Knowledge

Oxygen reduction reaction

Source đź“ť

657:
before application. During the treatment, M-N4 active sites turn to aggregate spontaneously due to the high intrinsic energy, which will dramatically decrease the active site density. Therefore, increasing the active site density and creating atomic level dispersed catalyst is a key step to improve the catalyst activity. To solve this problem, we can use some porous substrates to confine the active sites or use some defect or ligands to prevent the migration of the active site. In the mean time, the porous structure or the defect will also be beneficial to the oxygen absorption process.
656:
Since the oxygen reduction reaction in fuel cells need to be catalyzed heterogeneously, conductive substrates such as carbon materials is always needed in constructing electrocatalysts. To increase the conductivity and enhance the substrate-loading interaction, thermal treatment is usually performed
615:
have been tested. as the oxygen reduction reaction catalyst and different electrocatalysis performance was achieved by these small molecules. These exciting results trigger further research of the non-noble metal contained small molecules used for the oxygen reduction reaction electrocatalyst.
672:
of the oxygen reduction reaction. To modulate the electron configuration, a simple way is to change the ligands of the metal center. For example, researchers found that whether the N atoms in M-N4 active sites are pyrrolic or pyridinic can affect the performance of the catalyst. Besides, some
32:
is reduced to water or hydrogen peroxide. In fuel cells, the reduction to water is preferred because the current is higher. The oxygen reduction reaction is well demonstrated and highly efficient in nature.
420: 1006:
Marshall-Roth, Travis; Libretto, Nicole J.; Wrobel, Alexandra T.; Anderton, Kevin J.; Pegis, Michael L.; Ricke, Nathan D.; Voorhis, Troy Van; Miller, Jeffrey T.; Surendranath, Yogesh (2020-10-19).
319: 131: 228: 491: 673:
heteroatoms such as S, P other than N can also be used to modulate the electron configuration too, since these atoms have different electronegativity and electron configuration.
664:
active site also plays an important role in the activity and stability of an oxygen reduction reaction catalyst. Because the electron configuration of M center can affects the
1071:
Zhang, Nan; Zhou, Tianpei; Chen, Minglong; Feng, Hu; Yuan, Ruilin; Zhong, Cheng’an; Yan, Wensheng; Tian, Yangchao; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng (2020-01-21).
851:
Jahnke, Horst; Schönborn, Manfred; Zimmermann, Georg (1976). Schäfer, F. P.; Gerischer, H.; Willig, F.; Meier, H.; Jahnke, H.; Schönborn, M.; Zimmermann, G. (eds.).
1118:
Han, Yunhu; Wang, Yanggang; Xu, Ruirui; Chen, Wenxing; Zheng, Lirong; Han, Aijuan; Zhu, Youqi; Zhang, Jian; Zhang, Huabin; Luo, Jun; Chen, Chen (2018-09-12).
540:. Rather than combustion, organisms rely on elaborate sequences of electron-transfer reactions, often coupled to proton transfer. The direct reaction of O 588:
is the most common catalyst. Because platinum is expensive, it is dispersed on a carbon support. Certain facets of platinum are more active than others.
693:
Gewirth, Andrew A.; Varnell, Jason A.; Diascro, Angela M. (2018). "Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems".
959:"Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation" 773:
Ge, Xiaoming; Sumboja, Afriyanti; Wuu, Delvin; An, Tao; Li, Bing; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin (2015-08-07).
628:
