Knowledge

Nucleic acid structure

Source 📝

254: 553:, is a form of the DNA duplex observed under dehydrating conditions. It is shorter and wider than B-DNA. RNA adopts this double helical form, and RNA-DNA duplexes are mostly A-form, but B-form RNA-DNA duplexes have been observed. In localized single strand dinucleotide contexts, RNA can also adopt the B-form without pairing to DNA. A-DNA has a deep, narrow major groove which does not make it easily accessible to proteins. On the other hand, its wide, shallow minor groove makes it accessible to proteins but with lower information content than the major groove. Its favored conformation is at low water concentrations. A-DNAs base pairs are tilted relative to the helix axis, and are displaced from the axis. The sugar pucker occurs at the C3'-endo and in RNA 2'-OH inhibits C2'-endo conformation. Long considered little more than a laboratory artifice, 564:
favored conformation occurs when there are high salt concentrations. There are some base substitutions but they require an alternating purine-pyrimidine sequence. The N2-amino of G H-bonds to 5' PO, which explains the slow exchange of protons and the need for the G purine. Z-DNA base pairs are nearly perpendicular to the helix axis. Z-DNA does not contain single base-pairs but rather a GpC repeat with P-P distances varying for GpC and CpG. On the GpC stack there is good base overlap, whereas on the CpG stack there is less overlap. Z-DNA's zigzag backbone is due to the C sugar conformation compensating for G glycosidic bond conformation. The conformation of G is syn, C2'-endo; for C it is anti, C3'-endo.
374: 22: 233:, hence the glycosidic bonds form between their 1 nitrogen and the 1' -OH of the deoxyribose. For both the purine and pyrimidine bases, the phosphate group forms a bond with the deoxyribose sugar through an ester bond between one of its negatively charged oxygen groups and the 5' -OH of the sugar. The polarity in DNA and RNA is derived from the oxygen and nitrogen atoms in the backbone. Nucleic acids are formed when nucleotides come together through phosphodiester linkages between the 5' and 3' carbon atoms. A 579:, which is the tertiary structure of DNA. Supercoiling is characterized by the linking number, twist and writhe. The linking number (Lk) for circular DNA is defined as the number of times one strand would have to pass through the other strand to completely separate the two strands. The linking number for circular DNA can only be changed by breaking of a covalent bond in one of the two strands. Always an integer, the linking number of a cccDNA is the sum of two components: twists (Tw) and writhes (Wr). 475: 33: 483: 456:. It is minimally composed of two helical segments connected by single-stranded regions or loops. H-type fold pseudoknots are best characterized. In H-type fold, nucleotides in the hairpin-loop pair with the bases outside the hairpin stem forming second stem and loop. This causes formation of pseudoknots with two stems and two loops. Pseudoknots are functional elements in RNA structure having diverse function and found in most classes of RNA. 681: 130: 357:. Although the two strands are aligned by hydrogen bonds in base pairs, the stronger forces holding the two strands together are stacking interactions between the bases. These stacking interactions are stabilized by Van der Waals forces and hydrophobic interactions, and show a large amount of local structural variability. There are also two grooves in the double helix, which are called 653:. Although some of the concepts are not exactly the same, the quaternary structure refers to a higher-level of organization of nucleic acids. Moreover, it refers to interactions of the nucleic acids with other molecules. The most commonly seen form of higher-level organization of nucleic acids is seen in the form of 377:
An example of RNA secondary structure. This image includes several structural elements, including; single-stranded and double-stranded areas, bulges, internal loops and hairpin loops. Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded
459:
Secondary structure of RNA can be predicted by experimental data on the secondary structure elements, helices, loops, and bulges. DotKnot-PW method is used for comparative pseudoknots prediction. The main points in the DotKnot-PW method is scoring the similarities found in stems, secondary elements
626:
Twists are the number of times the two strands of DNA are twisted around each other. Writhes are number of times the DNA helix crosses over itself. DNA in cells is negatively supercoiled and has the tendency to unwind. Hence the separation of strands is easier in negatively supercoiled DNA than in
567:
A linear DNA molecule having free ends can rotate, to adjust to changes of various dynamic processes in the cell, by changing how many times the two chains of its double helix twist around each other. Some DNA molecules are circular and are topologically constrained. More recently circular RNA was
546:
is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove makes it more accessible to proteins. On the other hand, it has a narrow minor groove. B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove
563:
is a relatively rare left-handed double-helix. Given the proper sequence and superhelical tension, it can be formed in vivo but its function is unclear. It has a more narrow, more elongated helix than A or B. Z-DNA's major groove is not really a groove, and it has a narrow minor groove. The most
494:
constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3-dimensional shape. There are 4 areas in which the structural forms of DNA can differ.
