: 2139: 2124:division rings 2101:Main article: 2098: 2095: 2093: 2090: 1986:simple algebra 1966:Main article: 1963: 1960: 1936:simple modules 1920:Main article: 1917: 1914: 1890:Main article: 1887: 1884: 1874:. However, by 1861:group of units 1806:Main article: 1803: 1802:Division rings 1800: 1798: 1795: 1785: 1782: 1758:I. N. Herstein 1754:W. R. Hamilton 1746:Richard Brauer 1737:division rings 1732: 1729: 1728: 1727: 1689: 1678: 1673: 1669: 1663: 1659: 1655: 1650: 1646: 1640: 1636: 1632: 1628: 1624: 1619: 1615: 1611: 1608: 1605: 1600: 1596: 1592: 1589: 1584: 1580: 1576: 1573: 1570: 1565: 1561: 1557: 1553: 1538: 1526: 1504: 1500: 1496: 1493: 1490: 1485: 1481: 1471:for any basis 1460: 1457: 1452: 1448: 1444: 1439: 1435: 1431: 1428: 1425: 1420: 1416: 1410: 1406: 1402: 1397: 1393: 1387: 1383: 1379: 1375: 1371: 1366: 1362: 1358: 1355: 1352: 1347: 1343: 1339: 1335: 1313: 1309: 1306: 1303: 1300: 1297: 1294: 1270: 1261:-vector space 1249: 1233: 1221: 1217: 1212: 1209: 1205: 1180: 1175: 1171: 1165: 1161: 1155: 1152: 1148: 1144: 1139: 1135: 1129: 1125: 1121: 1117: 1113: 1108: 1104: 1100: 1097: 1094: 1089: 1085: 1081: 1077: 1065: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1022: 1018: 1015: 1012: 1009: 1006: 1002: 998: 995: 991: 987: 982: 978: 957: 953: 949: 944: 940: 925: 912: 908: 902: 898: 894: 891: 886: 882: 876: 872: 868: 863: 859: 853: 849: 845: 825: 820: 816: 812: 809: 806: 801: 797: 793: 789: 770: 769: 759: 753: 723: 720: 641: 640: 638: 637: 630: 623: 615: 612: 611: 603: 602: 574: 573: 567: 561: 555: 543: 538: 537: 534: 533: 530: 529: 518: 513: 509: 505: 501: 482: 469: 464: 445: 432: 427: 415:-adic integers 408: 402: 393: 379: 378: 377: 376: 370: 364: 363: 362: 350: 344: 338: 332: 326: 308: 303: 302: 299: 298: 295: 294: 293: 292: 280: 279: 278: 272: 260: 259: 258: 240: 239: 238: 237: 225: 221: 217: 212: 208: 205: 191: 179: 158: 152: 146: 140: 126: 125: 119: 113: 99: 98: 92: 86: 80: 79: 78: 72: 60: 54: 42: 40:Basic concepts 39: 38: 35: 34: 15: 9: 6: 4: 3: 2: 3586: 3575: 3572: 3571: 3569: 3559: 3555: 3551: 3547: 3544: 3542:0-88385-015-X 3538: 3534: 3530: 3526: 3522: 3521: 3512: 3508: 3504: 3500: 3497: 3493: 3488: 3483: 3479: 3475: 3474: 3469: 3465: 3462: 3460:0-534-19002-2 3456: 3452: 3448: 3444: 3440: 3439: 3427: 3420: 3413: 3408: 3401: 3396: 3394: 3386: 3381: 3375:, p. 183 3374: 3369: 3363:, p. 182 3362: 3357: 3348: 3342: 3341:Jacobson 1945 3337: 3328: 3321: 3315: 3306: 3298: 3292: 3288: 3283: 3282: 3273: 3266: 3262: 3258: 3253: 3245: 3241: 3237: 3231: 3227: 3223: 3216: 3207: 3199: 3198: 3192: 3188: 3182: 3178: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3145: 3139: 3137: 3133: 3129: 3124: 3122: 3118: 3114: 3110: 3105: 3103: 3099: 3095: 3092: 3088: 3083: 3081: 3077: 3073: 3069: 3065: 3062: 3058: 3054: 3053:Alfred Goldie 3050: 3046: 3042: 3036: 3026: 3024: 3018: 3014: 3008: 3004: 2998: 2994: 2989: 2986: 2982: 2979: 2975: 2971: 2967: 2963: 2959: 2953: 2952:Ore condition 2943: 