Knowledge

Nucleation

Source 📝

2002: 2044: 1731: 1751:(random) process, so even in two identical systems nucleation will occur at different times. A common mechanism is illustrated in the animation to the right. This shows nucleation of a new phase (shown in red) in an existing phase (white). In the existing phase microscopic fluctuations of the red phase appear and decay continuously, until an unusually large fluctuation of the new red phase is so large it is more favourable for it to grow than to shrink back to nothing. This nucleus of the red phase then grows and converts the system to this phase. The standard theory that describes this behaviour for the nucleation of a new thermodynamic phase is called 31: 1601: 1960: 2085: 1811: 1732: 1733: 1981:
the transition to a new phase that does not rely on the new phase already being present, either because it is the very first nucleus of that phase to form, or because the nucleus forms far from any pre-existing piece of the new phase. Particularly in the study of crystallisation, secondary nucleation can be important. This is the formation of nuclei of a new crystal directly caused by pre-existing crystals.
1851:ΔG*. This barrier comes from the free energy penalty of forming the surface of the growing nucleus. For homogeneous nucleation the nucleus is approximated by a sphere, but as we can see in the schematic of macroscopic droplets to the right, droplets on surfaces are not complete spheres and so the area of the interface between the droplet and the surrounding fluid is less than a sphere's 1735: 2024:
this is assumed to be because, by chance, these droplets do not have even one impurity particle and so there is no heterogeneous nucleation. Homogeneous nucleation is assumed to be negligible on the timescale of this experiment. The remaining droplets freeze in a stochastic way, at rates 0.02/s if they have one impurity particle, 0.04/s if they have two, and so on.
1927:, where phase separation is delayed until the system enters the unstable region where a small perturbation in composition leads to a decrease in energy and, thus, spontaneous growth of the perturbation. This region of a phase diagram is known as the spinodal region and the phase separation process is known as spinodal decomposition and may be governed by the 2197:
Many of the materials we make and use are crystalline, but are made from liquids, e.g. crystalline iron made from liquid iron cast into a mold, so the nucleation of crystalline materials is widely studied in industry. It is used heavily in the chemical industry for cases such as in the preparation of
1902:
makes a number of assumptions, for example it treats a microscopic nucleus as if it is a macroscopic droplet with a well-defined surface whose free energy is estimated using an equilibrium property: the interfacial tension σ. For a nucleus that may be only of order ten molecules across it is not
2023:
among the liquid tin droplets. The fit values are that the nucleation rate due to a single impurity particle is 0.02/s, and the average number of impurity particles per droplet is 1.2. Note that about 30% of the tin droplets never freeze; the data plateau at a fraction of about 0.3. Within the model
2018:
to the data. This is a simplified version of the model Pound and La Mer used to model their data. The model assumes that nucleation occurs due to impurity particles in the liquid tin droplets, and it makes the simplifying assumption that all impurity particles produce nucleation at the same rate. It
1980:
The time until the appearance of the first crystal is also called primary nucleation time, to distinguish it from secondary nucleation times. Primary here refers to the first nucleus to form, while secondary nuclei are crystal nuclei produced from a preexisting crystal. Primary nucleation describes
1951:
In small volumes, such as in small droplets, only one nucleation event may be needed for crystallisation. In these small volumes, the time until the first crystal appears is usually defined to be the nucleation time. Calcium carbonate crystal nucleation depends not only on degree of supersaturation
1910:
However, modern computers are powerful enough to calculate essentially exact nucleation rates for simple models. These have been compared with the classical theory, for example for the case of nucleation of the crystal phase in the model of hard spheres. This is a model of perfectly hard spheres in
1984:
For example, if the crystals are in a solution and the system is subject to shearing forces, small crystal nuclei could be sheared off a growing crystal, thus increasing the number of crystals in the system. So both primary and secondary nucleation increase the number of crystals in the system but
1828:
Heterogeneous nucleation, nucleation with the nucleus at a surface, is much more common than homogeneous nucleation. For example, in the nucleation of ice from supercooled water droplets, purifying the water to remove all or almost all impurities results in water droplets that freeze below around
2005:
The black triangles are the fraction of a large set of small supercooled liquid tin droplets that are still liquid, i.e., where the crystal state has not nucleated, as a function of time. The data are from Pound and La Mer (1952). The red curve is a fit of a function of the Gompertz form to these
2062:
An example of experimental data on the freezing of small water droplets is shown at the right. The plot shows the fraction of a large set of water droplets, that are still liquid water, i.e., have not yet frozen, as a function of temperature. Note that the highest temperature at which any of the
1993:
It is typically difficult to experimentally study the nucleation of crystals. The nucleus is microscopic, and thus too small to be directly observed. In large liquid volumes there are typically multiple nucleation events, and it is difficult to disentangle the effects of nucleation from those of
1971:
Although the existing theories including the classical nucleation theory explain well the steady nucleation state when the crystal nucleation rate is not time dependent, the initial non-steady state transient nucleation, and even more mysterious incubation period, require more attention of the
2214:
In addition to the nucleation and growth of crystals e.g. in non-crystalline glasses, the nucleation and growth of impurity precipitates in crystals at, and between, grain boundaries is quite important industrially. For example in metals solid-state nucleation and precipitate growth plays an
1915:. For the crystallization of hard spheres the classical theory is a very reasonable approximate theory. So for the simple models we can study, classical nucleation theory works quite well, but we do not know if it works equally well for (say) complex molecules crystallising out of solution. 1939:
In many cases, liquids and solutions can be cooled down or concentrated up to conditions where the liquid or solution is significantly less thermodynamically stable than the crystal, but where no crystals will form for minutes, hours, weeks or longer; this process is called
1717:
in the system. These impurities may be too small to be seen by the naked eye, but still can control the rate of nucleation. Because of this, it is often important to distinguish between heterogeneous nucleation and homogeneous nucleation. Heterogeneous nucleation occurs at
2138:
with respect to the pressure-dependent boiling point. More often, nucleation occurs on the heating surface, at nucleation sites. Typically, nucleation sites are tiny crevices where free gas-liquid surface is maintained or spots on the heating surface with lower
1734: 2010:
To the right is shown an example set of nucleation data. It is for the nucleation at constant temperature and hence supersaturation of the crystal phase in small droplets of supercooled liquid tin; this is the work of Pound and La Mer.
