Knowledge

Solid oxide fuel cell

Source 📝

3187:
process could work in the production of any part of the cell. The 3D printing process works by combining about 80% ceramic particles with 20% binders and solvents, and then converting that slurry into an ink that can be fed into a 3D printer. Some of the solvent is very volatile, so the ceramic ink solidifies almost immediately. Not all of the solvent evaporates, so the ink maintains some flexibility before it is fired at high temperature to densify it. This flexibility allows the cells to be fired in a circular shape that would increase the surface area over which electrochemical reactions can occur, which increases the efficiency of the cell. Also, the 3D printing technique allows the cell layers to be printed on top of each other instead of having to go through separate manufacturing and stacking steps. The thickness is easy to control, and layers can be made in the exact size and shape that is needed, so waste is minimized.
275:, the fuel processing becomes increasingly complex and, consequently, more expensive. The gasification process, which transforms the raw material into a gaseous state suitable for fuel cells, can generate significant quantities of aromatic compounds. These compounds include smaller molecules like methane and toluene, as well as larger polyaromatic and short-chain hydrocarbon compounds. These substances can lead to carbon buildup in SOFCs. Moreover, the expenses associated with reforming and desulfurization are comparable in magnitude to the cost of the fuel cell itself. These factors become especially critical for systems with lower power output or greater portability requirements. 796:
high temperatures, it must be extremely stable. For this reason, ceramics have been more successful in the long term than metals as interconnect materials. However, these ceramic interconnect materials are very expensive when compared to metals. Nickel- and steel-based alloys are becoming more promising as lower temperature (600–800 °C) SOFCs are developed. The material of choice for an interconnect in contact with Y8SZ is a metallic 95Cr-5Fe alloy. Ceramic-metal composites called "cermet" are also under consideration, as they have demonstrated thermal stability at high temperatures and excellent electrical conductivity.
3403:) has been developed as a promising novel concept of a high-temperature energy conversion system. The underlying progress in the development of a coal-based DCFC has been categorized mainly according to the electrolyte materials used, such as solid oxide, molten carbonate, and molten hydroxide, as well as hybrid systems consisting of solid oxide and molten carbonate binary electrolyte or of liquid anode (Fe, Ag, In, Sn, Sb, Pb, Bi, and its alloying and its metal/metal oxide) solid oxide electrolyte. People's research on DCFC with GDC-Li/Na 3304:
requires a temperature above 700 °C. Therefore, low-temperature SOFCs are only possible with higher conductivity electrolytes. Various alternatives that could be successful at low temperature include gadolinium-doped ceria (GDC) and erbia-cation-stabilized bismuth (ERB). They have superior ionic conductivity at lower temperatures, but this comes at the expense of lower thermodynamic stability. CeO2 electrolytes become electronically conductive and Bi2O3 electrolytes decompose to metallic Bi under the reducing fuel environment.
783:(TPB) where the electrolyte, air and electrode meet. LSM works well as a cathode at high temperatures, but its performance quickly falls as the operating temperature is lowered below 800 °C. In order to increase the reaction zone beyond the TPB, a potential cathode material must be able to conduct both electrons and oxygen ions. Composite cathodes consisting of LSM YSZ have been used to increase this triple phase boundary length. Mixed ionic/electronic conducting (MIEC) ceramics, such as perovskite 182: 494:
YSZ grows larger in grain size, which decreases the surface area for the catalytic reaction. Carbon deposition occurs when carbon atoms, formed by hydrocarbon pyrolysis or CO disproportionation, deposit on the Ni catalytic surface. Carbon deposition becomes important especially when hydrocarbon fuels are used, i.e. methane, syngas. The high operating temperature of SOFC and the oxidizing environment facilitate the oxidation of Ni catalyst through reaction Ni +
779:(LSM) is the cathode material of choice for commercial use because of its compatibility with doped zirconia electrolytes. Mechanically, it has a similar coefficient of thermal expansion to YSZ and thus limits stress buildup because of CTE mismatch. Also, LSM has low levels of chemical reactivity with YSZ which extends the lifetime of the materials. Unfortunately, LSM is a poor ionic conductor, and so the electrochemically active reaction is limited to the 3308:
open-circuit potential (OPC) with two highly conductive electrolytes, that by themselves would not have been sufficiently stable for the application. This bilayer proved to be stable for 1400 hours of testing at 500 °C and showed no indication of interfacial phase formation or thermal mismatch. While this makes strides towards lowering the operating temperature of SOFCs, it also opens doors for future research to try and understand this mechanism.
3512: 3498: 3328:
materials for SOFC applications. This electrolyte was fabricated by dry-pressing powders, which allowed for the production of crack free films thinner than 15 μm. The implementation of this simple and cost-effective fabrication method may enable significant cost reductions in SOFC fabrication. However, this electrolyte operates at higher temperatures than the bilayered electrolyte model, closer to 600 °C rather than 500 °C.
25: 66: 3296:
mismatch and easier sealing. Additionally, a lower temperature requires less insulation and therefore has a lower cost. Cost is further lowered due to wider material choices for interconnects and compressive nonglass/ceramic seals. Perhaps most importantly, at a lower temperature, SOFCs can be started more rapidly and with less energy, which lends itself to uses in portable and transportable applications.
120: 3443:
accumulated at the landfills has the potential to be a valuable source of energy since methane is a major constituent. Currently, the majority of the landfills either burn away their gas in flares or combust it in mechanical engines to produce electricity. The issue with mechanical engines is that incomplete combustion of gasses can lead to pollution of the atmosphere and is also highly inefficient.
1476:
conductivity, several methods can be done. Firstly, operating at higher temperatures can significantly decrease these ohmic losses. Substitutional doping methods to further refine the crystal structure and control defect concentrations can also play a significant role in increasing the conductivity. Another way to decrease ohmic resistance is to decrease the thickness of the electrolyte layer.
3275:
The push for high-performance ITSOFCs is currently the topic of much research and development. One area of focus is the cathode material. It is thought that the oxygen reduction reaction is responsible for much of the loss in performance so the catalytic activity of the cathode is being studied and enhanced through various techniques, including catalyst impregnation. The research on NdCrO
364: 508:= NiO. The oxidation reaction of Ni reduces the electrocatalytic activity and conductivity. Moreover, the density difference between Ni and NiO causes volume change on the anode surface, which could potentially lead to mechanical failure. Sulfur poisoning arises when fuel such as natural gas, gasoline, or diesel is used. Again, due to the high affinity between sulfur compounds (H 1739:
electrochemical reaction faster than they can diffuse into the porous electrode, and can also be caused by variation in bulk flow composition. The latter is due to the fact that the consumption of reacting species in the reactant flows causes a drop in reactant concentration as it travels along the cell, which causes a drop in the local potential near the tail end of the cell.
1089:
parameters. Moreover, most of the equations used require the addition of numerous factors which are difficult or impossible to determine. It makes very difficult any optimizing process of the SOFC working parameters as well as design architecture configuration selection. Because of those circumstances a few other equations were proposed:
2290:
depends on sample dimensions instead of crack diameter. Failure stresses in SOFCs can also be evaluated using a ring-on ring biaxial stress test. This type of test is generally preferred, as sample edge quality does not significantly impact measurements. The determination of the sample's failure stress is shown in the equation below.
2545: 253:, carbon monoxide or other organic intermediates by oxygen ions thus occurs on the anode side. More recently, proton-conducting SOFCs (PC-SOFC) are being developed which transport protons instead of oxygen ions through the electrolyte with the advantage of being able to be run at lower temperatures than traditional SOFCs. 351:
outside of the tube. The tubular design is advantageous because it is much easier to seal air from the fuel. The performance of the planar design is currently better than the performance of the tubular design, however, because the planar design has a lower resistance comparatively. Other geometries of SOFCs include
3112:
Research is going now in the direction of lower-temperature SOFCs (600 °C). Low temperature systems can reduce costs by reducing insulation, materials, start-up and degradation-related costs. With higher operating temperatures, the temperature gradient increases the severity of thermal stresses,
804:
Polarizations, or overpotentials, are losses in voltage due to imperfections in materials, microstructure, and design of the fuel cell. Polarizations result from ohmic resistance of oxygen ions conducting through the electrolyte (iRΩ), electrochemical activation barriers at the anode and cathode, and
627:
If the conductivity for oxygen ions in SOFC can remain high even at lower temperatures (current target in research ~500 °C), material choices for SOFC will broaden and many existing problems can potentially be solved. Certain processing techniques such as thin film deposition can help solve this
304:
heavier hydrocarbons, such as gasoline, diesel, jet fuel (JP-8) or biofuels. Such reformates are mixtures of hydrogen, carbon monoxide, carbon dioxide, steam and methane, formed by reacting the hydrocarbon fuels with air or steam in a device upstream of the SOFC anode. SOFC power systems can increase
3274:
SOFCs that operate in an intermediate temperature (IT) range, meaning between 600 and 800 °C, are named ITSOFCs. Because of the high degradation rates and materials costs incurred at temperatures in excess of 900 °C, it is economically more favorable to operate SOFCs at lower temperatures.
440:
layer must be very porous to allow the fuel to flow towards the electrolyte. Consequently, granular matter is often selected for anode fabrication procedures. Like the cathode, it must conduct electrons, with ionic conductivity a definite asset. The anode is commonly the thickest and strongest layer
2052:
during operation requires high mechanical strength. Additional stresses associated with changes in gas atmosphere, leading to reduction or oxidation also cannot be avoided in prolonged operation. When electrode layers delaminate or crack, conduction pathways are lost, leading to a redistribution of
2047:
Current SOFC research focuses heavily on optimizing cell performance while maintaining acceptable mechanical properties because optimized performance often compromises mechanical properties. Nevertheless, mechanical failure represents a significant problem to SOFC operation. The presence of various
3327:
with Zr to form a solid solution that exhibits proton conductivity, but also chemical and thermal stability over the range of conditions relevant to fuel cell operation. A new specific composition, Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY7) that displays the highest ionic conductivity of all known electrolyte
3303:
This is a materials issue, particularly for the electrolyte in the SOFC. YSZ is the most commonly used electrolyte because of its superior stability, despite not having the highest conductivity. Currently, the thickness of YSZ electrolytes is a minimum of ~10 μm due to deposition methods, and this
493:
However, there are a few disadvantages associated with YSZ as anode material. Ni coarsening, carbon deposition, reduction-oxidation instability, and sulfur poisoning are the main obstacles limiting the long-term stability of Ni-YSZ. Ni coarsening refers to the evolution of Ni particles in doped in
453:
between the oxygen ions and the hydrogen produces heat as well as water and electricity. If the fuel is a light hydrocarbon, for example, methane, another function of the anode is to act as a catalyst for steam reforming the fuel into hydrogen. This provides another operational benefit to the fuel
3442:
Every household produces waste/garbage on a daily basis. In 2009, Americans produced about 243 million tons of municipal solid waste, which is 4.3 pounds of waste per person per day. All that waste is sent to landfill sites. Landfill gas which is produced from the decomposition of waste that gets
3295:
Low-temperature solid oxide fuel cells (LT-SOFCs), operating lower than 650 °C, are of great interest for future research because the high operating temperature is currently what restricts the development and deployment of SOFCs. A low-temperature SOFC is more reliable due to smaller thermal
2689:
However, this equation is not valid for deflections exceeding 1/2h, making it less applicable for thin samples, which are of great interest in SOFCs. Therefore, while this method does not require knowledge of crack or pore size, it must be used with great caution and is more applicable to support
2289:
Thus, porosity must be carefully engineered to maximize reaction kinetics while maintaining an acceptable fracture toughness. Since fracture toughness represents the ability of pre-existing cracks or pores to propagate, a potentially more useful metric is the failure stress of a material, as this
795:
The interconnect can be either a metallic or ceramic layer that sits between each individual cell. Its purpose is to connect each cell in series, so that the electricity each cell generates can be combined. Because the interconnect is exposed to both the oxidizing and reducing side of the cell at
3141:
compounds are removed. These processes add to the cost and complexity of SOFC systems. Work is under way at a number of institutions to improve the stability of anode materials for hydrocarbon oxidation and, therefore, relax the requirements for fuel processing and decrease SOFC balance of plant
350:
geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the
3186:
3D printing is being explored as a possible manufacturing technique that could be used to make SOFC manufacturing easier by the Shah Lab at Northwestern University. This manufacturing technique would allow SOFC cell structure to be more flexible, which could lead to more efficient designs. This
2068:
Just as thermal stresses increase as cell performance improves through improved ionic conductivity, the fracture toughness of the material also decreases as cell performance increases. This is because, to increase reaction sites, porous ceramics are preferable. However, as shown in the equation
2038:
The polarization can be modified by microstructural optimization. The Triple Phase Boundary (TPB) length, which is the length where porous, ionic and electronically conducting pathways all meet, directly relates to the electrochemically active length in the cell. The larger the length, the more
1462:
This method was validated and found to be suitable for optimization and sensitivity studies in plant-level modelling of various systems with solid oxide fuel cells. With this mathematical description it is possible to account for different properties of the SOFC. There are many parameters which
3282:
Another area of focus is electrolyte materials. To make SOFCs competitive in the market, ITSOFCs are pushing towards lower operational temperature by use of alternative new materials. However, efficiency and stability of the materials limit their feasibility. One choice for the electrolyte new
591:
The electrolyte is a dense layer of ceramic that conducts oxygen ions. Its electronic conductivity must be kept as low as possible to prevent losses from leakage currents. The high operating temperatures of SOFCs allow the kinetics of oxygen ion transport to be sufficient for good performance.