2941: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2904:abelian group 2901: 2898: 2892: 2882: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2819: 2817: 2813: 2807: 2797: 2795: 2791: 2787: 2783: 2779: 2775: 2770: 2768: 2767:Ore condition 2764: 2760: 2755: 2753: 2749: 2745: 2741: 2737: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2709: 2704: 2700: 2696: 2692: 2688: 2684: 2681:and a subset 2680: 2676: 2670: 2660: 2658: 2654: 2651: 2650:unitary rings 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2612: 2611: 2610: 2607: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2488: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2416: 2394: 2390: 2386: 2382: 2376: 2372: 2352:a finite and 2350: 2346: 2339: 2332: 2319: 2316: 2315: 2314: 2311: 2309: 2306: 2302: 2298: 2294: 2290: 2285: 2279: 2275: 2269: 2259: 2257: 2253: 2249: 2244: 2242: 2238: 2235:, where both 2234: 2231: 2230:division ring 2227: 2224: 2220: 2216: 2215:Artinian ring 2212: 2208: 2204: 2197: 2191: 2187: 2184: 2177: 2170: 2166: 2162: 2158: 2154: 2148: 2138: 2136: 2132: 2127: 2125: 2121: 2117: 2113: 2110: 2104: 2089: 2087: 2082: 2080: 2077: 2076:opposite ring 2073: 2069: 2065: 2064:maximal ideal 2060: 2058: 2054: 2050: 2046: 2042: 2041:division ring 2038: 2034: 2030: 2025: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1969: 1959: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1923: 1913: 1909: 1907: 1903: 1899: 1893: 1883: 1881: 1880:finite fields 1877: 1873: 1869: 1864: 1862: 1856: 1853: 1850: 1846: 1843: 1840: 1835: 1831: 1827: 1823: 1819: 1815: 1809: 1808:Division ring 1794: 1792: 1781: 1779: 1778:J. Wedderburn 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1738: 1725: 1721: 1717: 1711: 1706: 1701: 1695: 1690: 1671: 1667: 1661: 1657: 1653: 1648: 1644: 1638: 1634: 1626: 1617: 1613: 1609: 1606: 1603: 1598: 1594: 1582: 1578: 1574: 1571: 1568: 1563: 1559: 1542: 1541:Superalgebras 1539: 1524: 1502: 1498: 1494: 1491: 1488: 1483: 1479: 1450: 1446: 1442: 1437: 1433: 1426: 1423: 1418: 1414: 1408: 1404: 1400: 1395: 1391: 1385: 1381: 1373: 1364: 1360: 1356: 1353: 1350: 1345: 1341: 1304: 1301: 1298: 1295: 1292: 1281:of dimension 1268: 1238: 1234: 1215: 1210: 1207: 1203: 1194: 1193:quantum plane 1173: 1169: 1163: 1159: 1153: 1150: 1146: 1142: 1137: 1133: 1127: 1123: 1115: 1106: 1102: 1098: 1095: 1092: 1087: 1083: 1066: 1064: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1020: 1013: 1010: 1007: 996: 980: 976: 942: 938: 930: 926: 910: 906: 900: 896: 892: 889: 884: 880: 874: 870: 866: 861: 857: 851: 847: 843: 818: 814: 810: 807: 804: 799: 795: 779: 775: 774: 773: 768: 764: 760: 758: 754: 750: 745: 741: 737: 733: 729: 728: 727: 719: 716: 714: 710: 705: 701: 696: 694: 690: 686: 684: 680: 676: 672: 668: 664: 660: 656: 652: 648: 636: 631: 629: 624: 622: 617: 616: 614: 613: 608: 607: 601: 597: 596: 595: 594: 593: 588: 587: 586: 581: 580: 579: 572: 568: 566: 562: 560: 556: 554: 553:Division ring 550: 