1778:
is a widely used approximate theory for estimating these rates, and how they vary with variables such as temperature. It correctly predicts that the time you have to wait for nucleation decreases extremely rapidly when
1944:. Nucleation of the crystal is then being prevented by a substantial barrier. This has consequences, for example cold high altitude clouds may contain large numbers of small liquid water droplets that are far below 0 1952:
but also the ratio of calcium to carbonate ions in aqueous solutions. In larger volumes many nucleation events will occur. A simple model for crystallisation in that case, that combines nucleation and growth is the
1823:
and hence results in faster nucleation on surfaces with smaller contact angles. Also, if instead of the surface being flat it curves towards fluid, then this also reduces the interfacial area and so the nucleation
1818:
the nucleus surface makes with the solid horizontal surface decreases from left to right. The surface area of the nucleus decreases as the contact angle decreases. This geometrical effect reduces the barrier in
2714:
Seepma; Ruiz Hernandez; Nehrke; Soetaert; Philipse; Kuipers; Wolthers (January 28, 2021), ""Controlling CaCO3 particle size with {Ca2+}:{CO32-} ratios in aqueous environments" Crystal Growth & Design",
2027:
These data are just one example, but they illustrate common features of the nucleation of crystals in that there is clear evidence for heterogeneous nucleation, and that nucleation is clearly stochastic.
2014:
Nucleation occurs in different droplets at different times, hence the fraction is not a simple step function that drops sharply from one to zero at one particular time. The red curve is a fit of a
1320: 2190:°C is required to nucleate ice and for the water to freeze. For example, small droplets of very pure water can remain liquid down to below -30 °C although ice is the stable state below 0 1972:
scientific community. Chemical ordering of the undercooling liquid prior to crystal nucleation was suggested to be responsible for that feature by reducing the energy barrier for nucleation.
2104:. The excess vapor begins to nucleate and to form small water droplets which form a cloud. Nucleation of the droplets of liquid water is heterogeneous, occurring on particles referred to as 2215:
important role e.g. in modifying mechanical properties like ductility, while in semiconductors it plays an important role e.g. in trapping impurities during integrated circuit manufacture.
2143:
properties. Substantial superheating of a liquid can be achieved after the liquid is de-gassed and if the heating surfaces are clean, smooth and made of materials well wetted by the liquid.
1671:. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of 2205:
catalyses the decomposition of water. It is an important factor in the semiconductor industry, as the band gap energy in semiconductors is influenced by the size of nanoclusters.
2036:
The freezing of small water droplets to ice is an important process, particularly in the formation and dynamics of clouds. Water (at atmospheric pressure) does not freeze at 0
1155: 1100: 1045: 1882: 852: 805: 720: 673: 585: 538: 756: 624: 3001:
Palmans, Roger; Frank, Arthur J. (1991). "A molecular water-reduction catalyst: Surface derivatization of titania colloids and suspensions with a platinum complex".
990: 2040:°C, but rather at temperatures that tend to decrease as the volume of the water decreases and as the concentration of dissolved chemicals in the water increases. 489: 1755:. However, the CNT fails in describing experimental results of vapour to liquid nucleation even for model substances like argon by several orders of magnitude. 828: 781: 696: 649: 561: 514: 1710:, and it is the start of the process of forming a new thermodynamic phase. In contrast, new phases at continuous phase transitions start to form immediately. 2150:
operate by providing many nucleation sites via high surface-area and sharp corners, speeding the release of bubbles and removing carbonation from the wine.
1786:
It is not just new phases such as liquids and crystals that form via nucleation followed by growth. The self-assembly process that forms objects like the
2001: 3028:
Rajh, Tijana; Micic, Olga I.; Nozik, Arthur J. (1993). "Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots".
1630: 1840:
This observation that heterogeneous nucleation can occur when the rate of homogeneous nucleation is essentially zero, is often understood using
2157:
offers another example. The surface of Mentos candy provides nucleation sites for the formation of carbon-dioxide bubbles from carbonated soda.
1331: 1699:). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice 1219: 2808:
Wang, Zhi; Chen, Chunlin; Ketov, Sergey V.; Akagi, Kazuto; Tsarkov, Andrey A.; Ikuhara, Yuichi; Louzguine-Luzgin, Dmitri V. (October 2018).
2043: 1884:. This reduction in surface area of the nucleus reduces the height of the barrier to nucleation and so speeds nucleation up exponentially. 2409:
A. Fladerer, R. Strey: "Homogeneous nucleation and droplet growth in supersaturated argon vapor: The cryogenic nucleation pulse chamber".
453: 2762: 1309: 2810:"Local chemical ordering within the incubation period as a trigger for nanocrystallization of a highly supercooled Ti-based liquid" 2653:
Mendez-Villuendas, Eduardo; Saika-Voivod, Ivan; Bowles, Richard K. (2007). "A limit of stability in supercooled liquid clusters".
1342: 2375:
Kreer, Markus (1993). "Classical Becker-Döring cluster equations: Rigorous results on metastability and long-time behaviour".
2903: 912: 1623: 1210: 879: 446: 324: 262: 2475:
Gillam, J.E.; MacPhee, C.E. (2013). "Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth".
1762:°C, if the system is not evolving with time and nucleation occurs in one step, then the probability that nucleation has 1394: 1368: 889: 343: 1903:
always clear that we can treat something so small as a volume plus a surface. Also nucleation is an inherently out of
2985: 295: 2100:) and many small water droplets nucleate from the supersaturated air. The amount of water vapour that air can carry 1848: 1447: 918: 317: 1616: 2526:
Mendez-Villuendas, Eduardo; Bowles, Richard (2007). "Surface Nucleation in the Freezing of Gold Nanoparticles".