253: 237:
is the order of nucleotides within a DNA (GACT) or RNA (GACU) molecule that is determined by a series of letters. Sequences are presented from the 5' to 3' end and determine the covalent structure of the entire molecule. Sequences can be
940:
Katsuyuki, Aoki; Kazutaka, Murayama; Hu, Ning-Hai (2016). "Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance". In Astrid, Sigel; Helmut, Sigel; Roland K.O., Sigel (eds.).
547:
appears to favor B-DNA. B-DNA base pairs are nearly perpendicular to the helix axis. The sugar pucker which determines the shape of the a-helix, whether the helix will exist in the A-form or in the B-form, occurs at the C2'-endo.
382:
The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
411:
The antiparallel strands form a helical shape. Bulges and internal loops are formed by separation of the double helical tract on either one strand (bulge) or on both strands (internal loops) by unpaired nucleotides.
345:. It has a single ring structure, a six-membered ring containing nitrogen. A purine base always pairs with a pyrimidine base (guanine (G) pairs with cytosine (C) and adenine (A) pairs with thymine (T) or 242:
to another sequence in that the base on each position is complementary as well as in the reverse order. An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a
309:
Secondary structure is the set of interactions between bases, i.e., which parts of strands are bound to each other. In DNA double helix, the two strands of DNA are held together by
290:
There are three potential metal binding groups on nucleic acids: phosphate, sugar, and base moieties. Solid-state structure of complexes with alkali metal ions have been reviewed.
422:
is formed when the RNA chains fold back on themselves to form a double helical tract called the 'stem', the unpaired nucleotides forms single stranded region called the 'loop'. A
575:
A covalently closed, circular DNA (also known as cccDNA) is topologically constrained as the number of times the chains coiled around one other cannot change. This cccDNA can be
28: 26: 27: 621: 115:. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary. 25: 321:
with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as
1462: 1052:
Hollyfield JG, Besharse JC, Rayborn ME (December 1976). "The effect of light on the quantity of phagosomes in the pigment epithelium".
1089:"The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA" 337:. Purines consist of a double ring structure, a six-membered and a five-membered ring containing nitrogen. The pyrimidines are 490:
Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and
958: 873: 848: 800: 261:
such as this four-arm junction. These four strands associate into this structure because it maximizes the number of correct
1560: 1455: 735: 1284:
Chen X; Ramakrishnan B; Sundaralingam M (1995). "Crystal structures of B-form DNA-RNA chimers complexed with distamycin".
982:
Sedova A, Banavali NK (2017). "Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands".
720: 239: 1387: 1565: 1555: 1507: 741: 644: 635:. The plectonemic supercoil is found in prokaryotes, while the solenoidal supercoiling is mostly seen in eukaryotes. 1545: 299: 258: 1241:
Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML (April 1982). "The anatomy of A-, B-, and Z-DNA".
1550: 1448: 469: 1512: 1502: 650: 426:
is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA:
1327:
Sedova A, Banavali NK (2016). "RNA approaches the B-form in stacked single strand dinucleotide contexts".