549: 548: 547: 541: 536: 535: 507: 491: 489: 483: 467: 453: 452:-adic numbers 451: 446: 430: 416: 414: 409: 407: 403: 401: 394: 392: 388: 387: 386: 385: 384: 375: 371: 369: 365: 361: 357: 356: 355: 351: 349: 345: 343: 339: 337: 333: 331: 327: 325: 321: 320: 319: 315: 314: 313: 312: 306: 301: 300: 291: 287: 286: 285: 281: 277: 273: 271: 267: 266: 265: 261: 257: 253: 252: 251: 247: 246: 245: 244: 219: 215: 206: 203: 196: 195:Terminal ring 192: 169: 165: 164: 163: 159: 157: 153: 151: 147: 145: 141: 139: 135: 134: 133: 132: 131: 124: 120: 118: 114: 112: 108: 107: 106: 105: 104: 97: 93: 91: 87: 85: 81: 77: 73: 71: 67: 66: 65: 64:Quotient ring 61: 59: 55: 53: 49: 48: 47: 46: 37: 36: 33: 28:→ Ring theory 27: 23: 22: 19: 3553: 3528: 3506: 3477: 3471: 3468:Jacobson, N. 3446: 3425: 3419: 3407: 3380: 3368: 3356: 3347: 3336: 3327: 3314: 3305: 3280: 3272: 3252: 3221: 3215: 3206: 3194: 3181: 3125: 3112: 3106: 3084: 3079: 3076:annihilators 3063: 3056: 3051:, proved by 3044: 3038: 3022: 3016: 3012: 3006: 3002: 2996: 2992: 2990:is that for 2987: 2980: 2973: 2955: 2915: 2899: 2894: 2891:Brauer group 2885:Brauer group 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2846: 2842: 2838: 2834: 2830: 2826: 2822: 2820: 2816:Kiiti Morita 2809: 2789: 2777: 2773: 2771: 2762: 2756: 2751: 2739: 2735: 2732: 2728: 2724: 2716: 2712: 2706: 2705:consists of 2702: 2698: 2694: 2686: 2682: 2678: 2672: 2656: 2652: 2647: 2641: 2637: 2633: 2629: 2625: 2617: 2613: 2608: 2603: 2599: 2595: 2591: 2587: 2579: 2575: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2507: 2503: 2499: 2491: 2489: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2420: 2418: 2392: 2388: 2384: 2380: 2374: 2370: 2348: 2344: 2334: 2330: 2317: 2312: 2286: 2280:over a ring 2273: 2271: 2245: 2240: 2236: 2232: 2222: 2218: 2206: 2199: 2192: 2186:matrix rings 2179: 2172: 2164: 2150: 2128: 2126:and fields. 2120:finite rings 2106: 2086:Weyl algebra 2083: 2078: 2071: 2061: 2049:real numbers 2045:vector space 2026: 2021: 2020:an ideal of 2017: 2013: 2009: 2005: 2001: 1980:besides the 1971: 1962:Simple rings 1934:, but where 1925: 1910: 1895: 1865: 1854: 1851: 1848: 1844: 1841: 1838: 1833: 1825: 1811: 1787: 1780:and others. 1734: 1709: 1705:finite field 1699: 1693: 929:Weyl algebra 771: 748: 744:real numbers 739: 735: 725: 717: 712: 708: 703: 699: 697: 688: 687: 678: 674: 670: 666: 662: 650: 644: 604: 590: 589: 585:Free algebra 583: 582: 576: 575: 545: 544: 487: 449: 412: 381: 380: 360:Finite field 309: 256:Finite field 242: 241: 168:Initial ring 128: 127: 101: 100: 43: 18: 3574:Ring theory 3507:Local Rings 3480:: 228–245, 3451:Brooks/Cole 3412:Nagata 1962 3400:Isaacs 1993 3385:Isaacs 1993 3373:Isaacs 1993 3361:Isaacs 1993 3136:matrix ring 3057:Goldie ring 3049:ring theory 3041:mathematics 2958:Øystein Ore 2910:classes of 2757:Localizing 2250:. This is 2248:matrix ring 2226:matrix ring 2081:is simple. 