1994:
growth of the nucleated phase. These problems can be overcome by working with small droplets. As nucleation is
1547: 79: 2047:
Survival curve for water droplets 34.5 μm in diameter. Blue circles are data, and the red curve is a fit of a
1967:
in water, nucleation will occur, allowing sugar molecules to stick together and form large crystal structures.
1442: 2154: 1988: 1522: 1295: 272: 2922:
Pound, Guy M.; V. K. La Mer (1952). "Kinetics of Crystalline Nucleus Formation in Supercooled Liquid Tin".
907: 110: 100: 1899: 1841: 1820: 1775: 1752: 115: 105: 1985:
their mechanisms are very different, and secondary nucleation relies on crystals already being present.
3112: 1928: 1399: 1363: 141: 75: 2341:"Quantitative Studies of Crystal Nucleation at Constant Supersaturation: Experimental Data and Models" 1437: 2198:
metallic ultradispersed powders that can serve as catalysts. For example, platinum deposited onto TiO
2105: 1904: 1192: 940: 386: 199: 189: 2951:"Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets" 2301: 1907:
phenomenon so it is not always obvious that its rate can be estimated using equilibrium properties.
2840: 2839:
Fokin, Vladimir M.; Zanotto, Edgar D.; Yuritsyn, Nikolay S.; Schmelzer, Jürn W.P. (August 2006).
2809: 1604: 1432: 1229: 1110: 1055: 1000: 932: 871: 407: 396: 62: 1854: 834: 787: 702: 655: 567: 520: 2436:"Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets" 2296: 1924: 1799: 1791: 1537: 1254: 338: 92: 67: 2887: 1457: 738: 603: 1472: 1049: 362: 208: 57: 960: 2852: 2774: 2672: 2603: 2545: 2484: 2447: 2384: 2288: 2112:
is the process of adding artificial condensation nuclei to quicken the formation of clouds.
2020: 1887:
Nucleation can also start at the surface of a liquid. For example, computer simulations of
1676: 1552: 1477: 1467: 267: 129: 1998:, many droplets are needed so that statistics for the nucleation events can be obtained. 1989:
Experimental observations on the nucleation times for the crystallisation of small volumes
1758:
For nucleation of a new thermodynamic phase, such as the formation of ice in water below 0
1743:. Up spins (particles in lattice-gas terminology) shown in red, down spins shown in white. 8: 2588: 2496: 2048: 1497: 1259: 281: 247: 242: 155: 2856: 2778: 2676: 2607: 2549: 2488: 2451: 2388: 2310: 2292: 1492: 471: 3107: 2739: 2696: 2662: 2635: 2569: 2535: 2508: 2314: 1586: 1249: 1244: 1197: 813: 766: 681: 634: 546: 499: 429: 413: 300: 252: 237: 227: 36: 30: 3084: 3076: 2981: 2974: 2899: 2880: 2864: 2790: 2744: 2688: 2627: 2561: 2500: 2273: 2147: 2101: 2015: 1888: 1845: 1767: 1664: 1656: 1581: 1542: 1532: 1104: 902: 730: 232: 222: 164: 2639: 2274:"Nucleation: theory and applications to protein solutions and colloidal suspensions" 3117: 3068: 3037: 3010: 2931: 2891: 2860: 2821: 2782: 2734: 2724: 2700: 2680: 2619: 2611: 2573: 2553: 2512: 2492: 2455: 2414: 2392: 2352: 2318: 2306: 1774:
small water droplets. The decay rate of the exponential gives the nucleation rate.
1707: 1502: 1487: 1427: 1422: 1239: 1234: 884: 352: 217: 2557: 1805: 1794:
also starts with nucleation. Energy consuming self-organising systems such as the
2950: 2825: 2179: 1964: 1953: 1780: 1452: 1300: 954: 595: 418: 179: 146: 2895: 2589:"Numerical prediction of absolute crystallization rates in hard-sphere colloids" 2161: 2116: 2055:
Thus small droplets of water, as found in clouds, may remain liquid far below 0
1652: 1644: 1507: 1277: 377: 257: 194: 184: 52: 22: 1722:
on surfaces in the system. Homogeneous nucleation occurs away from a surface.
16:
Initial step in the phase transition or molecular self-assembly of a substance
3101: 3080: 3056: 2794: 2396: 2165: 2109: 1844:. This predicts that the nucleation slows exponentially with the height of a 1815: 1660: 1576: 894: 463: 424: 136: 2878:
Botsaris, GD (1976). "Secondary Nucleation — A Review". In Mullin, J (ed.).
2841:"Homogeneous crystal nucleation in silicate glasses: A 40 years perspective" 2729: 2460: 2435: 1891:
show that the crystal phase sometimes nucleates at the liquid-gold surface.
3088: 2748: 2692: 2631: 2565: 2504: 2202: 2182:
process on Earth is the formation of ice. Liquid water does not freeze at 0
2135: 1941: 1795: 1696: 1527: 1512: 1462: 945: 2540: 2120: 1771: 1740: 1482: 290: 3041: 3014: 2935: 2357: 2340: 2097: 1995: 1814:
Three nuclei on a surface, illustrating decreasing contact angles. The
1748: 1517: 3072: 2684: 2623: 2615: 2418: 2976:
Nucleation in Condensed Matter: Applications in Materials and Biology
2786: 2186:°C unless there is ice already present; cooling significantly below 0 1959: 169: 2119:
nucleate shortly after the pressure is released from a container of
2084: 2652: 1912: 1714: 1684: 1285: 1202: 994: 402: 174: 3057:"Mechanisms of Nucleation and Growth of Nanoparticles in Solution" 2713: 2667: 1810: 2140: 2127: 1787: 1700: 1668: 391: 2131: 2093: 1894: 1806:
Heterogeneous nucleation often dominates homogeneous nucleation
3055:
Thanh, Nguyen T. K.; Maclean, N.; Mahiddine, S. (2014-08-13).
2838: 1923:
Phase-transition processes can also be explained in terms of
1706:
Nucleation is a common mechanism which generates first-order
1672: 2761:
Kelton, K. F.; Greer, A. L.; Thompson, C. V. (1983-12-15).