3446:
The issue with using landfill gas to fuel an SOFC system is that landfill gas contains hydrogen sulfide. Any landfill accepting biological waste will contain about 50-60 ppm of hydrogen sulfide and around 1-2 ppm mercaptans. However, construction materials containing reducible sulfur species,
2064:
in mixed ionic-electronic perovskites can be directly related to oxygen vacancy concentration, which is also related to ionic conductivity. Thus, thermal stresses increase in direct correlation with improved cell performance. Additionally, however, the temperature dependence of oxygen vacancy
1742:
The concentration polarization occurs in both the anode and cathode. The anode can be particularly problematic, as the oxidation of the hydrogen produces steam, which further dilutes the fuel stream as it travels along the length of the cell. This polarization can be mitigated by reducing the
379:
active until they reach very high temperature and as a consequence, the stacks have to run at temperatures ranging from 500 to 1,000 °C. Reduction of oxygen into oxygen ions occurs at the cathode. These ions can then diffuse through the solid oxide electrolyte to the anode where they can
3307:
To combat this, researchers created a functionally graded ceria/bismuth-oxide bilayered electrolyte where the GDC layer on the anode side protects the ESB layer from decomposing while the ESB on the cathode side blocks the leakage current through the GDC layer. This leads to near-theoretical
1084:
In SOFCs, it is often important to focus on the ohmic and concentration polarizations since high operating temperatures experience little activation polarization. However, as the lower limit of SOFC operating temperature is approached (~600 °C), these polarizations do become important.
3128:
Lowering operating temperatures has the added benefit of increased efficiency. Theoretical fuel cell efficiency increases with decreasing temperature. For example, the efficiency of a SOFC using CO as fuel increases from 63% to 81% when decreasing the system temperature from 900 °C to
1088:
Above mentioned equation is used for determining the SOFC voltage (in fact for fuel cell voltage in general). This approach results in good agreement with particular experimental data (for which adequate factors were obtained) and poor agreement for other than original experimental working
1475:
Ohmic losses in an SOFC result from ionic conductivity through the electrolyte and electrical resistance offered to the flow of electrons in the external electrical circuit. This is inherently a materials property of the crystal structure and atoms involved. However, to maximize the ionic
547:, Ru, Co, etc. are invented to resist sulfur poisoning, but the improvement is limited due to the rapid initial degradation. Copper-based cerement anode is considered as a solution to carbon deposition because it is inert to carbon and stable under typical SOFC oxygen partial pressures (pO 1751:
The activation polarization is the result of the kinetics involved with the electrochemical reactions. Each reaction has a certain activation barrier that must be overcome in order to proceed and this barrier leads to the polarization. The activation barrier is the result of many complex
375:(hence the name). A single cell consisting of these four layers stacked together is typically only a few millimeters thick. Hundreds of these cells are then connected in series to form what most people refer to as an "SOFC stack". The ceramics used in SOFCs do not become electrically and 1738:
The concentration polarization is the result of practical limitations on mass transport within the cell and represents the voltage loss due to spatial variations in reactant concentration at the chemically active sites. This situation can be caused when the reactants are consumed by the
4811:
Nakajo, Arata; Kuebler, Jakob; Faes, Antonin; Vogt, Ulrich; Schindler, Hansjürgen; Chiang, Lieh-Kwang; Modena, Stefano; Van Herle, Jan (25 January 2012). "Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Part I. Constitutive materials of
1257: 770: 3331:
Currently, given the state of the field for LT-SOFCs, progress in the electrolyte would reap the most benefits, but research into potential anode and cathode materials would also lead to useful results, and has started to be discussed more frequently in literature.
3447:
principally sulfates found in gypsum-based wallboard, can cause considerably higher levels of sulfides in the hundreds of ppm. At operating temperatures of 750 °C hydrogen sulfide concentrations of around 0.05 ppm begin to affect the performance of the SOFCs.
380:
electrochemically oxidize the fuel. In this reaction, a water byproduct is given off as well as two electrons. These electrons then flow through an external circuit where they can do work. The cycle then repeats as those electrons enter the cathode material again.
2833: 2295: 2039:
reactions can occur and thus the less the activation polarization. Optimization of TPB length can be done by processing conditions to affect microstructure or by materials selection to use a mixed ionic/electronic conductor to further increase TPB length.
1463:
impact cell working conditions, e.g. electrolyte material, electrolyte thickness, cell temperature, inlet and outlet gas compositions at anode and cathode, and electrode porosity, just to name some. The flow in these systems is often calculated using the
3299:
As temperature decreases, the maximum theoretical fuel cell efficiency increases, in contrast to the Carnot cycle. For example, the maximum theoretical efficiency of an SOFC using CO as a fuel increases from 63% at 900 °C to 81% at 350 °C.
3953:
Radenahmad, Nikdalila; Azad, Atia Tasfiah; Saghir, Muhammad; Taweekun, Juntakan; Bakar, Muhammad Saifullah Abu; Reza, Md Sumon; Azad, Abul Kalam (March 2020). "A review on biomass derived syngas for SOFC based combined heat and power application".
1856: 805:
finally concentration polarizations due to inability of gases to diffuse at high rates through the porous anode and cathode (shown as ηA for the anode and ηC for cathode). The cell voltage can be calculated using the following equation:
355:(MPC or MPSOFC), where a wave-like structure replaces the traditional flat configuration of the planar cell. Such designs are highly promising because they share the advantages of both planar cells (low resistance) and tubular cells. 3981:
Xu, Qidong; Guo, Zengjia; Xia, Lingchao; He, Qijiao; Li, Zheng; Temitope Bello, Idris; Zheng, Keqing; Ni, Meng (February 2022). "A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels".
3219:
The high temperature electrochemistry center (HITEC) at the University of Florida, Gainesville is focused on studying ionic transport, electrocatalytic phenomena and microstructural characterization of ion conducting materials.
3840:
Kim, Jun Hyuk; Liu, Mingfei; Chen, Yu; Murphy, Ryan; Choi, YongMan; Liu, Ying; Liu, Meilin (5 November 2021). "Understanding the Impact of Sulfur Poisoning on the Methane-Reforming Activity of a Solid Oxide Fuel Cell Anode".
921: 3132:
Research is also under way to improve the fuel flexibility of SOFCs. While stable operation has been achieved on a variety of hydrocarbon fuels, these cells typically rely on external fuel processing. In the case of
4839:
Ullmann, H.; Trofimenko, N.; Tietz, F.; Stöver, D.; Ahmad-Khanlou, A. (1 December 2000). "Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes".
5422:
Choi, S.; Yoo, S.; Park, S.; Jun, A.; Sengodan, S.; Kim, J.; Shin, J. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ). Sci. Rep. 2013, 3,
3072:
is therefore of significant importance. Due to the difficulty in mechanically testing SOFCs at high temperatures, and due to the microstructural evolution of SOFCs over the lifetime of operation resulting from
1638: 3178:
onto inexpensive ceramic materials. Rolls-Royce Fuel Cell Systems Ltd is developing an SOFC gas turbine hybrid system fueled by natural gas for power generation applications in the order of a megawatt (e.g.
4619:
Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu (January 2016). "Challenge for lowering concentration polarization in solid oxide fuel cells".
3363:
Theoretically, the combination of the SOFC and gas turbine can give result in high overall (electrical and thermal) efficiency. Further combination of the SOFC-GT in a combined cooling, heat and power (or
5339:
Rainer Küngas; Peter Blennow; Thomas Heiredal-Clausen; Tobias Holt; Jeppe Rass-Hansen; Søren Primdahl; John Bøgild Hansen (2017). "eCOs - A Commercial CO2 Electrolysis System Developed by Haldor Topsoe".
220:
Advantages of this class of fuel cells include high combined heat and power efficiency, long-term stability, fuel flexibility, low emissions, and relatively low cost. The largest disadvantage is the high
1095: 278:
Solid oxide fuel cells have a wide variety of applications, from use as auxiliary power units in vehicles to stationary power generation with outputs from 100 W to 2 MW. In 2009, Australian company,
2156: 3145:
Research is also going on in reducing start-up time to be able to implement SOFCs in mobile applications. This can be partially achieved by lowering operating temperatures, which is the case for
3113:
which affects materials cost and life of the system. An intermediate temperature system (650-800 °C) would enable the use of cheaper metallic materials with better mechanical properties and
3101: 3168:
or diesel as the engine and would keep the air conditioning unit and other necessary electrical systems running while the engine shuts off when not needed (e.g., at a stop light or truck stop).
668: 470:(mixed ionic/electronic conducting ceramics) have been shown to produce a power density of 0.6 W/cm2 at 0.7 V at 800 °C which is possible because they have the ability to overcome a larger 3164:
has recently stopped a similar project. A high-temperature SOFC will generate all of the needed electricity to allow the engine to be smaller and more efficient. The SOFC would run on the same
1525: 2893: 2540:{\displaystyle \sigma _{cr}={\frac {3F_{cr}}{2\pi h_{s}^{2}}}+{\Biggl (}(1-\nu ){\frac {D_{sup}^{2}-D_{load}^{2}}{2D_{s}^{2}}}+(1+\nu )\ln \left({\frac {D_{sup}}{D_{load}}}\right){\Biggr )}} 2699: 3117:. New developments in nano-scale electrolyte structures have been shown to bring down operating temperatures to around 350 °C, which would enable the use of even cheaper steel and 282:
successfully achieved an efficiency of an SOFC device up to the previously theoretical mark of 60%. The higher operating temperature make SOFCs suitable candidates for application with
352: 5157:
Lamp, P.; Tachtler, J.; Finkenwirth, O.; Mukerjee, S.; Shaffer, S. (November 2003). "Development of an Auxiliary Power Unit with Solid Oxide Fuel Cells for Automotive Applications".
3312: 563:, after adding a cobalt co-catalyst. Oxide anodes including zirconia-based fluorite and perovskites are also used to replace Ni-ceramic anodes for carbon resistance. Chromite i.e. La 300:
Because of these high temperatures, light hydrocarbon fuels, such as methane, propane, and butane can be internally reformed within the anode. SOFCs can also be fueled by externally
3100:-based system without additional requirements. Lifetime effects (phase stability, thermal expansion compatibility, element migration, conductivity and aging) must be addressed. The 583:(LSCM) is used as anodes and exhibited comparable performance against Ni–YSZ cermet anodes. LSCM is further improved by impregnating Cu and sputtering Pt as the current collector. 4867:
Radovic, M.; Lara-Curzio, E. (December 2004). "Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen".
336: 5496:
Zuo, C.; Zha, S.; Liu, M.; Hatano, M.; Uchiyama, M. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Advanced Materials. 2006, 18, 3318-3320
1035: 2979: 4956:
Nakajo, Arata; Kuebler, Jakob; Faes, Antonin; Vogt, Ulrich F.; Schindler, Hans Jürgen; Chiang, Lieh-Kwang; Modena, Stefano; Van herle, Jan; Hocker, Thomas (25 January 2012).
2694:
pose another great problem, as MIEC electrodes often operate at temperatures exceeding half of the melting temperature. As a result, diffusion creep must also be considered.
1078: 413: 389: 3011: 2690:
layers in SOFCs than active layers. In addition to failure stresses and fracture toughness, modern fuel cell designs that favor mixed ionic electronic conductors (MIECs),
2579: 523:
Current research is focused on reducing or replacing Ni content in the anode to improve long-term performance. The modified Ni-YSZ containing other materials including CeO
1668: 466:, help stop the grain growth of nickel. Larger grains of nickel would reduce the contact area that ions can be conducted through, which would lower the cells efficiency. 1752:
electrochemical reaction steps where typically the rate limiting step is responsible for the polarization. The polarization equation shown below is found by solving the
787:, are also being researched for use in intermediate temperature SOFCs as they are more active and can make up for the increase in the activation energy of the reaction. 335:
demands a uniform and well-regulated heating process at startup. SOFC stacks with planar geometry require on the order of an hour to be heated to operating temperature.
1398: 2228: 1937: 1299: 2284: 1913: 1762: 1568: 1548: 1369: 1334: 956: 4112: 2611: 2190: 409: 347: 271:
poisoning has been widely observed and the sulfur must be removed before entering the cell. For fuels that are of lower quality, such as gasified biomass, coal, or
2640: 2257: 2032: 1456: 1427: 2662: 4716:
M. Santarelli; P. Leone; M. Calì; G. Orsello (2007). "Experimental evaluation of the sensitivity to fuel utilization and air management on a 100 kW SOFC system".
3921: 3193:
Ltd. has developed a low cost and low temperature (500–600 degrees) SOFC stack using cerium gadolinium oxide (CGO) in place of current industry standard ceramic,
5002: 3055: 3033: 2941: 2915: 2684: 2003: 1981: 1959: 1882: 1728: 1708: 1688: 982: 5533:
L. K. C. Tse; S. Wilkins; N. McGlashan; B. Urban; R. Martinez-Botas (2011). "Solid oxide fuel cell/gas turbine trigeneration system for marine applications".
141: 2053:
current density and local changes in temperature. These local temperature deviations, in turn, lead to increased thermal strains, which propagate cracks and
5568:
Isfahani, SNR; Sedaghat, Ahmad (15 June 2016). "A hybrid micro gas turbine and solid state fuel cell power plant with hydrogen production and CO2 capture".
2057:. Additionally, when electrolytes crack, separation of fuel and air is no longer guaranteed, which further endangers the continuous operation of the cell. 616:(GDC). The electrolyte material has crucial influence on the cell performances. Detrimental reactions between YSZ electrolytes and modern cathodes such as 559:-YSZ exhibits a higher electrochemical oxidation rate over Ni-YSZ when running on CO and syngas, and can achieve even higher performance using CO than H 5432:
Hibini, T.; Hashimoto, A.; Inoue, T.; Tokuno, J.; Yoshida, S.; Sano, M. A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures.
4498:
Mohan Menon; Kent Kammer; et al. (2007). "Processing of Ce1-xGdxO2-δ (GDC) thin films from precursors for application in solid oxide fuel cells".
3868:
Boldrin, Paul; Ruiz-Trejo, Enrique; Mermelstein, Joshua; Bermúdez Menéndez, José Miguel; Ramı́rez Reina, Tomás; Brandon, Nigel P. (23 November 2016).
3223:
SiEnergy Systems, a Harvard spin-off company, has demonstrated the first macro-scale thin-film solid-oxide fuel cell that can operate at 500 degrees.