1575: 1492: 747: 816: 1497: 453: 373: 1631: 1487: 730: 568:
described as well to be a natural pervasive class of nucleic acids, expressed in many organisms (see
243: 47: 1409: 229:
between their 9 nitrogen and the 1' -OH group of the deoxyribose. Cytosine, thymine, and uracil are
1423: 783:
Krieger M, Scott MP, Matsudaira PT, Lodish HF, Darnell JE, Lawrence Z, Kaiser C, Berk A (2004).
1522: 1471: 695: 100: 661:. Also, the quaternary structure refers to the interactions between separate RNA units in the 585: 1540: 234: 124: 1250: 8: 1601: 1570: 762: 725: 700: 529: 142: 1254: 1397: 1352: 1309: 1213: 1188: 1164: 1137: 705: 1113: 1088: 917: 890: 1479: 1383: 1344: 1301: 1266: 1218: 1169: 1118: 1069: 1065: 1034: 999: 964: 954: 922: 869: 844: 796: 789: 752: 64: 1356: 1204: 1626: 1375: 1336: 1313: 1293: 1258: 1208: 1200: 1159: 1149: 1108: 1100: 1061: 1026: 991: 946: 912: 902: 257:
Nucleic acid design can be used to create nucleic acid complexes with complicated
145:. It is this linear sequence of nucleotides that make up the primary structure of 1154: 907: 554: 226: 214: 995: 950: 1596: 1517: 784: 715: 686: 628: 533: 1646: 757: 710: 576: 537: 310: 1379: 1262: 1104: 1657: 1652: 1611: 1348: 1222: 1173: 1038: 1030: 1003: 968: 926: 569: 513: 362: 358: 354: 350: 250:
strand. Therefore, the complementary sequence will be to the sense strand.
104: 1305: 1270: 1122: 1087:
Rietveld K, Van Poelgeest R, Pleij CW, Van Boom JH, Bosch L (March 1982).
1073: 532:
structures have been demonstrated in repetitive polypurine:polypyrimidine
474: 1440: 666: 203: 51: 1297: 1606: 945:. Metal Ions in Life Sciences. Vol. 16. Springer. pp. 43–66. 632: 449: 418:
or hairpin loop is the most common element of RNA secondary structure.
326: 314: 230: 157: 138: 59: 55: 1340: 482: 353:
of the two polynucleotide strands wrapped around each other to form a
88: 84: 80: 76: 72: 68: 838: 654: 423: 419: 415: 318: 262: 247: 1283: 864:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Wlater P (2002).
680: 662: 338: 274: 172: 1086: 129: 1591: 658: 342: 334: 330: 278: 270: 266: 199: 177: 167: 162: 839:
Anthony-Cahill SJ, Mathews CK, van Holde KE, Appling DR (2012).
649:
The quaternary structure of nucleic acids is similar to that of
32: 491: 386:
The four basic elements in the secondary structure of RNA are:
349:(U)). DNA's secondary structure is predominantly determined by 346: 322: 222: 207: 187: 1189:"Predicting pseudoknotted structures across two RNA sequences" 560: 550: 543: 525: 521: 517: 782: 16:
Biomolecular structure of nucleic acids such as DNA and RNA
1621: 1616: 1051: 191: 181: 150: 146: 112: 108: 1424:"Structural Biochemistry/Nucleic Acid/DNA/DNA structure" 1017:
Tinoco I, Bustamante C (October 1999). "How RNA folds".