2079: 1833:°C, whereas water that contains impurities may freeze at −5 367: 2168:
rely on nucleation, of bubbles and droplets, respectively.
2067:°C, while the last droplet to freeze does so at almost -35 1688: 1691:, but volumes of water cooled only a few degrees below 0 2525: 1770:. This is seen for example in the nucleation of ice in 1695:°C often stay completely free of ice for long periods ( 2134:
if the pressure is reduced so that the liquid becomes
3054: 1857: 1113: 1058: 1003: 963: 837: 816: 790: 769: 741: 705: 684: 658: 637: 606: 570: 549: 523: 502: 474: 2370: 2368: 2088:
Nucleation of carbon dioxide bubbles around a finger
2760: 1975: 1651:is the first step in the formation of either a new 2973: 2879: 2807: 2247: 1876: 1149: 1094: 1039: 984: 846: 822: 799: 775: 750: 714: 690: 667: 643: 618: 579: 555: 532: 508: 483: 2921: 2365: 2245: 2243: 2241: 2239: 2237: 2235: 2233: 2231: 2229: 2227: 3099: 2980:. Amsterdam: Elsevier Science & Technology. 2334: 2332: 2330: 2328: 3027: 2586: 2224: 1911:thermal motion, and is a simple model of some 2474: 2267: 2265: 2263: 2261: 1934: 1624: 3000: 2948: 2871: 2325: 1895:Computer simulation studies of simple models 2971: 2763:"Transient nucleation in condensed systems" 2433: 2965: 2917: 2915: 2258: 1739:Nucleation at a surface (black) in the 2D 1631: 1617: 29: 2972:Kelton, Ken; Greer, Alan Lindsay (2010). 2949:Dorsch, Robert G; Hacker, Paul T (1950). 2738: 2728: 2666: 2539: 2459: 2356: 2300: 2172: 2942: 2924:Journal of the American Chemical Society 2877: 2253:Microphysics of Clouds and Precipitation 2083: 2080:Nucleation of fluids (gases and liquids) 2042: 2000: 1958: 1809: 1729: 2912: 2209: 3100: 2019:also assumes that these particles are 1918: 1713:Nucleation is often very sensitive to 2580: 2374: 2477:Journal of Physics: Condensed Matter 2429: 2427: 2338: 2281:Journal of Physics: Condensed Matter 2271: 13: 2251:H. R. Pruppacher and J. D. Klett, 1725: 838: 791: 706: 659: 571: 524: 344:Intensive and extensive properties 14: 3129: 3030:The Journal of Physical Chemistry 3003:The Journal of Physical Chemistry 2845:Journal of Non-Crystalline Solids 2440:Atmospheric Chemistry and Physics 2424: 2102:decreases with lower temperatures 1703:appear after little or no delay. 2865:10.1016/j.jnoncrysol.2006.02.074 2063:droplets freezes is close to -19 1976:Primary and secondary nucleation 1600: 1599: 919:Table of thermodynamic equations 3048: 3021: 2994: 2832: 2801: 2767:The Journal of Chemical Physics 2754: 2707: 2655:The Journal of Chemical Physics 2646: 2596:The Journal of Chemical Physics 2411:The Journal of Chemical Physics 2096:form when wet air cools (often 1395:Maxwell's thermodynamic surface 2519: 2497:10.1088/0953-8984/25/37/373101 2468: 2403: 1129: 1117: 1074: 1062: 1019: 1007: 979: 967: 1: 2587:Auer, S.; D. Frenkel (2004). 2558:10.1103/PhysRevLett.98.185503 2311:10.1088/0953-8984/19/3/033101 2218: 2155:Diet Coke and Mentos eruption 1296:Mechanical equivalent of heat 2826:10.1016/j.matdes.2018.07.013 908:Onsager reciprocal relations 7: 2896:10.1007/978-1-4615-7258-9_1 2717:Crystal Growth & Design 2074: 1900:Classical nucleation theory 1842:classical nucleation theory 1821:classical nucleation theory 1790:aggregates associated with 1776:Classical nucleation theory 1753:classical nucleation theory 1400:Entropy as energy dispersal 1211:"Perpetual motion" machines 1150:{\displaystyle G(T,p)=H-TS} 1095:{\displaystyle A(T,V)=U-TS} 1040:{\displaystyle H(S,p)=U+pV} 10: 3134: 2882:Industrial Crystallization 2434:Duft, D.; Leisner (2004). 1935:The nucleation of crystals 1877:{\displaystyle 4\pi r^{2}} 847:{\displaystyle \partial T} 800:{\displaystyle \partial V} 715:{\displaystyle \partial p} 668:{\displaystyle \partial V} 580:{\displaystyle \partial T} 533:{\displaystyle \partial S} 2339:Sear, Richard P. (2014). 2106:cloud condensation nuclei 1905:thermodynamic equilibrium 1321:An Inquiry Concerning the 2413:124(16), 164710 (2006). 