4784:
Mahato, N; Banerjee, A; Gupta, A; Omar, S; Balani, K (1 July 2015). "Progress in material selection for solid oxide fuel cell technology: A review".
3283:
materials is the ceria-salt ceramic composites (CSCs). The two-phase CSC electrolytes GDC (gadolinium-doped ceria) and SDC (samaria-doped ceria)-MCO
520:
S) and the metal catalyst, even the smallest impurities of sulfur compounds in the feed stream could deactivate the Ni catalyst on the YSZ surface.
4958:"Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells" 4484: 811: 3601:
Singh, Mandeep; Zappa, Dario; Comini, Elisabetta (August 2021). "Solid oxide fuel cell: Decade of progress, future perspectives and challenges".
3212:
Solid Cell Inc. has developed a unique, low-cost cell architecture that combines properties of planar and tubular designs, along with a Cr-free
5712: 397: 5794: 462:
mixed with the ceramic material that is used for the electrolyte in that particular cell, typically YSZ (yttria stabilized zirconia). These
3770:
Wang, Qi; Fan, Hui; Xiao, Yanfei; Zhang, Yihe (November 2022). "Applications and recent advances of rare earth in solid oxide fuel cells".
3400: 3279:
proves it to be a potential cathode material for the cathode of ITSOFC since it is thermochemically stable within the temperature range.
5374:
Nithya, M., and M. Rajasekhar. "Preparation and Characterization of NdCrO3 Cathode for Intermediate Temperature Fuel Cell Application."
5307: 3805:
Hagen, Anke; Rasmussen, Jens F.B.; Thydén, Karl (September 2011). "Durability of solid oxide fuel cells using sulfur containing fuels".
3572: 5746: 4689:
Milewski J, Miller A (2006). "Influences of the Type and Thickness of Electrolyte on Solid Oxide Fuel Cell Hybrid System Performance".
1579: 441:
in each individual cell, because it has the smallest polarization losses, and is often the layer that provides the mechanical support.
256:
They operate at very high temperatures, typically between 600 and 1,000 °C. At these temperatures, SOFCs do not require expensive
4904:"Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature, ASTM Standard C1499-04" 128: 4647:
Hai-Bo Huo; Xin-Jian Zhu; Guang-Yi Cao (2006). "Nonlinear modeling of a SOFC stack based on a least squares support vector machine".
3353: 3341: 3643:
Boldrin, Paul; Brandon, Nigel P. (11 July 2019). "Progress and outlook for solid oxide fuel cells for transportation applications".
1252:{\displaystyle E_{SOFC}={\frac {E_{max}-i_{max}\cdot \eta _{f}\cdot r_{1}}{{\frac {r_{1}}{r_{2}}}\cdot \left(1-\eta _{f}\right)+1}}} 596:
the electrolyte begins to have large ionic transport resistances and affect the performance. Popular electrolyte materials include
332: 1743:
reactant utilization fraction or increasing the electrode porosity, but these approaches each have significant design trade-offs.
5721: 1756:
in the high current density regime (where the cell typically operates), and can be used to estimate the activation polarization:
326: 5238: 641:
building composite possessing large interfacial areas as interfaces have been shown to have extraordinary electrical properties.
3870:"Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis" 601: 454:
cell stack because the reforming reaction is endothermic, which cools the stack internally. The most common material used is a
38: 5729: 5035: 4246: 1484:
An ionic specific resistance of the electrolyte as a function of temperature can be described by the following relationship:
367:
Cross section of three ceramic layers of a tubular SOFC. From inner to outer: porous cathode, dense electrolyte, porous anode
765:{\displaystyle {\frac {1}{2}}\mathrm {O_{2}(g)} +2\mathrm {e'} +{V}_{o}^{\bullet \bullet }\longrightarrow {O}_{o}^{\times }} 632:
reducing the traveling distance of oxygen ions and electrolyte resistance as resistance is proportional to conductor length;
5821: 5184:
Gardner, F.J; Day, M.J; Brandon, N.P; Pashley, M.N; Cassidy, M (March 2000). "SOFC technology development at Rolls-Royce".
3918: 5760: 5293: 4998: 5603:
Giddey, S; Badwal, SPS; Kulkarni, A; Munnings, C (2012). "A comprehensive review of direct carbon fuel cell technology".
305:
efficiency by using the heat given off by the exothermic electrochemical oxidation within the fuel cell for endothermic
5859: 3344:
system is one which comprises a solid oxide fuel cell combined with a gas turbine. Such systems have been evaluated by
3146: 3085: 2828:{\displaystyle {\dot {\epsilon }}_{eq}^{creep}={\frac {{\tilde {k}}_{0}D}{T}}{\frac {\sigma _{eq}^{m}}{d_{grain}^{n}}}} 617: 264: 4165:; Han, Minfang; Barnett, Scott A. (2016). "Hydrogen Oxidation Mechanisms on Perovskite Solid Oxide Fuel Cell Anodes". 2074: 1490: 5704: 3089: 2842: 166: 101: 52: 551:). Cu-Co bimetallic anodes in particular show a great resistivity of carbon deposition after the exposure to pure CH 5768: 5105:
Spivey, B. (2012). "Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell".
2065:
concentration means that the CTE is not a linear property, which further complicates measurements and predictions.
2061: 658:, is a thin porous layer on the electrolyte where oxygen reduction takes place. The overall reaction is written in 76: 3423:
as cathode shows good performance. The highest power density of 48 mW*cm can be reached at 500 °C with O
6002: 2060:
Since SOFCs require materials with high oxygen conductivity, thermal stresses provide a significant problem. The
445:
speaking, the anode's job is to use the oxygen ions that diffuse through the electrolyte to oxidize the hydrogen
4019:
Sammes, N.M.; et al. (2005). "Design and fabrication of a 100 W anode supported micro-tubular SOFC stack".
5957: 5738: 638:
controlling the microstructural nano-crystalline fine grains to achieve "fine-tuning" of electrical properties;
4398:
Nigel Sammes; Alevtina Smirnova; Oleksandr Vasylyev (2005). "Fuel Cell Technologies: State and Perspectives".
5997: 3552: 3472:
Using the standard heat of formation and entropy ΔG at room temperature (298 K) came out to be 45.904 kJ/mol
3232: 776: 3482:
at 1023 K is 1.44 x 10. Hence theoretically we need 3.4% hydrogen to prevent the formation of NiS at 5 ppm H
5880: 6050: 5967: 5910: 4918: 3542: 3380: 1464: 463: 5780: 5739:
Assessment of Solid Oxide Fuel Cells in Building Applications Phase 1: Modeling and Preliminary Analyses
5987: 5849: 5268: 4353:"Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas" 1753: 993: 597: 44: 3431:
as oxidant and the whole system is stable within the temperature range of 500 °C to 600 °C.
2948: 5977: 5895: 5854: 4352: 4193: 3058: 1042: 5054:
Wachsman, Eric; Lee, Kang (18 November 2011). "Lowering the Temperature of Solid Oxide Fuel Cells".
5982: 5890: 5814: 5709: 5305: 3287:(M=Li, Na, K, single or mixture of carbonates) can reach the power density of 300-800 mW*cm. 3160:
are developing an SOFC that will power auxiliary units in automobiles and tractor-trailers, while
2986: 2554: 985: 5972: 5905: 5885: 4957: 4305: 4226: 3396: 3395:
For the direct use of solid coal fuel without additional gasification and reforming processes, a
1646: 421: 290: 133: 1851:{\displaystyle {\eta }_{act}={\frac {RT}{{\beta }zF}}\times ln\left({\frac {i}{{i}_{0}}}\right)} 659: 5992: 5931: 5388:
Zhu, Bin (2003). "Functional ceria–salt-composite materials for advanced ITSOFC applications".
4507: 3236: 1376: 613: 467: 83: 5506:
S.H. Chan; H.K. Ho; Y. Tian (2003). "Multi-level modeling of SOFC-gas turbine hybrid system".
5322: 5027: 3690:"A comprehensive review of recent progresses in cathode materials for Proton-conducting SOFCs" 2197: 1920: 1268: 5900: 4573: 4478: 3584: 3547: 3240: 1889: 1553: 1533: 1341: 1306: 932: 780: 301: 257: 222: 5338: 5019: 4263: 4233:. NATO Advanced Study Institutes Series. Dordrecht: Springer Netherlands. pp. 209–227. 2586: 2165: 5915: 5686: 5643: 5542: 5455: 5397: 5349: 5063: 4876: 4725: 4656: 4442: 4407: 4364: 4275: 4162: 4127: 4067: 4028: 3814: 3688:
Gao, Yang; Zhang, Mingming; Fu, Min; Hu, Wenjing; Tong, Hua; Tao, Zetian (September 2023).
3525: 3356:
systems typically include anodic and/or cathodic atmosphere recirculation, thus increasing
3345: 3114: 2618: 2235: 2010: 1434: 1405: 405: 5132: 4056:"Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support" 3153:, and this makes SOFCs interesting as auxiliary power units (APU) in refrigerated trucks. 3077:
and coarsening, the actual creep behavior of SOFCs is currently not completely understood
2647: 267:, and are not vulnerable to carbon monoxide catalyst poisoning. However, vulnerability to 8: 6071: 5936: 5807: 5743: 5446:
Wachsman, E.; Lee, Kang T. (2011). "Lowering the Temperature of Solid Oxide Fuel Cells".
3919:
Ceramic fuel cells achieves world-best 60% efficiency for its electricity generator units
3530: 2691: 225:
which results in longer start-up times and mechanical and chemical compatibility issues.
5647: 5546: 5459: 5401: 5353: 5067: 4880: 4729: 4660: 4529:
Charpentier, P (2000). "Preparation of thin film SOFCs working at reduced temperature".
4446: 4411: 4368: 4279: 4131: 4071: 4032: 3941:
Electricity from wood through the combination of gasification and solid oxide fuel cells
3818: 3352:
as a means to achieve higher operating efficiencies by running the SOFC under pressure.
2264: 5844: 5688:
Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells
5585: 5479: 5087: 4934: 4601: 4554: 4511: 4466: 4333: 4143: 4088: 4055: 3787: 3752: 3711: 3670: 3618: 3536: 3503: 3157: 3040: 3018: 2926: 2900: 2669: 1988: 1966: 1944: 1867: 1713: 1693: 1673: 967: 279: 5519: 5409: 5224: 5197: 4853: 4542: 3319:
Researchers at the Georgia Institute of Technology dealt with the instability of BaCeO
5667: 5659: 5589: 5483: 5471: 5246: 5091: 5079: 5031: 5020: 4938: 4605: 4593: 4546: 4458: 4380: 4325: 4242: 4113:"A micromechanical model for effective conductivity in granular electrode structures" 4093: 3901: 3791: 3756: 3715: 3674: 3622: 3093: 592:
However, as the operating temperature approaches the lower limit for SOFCs at around
471: 417: 233:
Solid oxide fuel cells are a class of fuel cells characterized by the use of a solid
4919:"Large-Deflection Solution of the Coaxial-Ring-Circular-Glass-Plate Flexure Problem" 4558: 4515: 4337: 4147: 3940: 3747: 3730: 635:
producing grain structures that are less resistive such as columnar grain structure;
6037: 6032: 6027: 6022: 5651: 5612: 5581: 5577: 5554: 5550: 5515: 5463: 5405: 5357: 5220: 5193: 5166: 5118: 5114: 5071: 4973: 4969: 4930: 4884: 4849: 4825: 4821: 4793: 4764: 4737: 4733: 4698: 4668: 4664: 4633: 4629: 4585: 4538: 4503: 4470: 4450: 4415: 4376: 4372: 4317: 4283: 4234: 4201: 4174: 4135: 4083: 4075: 4040: 4036: 3999: 3995: 3991: 3963: 3943:, Ph.D. Thesis by Florian Nagel, Swiss Federal Institute of Technology Zurich, 2008 3891: 3881: 3850: 3826: 3822: 3779: 3742: 3701: 3660: 3652: 3614: 3610: 959: 442: 425: 198: 5726: 5306:
Anne Hauch; Søren Højgaard Jensen; Sune Dalgaard Ebbesen; Mogens Mogensen (2009).
4888: 4797: 4194:"Chapter Two - Catalytic Conversion of Biogas to Syngas via Dry Reforming Process" 3372:) also has the potential to yield even higher thermal efficiencies in some cases. 339:
geometries promise much faster start up times, typically in the order of minutes.
5784: 5772: 5750: 5733: 5716: 5006: 4238: 3925: 3387:
emission and high energy efficiency make the power plant performance noteworthy.
3349: 3206: 3175: 3171: 306: 294: 286: 4205: 3886: 3869: 3706: 3689: 5789: 5616: 4397: 3967: 3463:
This can be prevented by having background hydrogen which is calculated below.
3069: 2049: 241:. SOFCs use a solid oxide electrolyte to conduct negative oxygen ions from the 213:
are characterized by their electrolyte material; the SOFC has a solid oxide or
4769: 4752: 4139: 3783: 3656: 6065: 5952: 5663: 4942: 4597: 4550: 4384: 4329: 3867: 3854: 3517: 3365: 775:
Cathode materials must be, at a minimum, electrically conductive. Currently,
393: 5467: 5075: 4433:
Steele, B.C.H., Heinzel, A. (2001). "Materials for fuel-cell technologies".
4419: 3149:(PEMFCs). Due to their fuel flexibility, they may run on partially reformed 916:{\displaystyle {V}={E}_{0}-{iR}_{\omega }-{\eta }_{cathode}-{\eta }_{anode}} 5962: 5655: 5475: 5361: 5170: 5083: 4589: 4462: 4321: 4097: 3905: 3896: 3665: 3436: 3252: 3074: 2054: 318: 5532: 4306:"Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization" 4178: 3731:"Technological Challenges and Advancement in Proton Conductors: A Review" 3375:
Another feature of the introduced hybrid system is on the gain of 100% CO
3248: 3190: 3150: 3134: 3062: 401: 283: 238: 5765: 181: 4574:"Comparison of Different Perovskite Cathodes in Solid Oxide Fuel Cells" 4192:
Bao, Zhenghong; Yu, Fei (1 January 2018), Li, Yebo; Ge, Xumeng (eds.),
4004: 3357: 3104:
2008 (interim) target for overall degradation per 1,000 hours is 4.0%.