site. In biosystems, many oxygen related physical chemical reactions are carried by proteins containing the metal-prophyrin unit such as O
876: 326: 1120:"Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal" 597: 732: 235: 47: 500: 138: 427: 532:
The oxygen reduction reaction is an essential reaction for aerobic organisms. Such organisms are powered by the
1168: 900:
Martinez, Ulises; Babu, Siddharth Komini; Holby, Edward F.; Chung, Hoon T.; Yin, Xi; Zelenay, Piotr (2019).
511:. While the 2e pathway reaction is often the side reaction of 4e- pathway or can be used in synthesis of H 1183: 1163: 902:"Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction" 1119: 1072: 545: 41:
The stoichiometries of the oxygen reduction reaction, which depends on the medium, are shown:
1008:"A pyridinic Fe-N 4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts" 508: 805: 1019: 970: 913: 817: 612: 549: 8: 665: 1023: 974: 917: 821: 604:
and the metal catalyst. Early catalysts for the oxygen reduction reaction were based on
1100: 1048: 1007: 957:
Yin, Hengbo; Xia, Huicong; Zhao, Shuyan; Li, Kexie; Zhang, Jianan; Mu, Shichun (2021).
852: 533: 504: 1139: 1104: 1092: 1053: 1035: 988: 939: 931: 882: 872: 833: 775:"Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts" 755: 710: 669: 1073:"High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst" 1131: 1084: 1043: 1027: 978: 921: 864: 825: 786: 747: 702: 544:
with fuel is precluded by the oxygen reduction reaction, which produces water and
1173: 751: 706: 1178: 1031: 608: 1157: 1143: 1096: 1039: 992: 935: 837: 790: 25: 1057: 943: 926: 901: 774: 759: 714: 660:
Besides active site density, the electron configuration of M center in M-N
572:
is engaged and reduced by a four-copper aggregate. Three Cu centers bind O
731:
Shao, Minhua; Chang, Qiaowan; Dodelet, Jean-Pol; Chenitz, Regis (2016).
1135: 1088: 983: 958: 886: 868: 829: 617: 496: 17: 1005: 733:"Recent Advances in Electrocatalysts for Oxygen Reduction Reaction" 585: 565: 605: 561: 600:, which represent models for the initial encounter between O 557: 850: 442: 374: 341: 287: 250: 216: 203: 153: 116: 62: 730: 620:
is also a suitable ligand for metal center to provide N
415:{\displaystyle {\ce {O2 + 2e- + H2O -> HO2- + OH-}}} 899: 651: 692: 430: 329: 238: 141: 50: 576:, and one Cu center functions as an electron donor. 495:The 4e pathway reaction is the cathode reaction in 314:{\displaystyle {\ce {O2 + 4e- + 2H2O -> 4 OH-}}} 126:{\displaystyle {\ce {O2 + 4 e- + 4H+ -> 2 H2O}}} 596:Detailed mechanistic work results from studies on 552:affects the oxygen reduction reaction by binding O 485: 414: 313: 222: 125: 1070: 223:{\displaystyle {\ce {O2 + 2e- + 2H+ -> H2O2}}} 1155: 857:Physical and Chemical Applications of Dyestuffs 853:"Organic dyestuffs as catalysts for fuel cells" 806:"Cobalt Phthalocyanine as a Fuel Cell Cathode" 772: 1117: 486:{\displaystyle {\ce {O2 + 4e- -> 2 O^2-}}} 956: 579: 1047: 982: 925: 863:. Berlin, Heidelberg: Springer: 133–181. 726: 724: 591: 468: 451: 350: 299: 276: 259: 179: 162: 105: 88: 71: 803: 1156: 810:Journal of the Electrochemical Society 721: 688: 686: 963:Energy & Environmental Materials 652:Recent development and modification 598:transition metal dioxygen complexes 501:proton-exchange membrane fuel cells 13: 1124:Energy & Environmental Science 1077:Energy & Environmental Science 683: 14: 1195: 804:Jasinski, Raymond (1965-05-01). 36: 1111: 859:. Topics in Current Chemistry. 