2397:10.1002/andp.19935050408 1766:occurred should undergo 1747:Nucleation is usually a 1334:Heterogeneous Substances 751:{\displaystyle \alpha =} 619:{\displaystyle \beta =-} 2730:10.1021/acs.cgd.0c01403 2528:Physical Review Letters 2461:10.5194/acp-4-1997-2004 1679:) significantly below 0 2814:Materials & Design 2173:Nucleation of crystals 2130:can occur in the bulk 2089: 2052: 2031: 2007: 1968: 1929:Cahn–Hilliard equation 1925:spinodal decomposition 1878: 1825: 1744: 1667:within a substance or 1151: 1096: 1041: 986: 985:{\displaystyle U(S,V)} 848: 824: 801: 777: 752: 716: 692: 669: 645: 620: 581: 557: 534: 510: 485: 464:Specific heat capacity 68:Quantum thermodynamics 2886:. Springer. pp.  2098:because the air rises 2087: 2046: 2004: 1962: 1879: 1813: 1738: 1332:On the Equilibrium of 1152: 1097: 1050:Helmholtz free energy 1042: 987: 849: 825: 802: 778: 753: 717: 693: 670: 646: 621: 582: 558: 535: 511: 486: 2851:(26–27): 2681–2714. 2210:Nucleation in solids 1954:KJMA or Avrami model 1855: 1683:°C, it will tend to 1677:atmospheric pressure 1345:Motive Power of Fire 1111: 1056: 1001: 961: 913:Bridgman's equations 890:Fundamental relation 835: 814: 788: 767: 739: 703: 682: 656: 635: 604: 568: 547: 521: 500: 472: 3042:10.1021/j100148a026 3015:10.1021/j100176a075 2955:NACA Technical Note 2936:10.1021/ja01129a044 2857:2006JNCS..352.2681F 2779:1983JChPh..79.6261K 2677:2007JChPh.127o4703M 2608:2004JChPh.120.3015A 2550:2007PhRvL..98r5503M 2489:2013JPCM...25K3101G 2452:2004ACP.....4.1997D 2389:1993AnP...505..398K 2293:2007JPCM...19c3101S 2272:Sear, R.P. (2007). 2049:Gumbel distribution 2021:Poisson distributed 1919:The spinodal region 1798:in cells also show 1792:Alzheimer's disease 1653:thermodynamic phase 1323:Source ... Friction 1255:Loschmidt's paradox 447:Material properties 325:Conjugate variables 2377:Annalen der Physik 2358:10.1039/C4CE00344F 2148:champagne stirrers 2090: 2053: 2008: 1969: 1889:gold nanoparticles 1874: 1826: 1745: 1587:Order and disorder 1343:Reflections on the 1250:Heat death paradox 1147: 1092: 1037: 982: 844: 820: 797: 773: 748: 712: 688: 665: 641: 616: 577: 553: 530: 506: 484:{\displaystyle c=} 481: 454:Property databases 430:Reduced properties 414:Chemical potential 378:Functions of state 301:Thermal efficiency 37:Carnot heat engine 3113:Materials science 3073:10.1021/cr400544s 3067:(15): 7610–7630. 2905:978-1-4615-7260-2 2773:(12): 6261–6276. 2685:10.1063/1.2779875 2616:10.1063/1.1638740 2419:10.1063/1.2186327 2351:(29): 6506–6522. 2016:Gompertz function 1768:exponential decay 1736: 1708:phase transitions 1665:self-organization 1641: 1640: 1582:Self-organization 1407: 1406: 1105:Gibbs free energy 903:Maxwell relations 861: 860: 857: 856: 823:{\displaystyle V} 776:{\displaystyle 1} 731:Thermal expansion 725: 724: 691:{\displaystyle V} 644:{\displaystyle 1} 590: 589: 556:{\displaystyle N} 509:{\displaystyle T} 437: 436: 353:Process functions 339:Property diagrams 318:System properties 308: 307: 273:Endoreversibility 165:Equation of state 3125: 3093: 3092: 3061:Chemical Reviews 3052: 3046: 3045: 3025: 3019: 3018: 2998: 2992: 2991: 2979: 2969: 2963: 2962: 2946: 2940: 2939: 2919: 2910: 2909: 2885: 2875: 2869: 2868: 2836: 2830: 2829: 2805: 2799: 2798: 2787:10.1063/1.445731 2758: 2752: 2751: 2742: 2732: 2723:(3): 1576–1590, 2711: 2705: 2704: 2670: 2650: 2644: 2643: 2593: 2584: 2578: 2577: 2543: 2541:cond-mat/0702605 2523: 2517: 2516: 2472: 2466: 2465: 2463: 2431: 2422: 2407: 2401: 2400: 2372: 2363: 2362: 2360: 2336: 2323: 2322: 2304: 2278: 2269: 2256: 2255:, Kluwer (1997). 2249: 2193: 2189: 2185: 2178:The most common 2070: 2066: 2058: 2039: 1947: 1883: 1881: 1880: 1875: 1873: 1872: 1836: 1832: 1761: 1737: 1720:nucleation sites 1694: 1682: 1633: 1626: 1619: 1603: 1602: 1310:Key publications 1291: 1290:("living force") 1240:Brownian ratchet 1235:Entropy and life 1230:Entropy and time 1181: 1180: 1156: 1154: 1153: 1148: 1101: 1099: 1098: 1093: 1046: 1044: 1043: 1038: 991: 989: 988: 983: 885:Clausius theorem 880:Carnot's theorem 853: 851: 850: 845: 829: 827: 826: 821: 806: 804: 803: 798: 782: 780: 779: 774: 761: 760: 757: 755: 754: 749: 721: 719: 718: 713: 697: 695: 694: 689: 674: 672: 671: 666: 650: 648: 647: 642: 629: 628: 625: 623: 622: 617: 586: 584: 583: 578: 562: 560: 559: 554: 539: 537: 536: 531: 515: 513: 512: 507: 494: 493: 490: 488: 487: 482: 460: 459: 333: 332: 152: 151: 33: 19: 18: 3133: 3132: 3128: 3127: 3126: 3124: 3123: 3122: 3098: 3097: 3096: 3053: 3049: 3026: 3022: 2999: 2995: 2988: 2970: 2966: 2947: 2943: 2920: 2913: 2906: 2876: 2872: 2837: 2833: 2806: 2802: 2759: 2755: 2712: 2708: 2651: 2647: 2591: 2585: 2581: 2524: 2520: 2473: 2469: 2432: 2425: 2408: 2404: 2373: 2366: 2337: 