657:
which leads to its interactions with the small proteins
1240: 863: 627:
relaxed DNA. The two components of supercoiled DNA are
555:
A-DNA is now known to have several biological functions
1186: 843:(4th ed.). Englewood Cliffs, N.J: Prentice Hall. 508:
Difference in size between the major and minor grooves
834: 832: 830: 588: 46:(primary, secondary, tertiary, and quaternary) using 1138:"Pseudoknots: RNA structures with diverse functions" 676: 1187:Sperschneider J, Datta A, Wise MJ (December 2012). 939: 285: 137:Primary structure consists of a linear sequence of 827: 788: 615: 452:is an RNA secondary structure first identified in 446:is a purine). UNCG is the most stable tetraloop. 1236: 1234: 1232: 1644: 1370:Mirkin SM (2001). "DNA Topology: Fundamentals". 1016: 891:"The emergence of complexity: lessons from DNA" 24: 1326: 1229: 981: 1456: 1135: 857: 1363: 776: 221:The nitrogen bases adenine and guanine are 1470: 1463: 1449: 943:The Alkali Metal Ions: Their Role for Life 1212: 1163: 1153: 1112: 916: 906: 809: 785:"Section 4.1: Structure of Nucleic Acids" 481: 473: 372: 252: 128: 36:The image above contains clickable links 20: 866:Molecular Biology of the Cell (4th ed.) 638: 153:. Nucleotides consist of 3 components: 1645: 1369: 293: 1444: 463: 882: 736:Nucleic acid structure determination 118: 1136:Staple DW, Butcher SE (June 2005). 888: 721:Non-helical models of DNA structure 442:is one of the four nucleotides and 13: 512:The tertiary arrangement of DNA's 31: 14: 1669: 795:. New York: W.H. Freeman and CO. 742:Nucleic acid structure prediction 645:Nucleic acid quaternary structure 868:. New York NY: Garland Science. 679: 300:Nucleic acid secondary structure 286:Complexes with alkali metal ions 1416: 1320: 1277: 1180: 1129: 1080: 470:Nucleic acid tertiary structure 1045: 1010: 975: 933: 365:based on their relative size. 1: 1205:10.1093/bioinformatics/bts575 769: 505:Number of base pairs per turn 1155:10.1371/journal.pbio.0030213 1066:10.1016/0014-4835(76)90221-9 1019:Journal of Molecular Biology 908:10.1371/journal.pbio.0020431 817:"Structure of Nucleic Acids" 651:protein quaternary structure 141:that are linked together by 7: 996:10.1021/acs.biochem.6b01101 951:10.1007/978-3-319-21756-7_3 748:Nucleic acid thermodynamics 672: 10: 1674: 642: 499:Handedness – right or left 467: 454:turnip yellow mosaic virus 297: 122: 1632:Nucleic acid double helix 1584: 1531: 1478: 1286:Nature Structural Biology 1054:Experimental Eye Research 731:Nucleic acid double helix 133:Chemical structure of DNA 616:{\displaystyle Lk=Tw+Wr} 502:Length of the helix turn 460:and H-type pseudoknots. 225:in structure and form a 1380:10.1038/npg.els.0001038 1263:10.1126/science.7071593 889:Mao C (December 2004). 478:DNA structure and bases 281:. Image from Mao, 2004. 