527: 323:2e pathway in alkaline medium: 232:4e pathway in alkaline medium: 1064: 999: 950: 893: 844: 797: 766: 462: 380: 293: 190: 99: 1: 676: 522: 424:4e- pathway in solid oxide: 7: 752:10.1021/acs.chemrev.5b00462 707:10.1021/acs.chemrev.7b00335 135:2e pathway in acid medium: 44:4e pathway in acid medium: 10: 1200: 1032:10.1038/s41467-020-18969-6 22:oxygen reduction reaction 791:10.1021/acscatal.5b00524 616:Besides phthalocyanine, 24:refers to the reduction 668:, which determines the 580:Heterogeneous catalysts 927:10.1002/adma.201806545 613:coordination complexes 592:Coordination complexes 546:adenosine triphosphate 487: 416: 315: 224: 127: 1012:Nature Communications 509:solid oxide fuel cell 488: 417: 316: 225: 128: 1169:Cellular respiration 550:Cytochrome c oxidase 428: 327: 236: 139: 48: 1024:2020NatCo..11.5283M 975:2021EEMat...4....5Y 918:2019AdM....3106545M 822:1965JElS..112..526J 536:of fuel (food) by O 444: 397: 376: 343: 289: 252: 218: 205: 155: 118: 64: 1136:10.1039/C8EE01481G 1089:10.1039/C9EE03027A 984:10.1002/eem2.12085 906:Advanced Materials 869:10.1007/BFb0046059 534:heat of combustion 505:alkaline fuel cell 483: 432: 412: 383: 364: 331: 311: 277: 240: 220: 206: 193: 143: 123: 106: 52: 1184:Hydrogen peroxide 878:978-3-540-38098-6 830:10.1149/1.2423590 670:activation energy 472: 455: 435: 404: 386: 379: 367: 354: 334: 303: 292: 280: 263: 243: 209: 196: 183: 166: 146: 121: 109: 92: 75: 55: 1191: 1164:Electrochemistry 1148: 1147: 1130:(9): 2348–2352. 1115: 1109: 1108: 1068: 1062: 1061: 1051: 1003: 997: 996: 986: 954: 948: 947: 929: 897: 891: 890: 848: 842: 841: 801: 795: 794: 785:(8): 4643–4667. 770: 764: 763: 746:(6): 3594–3657. 740:Chemical Reviews 737: 728: 719: 718: 701:(5): 2313–2339. 695:Chemical Reviews 690: 492: 490: 489: 484: 482: 481: 480: 470: 461: 460: 453: 443: 440: 433: 421: 419: 418: 413: 411: 410: 409: 402: 396: 391: 384: 377: 375: 372: 365: 360: 359: 352: 342: 339: 332: 320: 318: 317: 312: 310: 309: 308: 301: 290: 288: 285: 278: 269: 268: 261: 251: 248: 241: 229: 227: 226: 221: 219: 217: 214: 207: 204: 201: 194: 189: 188: 181: 172: 171: 164: 154: 151: 144: 132: 130: 129: 124: 122: 119: 117: 114: 107: 98: 97: 90: 81: 80: 73: 63: 60: 53: 1199: 1198: 1194: 1193: 1192: 1190: 1189: 1188: 1154: 1153: 1152: 1151: 1116: 1112: 1069: 1065: 1004: 1000: 955: 951: 912:(31): 1806545. 898: 894: 879: 849: 845: 802: 798: 771: 767: 735: 729: 722: 691: 684: 679: 666:redox potential 663: 654: 647: 643: 640:reduction and H 639: 635: 631: 627: 624:part in the M-N 623: 611:. Many related 609:phthalocyanines 603: 594: 584:In fuel cells, 582: 575: 571: 555: 543: 539: 530: 525: 518: 514: 473: 469: 456: 452: 441: 436: 431: 429: 426: 425: 405: 401: 392: 387: 373: 368: 355: 351: 340: 335: 330: 328: 325: 324: 304: 300: 286: 281: 264: 260: 249: 244: 239: 237: 234: 233: 215: 210: 202: 197: 184: 180: 167: 163: 152: 147: 142: 140: 137: 136: 115: 110: 93: 89: 76: 72: 61: 56: 51: 49: 46: 45: 39: 31: 12: 11: 5: 1197: 1187: 1186: 1181: 1176: 1171: 1166: 1150: 1149: 1110: 1083:(1): 111–118. 1063: 998: 949: 892: 877: 843: 796: 765: 720: 681: 680: 678: 675: 661: 653: 650: 645: 641: 637: 633: 629: 625: 621: 601: 593: 590: 581: 578: 573: 569: 553: 541: 537: 529: 526: 524: 521: 516: 512: 499:especially in 479: 476: 467: 464: 459: 450: 447: 439: 408: 400: 395: 390: 382: 371: 363: 358: 349: 346: 338: 307: 298: 295: 284: 275: 272: 267: 258: 255: 247: 213: 200: 192: 187: 178: 175: 170: 161: 158: 150: 113: 104: 101: 96: 87: 84: 79: 70: 67: 59: 38: 35: 29: 9: 6: 4: 3: 2: 1196: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1161: 