620:(LSCF) have been found, and can be prevented by thin (<100 nm) 5671: 5631: 5308:"Durability of solid oxide electrolysis cells for hydrogen production" 4986: 4715: 4702: 4287: 4079: 371:
A solid oxide fuel cell is made up of four layers, three of which are
5830: 4903: 4684: 4682: 4680: 4678: 4454: 3180: 3118: 2918: 655: 343: 263:, as is currently necessary for lower temperature fuel cells such as 210: 202: 4753:"Investigation of SOFC material properties for plant-level modeling" 4351:
Costa-Nunes, Olga; Gorte, Raymond J.; Vohs, John M. (1 March 2005).
3315:
Comparison of ionic conductivity of various solid oxide electrolytes
988:
resistance value of the electrically conducting portions of the cell
6014: 5755: 3497: 3311: 3198: 3165: 260: 250: 5296:. Technologyreview.com. 20 April 2011. Retrieved 27 November 2011. 4675: 4646: 4744: 4304:
Ge, Xiao-Ming; Chan, Siew-Hwa; Liu, Qing-Lin; Sun, Qiang (2012).
3511: 3244: 3122: 2686:= diameter (sup = support ring, load = loading ring, s = sample) 1633:{\displaystyle \sigma =\sigma _{0}\cdot e^{\frac {-E}{R\cdot T}}} 1573:
The ionic conductivity of the solid oxide is defined as follows:
651: 372: 314: 242: 214: 5778:
Solid Oxide Fuel Cells Canada (SOFCC) Strategic Research Network
4750: 3262:
to produce CO and oxygen or even co-electrolysis of water and CO
119: 5211:"Northwestern group invent inks to make SOFCs by 3D printing". 5156: 3573:"Review of Progress in High Temperature Solid Oxide Fuel Cells" 3460:
The above reaction controls the effect of sulfur on the anode.
3213: 3194: 3138: 3137:, the fuel is either externally or internally reformed and the 459: 455: 322: 272: 268: 5001:. www.energy.gov (24 March 2009). Retrieved 27 November 2011. 4777: 3936: 3934: 424:
and fans. Internal reforming leads to a large decrease in the
5799: 5777: 621: 600:(YSZ) (often the 8% form 8YSZ), scandia stabilized zirconia ( 450: 437: 246: 234: 5632:"A High Performance Low Temperature Direct Carbon Fuel Cell" 5602: 5272: 4838: 3952: 3323:
differently. They replaced a desired fraction of Ce in BaCeO
75:
may be in need of reorganization to comply with Knowledge's
5630:
Wu, Wei; Ding, Dong; Fan, Maohong; He, Ting (30 May 2017).
4432: 3931: 3369: 3097: 2069:
below, fracture toughness decreases as porosity increases.
784: 446: 310: 206: 4618: 363: 201:
conversion device that produces electricity directly from
3539:
Ltd – Australian company producing solid oxide fuel cells
3202: 3161: 3092:
and greater than 5,000 hours for transportation systems (
376: 5183: 4160: 1961:= electrons associated with the electrochemical reaction 5505: 4917:
Kao, Robert; Perrone, Nicholas; Capps, Webster (1971).
4783: 4400:
NATO Science Series, Mathematics, Physics and Chemistry
5710:
National Energy Technology Laboratory website on SOFCs
4497: 4999:
Fuel Cell Stacks Still Going Strong After 5,000 Hours
4955: 4810: 4110: 3043: 3021: 2989: 2951: 2929: 2903: 2845: 2702: 2672: 2650: 2621: 2589: 2557: 2298: 2267: 2238: 2200: 2168: 2077: 2013: 1991: 1969: 1947: 1923: 1892: 1870: 1765: 1716: 1696: 1676: 1649: 1582: 1556: 1536: 1493: 1437: 1408: 1379: 1344: 1309: 1271: 1098: 1045: 996: 970: 935: 814: 671: 4350: 3804: 3493: 3088:
target requirements are 40,000 hours of service for
3068:To properly model creep strain rates, knowledge of 4866: 3049: 3027: 3005: 2973: 2935: 2909: 2887: 2827: 2678: 2656: 2634: 2605: 2573: 2539: 2278: 2251: 2222: 2184: 2150: 2026: 1997: 1975: 1953: 1931: 1907: 1876: 1850: 1722: 1702: 1682: 1662: 1632: 1562: 1542: 1519: 1458:= electric specific resistance of the electrolyte. 1450: 1421: 1392: 1363: 1328: 1293: 1251: 1072: 1029: 976: 950: 915: 764: 16:Fuel cell that produces electricity by oxidization 3174:is developing solid-oxide fuel cells produced by 2532: 2365: 2230:= fracture toughness of the non-porous structure 6063: 5567: 4111:Ott, J; Gan, Y; McMeeking, R; Kamlah, M (2013). 3839: 3769: 3600: 3475:On extrapolation to 1023 K, ΔG is -1.229 kJ/mol 3096:) at a factory cost of $ 40/kW for a 10 kW 2151:{\displaystyle K_{IC}=K_{IC,0}\exp {(-b_{k}p')}} 1520:{\displaystyle r_{1}={\frac {\delta }{\sigma }}} 5766:Materials & Systems Research, Inc.'s (MSRI) 4916: 4522: 4224: 3466:At 453 K the equilibrium constant is 7.39 x 10 3258:SOECs can also be used to do electrolysis of CO 2888:{\displaystyle {\dot {\epsilon }}_{eq}^{creep}} 1371:= maximum current density (for given fuel flow) 5727:Illinois Institute of Technology page on SOFCs 4688: 3928:. Ceramic Fuel Cells Limited. 19 February 2009 3642: 1429:= ionic specific resistance of the electrolyte 1336:= maximum voltage given by the Nernst equation 388:Most of the downtime of a SOFC stems from the 327:integrated gasification fuel cell power cycles 86:to make improvements to the overall structure. 5815: 5795:Solid State Energy Conversion Alliance (SECA) 5049: 5047: 4751:Kupecki J.; Milewski J.; Jewulski J. (2013). 3638: 3636: 3634: 3632: 1733: 1690:– factors depended on electrolyte materials, 4483:: CS1 maint: multiple names: authors list ( 4303: 4261: 3687: 5629: 5445: 5053: 5022:Perovskite Oxide for Solid Oxide Fuel Cells 4989:. www.osti.gov. Retrieved 19 February 2019. 4691:Journal of Fuel Cell Science and Technology 4528: 3728: 3596: 3594: 309:process. Additionally, solid fuels such as 53:Learn how and when to remove these messages 5822: 5808: 5376:International Journal of Applied Chemistry 5044: 3980: 3861: 3722: 3629: 3577:Journal of the Australian Ceramics Society 2581:= failure stress of the small deformation 1746: 346:, SOFCs can have multiple geometries. The 5605:Progress in Energy and Combustion Science 4768: 4264:"H2S Poisoning of Solid Oxide Fuel Cells" 4200:, vol. 3, Elsevier, pp. 43–76, 4087: 4003: 3895: 3885: 3746: 3705: 3664: 3469:ΔG calculated at 453 K was 35.833 kJ/mol 3235:(SOEC) is a solid oxide fuel cell set in 167:Learn how and when to remove this message 102:Learn how and when to remove this message 5570:International Journal of Hydrogen Energy 5508:International Journal of Hydrogen Energy 5017: 4508:10.4028/www.scientific.net/AMR.15-17.293 3956:Renewable and Sustainable Energy Reviews 3798: 3603:International Journal of Hydrogen Energy 3591: 3310: 2042: 362: 180: 144:of all important aspects of the article. 4923:Journal of the American Ceramic Society 4426: 3763: 3729:Vignesh, D.; Rout, Ela (2 March 2023). 3533:– SOFC product from an American company 325:which is suitable for fueling SOFCs in 249:. The electrochemical oxidation of the 6064: 5691:(Thesis). Youngstown State University. 5104: 4571: 4268:Journal of the Electrochemical Society 4167:Journal of the Electrochemical Society 4053: 4018: 3833: 3681: 3102:Solid State Energy Conversion Alliance 140:Please consider expanding the lead to 5803: 5705:US Department of Energy page on SOFCs 5231: 4757:Central European Journal of Chemistry 4299: 4297: 4191: 3013:= equivalent stress (e.g. von Mises) 2259:= experimentally determined constant 1479: 1470: 5684: 1037:= polarization losses in the cathode 628:problem with existing materials by: 113: 59: 18: 5387: 5294:Cooling Down Solid-Oxide Fuel Cells 5271:. Hitec.mse.ufl.edu. Archived from 383: 13: 5860:Proton-exchange membrane fuel cell 5790:SOFC Dynamics and Control Research 5722:An article in Encyclopedia at YCES 4935:10.1111/j.1151-2916.1971.tb12209.x 4294: 4229:. In Figueiredo, José Luís (ed.). 4161:Zhu, Tenglong; Fowler, Daniel E.; 3570: 3147:proton-exchange membrane fuel cell 3035:= creep stress exponential factor 1080:= polarization losses in the anode 711: 696: 684: 618:lanthanum strontium cobalt ferrite 428:costs in designing a full system. 293:, which further increases overall 14: 6083: 5698: 4231:Progress in Catalyst Deactivation 3090:stationary fuel cell applications 1030:{\displaystyle {\eta }_{cathode}} 353:modified planar fuel cell designs 185:Scheme of a solid-oxide fuel cell 34:This article has multiple issues. 4901: 4572:Shen, F.; Lu, K. (August 2018). 4054:Panthi, D.; et al. (2014). 3984:Energy Conversion and Management 3510: 3496: 3057:= particle size exponent (2 for 2974:{\displaystyle {\tilde {k}}_{0}} 2062:Coefficient of thermal expansion 799: 118: 64: 23: 6003:Unitized regenerative fuel cell 5685:Khan, Feroze (1 January 2012). 5678: 5623: 5596: 5561: 5526: 5499: 5490: 5439: 5426: 5416: 5381: 5368: 5332: 5299: 5287: 5261: 5204: 5177: 5150: 5125: 5098: 5011: 4992: 4987:SECA Coal-Based Systems – LGFCS 4980: 4949: 4910: 4895: 4860: 4832: 4804: 4709: 4640: 4612: 4565: 4491: 4391: 4344: 4262:Sasaki, K.; Susuki, K. (2006). 4255: 4225:Rostrup-Nielsen, J. R. (1982). 4218: 4185: 4154: 4104: 4047: 4012: 3974: 3946: 3912: 3748:10.1021/acs.energyfuels.2c03926 1939:= electron transfer coefficient 1710:– electrolyte temperature, and 1073:{\displaystyle {\eta }_{anode}} 790: 228: 132:may be too short to adequately 42:or discuss these issues on the 5829: 5582:10.1016/j.ijhydene.2016.04.065 5555:10.1016/j.jpowsour.2010.11.099 5119:10.1016/j.jprocont.2012.01.015 4974:10.1016/j.ceramint.2012.01.043 4826:10.1016/j.ceramint.2012.01.043 4738:10.1016/j.jpowsour.2006.12.032 4669:10.1016/j.jpowsour.2006.07.031 4634:10.1016/j.jpowsour.2015.10.024 4500:Advanced Materials Engineering 4377:10.1016/j.jpowsour.2004.09.022 4041:10.1016/j.jpowsour.2005.01.079 3996:10.1016/j.enconman.2021.115175 3827:10.1016/j.jpowsour.2011.02.053 3615:10.1016/j.ijhydene.2021.06.020 3564: 3266:to produce syngas and oxygen. 