1472:Biomolecular structure 1093:Nucleic Acids Research 1031:10.1006/jmbi.1999.3001 791:Molecular cell biology 696:Biomolecular structure 617: 487: 479: 379: 368: 304: 282: 134: 97:Nucleic acid structure 93: 50:and examples from the 44:nucleic acid structure 37: 1105:10.1093/nar/10.6.1929 618: 485: 477: 376: 256: 235:nucleic acid sequence 132: 125:Nucleic acid sequence 35: 30: 639:Quaternary structure 586: 259:secondary structures 1602:Protein engineering 1298:10.1038/nsb0995-733 1255:1982Sci...216..475D 763:Triple-stranded DNA 726:Nucleic acid design 701:Crosslinking of DNA 530:Triple-stranded DNA 486:A-B-Z-DNA Side View 294:Secondary structure 206:(found in DNA) and 143:phosphodiester bond 706:DNA nanotechnology 613: 516:in space includes 488: 480: 464:Tertiary structure 380: 329:. The purines are 283: 135: 94: 38: 1640: 1639: 1341:10.1002/bip.22750 990:(10): 1426–1443. 960:978-3-319-21755-0 875:978-0-8153-3218-3 850:978-0-13-800464-4 802:978-0-7167-4366-8 753:Protein structure 119:Primary structure 40:Interactive image 1665: 1627:Structural motif 1465: 1458: 1451: 1442: 1441: 1435: 1434: 1432: 1430: 1420: 1414: 1413: 1407: 1403: 1401: 1393: 1367: 1361: 1360: 1324: 1318: 1317: 1281: 1275: 1274: 1249:(4545): 475–85. 1238: 1227: 1226: 1216: 1184: 1178: 1177: 1167: 1157: 1133: 1127: 1126: 1116: 1084: 1078: 1077: 1049: 1043: 1042: 1014: 1008: 1007: 979: 973: 972: 937: 931: 930: 920: 910: 886: 880: 879: 861: 855: 854: 836: 825: 824: 813: 807: 806: 794: 780: 689: 684: 683: 622: 620: 619: 614: 215:phosphate groups 202:which is called 158:Nitrogenous base 91: 34: 23: 1673: 1672: 1668: 1667: 1666: 1664: 1663: 1662: 1643: 1642: 1641: 1636: 1580: 1527: 1474: 1469: 1439: 1438: 1428: 1426: 1422: 1421: 1417: 1405: 1404: 1395: 1394: 1390: 1368: 1364: 1325: 1321: 1282: 1278: 1239: 1230: 1199:(23): 3058–65. 1185: 1181: 1134: 1130: 1085: 1081: 1050: 1046: 1015: 1011: 980: 976: 961: 938: 934: 887: 883: 876: 862: 858: 851: 837: 828: 815: 814: 810: 803: 781: 777: 772: 767: 744:(computational) 685: 678: 675: 647: 641: 587: 584: 583: 472: 466: 371: 307: 302: 296: 288: 227:glycosidic bond 210:(found in RNA). 127: 121: 63: 29: 21: 17: 12: 11: 5: 1671: 1661: 1660: 1655: 1638: 1637: 1635: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1597:Protein domain 1594: 1588: 1586: 1582: 1581: 1579: 1578: 1576:Thermodynamics 1573: 1568: 1563: 1558: 1553: 1548: 1543: 1537: 1535: 1529: 1528: 1526: 1525: 1523:Thermodynamics 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1484: 1482: 1476: 1475: 1468: 1467: 1460: 1453: 1445: 1437: 1436: 1415: 1406:|journal= 1389:978-0470016176 1388: 1362: 1319: 1292:(9): 733–735. 1276: 1228: 1193:Bioinformatics 1179: 1128: 1099:(6): 1929–46. 1079: 1044: 1009: 974: 959: 932: 881: 874: 856: 849: 826: 808: 801: 774: 773: 771: 768: 766: 765: 760: 755: 750: 745: 739: 738:(experimental) 733: 728: 723: 718: 716:Gene structure 713: 708: 703: 698: 692: 691: 690: 687:Biology portal 674: 671: 643:Main article: 640: 637: 624: 623: 612: 609: 606: 603: 600: 597: 594: 591: 536:sequences and 534:Microsatellite 510: 509: 506: 503: 500: 468:Main article: 465: 462: 409: 408: 403: 398: 393: 378:DNA molecules. 