2326: 2302:10.1.1.605.2550 2276: 2270: 2259: 2250: 2225: 2221: 2212: 2201: 2191: 2187: 2183: 2180:crystallisation 2175: 2082: 2077: 2068: 2064: 2056: 2037: 2034: 1991: 1978: 1945: 1937: 1921: 1897: 1868: 1864: 1856: 1853: 1852: 1834: 1830: 1808: 1759: 1730: 1728: 1726:Characteristics 1692: 1680: 1637: 1592: 1591: 1567: 1559: 1558: 1557: 1417: 1409: 1408: 1387: 1373: 1348: 1344: 1337: 1333: 1326: 1322: 1289: 1282: 1264: 1245:Maxwell's demon 1207: 1178: 1177: 1161: 1160: 1159: 1112: 1109: 1108: 1107: 1057: 1054: 1053: 1052: 1002: 999: 998: 997: 962: 959: 958: 957: 955:Internal energy 950: 935: 925: 924: 899: 874: 864: 863: 862: 836: 833: 832: 815: 812: 811: 789: 786: 785: 768: 765: 764: 740: 737: 736: 704: 701: 700: 683: 680: 679: 657: 654: 653: 636: 633: 632: 605: 602: 601: 596:Compressibility 569: 566: 565: 548: 545: 544: 522: 519: 518: 501: 498: 497: 473: 470: 469: 449: 439: 438: 419:Particle number 372: 331: 320: 310: 309: 268:Irreversibility 180:State of matter 147:Isolated system 132: 122: 121: 120: 95: 85: 84: 80:Non-equilibrium 72: 47: 39: 17: 12: 11: 5: 3131: 3121: 3120: 3115: 3110: 3095: 3094: 3047: 3020: 2993: 2986: 2964: 2941: 2911: 2904: 2870: 2831: 2800: 2753: 2706: 2661:(15): 154703. 2645: 2602:(6): 3015–29. 2579: 2534:(18): 185503. 2518: 2483:(37): 373101. 2467: 2423: 2402: 2383:(4): 398–417. 2364: 2324: 2257: 2222: 2220: 2217: 2211: 2208: 2207: 2206: 2199: 2195: 2174: 2171: 2170: 2169: 2162:bubble chamber 2158: 2151: 2144: 2126:Nucleation in 2124: 2117:carbon dioxide 2113: 2081: 2078: 2076: 2073: 2033: 2030: 1990: 1987: 1977: 1974: 1965:supersaturated 1963:When sugar is 1936: 1933: 1920: 1917: 1896: 1893: 1871: 1867: 1863: 1860: 1837:°C or warmer. 1807: 1804: 1781:supersaturated 1727: 1724: 1675:is cooled (at 1645:thermodynamics 1639: 1638: 1636: 1635: 1628: 1621: 1613: 1610: 1609: 1608: 1607: 1594: 1593: 1590: 1589: 1584: 1579: 1574: 1568: 1565: 1564: 1561: 1560: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1418: 1415: 1414: 1411: 1410: 1405: 1404: 1403: 1402: 1397: 1389: 1388: 1386: 1385: 1382: 1378: 1375: 1374: 1372: 1371: 1366: 1364:Thermodynamics 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1340: 1338: 1329: 1327: 1318: 1313: 1312: 1306: 1305: 1304: 1303: 1298: 1293: 1281: 1280: 1278:Caloric theory 1274: 1271: 1270: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1226: 1223: 1222: 1216: 1215: 1214: 1213: 1206: 1205: 1200: 1195: 1189: 1186: 1185: 1179: 1176: 1175: 1172: 1168: 1167: 1166: 1163: 1162: 1158: 1157: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1102: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 992: 981: 978: 975: 972: 969: 966: 951: 949: 948: 943: 937: 936: 931: 930: 927: 926: 923: 922: 915: 910: 905: 898: 897: 892: 887: 882: 876: 875: 870: 869: 866: 865: 859: 858: 855: 854: 843: 840: 830: 819: 808: 807: 796: 793: 783: 772: 758: 747: 744: 734: 727: 726: 723: 722: 711: 708: 698: 687: 676: 675: 664: 661: 651: 640: 626: 615: 612: 609: 599: 592: 591: 588: 587: 576: 573: 563: 552: 541: 540: 529: 526: 516: 505: 491: 480: 477: 467: 458: 457: 456: 450: 445: 444: 441: 440: 435: 434: 433: 432: 427: 422: 411: 400: 381: 380: 374: 373: 371: 370: 365: 359: 356: 355: 349: 348: 347: 346: 341: 322: 321: 316: 315: 312: 311: 306: 305: 304: 303: 298: 293: 285: 284: 278: 277: 276: 275: 270: 265: 260: 258:Free expansion 255: 250: 245: 240: 235: 230: 225: 220: 212: 211: 205: 204: 203: 202: 197: 195:Control volume 192: 187: 185:Phase (matter) 182: 177: 172: 167: 159: 158: 150: 149: 144: 139: 133: 128: 127: 124: 123: 119: 118: 113: 108: 103: 97: 96: 91: 90: 87: 86: 83: 82: 71: 70: 65: 60: 55: 49: 48: 45: 44: 41: 40: 35:The classical 34: 26: 25: 23:Thermodynamics 15: 9: 6: 4: 3: 2: 3130: 3119: 3116: 3114: 3111: 3109: 3106: 3105: 3103: 3090: 3086: 3082: 3078: 3074: 3070: 3066: 3062: 3058: 3051: 3043: 3039: 3036:(46): 11999. 3035: 3031: 3024: 3016: 3012: 3008: 3004: 2997: 2989: 2987:9780080421476 2983: 2978: 2977: 2968: 2960: 2956: 2952: 2945: 2937: 2933: 2929: 2925: 2918: 2916: 2907: 2901: 2897: 2893: 2889: 2884: 2883: 2874: 2866: 2862: 2858: 2854: 2850: 2846: 2842: 2835: 2827: 2823: 2819: 2815: 2811: 2804: 2796: 2792: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2757: 2750: 2746: 2741: 2736: 2731: 2726: 2722: 2718: 2710: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2669: 2664: 2660: 2656: 2649: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2597: 2590: 2583: 2575: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2542: 2537: 2533: 2529: 2522: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2471: 2462: 2457: 2453: 2449: 2445: 2441: 2437: 2430: 2428: 2420: 2416: 2412: 2406: 2398: 2394: 2390: 2386: 2382: 2378: 2371: 2369: 2359: 2354: 2350: 2346: 2342: 2335: 2333: 2331: 2329: 2320: 2316: 2312: 2308: 2303: 2298: 2294: 2290: 2287:(3): 033101. 