2959: 2755: 2474: 2462: 2382: 2370: 2144: 2120: 742: 699: 693: 604:) (usually 9 mol% Sc 586: 337:Micro-tubular fuel cell design 142:provide an accessible overview 1: 5998:Solid oxide electrolyzer cell 5520:10.1016/S0360-3199(02)00160-X 5410:10.1016/s0378-7753(02)00592-x 5245:. Ceres Power. Archived from 5225:10.1016/S1464-2859(15)70024-6 5198:10.1016/S0378-7753(99)00428-0 4889:10.1016/j.actamat.2004.08.023 4854:10.1016/S0167-2738(00)00770-0 4798:10.1016/j.pmatsci.2015.01.001 4786:Progress in Materials Science 4543:10.1016/S0167-2738(00)00472-0 3558: 3553:Micro combined heat and power 3383:. These features like zero CO 3379:capturing at comparable high 3233:solid oxide electrolyser cell 1550:– electrolyte thickness, and 777:lanthanum strontium manganite 5881:Direct borohydride fuel cell 4239:10.1007/978-94-009-7597-2_11 3006:{\displaystyle \sigma _{eq}} 2574:{\displaystyle \sigma _{cr}} 464:nanomaterial-based catalysts 358: 7: 5968:Membrane electrode assembly 5911:Reformed methanol fuel cell 5761:Refractory Specialties Inc. 4206:10.1016/bs.aibe.2018.02.002 3887:10.1021/acs.chemrev.6b00284 3707:10.1016/j.enrev.2023.100038 3543:Glossary of fuel cell terms 3489: 3205:), which allows the use of 3107: 1663:{\displaystyle \sigma _{0}} 414:electrical balance of plant 390:mechanical balance of plant 342:Unlike most other types of 10: 6088: 5988:Protonic ceramic fuel cell 5958:Electro-galvanic fuel cell 5850:Molten carbonate fuel cell 5756:SOFC glass-ceramic sealing 5617:10.1016/j.pecs.2012.01.003 5378:13, no. 4 (2017): 879-886. 5107:Journal of Process Control 5018:Ishihara, Tatsumi (2009). 3968:10.1016/j.rser.2019.109560 3335: 3290: 2895:= equivalent creep strain 2034:= exchange current density 1734:Concentration polarization 645: 598:yttria-stabilized zirconia 6046: 6013: 5978:Photoelectrochemical cell 5945: 5924: 5896:Direct methanol fuel cell 5873: 5855:Phosphoric acid fuel cell 5837: 5321:: 327–338. Archived from 4770:10.2478/s11532-013-0211-x 4310:Advanced Energy Materials 4140:10.1007/s10409-013-0070-x 3784:10.1016/j.jre.2021.09.003 3657:10.1038/s41929-019-0310-y 3269: 3158:Delphi Automotive Systems 3080: 2613:= critical applied force 1400:= fuel utilization factor 1393:{\displaystyle \eta _{f}} 5983:Proton-exchange membrane 5891:Direct-ethanol fuel cell 5771:16 February 2007 at the 5732:18 February 2008 at the 5535:Journal of Power Sources 5390:Journal of Power Sources 5186:Journal of Power Sources 4812:anode-supported cells". 4718:Journal of Power Sources 4649:Journal of Power Sources 4622:Journal of Power Sources 4441:(15 November): 345–352. 4357:Journal of Power Sources 4163:Poeppelmeier, Kenneth R. 4021:Journal of Power Sources 3855:10.1021/acscatal.1c02470 3807:Journal of Power Sources 3209:to support the ceramic. 2223:{\displaystyle K_{IC,0}} 1932:{\displaystyle {\beta }} 1294:{\displaystyle E_{SOFC}} 431: 5973:Membraneless Fuel Cells 5906:Metal hydride fuel cell 5886:Direct carbon fuel cell 5749:5 November 2014 at the 5468:10.1126/science.1204090 5436:. 2000. 288, 2031-2033. 5076:10.1126/science.1204090 4420:10.1007/1-4020-3498-9_3 3397:direct carbon fuel cell 3390: 3243:with a solid oxide, or 3226: 2642:= height of the sample 1915:= operating temperature 1908:{\displaystyle {T}_{0}} 1747:Activation polarization 1563:{\displaystyle \sigma } 1543:{\displaystyle \delta } 1465:Navier–Stokes equations 1364:{\displaystyle i_{max}} 1329:{\displaystyle E_{max}} 951:{\displaystyle {E}_{0}} 422:hydrogen sulfide sensor 410:anode tail gas oxidizer 348:planar fuel cell design 291:combined heat and power 5993:Regenerative fuel cell 5932:Enzymatic biofuel cell 5656:10.1149/07801.2519ecst 5362:10.1149/07801.2879ecst 5171:10.1002/fuce.200332107 5133:"Fuel Cell Comparison" 5005:8 October 2009 at the 4962:Ceramics International 4814:Ceramics International 4590:10.1002/fuce.201800044 4322:10.1002/aenm.201200342 3772:Journal of Rare Earths 3411:as the electrolyte, Sm 3316: 3251:to produce oxygen and 3051: 3029: 3007: 2975: 2937: 2911: 2889: 2829: 2680: 2658: 2636: 2607: 2606:{\displaystyle F_{cr}} 2575: 2541: 2280: 2253: 2224: 2186: 2185:{\displaystyle K_{IC}} 2152: 2028: 1999: 1977: 1955: 1933: 1909: 1878: 1852: 1754:Butler–Volmer equation 1730:– ideal gas constant. 1724: 1704: 1684: 1664: 1634: 1570:– ionic conductivity. 1564: 1544: 1521: 1452: 1423: 1394: 1365: 1330: 1295: 1253: 1074: 1031: 978: 952: 917: 766: 614:gadolinium doped ceria 368: 186: 5901:Formic acid fuel cell 5865:Solid oxide fuel cell 5783:30 April 2021 at the 5744:CSA Overview of SOFCs 5715:15 April 2016 at the 4198:Advances in Bioenergy 4120:Acta Mechanica Sinica 3548:Hydrogen technologies 3368:) configuration (via 3314: 3241:electrolysis of water 3059:Nabarro–Herring creep 3052: 3030: 3008: 2976: 2938: 2912: 2890: 2830: 2681: 2659: 2637: 2635:{\displaystyle h_{s}} 2608: 2576: 2542: 2281: 2254: 2252:{\displaystyle b_{k}} 2225: 2192:= fracture toughness 2187: 2153: 2043:Mechanical Properties 2029: 2027:{\displaystyle i_{0}} 2000: 1978: 1956: 1934: 1910: 1879: 1853: 1725: 1705: 1685: 1665: 1635: 1565: 1545: 1522: 1453: 1451:{\displaystyle r_{2}} 1424: 1422:{\displaystyle r_{1}} 1395: 1366: 1331: 1296: 1254: 1075: 1032: 979: 953: 918: 781:triple phase boundary 767: 366: 258:platinum group metals 223:operating temperature 191:solid oxide fuel cell 184: 5026:. Springer. p.  4179:10.1149/2.1321608jes 3587:on 29 November 2014. 3526:Auxiliary power unit 3346:Siemens Westinghouse 3115:thermal conductivity 3041: 3019: 2987: 2949: 2927: 2901: 2843: 2700: 2670: 2657:{\displaystyle \nu } 2648: 2619: 2587: 2555: 2296: 2265: 2236: 2198: 2166: 2075: 2011: 1989: 1983:= Faraday's constant 1967: 1945: 1921: 1890: 1868: 1763: 1714: 1694: 1674: 1647: 1580: 1554: 1534: 1491: 1435: 1406: 1377: 1342: 1307: 1269: 1096: 1043: 994: 968: 933: 812: 669: 660:Kröger-Vink Notation 624:diffusion barriers. 468:Perovskite materials 406:water heat exchanger 5937:Microbial fuel cell 5648:2017ECSTr..78a2519W 5547:2011JPS...196.3149T 5460:2011Sci...334..935W 5402:2003JPS...114....1Z 5354:2017ECSTr..78a2879K 5275:on 12 December 2013 5249:on 13 December 2013 5213:Fuel Cells Bulletin 5068:2011Sci...334..935W 4881:2004AcMat..52.5747R 4730:2007JPS...171..155S 4661:2006JPS...162.1220H 4447:2001Natur.414..345S 4412:2005fcts.conf.....S 4369:2005JPS...141..241C 4280:2006JElS..153A2023S 4132:2013AcMSn..29..682O 4072:2014NatSR...4E5754P 4033:2005JPS...145..428S 3924:3 June 2014 at the 3880:(22): 13633–13684. 3849:(21): 13556–13566. 3819:2011JPS...196.7271H 3609:(54): 27643–27674. 3583:(1). Archived from 3531:Bloom Energy Server 2981:= kinetic constant 2884: 2822: 2795: 2741: 2692:Creep (deformation) 2455: 2435: 2408: 2356: 2005:= operating current 986:Thévenin equivalent 761: 741: 555:at 800C. And Cu-CeO 478:Chemical Reaction: 84:editing the article 5845:Alkaline fuel cell 4842:Solid State Ionics 4531:Solid State Ionics 4502:. 15–17: 293–298. 4227:"Sulfur Poisoning" 4060:Scientific Reports 3735:Energy & Fuels 3537:Ceramic Fuel Cells 3504:Electronics portal 3478:On substitution, K 3317: 3094:fuel cell vehicles 3047: 3025: 3003: 2971: 2933: 2907: 2885: 2846: 2825: 2796: 2778: 2703: 2676: 2664:= Poisson's ratio 2654: 2632: 2603: 2571: 2537: 2441: 2412: 2388: 2342: 2279:{\displaystyle p'} 2276: 2249: 2220: 2182: 2148: 2048:kinds of load and 2024: 1995: 1973: 1951: 1929: 1905: 1874: 1848: 1720: 1700: 1680: 1660: 1630: 1560: 1540: 1517: 1480:Ionic conductivity 1471:Ohmic polarization 1448: 1419: 1390: 1361: 1326: 1291: 1249: 1070: 1027: 974: 948: 913: 762: 745: 722: 451:oxidation reaction 369: 280:Ceramic Fuel Cells 187: 6059: 6058: 5576:(22): 9490–9499. 5454:(6058): 935–939. 5037:978-0-387-77708-5 4875:(20): 5747–5756. 4703:10.1115/1.2349519 4316:(10): 1156–1181. 4288:10.1149/1.2336075 4248:978-94-009-7597-2 4080:10.1038/srep05754 3813:(17): 7271–7276. 3778:(11): 1668–1681. 3435:SOFC operated on 3381:energy efficiency 3237:regenerative mode 3050:{\displaystyle n} 3028:{\displaystyle m} 2962: 2936:{\displaystyle T} 2910:{\displaystyle D} 2856: 2823: 2774: 2758: 2713: 2679:{\displaystyle D} 2524: 2457: 2358: 1998:{\displaystyle i} 1976:{\displaystyle F} 1954:{\displaystyle z} 1877:{\displaystyle R} 1842: 1810: 1723:{\displaystyle R} 1703:{\displaystyle T} 1683:{\displaystyle E} 1627: 1515: 1247: 1209: 977:{\displaystyle R} 680: 472:activation energy 443:Electrochemically 418:power electronics 333:Thermal expansion 177: 176: 169: 159: 158: 112: 111: 104: 77:layout guidelines 57: 6079: 5916:Zinc–air battery 5824: 5817: 5810: 5801: 5800: 5693: 5692: 5682: 5676: 5675: 5642:(1): 2519–2526. 5636:ECS Transactions 5627: 5621: 5620: 5600: 5594: 5593: 5565: 5559: 5558: 5541:(6): 3149–3162. 5530: 5524: 5523: 5503: 5497: 5494: 5488: 5487: 5443: 5437: 5430: 5424: 5420: 5414: 5413: 5385: 5379: 5372: 5366: 5365: 5348:(1): 2879–2884. 5336: 5330: 5329: 5328:on 11 July 2009. 5327: 5312: 5303: 5297: 5291: 5285: 5284: 5282: 5280: 5265: 5259: 5258: 5256: 5254: 5239:"The Ceres Cell" 5235: 5229: 5228: 5208: 5202: 5201: 5192:(1–2): 122–129. 5181: 5175: 5174: 5154: 5148: 5147: 5145: 5143: 5129: 5123: 5122: 5113:(8): 1502–1520. 5102: 5096: 5095: 5051: 5042: 5041: 5025: 5015: 5009: 4996: 4990: 4984: 4978: 4977: 4968:(5): 3907–3927. 4953: 4947: 4946: 4914: 4908: 4907: 4899: 4893: 4892: 4864: 4858: 4857: 4836: 4830: 4829: 4808: 4802: 4801: 4781: 4775: 4774: 4772: 4748: 4742: 4741: 4713: 4707: 4706: 4686: 4673: 4672: 4655:(2): 1220–1225. 4644: 4638: 4637: 4616: 4610: 4609: 4569: 4563: 4562: 4537:(1–4): 373–380. 4526: 4520: 4519: 4495: 4489: 4488: 4482: 4474: 4455:10.1038/35104620 4430: 4424: 4423: 4395: 4389: 4388: 4348: 4342: 4341: 4301: 4292: 4291: 4259: 4253: 4252: 4222: 4216: 4215: 4214: 4212: 4189: 4183: 4182: 4173:(8): F952–F961. 