370: 367: 317:on one strand 311:hydrogen bonds 306: 303: 298:Main article: 295: 292: 287: 284: 246:strand and an 219: 218: 211: 200:5-carbon sugar 197: 196: 195: 185: 175: 170: 165: 123:Main article: 120: 117: 99:refers to the 15: 9: 6: 4: 3: 2: 1670: 1659: 1656: 1654: 1651: 1650: 1648: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1589: 1587: 1583: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1561:Determination 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1538: 1536: 1534: 1530: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1508:Determination 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1485: 1483: 1481: 1477: 1473: 1466: 1461: 1459: 1454: 1452: 1447: 1446: 1443: 1425: 1419: 1411: 1399: 1391: 1385: 1381: 1377: 1373: 1366: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1280: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1237: 1235: 1233: 1224: 1220: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1183: 1175: 1171: 1166: 1161: 1156: 1151: 1147: 1143: 1139: 1132: 1124: 1120: 1115: 1110: 1106: 1102: 1098: 1094: 1090: 1083: 1075: 1071: 1067: 1063: 1060:(6): 623–35. 1059: 1055: 1048: 1040: 1036: 1032: 1028: 1025:(2): 271–81. 1024: 1020: 1013: 1005: 1001: 997: 993: 989: 985: 978: 970: 966: 962: 956: 952: 948: 944: 936: 928: 924: 919: 914: 909: 904: 900: 896: 892: 885: 877: 871: 867: 860: 852: 846: 842: 835: 833: 831: 822: 818: 812: 804: 798: 793: 792: 786: 779: 775: 764: 761: 759: 758:Satellite DNA 756: 754: 751: 749: 746: 743: 740: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 711:DNA supercoil 709: 707: 704: 702: 699: 697: 694: 693: 688: 682: 677: 670: 668: 664: 660: 656: 652: 646: 636: 634: 630: 610: 607: 604: 601: 598: 595: 592: 589: 582: 581: 580: 578: 573: 571: 565: 562: 558: 556: 552: 548: 545: 541: 539: 538:Satellite DNA 535: 531: 527: 523: 519: 515: 507: 504: 501: 498: 497: 496: 493: 484: 476: 471: 461: 457: 455: 451: 447: 445: 441: 437: 433: 429: 425: 421: 417: 413: 407: 404: 402: 399: 397: 394: 392: 389: 388: 387: 384: 375: 366: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 316: 312: 301: 291: 280: 276: 272: 268: 264: 260: 255: 251: 249: 245: 241: 240:complementary 236: 232: 228: 224: 216: 212: 209: 205: 201: 198: 193: 189: 186: 183: 179: 176: 174: 171: 169: 166: 164: 161: 160: 159: 156: 155: 154: 152: 148: 144: 140: 131: 126: 116: 114: 110: 106: 105:nucleic acids 102: 98: 90: 86: 82: 78: 74: 70: 66: 61: 57: 53: 49: 45: 41: 19: 1612:Nucleic acid 1533:Nucleic acid 1532: 1427:. Retrieved 1418: 1371: 1365: 1335:(2): 65–82. 1332: 1328: 1322: 1289: 1285: 1279: 1246: 1242: 1196: 1192: 1182: 1145: 1142:PLOS Biology 1141: 1131: 1096: 1092: 1082: 1057: 1053: 1047: 1022: 1018: 1012: 987: 984:Biochemistry 983: 977: 942: 935: 901:(12): e431. 898: 895:PLOS Biology 894: 884: 865: 859: 841:Biochemistry 840: 820: 811: 790: 778: 648: 625: 574: 566: 559: 549: 542: 514:double helix 511: 489: 458: 448: 443: 439: 435: 431: 427: 414: 410: 405: 400: 395: 390: 385: 381: 363:minor groove 359:major groove 355:double helix 351:base-pairing 308: 289: 220: 213:One or more 190:(present in 180:(present in 136: 96: 95: 43: 39: 18: 1429:11 December 1329:Biopolymers 1148:(6): e213. 