2057:quaternions 2037:matrix ring 1994:matrix ring 1968:Simple ring 1872:commutative 1762:N. Jacobson 1191:, called a 757:quaternions 755:Hamilton's 732:matrix ring 693:ring theory 659:commutative 647:mathematics 565:Simple ring 276:Jordan ring 150:Graded ring 32:Ring theory 3550:Lam, T. Y. 3503:Nagata, M. 3436:References 3244:1213.51001 3117:Ore domain 3091:semisimple 2835:equivalent 2821:Two rings 2572:Noetherian 2378:such that 2256:Emil Artin 1982:zero ideal 1902:direct sum 1770:E. Noether 1750:P. M. Cohn 1720:isomorphic 1063:commutator 763:group ring 571:Commutator 330:GCD domain 3087:semiprime 3074:on right 2423:) be the 2328:-module, 2055:, or the 2047:over the 1816:in which 1766:K. Morita 1668:θ 1658:θ 1645:θ 1635:θ 1623:⟩ 1614:θ 1607:… 1595:θ 1591:⟨ 1572:… 1492:… 1424:− 1370:⟩ 1354:… 1338:⟨ 1308:→ 1302:⊗ 1216:∈ 1143:− 1112:⟩ 1096:… 1080:⟨ 1043:− 1034:− 1017:⟩ 1005:⟨ 997:≅ 890:≠ 824:⟩ 808:… 792:⟨ 778:free ring 512:∞ 290:Semifield 3568:Category 3552:(2001), 3527:(1968), 3505:(1962), 3445:(1993), 3142:See also 3094:Artinian 2879:additive 2463:, where 2396:for all 2033:Artinian 1940:artinian 1818:division 1742:E. Artin 1724:opposite 1195:, where 746:, where 722:Examples 284:Semiring 270:Lie ring 52:Subrings 3496:1990204 3426:Algebra 3189:(ed.). 2586:, then 2502:, then 2228:over a 2169:product 2039:over a 2016:) with 1996:over a 1990:modules 1822:nonzero 1731:History 767:abelian 486:Prüfer 88:•  3539:  3494:  3457:  3293:  3242:  3232:  3096:right 2976:for a 2972:. The 2936:scheme 2902:is an 2831:Morita 2790:micro- 2689:* and 2628:. If 2616:: Let 2562:, for 2514:. So 2512:simple 2439:, and 2419:Let J( 2342:, and 2333:= End( 2305:simple 2211:simple 2112:domain 2109:finite 1906:simple 1898:module 1868:fields 1828:has a 1774:Ø. Ore 1712:> 1 1707:, for 751:> 1 138:Module 111:Kernel 3492:JSTOR 3414:, §A2 3174:Notes 3132:prime 3059:is a 2983:of a 2897:field 2875:S-Mod 2871:R-Mod 2867:Mod-S 2863:Mod-R 2859:S-Mod 2855:R-Mod 2851:S-Mod 2843:R-Mod 2812:rings 2708:units 2693:from 2620:be a 2570:is a 2558:over 2494:is a 2431:. If 2360:is a 2188:over 2116:field 2114:is a 2068:field 2035:is a 1998:field 1978:ideal 1836:with 653:is a 490:-ring 354:Field 250:Field 58:Ideal 45:Rings 3537:ISBN 3455:ISBN 3291:ISBN 3230:ISBN 3195:The 3061:ring 3000:and 2985:ring 2865:and 2857:and 2825:and 2675:ring 2387:) = 2320:Let 2272:The 2239:and 2221:-by- 2178:-by- 2159:and 2155:for 2129:The 1974:ring 1814:ring 1697:-by- 1235:Any 927:The 776:The 761:Any 738:-by- 730:The 709:ring 704:ring 673:and 665:and 655:ring 649:, a 3482:doi 3287:156 3240:Zbl 3113:all 3039:In 3019:≠ ∅ 2873:to 2754:). 2727:by 2697:to 2636:·J( 2582:is 2546:·J( 2518:·J( 2510:is 2498:of 2490:If 2471:on 2427:of 2400:in 1950:of 1904:of 1857:= 1 1517:of 734:of 645:In 3570:: 3556:, 3535:, 3531:, 3509:, 3490:, 3478:57 3476:, 3453:, 3392:^ 3289:. 3238:. 3193:. 3123:. 3104:. 3082:. 3043:, 3017:sR 3015:∩ 3013:aS 3005:∈ 2995:∈ 2942:. 2881:. 2849:, 2841:, 2833:) 2769:. 2659:. 2487:. 2391:· 2373:∈ 2347:⊂ 2310:. 2284:. 