4158: 4152: 4151: 4117: 4108: 4102: 4101: 4091: 4051: 4045: 4044: 4016: 4010: 4009: 4007: 3978: 3972: 3971: 3950: 3944: 3938: 3929: 3916: 3910: 3909: 3899: 3889: 3874:Chemical Reviews 3865: 3859: 3858: 3837: 3831: 3830: 3802: 3796: 3795: 3767: 3761: 3760: 3750: 3741:(5): 3428–3469. 3726: 3720: 3719: 3709: 3685: 3679: 3678: 3668: 3645:Nature Catalysis 3640: 3627: 3626: 3598: 3589: 3588: 3568: 3520: 3515: 3514: 3506: 3501: 3500: 3056: 3054: 3053: 3048: 3034: 3032: 3031: 3026: 3012: 3010: 3009: 3004: 3002: 3001: 2980: 2978: 2977: 2972: 2970: 2969: 2964: 2963: 2955: 2942: 2940: 2939: 2934: 2916: 2914: 2913: 2908: 2894: 2892: 2891: 2886: 2883: 2866: 2858: 2857: 2849: 2834: 2832: 2831: 2826: 2824: 2821: 2816: 2794: 2789: 2777: 2775: 2770: 2766: 2765: 2760: 2759: 2751: 2746: 2740: 2723: 2715: 2714: 2706: 2685: 2683: 2682: 2677: 2663: 2661: 2660: 2655: 2641: 2639: 2638: 2633: 2631: 2630: 2612: 2610: 2609: 2604: 2602: 2601: 2580: 2578: 2577: 2572: 2570: 2569: 2546: 2544: 2543: 2538: 2536: 2535: 2529: 2525: 2523: 2522: 2504: 2503: 2488: 2458: 2456: 2454: 2449: 2436: 2434: 2429: 2407: 2402: 2386: 2369: 2368: 2359: 2357: 2355: 2350: 2334: 2333: 2332: 2316: 2311: 2310: 2285: 2283: 2282: 2277: 2275: 2258: 2256: 2255: 2250: 2248: 2247: 2229: 2227: 2226: 2221: 2219: 2218: 2191: 2189: 2188: 2183: 2181: 2180: 2157: 2155: 2154: 2149: 2147: 2143: 2135: 2134: 2112: 2111: 2090: 2089: 2033: 2031: 2030: 2025: 2023: 2022: 2004: 2002: 2001: 1996: 1982: 1980: 1979: 1974: 1960: 1958: 1957: 1952: 1938: 1936: 1935: 1930: 1928: 1914: 1912: 1911: 1906: 1904: 1903: 1898: 1883: 1881: 1880: 1875: 1857: 1855: 1854: 1849: 1847: 1843: 1841: 1840: 1835: 1826: 1811: 1809: 1802: 1796: 1788: 1783: 1782: 1771: 1729: 1727: 1726: 1721: 1709: 1707: 1706: 1701: 1689: 1687: 1686: 1681: 1669: 1667: 1666: 1661: 1659: 1658: 1639: 1637: 1636: 1631: 1629: 1628: 1626: 1615: 1607: 1598: 1597: 1569: 1567: 1566: 1561: 1549: 1547: 1546: 1541: 1526: 1524: 1523: 1518: 1516: 1508: 1503: 1502: 1457: 1455: 1454: 1449: 1447: 1446: 1428: 1426: 1425: 1420: 1418: 1417: 1399: 1397: 1396: 1391: 1389: 1388: 1370: 1368: 1367: 1362: 1360: 1359: 1335: 1333: 1332: 1327: 1325: 1324: 1300: 1298: 1297: 1292: 1290: 1289: 1258: 1256: 1255: 1250: 1248: 1246: 1239: 1235: 1234: 1233: 1210: 1208: 1207: 1198: 1197: 1188: 1185: 1184: 1183: 1171: 1170: 1158: 1157: 1139: 1138: 1122: 1117: 1116: 1079: 1077: 1076: 1071: 1069: 1068: 1051: 1036: 1034: 1033: 1028: 1026: 1025: 1002: 983: 981: 980: 975: 962:of the reactants 960:Nernst potential 957: 955: 954: 949: 947: 946: 941: 922: 920: 919: 914: 912: 911: 894: 885: 884: 861: 852: 851: 846: 834: 833: 828: 819: 771: 769: 768: 763: 760: 755: 750: 740: 732: 727: 718: 717: 702: 692: 691: 681: 673: 595: 503: 502: 498: 426:balance of plant 384:Balance of plant 237:material as the 172: 165: 154: 151: 145: 122: 114: 107: 100: 96: 93: 87: 68: 67: 60: 49: 27: 26: 19: 6087: 6086: 6082: 6081: 6080: 6078: 6077: 6076: 6062: 6061: 6060: 6055: 6042: 6009: 5941: 5920: 5869: 5833: 5828: 5785:Wayback Machine 5773:Wayback Machine 5751:Wayback Machine 5734:Wayback Machine 5717:Wayback Machine 5701: 5696: 5683: 5679: 5628: 5624: 5601: 5597: 5566: 5562: 5531: 5527: 5504: 5500: 5495: 5491: 5444: 5440: 5431: 5427: 5421: 5417: 5386: 5382: 5373: 5369: 5337: 5333: 5325: 5310: 5304: 5300: 5292: 5288: 5278: 5276: 5267: 5266: 5262: 5252: 5250: 5243:Company Website 5237: 5236: 5232: 5210: 5209: 5205: 5182: 5178: 5155: 5151: 5141: 5139: 5131: 5130: 5126: 5103: 5099: 5062:(6058): 935–9. 5052: 5045: 5038: 5016: 5012: 5007:Wayback Machine 4997: 4993: 4985: 4981: 4954: 4950: 4929:(11): 566–571. 4915: 4911: 4900: 4896: 4869:Acta Materialia 4865: 4861: 4837: 4833: 4809: 4805: 4782: 4778: 4749: 4745: 4714: 4710: 4687: 4676: 4645: 4641: 4617: 4613: 4570: 4566: 4527: 4523: 4496: 4492: 4476: 4475: 4431: 4427: 4396: 4392: 4349: 4345: 4302: 4295: 4260: 4256: 4249: 4223: 4219: 4210: 4208: 4190: 4186: 4159: 4155: 4115: 4109: 4105: 4052: 4048: 4017: 4013: 3979: 3975: 3951: 3947: 3939: 3932: 3926:Wayback Machine 3917: 3913: 3866: 3862: 3838: 3834: 3803: 3799: 3768: 3764: 3727: 3723: 3686: 3682: 3641: 3630: 3599: 3592: 3569: 3565: 3561: 3516: 3509: 3502: 3495: 3492: 3485: 3481: 3457: 3453: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3393: 3386: 3378: 3338: 3326: 3322: 3293: 3286: 3278: 3272: 3265: 3261: 3229: 3207:stainless steel 3176:screen printing 3110: 3083: 3042: 3039: 3038: 3020: 3017: 3016: 2994: 2990: 2988: 2985: 2984: 2965: 2954: 2953: 2952: 2950: 2947: 2946: 2928: 2925: 2924: 2902: 2899: 2898: 2867: 2859: 2848: 2847: 2844: 2841: 2840: 2817: 2800: 2790: 2782: 2776: 2761: 2750: 2749: 2748: 2747: 2745: 2724: 2716: 2705: 2704: 2701: 2698: 2697: 2671: 2668: 2667: 2649: 2646: 2645: 2626: 2622: 2620: 2617: 2616: 2594: 2590: 2588: 2585: 2584: 2562: 2558: 2556: 2553: 2552: 2531: 2530: 2509: 2505: 2493: 2489: 2487: 2483: 2450: 2445: 2437: 2430: 2416: 2403: 2392: 2387: 2385: 2364: 2363: 2351: 2346: 2335: 2325: 2321: 2317: 2315: 2303: 2299: 2297: 2294: 2293: 2268: 2266: 2263: 2262: 2243: 2239: 2237: 2234: 2233: 2205: 2201: 2199: 2196: 2195: 2173: 2169: 2167: 2164: 2163: 2136: 2130: 2126: 2119: 2098: 2094: 2082: 2078: 2076: 2073: 2072: 2045: 2018: 2014: 2012: 2009: 2008: 1990: 1987: 1986: 1968: 1965: 1964: 1946: 1943: 1942: 1924: 1922: 1919: 1918: 1899: 1894: 1893: 1891: 1888: 1887: 1869: 1866: 1865: 1836: 1831: 1830: 1825: 1821: 1798: 1797: 1789: 1787: 1772: 1767: 1766: 1764: 1761: 1760: 1749: 1736: 1715: 1712: 1711: 1695: 1692: 1691: 1675: 1672: 1671: 1654: 1650: 1648: 1645: 1644: 1616: 1608: 1606: 1602: 1593: 1589: 1581: 1578: 1577: 1555: 1552: 1551: 1535: 1532: 1531: 1507: 1498: 1494: 1492: 1489: 1488: 1482: 1473: 1442: 1438: 1436: 1433: 1432: 1413: 1409: 1407: 1404: 1403: 1384: 1380: 1378: 1375: 1374: 1349: 1345: 1343: 1340: 1339: 1314: 1310: 1308: 1305: 1304: 1276: 1272: 1270: 1267: 1266: 1229: 1225: 1218: 1214: 1203: 1199: 1193: 1189: 1187: 1186: 1179: 1175: 1166: 1162: 1147: 1143: 1128: 1124: 1123: 1121: 1103: 1099: 1097: 1094: 1093: 1052: 1047: 1046: 1044: 1041: 1040: 1003: 998: 997: 995: 992: 991: 969: 966: 965: 942: 937: 936: 934: 931: 930: 895: 890: 889: 862: 857: 856: 847: 839: 838: 829: 824: 823: 815: 813: 810: 809: 802: 793: 756: 751: 746: 733: 728: 723: 710: 709: 687: 683: 682: 672: 670: 667: 666: 648: 611: 607: 593: 589: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 519: 515: 511: 507: 500: 496: 495: 489: 485: 434: 386: 361: 307:steam reforming 295:fuel efficiency 287:energy recovery 231: 199:electrochemical 173: 162: 161: 160: 155: 149: 146: 139: 127:This article's 123: 108: 97: 91: 88: 82:Please help by 81: 69: 65: 28: 24: 17: 12: 11: 5: 6085: 6075: 6074: 6057: 6056: 6054: 6053: 6047: 6044: 6043: 6041: 6040: 6035: 6030: 6025: 6019: 6017: 6011: 6010: 6008: 6007: 6006: 6005: 6000: 5990: 5985: 5980: 5975: 5970: 5965: 5960: 5955: 5949: 5947: 5943: 5942: 5940: 5939: 5934: 5928: 5926: 5922: 5921: 5919: 5918: 5913: 5908: 5903: 5898: 5893: 5888: 5883: 5877: 5875: 5871: 5870: 5868: 5867: 5862: 5857: 5852: 5847: 5841: 5839: 5838:By electrolyte 5835: 5834: 5827: 5826: 5819: 5812: 5804: 5798: 5797: 5792: 5787: 5775: 5763: 5758: 5753: 5741: 5736: 5724: 5719: 5707: 5700: 5699:External links 5697: 5695: 5694: 5677: 5622: 5611:(3): 360–399. 5595: 5560: 5525: 5514:(8): 889–900. 5498: 5489: 5438: 5425: 5415: 5380: 5367: 5331: 5298: 5286: 5260: 5230: 5203: 5176: 5165:(3): 146–152. 5149: 5124: 5097: 5043: 5036: 5010: 4991: 4979: 4948: 4909: 4894: 4859: 4848:(1–2): 79–90. 4831: 4803: 4776: 4763:(5): 664–671. 4743: 4724:(2): 155–168. 4708: 4697:(4): 396–402. 4674: 4639: 4611: 4584:(4): 457–465. 4564: 4521: 4490: 4425: 4390: 4363:(2): 241–249. 4343: 4293: 4254: 4247: 4217: 4184: 4153: 4126:(5): 682–698. 4103: 4046: 4027:(2): 428–434. 4011: 3973: 3945: 3930: 3911: 3860: 3832: 3797: 3762: 3721: 3694:Energy Reviews 3680: 3651:(7): 571–577. 3628: 3590: 3562: 3560: 3557: 3556: 3555: 3550: 3545: 3540: 3534: 3528: 3522: 3521: 3507: 3491: 3488: 3483: 3479: 3455: 3451: 3428: 3424: 3420: 3416: 3412: 3408: 3404: 3392: 3389: 3384: 3376: 3337: 3334: 3324: 3320: 3292: 3289: 3284: 3276: 3271: 3268: 3263: 3259: 3228: 3225: 3216:interconnect. 3156:Specifically, 3109: 3106: 3082: 3079: 3070:Microstructure 3046: 3024: 3000: 2997: 2993: 2968: 2961: 2958: 2943:= temperature 2932: 2906: 2882: 2879: 2876: 2873: 2870: 2865: 2862: 2855: 2852: 2820: 2815: 2812: 2809: 2806: 2803: 2799: 2793: 2788: 2785: 2781: 2773: 2769: 2764: 2757: 2754: 2744: 2739: 2736: 2733: 2730: 2727: 2722: 2719: 2712: 2709: 2675: 2653: 2629: 2625: 2600: 2597: 2593: 2568: 2565: 2561: 2534: 2528: 2521: 2518: 2515: 2512: 2508: 2502: 2499: 2496: 2492: 2486: 2482: 2479: 2476: 2473: 2470: 2467: 2464: 2461: 2453: 2448: 2444: 2440: 2433: 2428: 2425: 2422: 2419: 2415: 2411: 2406: 2401: 2398: 2395: 2391: 2384: 2381: 2378: 2375: 2372: 2367: 2362: 2354: 2349: 2345: 2341: 2338: 2331: 2328: 2324: 2320: 2314: 2309: 2306: 2302: 2274: 2271: 2246: 2242: 2217: 2214: 2211: 2208: 2204: 2179: 2176: 2172: 2146: 2142: 2139: 2133: 2129: 2125: 2122: 2118: 2115: 2110: 2107: 2104: 2101: 2097: 2093: 2088: 2085: 2081: 2050:Thermal stress 2044: 2041: 2036: 2035: 2021: 2017: 2006: 1994: 1984: 1972: 1962: 1950: 1940: 1927: 1916: 1902: 1897: 1885: 1884:= gas constant 1873: 1859: 1858: 1846: 1839: 1834: 1829: 1824: 1820: 1817: 1814: 1808: 1805: 1801: 1795: 1792: 1786: 1781: 1778: 1775: 1770: 1748: 1745: 1735: 1732: 1719: 1699: 1679: 1657: 1653: 1641: 1640: 1625: 1622: 1619: 1614: 1611: 1605: 1601: 1596: 1592: 1588: 1585: 1559: 1539: 1528: 1527: 1514: 1511: 1506: 1501: 1497: 1481: 1478: 1472: 1469: 1460: 1459: 1445: 1441: 1430: 1416: 1412: 1401: 1387: 1383: 1372: 1358: 1355: 1352: 1348: 1337: 