2286: 2282: 2275: 2268: 2266: 2264: 2262: 2254: 2248: 2246: 2244: 2242: 2240: 2238: 2236: 2234: 2232: 2230: 2228: 2223: 2216: 2204: 2203:nanoparticles 2196: 2181: 2177: 2176: 2167: 2166:cloud chamber 2163: 2159: 2156: 2152: 2149: 2145: 2142: 2137: 2133: 2129: 2125: 2122: 2118: 2114: 2111: 2110:Cloud seeding 2107: 2103: 2099: 2095: 2092: 2091: 2086: 2072: 2060: 2050: 2045: 2041: 2029: 2025: 2022: 2017: 2012: 2003: 1999: 1997: 1986: 1982: 1973: 1966: 1961: 1957: 1955: 1949: 1943: 1932: 1930: 1926: 1916: 1914: 1908: 1906: 1901: 1892: 1890: 1885: 1869: 1865: 1861: 1858: 1850: 1847: 1843: 1838: 1822: 1817: 1816:contact angle 1812: 1803: 1801: 1797: 1793: 1789: 1784: 1782: 1777: 1773: 1769: 1765: 1756: 1754: 1750: 1742: 1723: 1721: 1716: 1711: 1709: 1704: 1702: 1698: 1690: 1686: 1678: 1674: 1670: 1666: 1662: 1661:self-assembly 1658: 1654: 1650: 1646: 1634: 1629: 1627: 1622: 1620: 1615: 1614: 1612: 1611: 1606: 1598: 1597: 1596: 1595: 1588: 1585: 1583: 1580: 1578: 1577:Self-assembly 1575: 1573: 1570: 1569: 1563: 1562: 1554: 1551: 1549: 1548:van der Waals 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1473:von Helmholtz 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1413: 1412: 1401: 1398: 1396: 1393: 1392: 1391: 1390: 1383: 1380: 1379: 1377: 1376: 1370: 1367: 1365: 1362: 1361: 1359: 1358: 1354: 1353: 1347: 1346: 1339: 1336: 1335: 1328: 1325: 1324: 1317: 1316: 1315: 1314: 1311: 1308: 1307: 1302: 1299: 1297: 1294: 1292: 1288: 1284: 1283: 1279: 1276: 1275: 1273: 1272: 1268: 1267: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1224: 1221: 1218: 1217: 1212: 1209: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1187: 1183: 1182: 1173: 1170: 1169: 1165: 1164: 1144: 1141: 1138: 1135: 1132: 1126: 1123: 1120: 1114: 1106: 1103: 1089: 1086: 1083: 1080: 1077: 1071: 1068: 1065: 1059: 1051: 1048: 1034: 1031: 1028: 1025: 1022: 1016: 1013: 1010: 1004: 996: 993: 976: 973: 970: 964: 956: 953: 952: 947: 944: 942: 939: 938: 934: 929: 928: 921: 920: 916: 914: 911: 909: 906: 904: 901: 900: 896: 895:Ideal gas law 893: 891: 888: 886: 883: 881: 878: 877: 873: 868: 867: 841: 831: 817: 810: 809: 794: 784: 770: 763: 762: 759: 745: 742: 735: 732: 729: 728: 709: 699: 685: 678: 677: 662: 652: 638: 631: 630: 627: 613: 610: 607: 600: 597: 594: 593: 574: 564: 550: 543: 542: 527: 517: 503: 496: 495: 492: 478: 475: 468: 465: 462: 461: 455: 452: 451: 448: 443: 442: 431: 428: 426: 425:Vapor quality 423: 421: 420: 415: 412: 410: 409: 404: 401: 398: 394: 393: 388: 385: 384: 383: 382: 379: 376: 375: 369: 366: 364: 361: 360: 358: 357: 354: 351: 350: 345: 342: 340: 337: 336: 335: 334: 330: 326: 319: 314: 313: 302: 299: 297: 294: 292: 289: 288: 287: 286: 283: 280: 279: 274: 271: 269: 266: 264: 263:Reversibility 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 214: 213: 210: 207: 206: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 161: 160: 157: 154: 153: 148: 145: 143: 140: 138: 137:Closed system 135: 134: 131: 126: 125: 117: 114: 112: 109: 107: 104: 102: 99: 98: 94: 89: 88: 81: 77: 74: 73: 69: 66: 64: 61: 59: 56: 54: 51: 50: 43: 42: 38: 32: 28: 27: 24: 21: 20: 3064: 3060: 3050: 3033: 3029: 3023: 3009:(23): 9438. 3006: 3002: 2996: 2975: 2967: 2958: 2954: 2944: 2927: 2923: 2881: 2873: 2848: 2844: 2834: 2817: 2813: 2803: 2770: 2766: 2756: 2720: 2716: 2709: 2658: 2654: 2648: 2599: 2595: 2582: 2531: 2527: 2521: 2480: 2476: 2470: 2443: 2439: 2410: 2405: 2380: 2376: 2348: 2345:CrystEngComm 2344: 2284: 2280: 2252: 2213: 2061: 2054: 2035: 2026: 2013: 2009: 1992: 1983: 1979: 1970: 1950: 1942:supercooling 1938: 1922: 1909: 1898: 1886: 1839: 1827: 1802:and growth. 1796:microtubules 1785: 1763: 1757: 1746: 1719: 1712: 1705: 1697:supercooling 1648: 1642: 1571: 1438:Carathéodory 1369:Heat engines 1341: 1330: 1319: 1301:Motive power 1286: 946:Free entropy 917: 417: 416: / 406: 405: / 397:introduction 390: 389: / 328: 291:Heat engines 78: / 2930:(9): 2323. 