1159: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1114: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1067: 1059: 1055: 1050: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1002: 994: 990: 985: 980: 976: 972: 968: 964: 960: 953: 945: 941: 937: 933: 928: 923: 919: 915: 911: 907: 903: 896: 888: 884: 880: 874: 870: 866: 862: 858: 854: 847: 839: 835: 831: 827: 823: 819: 815: 811: 807: 800: 792: 788: 784: 780: 779:ACS Catalysis 776: 769: 761: 757: 753: 749: 745: 741: 734: 727: 725: 716: 712: 708: 704: 700: 696: 689: 687: 682: 674: 671: 667: 658: 649: 619: 614: 610: 607: 599: 589: 587: 577: 567: 563: 559: 551: 547: 535: 520: 510: 506: 502: 498: 493: 477: 474: 465: 457: 448: 445: 437: 422: 406: 398: 393: 388: 369: 361: 356: 347: 344: 336: 321: 305: 296: 282: 273: 270: 265: 256: 253: 245: 230: 211: 198: 185: 176: 173: 168: 159: 156: 148: 133: 111: 102: 94: 85: 82: 77: 68: 65: 57: 42: 37:Stoichiometry 34: 27: 26:half reaction 23: 19: 1127: 1123: 1113: 1080: 1076: 1066: 1015: 1011: 1001: 966: 962: 952: 909: 905: 895: 860: 856: 846: 813: 809: 799: 782: 778: 768: 743: 739: 698: 694: 659: 655: 595: 583: 564:complex. In 531: 528:Biocatalysts 494: 423: 322: 231: 134: 43: 40: 21: 15: 1018:(1): 5283. 969:(1): 5–18. 648:oxidation. 632:delivery, O 1158:Categories 816:(5): 526. 677:References 636:storage, O 1144:1754-5706 1105:210712326 1097:1754-5706 1040:2041-1723 993:2575-0356 936:1521-4095 838:1945-7111 618:porphyrin 523:Catalysts 497:fuel cell 478:− 463:⟶ 458:− 407:− 394:− 381:⟶ 357:− 306:− 294:⟶ 266:− 191:⟶ 169:− 100:⟶ 78:− 28:whereby O 18:chemistry 1058:33077736 944:30790368 760:26886420 715:29384375 586:platinum 1049:7572418 1020:Bibcode 971:Bibcode 914:Bibcode 818:Bibcode 566:laccase 1174:Oxygen 1142:  1103:  1095:  1056:  1046:  1038:  991:  942:  934:  885:  875:  836:  758:  713:  606:cobalt 20:, the 1179:Water 1101:S2CID 736:(PDF) 556:in a 1140:ISSN 1093:ISSN 1054:PMID 1036:ISSN 989:ISSN 940:PMID 932:ISSN 887:7032 883:PMID 873:ISBN 834:ISSN 756:PMID 711:PMID 558:heme 507:and 1132:doi 1085:doi 1044:PMC 1028:doi 979:doi 922:doi 865:doi 826:doi 814:112 787:doi 748:doi 744:116 703:doi 699:118 568:, O 16:In 1160:: 1138:. 1128:11 1126:. 1122:. 1099:. 1091:. 1081:13 1079:. 1075:. 1052:. 1042:. 1034:. 1026:. 1016:11 1014:. 1010:. 987:. 977:. 965:. 961:. 938:. 930:. 920:. 910:31 908:. 904:. 881:. 871:. 861:61 855:. 832:. 824:. 812:. 808:. 781:. 777:. 754:. 742:. 738:. 723:^ 709:. 697:. 685:^ 562:Cu 548:. 519:. 503:, 403:OH 385:HO 302:OH 1146:. 1134:: 1107:. 1087:: 1060:. 1030:: 1022:: 995:. 981:: 973:: 967:4 946:. 924:: 916:: 889:. 867:: 840:. 828:: 820:: 793:. 789:: 783:5 762:. 750:: 717:. 705:: 662:4 646:2 644:O 642:2 638:2 634:2 630:2 626:4 622:4 602:2 574:2 570:2 560:– 554:2 542:2 538:2 517:2 515:O 513:2 475:2 471:O 466:2 454:e 449:4 446:+ 438:2 434:O 399:+ 389:2 378:O 370:2 366:H 362:+ 353:e 348:2 345:+ 337:2 333:O 297:4 291:O 283:2 279:H 274:2 271:+ 262:e 257:4 254:+ 246:2 242:O 212:2 208:O 199:2 195:H 186:+ 182:H 177:2 174:+ 165:e 160:2 157:+ 149:2 145:O 120:O 112:2 108:H 103:2 95:+ 91:H 86:4 83:+ 74:e 69:4 66:+ 58:2 54:O 30:2

Index

chemistry
half reaction
fuel cell
proton-exchange membrane fuel cells
alkaline fuel cell
solid oxide fuel cell
heat of combustion
adenosine triphosphate
Cytochrome c oxidase
heme
Cu
laccase
platinum
transition metal dioxygen complexes
cobalt
phthalocyanines
coordination complexes
porphyrin
redox potential
activation energy


doi
10.1021/acs.chemrev.7b00335
PMID
29384375


"Recent Advances in Electrocatalysts for Oxygen Reduction Reaction"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