1323: 1320: 1317: 1313: 1302: 1301:= cell voltage 1288: 1285: 1282: 1279: 1275: 1260: 1259: 1245: 1242: 1238: 1232: 1228: 1224: 1221: 1217: 1213: 1206: 1202: 1196: 1192: 1182: 1178: 1174: 1169: 1165: 1161: 1156: 1153: 1150: 1146: 1142: 1137: 1134: 1131: 1127: 1120: 1115: 1112: 1109: 1106: 1102: 1082: 1081: 1067: 1064: 1061: 1058: 1055: 1050: 1038: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1001: 989: 973: 963: 945: 940: 924: 923: 910: 907: 904: 901: 898: 893: 888: 883: 880: 877: 874: 871: 868: 865: 860: 855: 850: 845: 842: 837: 832: 827: 822: 818: 801: 798: 792: 789: 773: 772: 759: 754: 749: 744: 739: 736: 731: 726: 721: 716: 713: 708: 705: 701: 698: 695: 690: 686: 679: 676: 647: 644: 643: 642: 639: 636: 633: 609: 605: 588: 585: 580: 576: 572: 568: 564: 560: 556: 552: 548: 544: 540: 536: 532: 528: 524: 517: 513: 509: 505: 487: 483: 433: 430: 385: 382: 360: 357: 230: 227: 175: 174: 157: 156: 136:the key points 126: 124: 117: 110: 109: 72: 70: 63: 58: 32: 31: 29: 22: 15: 9: 6: 4: 3: 2: 6084: 6073: 6070: 6069: 6067: 6052: 6049: 6048: 6045: 6039: 6036: 6034: 6031: 6029: 6026: 6024: 6021: 6020: 6018: 6016: 6012: 6004: 6001: 5999: 5996: 5995: 5994: 5991: 5989: 5986: 5984: 5981: 5979: 5976: 5974: 5971: 5969: 5966: 5964: 5961: 5959: 5956: 5954: 5951: 5950: 5948: 5944: 5938: 5935: 5933: 5930: 5929: 5927: 5925:Biofuel cells 5923: 5917: 5914: 5912: 5909: 5907: 5904: 5902: 5899: 5897: 5894: 5892: 5889: 5887: 5884: 5882: 5879: 5878: 5876: 5872: 5866: 5863: 5861: 5858: 5856: 5853: 5851: 5848: 5846: 5843: 5842: 5840: 5836: 5832: 5825: 5820: 5818: 5813: 5811: 5806: 5805: 5802: 5796: 5793: 5791: 5788: 5786: 5782: 5779: 5776: 5774: 5770: 5767: 5764: 5762: 5759: 5757: 5754: 5752: 5748: 5745: 5742: 5740: 5737: 5735: 5731: 5728: 5725: 5723: 5720: 5718: 5714: 5711: 5708: 5706: 5703: 5702: 5690: 5689: 5681: 5673: 5669: 5665: 5661: 5657: 5653: 5649: 5645: 5641: 5637: 5633: 5626: 5618: 5614: 5610: 5606: 5599: 5591: 5587: 5583: 5579: 5575: 5571: 5564: 5556: 5552: 5548: 5544: 5540: 5536: 5529: 5521: 5517: 5513: 5509: 5502: 5493: 5485: 5481: 5477: 5473: 5469: 5465: 5461: 5457: 5453: 5449: 5442: 5435: 5429: 5419: 5411: 5407: 5403: 5399: 5395: 5391: 5384: 5377: 5371: 5363: 5359: 5355: 5351: 5347: 5343: 5335: 5324: 5320: 5316: 5315:Risoe Reports 5309: 5302: 5295: 5290: 5274: 5270: 5264: 5248: 5244: 5240: 5234: 5226: 5222: 5218: 5214: 5207: 5199: 5195: 5191: 5187: 5180: 5172: 5168: 5164: 5160: 5153: 5138: 5134: 5128: 5120: 5116: 5112: 5108: 5101: 5093: 5089: 5085: 5081: 5077: 5073: 5069: 5065: 5061: 5057: 5050: 5048: 5039: 5033: 5029: 5024: 5023: 5014: 5008: 5004: 5000: 4995: 4988: 4983: 4975: 4971: 4967: 4963: 4959: 4952: 4944: 4940: 4936: 4932: 4928: 4924: 4920: 4913: 4905: 4898: 4890: 4886: 4882: 4878: 4874: 4870: 4863: 4855: 4851: 4847: 4843: 4835: 4827: 4823: 4820:: 3907–3927. 4819: 4815: 4807: 4799: 4795: 4791: 4787: 4780: 4771: 4766: 4762: 4758: 4754: 4747: 4739: 4735: 4731: 4727: 4723: 4719: 4712: 4704: 4700: 4696: 4692: 4685: 4683: 4681: 4679: 4670: 4666: 4662: 4658: 4654: 4650: 4643: 4635: 4631: 4627: 4623: 4615: 4607: 4603: 4599: 4595: 4591: 4587: 4583: 4579: 4575: 4568: 4560: 4556: 4552: 4548: 4544: 4540: 4536: 4532: 4525: 4517: 4513: 4509: 4505: 4501: 4494: 4486: 4480: 4472: 4468: 4464: 4460: 4456: 4452: 4448: 4444: 4440: 4436: 4429: 4421: 4417: 4413: 4409: 4405: 4401: 4394: 4386: 4382: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4347: 4339: 4335: 4331: 4327: 4323: 4319: 4315: 4311: 4307: 4300: 4298: 4289: 4285: 4281: 4277: 4273: 4269: 4265: 4258: 4250: 4244: 4240: 4236: 4232: 4228: 4221: 4207: 4203: 4199: 4195: 4188: 4180: 4176: 4172: 4168: 4164: 4157: 4149: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4114: 4107: 4099: 4095: 4090: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4050: 4042: 4038: 4034: 4030: 4026: 4022: 4015: 4006: 4001: 3997: 3993: 3989: 3985: 3977: 3969: 3965: 3961: 3957: 3949: 3942: 3937: 3935: 3927: 3923: 3920: 3915: 3907: 3903: 3898: 3897:10044/1/41491 3893: 3888: 3883: 3879: 3875: 3871: 3864: 3856: 3852: 3848: 3844: 3843:ACS Catalysis 3836: 3828: 3824: 3820: 3816: 3812: 3808: 3801: 3793: 3789: 3785: 3781: 3777: 3773: 3766: 3758: 3754: 3749: 3744: 3740: 3736: 3732: 3725: 3717: 3713: 3708: 3703: 3700:(3): 100038. 3699: 3695: 3691: 3684: 3676: 3672: 3667: 3666:10044/1/73325 3662: 3658: 3654: 3650: 3646: 3639: 3637: 3635: 3633: 3624: 3620: 3616: 3612: 3608: 3604: 3597: 3595: 3586: 3582: 3578: 3574: 3571:Badwal, SPS. 3567: 3563: 3554: 3551: 3549: 3546: 3544: 3541: 3538: 3535: 3532: 3529: 3527: 3524: 3523: 3519: 3518:Energy portal 3513: 3508: 3505: 3499: 3494: 3487: 3476: 3473: 3470: 3467: 3464: 3461: 3458: 3448: 3444: 3440: 3439: 3438: 3432: 3402: 3398: 3388: 3382: 3373: 3371: 3367: 3366:trigeneration 3361: 3359: 3355: 3351: 3347: 3343: 3333: 3329: 3313: 3309: 3305: 3301: 3297: 3288: 3280: 3267: 3256: 3254: 3250: 3246: 3242: 3238: 3234: 3224: 3221: 3217: 3215: 3210: 3208: 3204: 3200: 3196: 3192: 3188: 3184: 3182: 3177: 3173: 3169: 3167: 3163: 3159: 3154: 3152: 3148: 3143: 3140: 3136: 3130: 3129:350 °C. 3126: 3124: 3120: 3116: 3105: 3103: 3099: 3095: 3091: 3087: 3078: 3076: 3071: 3066: 3064: 3060: 3044: 3036: 3022: 3014: 2998: 2995: 2991: 2982: 2966: 2956: 2944: 2930: 2922: 2920: 2904: 2896: 2880: 2877: 2874: 2871: 2868: 2863: 2860: 2853: 2850: 2838: 2835: 2818: 2813: 2810: 2807: 2804: 2801: 2797: 2791: 2786: 2783: 2779: 2771: 2767: 2762: 2752: 2742: 2737: 2734: 2731: 2728: 2725: 2720: 2717: 2710: 2707: 2695: 2693: 2687: 2673: 2665: 2651: 2643: 2627: 2623: 2614: 2598: 2595: 2591: 2582: 2566: 2563: 2559: 2550: 2547: 2526: 2519: 2516: 2513: 2510: 2506: 2500: 2497: 2494: 2490: 2484: 2480: 2477: 2471: 2468: 2465: 2459: 2451: 2446: 2442: 2438: 2431: 2426: 2423: 2420: 2417: 2413: 2409: 2404: 2399: 2396: 2393: 2389: 2379: 2376: 2373: 2360: 2352: 2347: 2343: 2339: 2336: 2329: 2326: 2322: 2318: 2312: 2307: 2304: 2300: 2291: 2287: 2272: 2269: 2260: 2244: 2240: 2231: 2215: 2212: 2209: 2206: 2202: 2193: 2177: 2174: 2170: 2161: 2158: 2140: 2137: 2131: 2127: 2123: 2116: 2113: 2108: 2105: 2102: 2099: 2095: 2091: 2086: 2083: 2079: 2070: 2066: 2063: 2058: 2056: 2051: 2040: 2019: 2015: 2007: 1992: 1985: 1970: 1963: 1948: 1941: 1925: 1917: 1900: 1895: 1886: 1871: 1864: 1863: 1862: 1844: 1837: 1832: 1827: 1822: 1818: 1815: 1812: 1806: 1803: 1799: 1793: 1790: 1784: 1779: 1776: 1773: 1768: 1759: 1758: 1757: 1755: 1744: 1740: 1731: 1717: 1697: 1677: 1655: 1651: 1623: 1620: 1617: 1612: 1609: 1603: 1599: 1594: 1590: 1586: 1583: 1576: 1575: 1574: 1571: 1557: 1537: 1512: 1509: 1504: 1499: 1495: 1487: 1486: 1485: 1477: 1468: 1466: 1443: 1439: 1431: 1414: 1410: 1402: 1385: 1381: 1373: 1356: 1353: 1350: 1346: 1338: 1321: 1318: 1315: 1311: 1303: 1286: 1283: 1280: 1277: 1273: 1265: 1264: 1263: 1243: 1240: 1236: 1230: 1226: 1222: 1219: 1215: 1211: 1204: 1200: 1194: 1190: 1180: 1176: 1172: 1167: 1163: 1159: 1154: 1151: 1148: 1144: 1140: 1135: 1132: 1129: 1125: 1118: 1113: 1110: 1107: 1104: 1100: 1092: 1091: 1090: 1086: 1065: 1062: 1059: 1056: 1053: 1048: 1039: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 999: 990: 987: 971: 964: 961: 943: 938: 929: 928: 927: 908: 905: 902: 899: 896: 891: 886: 881: 878: 875: 872: 869: 866: 863: 858: 853: 848: 843: 840: 835: 830: 825: 820: 816: 808: 807: 806: 800:Polarizations 797: 788: 786: 782: 778: 757: 752: 747: 737: 734: 729: 724: 719: 714: 706: 703: 688: 677: 674: 665: 664: 663: 661: 657: 653: 640: 637: 634: 631: 630: 629: 625: 623: 619: 615: 612:– 9ScSZ) and 603: 599: 584: 521: 491: 480: 479: 475: 473: 469: 465: 461: 457: 452: 448: 444: 439: 429: 427: 423: 419: 415: 411: 407: 403: 399: 395: 394:air preheater 391: 381: 378: 374: 365: 356: 354: 349: 345: 340: 338: 334: 330: 328: 324: 320: 316: 312: 308: 303: 298: 296: 292: 288: 285: 281: 276: 274: 270: 266: 262: 259: 254: 252: 248: 244: 240: 236: 226: 224: 218: 217:electrolyte. 216: 212: 208: 204: 200: 196: 192: 183: 179: 171: 168: 153: 150:February 2022 143: 137: 135: 130: 125: 121: 116: 115: 106: 103: 95: 92:December 2020 85: 79: 78: 73:This article 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 5963:Flow battery 5864: 5687: 5680: 5639: 5635: 5625: 5608: 5604: 5598: 5573: 5569: 5563: 5538: 5534: 5528: 5511: 5507: 5501: 5492: 5451: 5447: 5441: 5433: 5428: 5418: 5393: 5389: 5383: 5375: 5370: 5345: 5341: 5334: 5323:the original 5318: 5314: 5301: 5289: 5277:. Retrieved 5273:the original 5263: 5251:. Retrieved 5247:the original 5242: 5233: 5219:: 11. 2015. 5216: 5212: 5206: 5189: 5185: 5179: 5162: 5158: 5152: 5140:. Retrieved 5136: 5127: 5110: 5106: 5100: 5059: 5055: 5021: 5013: 4994: 4982: 4965: 4961: 4951: 4926: 4922: 4912: 4897: 4872: 4868: 4862: 4845: 4841: 4834: 4817: 4813: 4806: 4789: 4785: 4779: 4760: 4756: 4746: 4721: 4717: 4711: 4694: 4690: 4652: 4648: 4642: 4625: 4621: 4614: 4581: 4577: 4567: 4534: 4530: 4524: 4499: 4493: 4479:cite journal 4438: 4434: 4428: 4403: 4399: 4393: 4360: 4356: 4346: 4313: 4309: 4271: 4267: 4257: 4230: 4220: 4209:, retrieved 4197: 4187: 4170: 4166: 4156: 4123: 4119: 4106: 4063: 4059: 4049: 4024: 4020: 4014: 3987: 3983: 3976: 3959: 3955: 3948: 3914: 3877: 3873: 3863: 3846: 3842: 3835: 3810: 3806: 3800: 3775: 3771: 3765: 3738: 3734: 3724: 3697: 3693: 3683: 3648: 3644: 3606: 3602: 3585:the original 3580: 3576: 3566: 3477: 3474: 3471: 3468: 3465: 3462: 3459: 3449: 3445: 3441: 3437:landfill gas 3434: 3433: 3394: 3374: 3362: 3339: 3330: 3318: 3306: 3302: 3298: 3294: 3281: 3273: 3257: 3253:hydrogen gas 3230: 3222: 3218: 3211: 3189: 3185: 3170: 3155: 3144: 3131: 3127: 3125:components. 