2088:. 2059:. 1958:. 1896:A 1847:= 1776:, 1772:, 1768:, 1764:, 1760:, 1756:, 1752:, 1748:, 1744:, 715:. 685:. 675:ba 671:ab 598:• 569:• 563:• 557:• 551:• 484:• 447:• 410:• 404:• 395:• 389:• 372:• 366:• 358:• 352:• 346:• 340:• 334:• 328:• 322:• 316:• 288:• 282:• 274:• 268:• 262:• 254:• 248:• 193:• 166:• 160:• 154:• 148:• 142:• 136:• 121:• 115:• 109:• 94:• 82:• 74:• 68:• 62:• 56:• 50:• 3484:: 3322:. 3299:. 3246:. 3080:R 3064:R 3007:S 3003:s 2997:R 2993:a 2988:R 2981:S 2916:K 2900:K 2847:S 2839:R 2827:S 2823:R 2778:D 2774:D 2763:S 2752:R 2740:S 2736:R 2733:S 2729:S 2725:R 2717:R 2713:R 2703:S 2699:R 2695:R 2687:R 2683:S 2679:R 2653:R 2644:. 2642:U 2638:R 2634:U 2630:U 2626:R 2618:U 2604:R 2600:R 2596:U 2592:R 2588:U 2580:U 2576:R 2568:U 2564:U 2560:R 2556:U 2552:U 2548:R 2544:U 2540:U 2536:V 2534:/ 2532:U 2528:R 2524:V 2520:R 2516:U 2508:V 2506:/ 2504:U 2500:U 2492:V 2485:U 2481:I 2479:· 2477:U 2473:U 2469:R 2465:· 2461:i 2459:· 2457:u 2453:I 2451:· 2449:U 2445:R 2441:I 2437:R 2433:U 2429:R 2421:R 2404:. 2402:X 2398:x 2393:r 2389:x 2385:x 2383:( 2381:A 2375:R 2371:r 2366:U 2362:D 2358:A 2354:D 2349:U 2345:X 2340:) 2337:R 2335:U 2331:D 2326:R 2322:U 2282:R 2241:D 2237:n 2233:D 2223:n 2219:n 2207:i 2202:i 2200:n 2195:i 2193:D 2182:i 2180:n 2175:i 2173:n 2165:R 2079:R 2072:R 2022:R 2018:I 2014:I 2012:, 2010:n 2006:R 2004:, 2002:n 1855:a 1852:· 1849:x 1845:x 1842:· 1839:a 1834:x 1826:a 1726:. 1710:n 1700:n 1694:n 1677:) 1672:i 1662:j 1654:+ 1649:j 1639:i 1631:( 1627:/ 1618:m 1610:, 1604:, 1599:1 1588:] 1583:n 1579:x 1575:, 1569:, 1564:1 1560:x 1556:[ 1552:C 1537:, 1525:V 1503:n 1499:e 1495:, 1489:, 1484:1 1480:e 1459:) 1456:) 1451:j 1447:e 1443:, 1438:i 1434:e 1430:( 1427:q 1419:i 1415:e 1409:j 1405:e 1401:+ 1396:j 1392:e 1386:i 1382:e 1378:( 1374:/ 1365:n 1361:e 1357:, 1351:, 1346:1 1342:e 1334:F 1312:F 1305:V 1299:V 1296:: 1293:q 1283:n 1269:V 1248:F 1220:C 1211:j 1208:i 1204:q 1179:) 1174:i 1170:x 1164:j 1160:x 1154:j 1151:i 1147:q 1138:j 1134:x 1128:i 1124:x 1120:( 1116:/ 1107:n 1103:x 1099:, 1093:, 1088:1 1084:x 1076:C 1049:) 1046:1 1040:x 1037:y 1031:y 1028:x 1025:( 1021:/ 1014:y 1011:, 1008:x 1001:C 994:) 990:C 986:( 981:1 977:A 956:) 952:C 948:( 943:n 939:A 911:2 907:x 901:1 897:x 893:3 885:1 881:x 875:2 871:x 867:+ 862:2 858:x 852:1 848:x 844:2 819:n 815:x 811:, 805:, 800:1 796:x 788:Z 749:n 740:n 736:n 667:b 663:a 634:e 627:t 620:v 517:) 508:p 504:( 500:Z 488:p 468:p 463:Q 450:p 431:p 426:Z 413:p 399:n 224:Z 220:1 216:/ 211:Z 207:= 204:0 178:Z

Index

Algebraic structure
Ring theory
Rings
Subrings
Ideal
Quotient ring
Fractional ideal
Total ring of fractions
Product of rings
Free product of associative algebras
Tensor product of algebras
Ring homomorphisms
Kernel
Inner automorphism
Frobenius endomorphism
Algebraic structures
Module
Associative algebra
Graded ring
Involutive ring
Category of rings
Initial ring
Terminal ring
Field
Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.