667:spliceosome 633:plectonemic 577:supercoiled 327:pyrimidines 315:nucleotides 277:matched to 269:matched to 231:pyrimidines 204:deoxyribose 139:nucleotides 52:VS ribozyme 48:DNA helices 1647:Categories 1607:Proteasome 1566:Prediction 1556:Quaternary 1513:Prediction 1503:Quaternary 821:SparkNotes 770:References 450:Pseudoknot 319:base pairs 263:base pairs 60:nucleosome 56:telomerase 1546:Secondary 1493:Secondary 1408:ignored ( 1398:cite book 655:chromatin 424:tetraloop 420:Stem-loop 416:Stem-loop 406:Junctions 248:antisense 101:structure 1585:See also 1551:Tertiary 1498:Tertiary 1357:35949700 1349:26443416 1223:23044552 1174:15941360 1039:10550208 1004:28187685 969:26860299 927:15597116 673:See also 663:ribosome 659:histones 629:solenoid 339:cytosine 173:Cytosine 107:such as 1592:Protein 1541:Primary 1488:Primary 1480:Protein 1314:6886088 1306:7552741 1271:7071593 1251:Bibcode 1243:Science 1214:3516145 1165:1149493 1123:7079175 1074:1087245 570:CircRNA 391:Helices 343:thymine 335:guanine 331:adenine 323:purines 265:, with 178:Thymine 168:Guanine 163:Adenine 1571:Design 1518:Design 1386:  1355:  1347:  1312:  1304:  1269:  1221:  1211:  1172:  1162:  1121:  1114:320581 1111:  1072:  1037:  1002:  967:  957:  925:  918:535573 915:  872:  847:  799:  524:, and 492:steric 434:, and 396:Bulges 347:uracil 313:. The 223:purine 208:ribose 188:Uracil 1353:S2CID 1310:S2CID 561:Z-DNA 551:A-DNA 544:B-DNA 526:Z-DNA 522:A-DNA 518:B-DNA 401:Loops 244:sense 194:only) 184:only) 1431:2012 1410:help 1384:ISBN 1345:PMID 1302:PMID 1267:PMID 1219:PMID 1170:PMID 1119:PMID 1070:PMID 1035:PMID 1000:PMID 965:PMID 955:ISBN 923:PMID 870:ISBN 845:ISBN 797:ISBN 631:and 436:CUUG 432:GNRA 428:UNCG 361:and 341:and 333:and 325:and 273:and 111:and 89:1EQZ 85:1YMO 81:4R4V 77:4OCB 73:1BNA 69:ADNA 58:and 54:and 1658:RNA 1653:DNA 1622:RNA 1617:DNA 1376:doi 1372:eLS 1337:doi 1333:105 1294:doi 1259:doi 1247:216 1209:PMC 1201:doi 1160:PMC 1150:doi 1109:PMC 1101:doi 1062:doi 1027:doi 1023:293 992:doi 947:doi 913:PMC 903:doi 665:or 572:). 528:. 369:RNA 305:DNA 192:RNA 182:DNA 151:RNA 149:or 147:DNA 113:RNA 109:DNA 103:of 65:PDB 62:. ( 42:of 1649:: 1402:: 1400:}} 1396:{{ 1382:. 1374:. 1351:. 1343:. 1331:. 1308:. 1300:. 1288:. 1265:. 1257:. 1245:. 1231:^ 1217:. 1207:. 1197:28 1195:. 1191:. 1168:. 1158:. 1144:. 1140:. 1117:. 1107:. 1097:10 1095:. 1091:. 1068:. 1058:23 1056:. 1033:. 1021:. 998:. 988:56 986:. 963:. 953:. 921:. 911:. 897:. 893:. 829:^ 819:. 787:. 669:. 557:. 540:. 520:, 430:, 279:Gs 275:Cs 271:Ts 267:As 92:​) 87:, 83:, 79:, 75:, 71:, 67:: 1464:e 1457:t 1450:v 1433:. 1412:) 1392:. 1378:: 1359:. 1339:: 1316:. 1296:: 1290:2 1273:. 1261:: 1253:: 1225:. 1203:: 1176:. 1152:: 1146:3 1125:. 1103:: 1076:. 1064:: 1041:. 1029:: 1006:. 994:: 971:. 949:: 929:. 905:: 899:2 878:. 853:. 823:. 805:. 611:r 608:W 605:+ 602:w 599:T 596:= 593:k 590:L 444:R 440:N 438:( 217:.

Index

nucleic acid structure
DNA helices
VS ribozyme
telomerase
nucleosome
PDB
ADNA
1BNA
4OCB
4R4V
1YMO
1EQZ
structure
nucleic acids
DNA
RNA
Nucleic acid sequence

nucleotides
phosphodiester bond
DNA
RNA
Nitrogenous base
Adenine
Guanine
Cytosine
Thymine
DNA
Uracil
RNA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.