3111: 3084: 3075:Grain growth 3067: 3037: 3015: 2983: 2945: 2923: 2921:coefficient 2897: 2839: 2836: 2696: 2688: 2666: 2644: 2615: 2583: 2551: 2548: 2292: 2288: 2261: 2232: 2194: 2162: 2159: 2071: 2067: 2059: 2055:Delamination 2046: 2037: 1860: 1750: 1741: 1737: 1642: 1572: 1529: 1483: 1474: 1461: 1261: 1087: 1083: 925: 803: 794: 791:Interconnect 774: 662:as follows: 649: 626: 590: 522: 492: 481: 477: 476: 436:The ceramic 435: 387: 370: 341: 331: 299: 277: 255: 232: 229:Introduction 219: 194: 190: 188: 178: 163: 147: 131: 129:lead section 98: 89: 74: 50: 43: 37: 36:Please help 33: 5953:Blue energy 5253:30 November 4792:: 141–337. 4211:14 November 4005:10397/97578 3454:S → NiS + H 3350:Rolls-Royce 3249:electrolyte 3197:stabilized 3191:Ceres Power 3172:Rolls-Royce 3135:natural gas 3119:elastomeric 3063:Coble creep 2286:= porosity 587:Electrolyte 486:+O ——> H 458:made up of 402:afterburner 398:prereformer 289:devices or 284:heat engine 239:electrolyte 6072:Fuel cells 5831:Fuel cells 5423:2426-2428. 5396:(1): 1–9. 5279:8 December 5159:Fuel Cells 5142:6 November 4578:Fuel Cells 4274:(11): 11. 3990:: 115175. 3962:: 109560. 3559:References 3358:efficiency 543:, MgO, TiO 344:fuel cells 211:Fuel cells 39:improve it 5664:1938-6737 5590:100859434 5484:206533328 5342:ECS Trans 5092:206533328 4943:0002-7820 4628:: 53–60. 4606:104669264 4598:1615-6846 4551:0167-2738 4406:: 19–34. 4385:0378-7753 4330:1614-6840 3792:240563264 3757:256964689 3716:259652830 3675:199179410 3623:237909427 3181:Futuregen 3123:polymeric 2992:σ 2960:~ 2919:Diffusion 2854:˙ 2851:ϵ 2780:σ 2756:~ 2711:˙ 2708:ϵ 2652:ν 2560:σ 2481:⁡ 2472:ν 2410:− 2380:ν 2377:− 2340:π 2301:σ 2124:− 2117:⁡ 1926:β 1813:× 1800:β 1769:η 1652:σ 1621:⋅ 1610:− 1600:⋅ 1591:σ 1584:σ 1558:σ 1538:δ 1513:σ 1510:δ 1382:η 1227:η 1223:− 1212:⋅ 1173:⋅ 1164:η 1160:⋅ 1141:− 1049:η 1000:η 892:η 887:− 859:η 854:− 849:ω 836:− 758:× 743:⟶ 738:∙ 735:∙ 656:electrode 654:, or air 377:ionically 359:Operation 302:reforming 203:oxidizing 134:summarize 45:talk page 6066:Category 6051:Glossary 6015:Hydrogen 5781:Archived 5769:Archived 5747:Archived 5730:Archived 5713:Archived 5476:22096189 5137:Nedstack 5084:22096189 5003:Archived 4559:95598314 4516:98044813 4463:11713541 4338:95175720 4148:51915676 4098:25169166 4066:: 5754. 3922:Archived 3906:27933769 3490:See also 3239:for the 3199:zirconia 3166:gasoline 3108:Research 3061:, 3 for 2273:′ 2141:′ 1262:where: 715:′ 373:ceramics 321:to form 319:gasified 261:catalyst 251:hydrogen 197:) is an 6038:Vehicle 6033:Storage 6028:Station 6023:Economy 5874:By fuel 5672:1414432 5644:Bibcode 5543:Bibcode 5456:Bibcode 5448:Science 5434:Science 5398:Bibcode 5350:Bibcode 5269:"HITEC" 5064:Bibcode 5056:Science 4877:Bibcode 4726:Bibcode 4657:Bibcode 4471:4405856 4443:Bibcode 4408:Bibcode 4365:Bibcode 4276:Bibcode 4128:Bibcode 4089:4148670 4068:Bibcode 4029:Bibcode 3815:Bibcode 3354:SOFC-GT 3342:SOFC-GT 3336:SOFC-GT 3291:LT-SOFC 3245:ceramic 3142:costs. 2837:Where: 2549:Where: 2160:Where: 1861:where: 1643:where: 1530:where: 926:where: 652:cathode 646:Cathode 594:600 °C, 499:⁄ 317:may be 315:biomass 245:to the 243:cathode 215:ceramic 5946:Others 5670:  5662:  5588:  5482:  5474:  5090:  5082:  5034:  4941:  4902:ASTM. 4604:  4596:  4557:  4549:  4514:  4469:  4461:  4435:Nature 4383:  4336:  4328:  4245:  4146:  4096:  4086:  3904:  3790:  3755:  3714:  3673:  3621:  3450:Ni + H 3427:and CO 3270:ITSOFC 3214:cermet 3195:yttria 3151:diesel 3139:sulfur 3081:Target 512:S, (CH 460:nickel 456:cermet 449:. The 412:, and 392:, the 323:syngas 273:biogas 269:sulfur 265:PEMFCs 5586:S2CID 5480:S2CID 5326:(PDF) 5311:(PDF) 5088:S2CID 4602:S2CID 4555:S2CID 4512:S2CID 4467:S2CID 4334:S2CID 4144:S2CID 4116:(PDF) 3788:S2CID 3753:S2CID 3712:S2CID 3671:S2CID 3619:S2CID 622:ceria 490:O+2e 438:anode 432:Anode 247:anode 235:oxide 5668:OSTI 5660:ISSN 5472:PMID 5319:1608 5281:2013 5255:2009 5217:2015 5144:2016 5080:PMID 5032:ISBN 4939:ISSN 4594:ISSN 4547:ISSN 4485:link 4459:PMID 4381:ISSN 4326:ISSN 4243:ISBN 4213:2020 4094:PMID 3902:PMID 3401:DCFC 3391:DCFC 3370:HVAC 3348:and 3227:SOEC 3098:coal 1670:and 785:LSCF 650:The 602:ScSZ 535:, La 447:fuel 313:and 311:coal 207:fuel 195:SOFC 193:(or 5652:doi 5613:doi 5578:doi 5551:doi 5539:196 5516:doi 5464:doi 5452:334 5406:doi 5394:114 5358:doi 5221:doi 5194:doi 5167:doi 5115:doi 5072:doi 5060:334 4970:doi 4931:doi 4885:doi 4850:doi 4846:138 4822:doi 4794:doi 4765:doi 4734:doi 4722:171 4699:doi 4665:doi 4653:162 4630:doi 4626:302 4586:doi 4539:doi 4535:135 4504:doi 4451:doi 4439:414 4416:doi 4404:202 4373:doi 4361:141 4318:doi 4284:doi 4272:153 4235:doi 4202:doi 4175:doi 4171:163 4136:doi 4084:PMC 4076:doi 4037:doi 4025:145 4000:hdl 3992:doi 3988:253 3964:doi 3960:119 3892:hdl 3882:doi 3878:116 3851:doi 3823:doi 3811:196 3780:doi 3743:doi 3702:doi 3661:hdl 3653:doi 3611:doi 3486:S. 3419:CoO 3417:0.5 3413:0.5 3340:An 3203:YSZ 3183:). 3162:BMW 3086:DOE 2114:exp 577:0.5 573:0.5 569:0.2 565:0.8 527:, Y 6068:: 5666:. 5658:. 5650:. 5640:78 5638:. 5634:. 5609:38 5607:. 5584:. 5574:41 5572:. 5549:. 5537:. 5512:28 5510:. 5478:. 5470:. 5462:. 5450:. 5404:. 5392:. 5356:. 5346:78 5344:. 5317:. 5313:. 5241:. 5215:. 5190:86 5188:. 5161:. 5135:. 5111:22 5109:. 5086:. 5078:. 5070:. 5058:. 5046:^ 5030:. 5028:19 4966:38 4964:. 4960:. 4937:. 4927:54 4925:. 4921:. 4883:. 4873:52 4871:. 4844:. 4818:38 4816:. 4790:72 4788:. 4761:11 4759:. 4755:. 4732:. 4720:. 4693:. 4677:^ 4663:. 4651:. 4624:. 4600:. 4592:. 4582:18 4580:. 4576:. 4553:. 4545:. 4533:. 4510:. 4481:}} 4477:{{ 4465:. 4457:. 4449:. 4437:. 4414:. 4402:. 4379:. 4371:. 4359:. 4355:. 4332:. 4324:. 4312:. 4308:. 4296:^ 4282:. 4270:. 4266:. 4241:. 4196:, 4169:. 4142:. 4134:. 4124:29 4122:. 4118:. 4092:. 4082:. 4074:. 4062:. 4058:. 4035:. 4023:. 3998:. 3986:. 3958:. 3933:^ 3900:. 3890:. 3876:. 3872:. 3847:11 3845:. 3821:. 3809:. 3786:. 3776:40 3774:. 3751:. 3739:37 3737:. 3733:. 3710:. 3696:. 3692:. 3669:. 3659:. 3647:. 3631:^ 3617:. 3607:46 3605:. 3593:^ 3581:50 3579:. 3575:. 3480:eq 3415:Sr 3407:CO 3360:. 3255:. 3247:, 3231:A 3065:) 2917:= 2478:ln 1467:. 984:= 958:= 575:Mn 571:Cr 567:Sr 474:. 420:, 416:, 408:, 404:, 400:, 396:, 329:. 297:. 209:. 205:a 189:A 48:. 5823:e 5816:t 5809:v 5674:. 5654:: 5646:: 5619:. 5615:: 5592:. 5580:: 5557:. 5553:: 5545:: 5522:. 5518:: 5486:. 5466:: 5458:: 5412:. 5408:: 5400:: 5364:. 5360:: 5352:: 5283:. 5257:. 5227:. 5223:: 5200:. 5196:: 5173:. 5169:: 5163:3 5146:. 5121:. 5117:: 5094:. 5074:: 5066:: 5040:. 4976:. 4972:: 4945:. 4933:: 4906:. 4891:. 4887:: 4879:: 4856:. 4852:: 4828:. 4824:: 4800:. 4796:: 4773:. 4767:: 4740:. 4736:: 4728:: 4705:. 4701:: 4695:3 4671:. 4667:: 4659:: 4636:. 4632:: 4608:. 4588:: 4561:. 4541:: 4518:. 4506:: 4487:) 4473:. 4453:: 4445:: 4422:. 4418:: 4410:: 4387:. 4375:: 4367:: 4340:. 4320:: 4314:2 4290:. 4286:: 4278:: 4251:. 4237:: 4204:: 4181:. 4177:: 4150:. 4138:: 4130:: 4100:. 4078:: 4070:: 4064:4 4043:. 4039:: 4031:: 4008:. 4002:: 3994:: 3970:. 3966:: 3908:. 3894:: 3884:: 3857:. 3853:: 3829:. 3825:: 3817:: 3794:. 3782:: 3759:. 3745:: 3718:. 3704:: 3698:2 3677:. 3663:: 3655:: 3649:2 3625:. 3613:: 3484:2 3456:2 3452:2 3429:2 3425:2 3421:3 3409:3 3405:2 3399:( 3385:2 3377:2 3325:3 3321:3 3285:3 3277:3 3264:2 3260:2 3201:( 3121:/ 3045:n 3023:m 2999:q 2996:e 2967:0 2957:k 2931:T 2905:D 2881:p 2878:e 2875:e 2872:r 2869:c 2864:q 2861:e 2819:n 2814:n 2811:i 2808:a 2805:r 2802:g 2798:d 2792:m 2787:q 2784:e 2772:T 2768:D 2763:0 2753:k 2743:= 2738:p 2735:e 2732:e 2729:r 2726:c 2721:q 2718:e 2674:D 2628:s 2624:h 2599:r 2596:c 2592:F 2567:r 2564:c 2533:) 2527:) 2520:d 2517:a 2514:o 2511:l 2507:D 2501:p 2498:u 2495:s 2491:D 2485:( 2475:) 2469:+ 2466:1 2463:( 2460:+ 2452:2 2447:s 2443:D 2439:2 2432:2 2427:d 2424:a 2421:o 2418:l 2414:D 2405:2 2400:p 2397:u 2394:s 2390:D 2383:) 2374:1 2371:( 2366:( 2361:+ 2353:2 2348:s 2344:h 2337:2 2330:r 2327:c 2323:F 2319:3 2313:= 2308:r 2305:c 2270:p 2245:k 2241:b 2216:0 2213:, 2210:C 2207:I 2203:K 2178:C 2175:I 2171:K 2145:) 2138:p 2132:k 2128:b 2121:( 2109:0 2106:, 2103:C 2100:I 2096:K 2092:= 2087:C 2084:I 2080:K 2020:0 2016:i 1993:i 1971:F 1949:z 1901:0 1896:T 1872:R 1845:) 1838:0 1833:i 1828:i 1823:( 1819:n 1816:l 1807:F 1804:z 1794:T 1791:R 1785:= 1780:t 1777:c 1774:a 1718:R 1698:T 1678:E 1656:0 1624:T 1618:R 1613:E 1604:e 1595:0 1587:= 1505:= 1500:1 1496:r 1444:2 1440:r 1415:1 1411:r 1386:f 1357:x 1354:a 1351:m 1347:i 1322:x 1319:a 1316:m 1312:E 1287:C 1284:F 1281:O 1278:S 1274:E 1244:1 1241:+ 1237:) 1231:f 1220:1 1216:( 1205:2 1201:r 1195:1 1191:r 1181:1 1177:r 1168:f 1155:x 1152:a 1149:m 1145:i 1136:x 1133:a 1130:m 1126:E 1119:= 1114:C 1111:F 1108:O 1105:S 1101:E 1066:e 1063:d 1060:o 1057:n 1054:a 1023:e 1020:d 1017:o 1014:h 1011:t 1008:a 1005:c 972:R 944:0 939:E 909:e 906:d 903:o 900:n 897:a 882:e 879:d 876:o 873:h 870:t 867:a 864:c 844:R 841:i 831:0 826:E 821:= 817:V 753:o 748:O 730:o 725:V 720:+ 712:e 707:2 704:+ 700:) 697:g 694:( 689:2 685:O 678:2 675:1 610:3 608:O 606:2 581:3 579:O 561:2 557:2 553:4 549:2 545:2 541:3 539:O 537:2 533:3 531:O 529:2 525:2 518:2 516:) 514:3 510:2 506:2 504:O 501:2 497:1 488:2 484:2 482:H 170:) 164:( 152:) 148:( 138:. 105:) 99:( 94:) 90:( 80:. 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
layout guidelines
editing the article
Learn how and when to remove this message

lead section
summarize
provide an accessible overview
Learn how and when to remove this message

electrochemical
oxidizing
fuel
Fuel cells
ceramic
operating temperature
oxide
electrolyte
cathode
anode
hydrogen
platinum group metals
catalyst
PEMFCs
sulfur
biogas
Ceramic Fuel Cells
heat engine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.