2820:: 504–513. 2446:(7): 1997. 2136:superheated 2115:Bubbles of 1846:free energy 1772:supercooled 1741:Ising model 1260:Synergetics 941:Free energy 387:Temperature 248:Quasistatic 243:Isenthalpic 200:Instruments 190:Equilibrium 142:Open system 76:Equilibrium 58:Statistical 3102:Categories 2624:1874/12074 2219:References 2121:carbonated 1996:stochastic 1800:nucleation 1749:stochastic 1715:impurities 1649:nucleation 1572:Nucleation 1416:Scientists 1220:Philosophy 933:Potentials 296:Heat pumps 253:Polytropic 238:Isentropic 228:Isothermal 3108:Chemistry 3081:0009-2665 2795:0021-9606 2668:0705.2051 2297:CiteSeerX 2160:Both the 1862:π 1657:structure 1553:Waterston 1503:von Mayer 1458:de Donder 1448:Clapeyron 1428:Boltzmann 1423:Bernoulli 1384:Education 1355:Timelines 1139:− 1084:− 872:Equations 839:∂ 792:∂ 743:α 707:∂ 660:∂ 614:− 608:β 572:∂ 525:∂ 233:Adiabatic 223:Isochoric 209:Processes 170:Ideal gas 53:Classical 3089:25003956 2749:33762898 2693:17949187 2640:15747794 2632:15268449 2566:17501584 2505:23941964 2164:and the 2075:Examples 1913:colloids 1824:barrier. 1701:crystals 1605:Category 1543:Thompson 1453:Clausius 1433:Bridgman 1287:Vis viva 1269:Theories 1203:Gas laws 995:Enthalpy 403:Pressure 218:Isobaric 175:Real gas 63:Chemical 46:Branches 3118:Physics 2853:Bibcode 2775:Bibcode 2740:7976603 2701:9762506 2673:Bibcode 2604:Bibcode 2574:7037979 2546:Bibcode 2513:3146822 2485:Bibcode 2448:Bibcode 2385:Bibcode 2319:4992555 2289:Bibcode 2141:wetting 2128:boiling 2123:liquid. 1849:barrier 1788:amyloid 1669:mixture 1528:Smeaton 1523:Rankine 1513:Onsager 1498:Maxwell 1493:Massieu 1198:Entropy 1193:General 1184:History 1174:Culture 1171:History 395: ( 392:Entropy 329:italics 130:Systems 3087:  3079:  2984:  2902:  2793:  2747:  2737:  2699:  2691:  2638:  2630:  2572:  2564:  2511:  2503:  2317:  2299:  2192:  2188:  2184:  2132:liquid 2094:Clouds 2069:  2065:  2057:  2038:  1946:  1835:  1831:  1760:  1693:  1685:freeze 1681:  1518:Planck 1508:Nernst 1483:Kelvin 1443:Carnot 733:  598:  466:  408:Volume 323:Note: 282:Cycles 111:Second 101:Zeroth 2890:–22. 2697:S2CID 2663:arXiv 2636:S2CID 2592:(PDF) 2570:S2CID 2536:arXiv 2509:S2CID 2315:S2CID 2277:(PDF) 2146:Some 2006:data. 1687:into 1673:water 1566:Other 1533:Stahl 1488:Lewis 1478:Joule 1468:Gibbs 1463:Duhem 156:State 116:Third 106:First 3085:PMID 3077:ISSN 2982:ISBN 2959:2142 2900:ISBN 2791:ISSN 2745:PMID 2689:PMID 2628:PMID 2562:PMID 2501:PMID 2153:The 2071:°C. 2059:°C. 1948:°C. 1659:via 1538:Tait 368:Heat 363:Work 93:Laws 3069:doi 3065:114 3038:doi 3011:doi 2932:doi 2892:doi 2861:doi 2849:352 2822:doi 2818:156 2783:doi 2735:PMC 2725:doi 2681:doi 2659:127 2620:hdl 2612:doi 2600:120 2554:doi 2493:doi 2456:doi 2415:doi 2393:doi 2381:505 2353:doi 2307:doi 2194:°C. 2032:Ice 1829:−35 1764:not 1689:ice 1663:or 1655:or 1643:In 1381:Art 327:in 3104:: 3083:. 3075:. 3063:. 3059:. 3034:97 3032:. 3007:95 3005:. 2957:. 2953:. 2928:74 2926:. 2914:^ 2898:. 2859:. 2847:. 2843:. 2816:. 2812:. 2789:. 2781:. 2771:79 2769:. 2765:. 2743:, 2733:, 2721:21 2719:, 2695:. 2687:. 2679:. 2671:. 2657:. 2634:. 2626:. 2618:. 2610:. 2598:. 2594:. 2568:. 2560:. 2552:. 2544:. 2532:98 2530:. 2507:. 2499:. 2491:. 2481:25 2479:. 2454:. 2442:. 2438:. 2426:^ 2391:. 2379:. 2367:^ 2349:16 2347:. 2343:. 2327:^ 2313:. 2305:. 2295:. 2285:19 2283:. 2279:. 2260:^ 2226:^ 2108:. 1956:. 1931:. 1783:. 1647:, 3091:. 3071:: 3044:. 3040:: 3017:. 3013:: 2990:. 2961:. 2938:. 2934:: 2908:. 2894:: 2888:3 2867:. 2863:: 2855:: 2828:. 2824:: 2797:. 2785:: 2777:: 2727:: 2703:. 2683:: 2675:: 2665:: 2642:. 2622:: 2614:: 2606:: 2576:. 2556:: 2548:: 2538:: 2515:. 2495:: 2487:: 2464:. 2458:: 2450:: 2444:4 2421:. 2417:: 2399:. 2395:: 2387:: 2361:. 2355:: 2321:. 2309:: 2291:: 2200:2 2051:. 1870:2 1866:r 1859:4 1632:e 1625:t 1618:v 1145:S 1142:T 1136:H 1133:= 1130:) 1127:p 1124:, 1121:T 1118:( 1115:G 1090:S 1087:T 1081:U 1078:= 1075:) 1072:V 1069:, 1066:T 1063:( 1060:A 1035:V 1032:p 1029:+ 1026:U 1023:= 1020:) 1017:p 1014:, 1011:S 1008:( 1005:H 980:) 977:V 974:, 971:S 968:( 965:U 842:T 818:V 795:V 771:1 746:= 710:p 686:V 663:V 639:1 611:= 575:T 551:N 528:S 504:T 479:= 476:c 399:)

Index

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric
Isochoric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.