Knowledge

Periodic point

Source 📝

715: 980: 427: 1141: 919: 548: 490: 855: 774: 308: 369: 1047: 813: 1172: 604: 171: 108: 1231: 817:
there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and
865:
one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic).
945: 861:
rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of
50:
is a point which the system returns to after a certain number of function iterations or a certain amount of time.
928: 17: 381: 1084: 881: 505: 444: 874: 820: 742: 255: 590: 342: 1010: 785: 1152: 131: 1221: 333: 78: 47: 59: 8: 1259: 1243: 936: 739:
between 1 and 3, the value 0 is still periodic but is not attracting, while the value
573:; and if both the stable and unstable manifold have nonzero dimension, it is called a 710:{\displaystyle x_{t+1}=rx_{t}(1-x_{t}),\qquad 0\leq x_{t}\leq 1,\qquad 0\leq r\leq 4} 566: 235: 188: 66: 35: 1226: 1183: 39: 727:
between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence
1216: 558: 329: 1253: 597: 578: 1206: 31: 1239: 337: 27:
Point which a function/system returns to after some time or iterations
1211: 732: 554: 434: 1238:
This article incorporates material from hyperbolic fixed point on
561:
of a periodic point or fixed point is zero, the point is called a
196: 719:
exhibits periodicity for various values of the parameter
825: 747: 1155: 1087: 1013: 948: 884: 823: 788: 745: 607: 508: 447: 384: 345: 258: 134: 81: 371:is defined, then one says that a periodic point is 1166: 1135: 1041: 974: 913: 849: 807: 776:is an attracting periodic point of period 1. With 768: 709: 542: 484: 421: 363: 302: 165: 102: 234:(this is not to be confused with the notion of a 1251: 1244:Creative Commons Attribution/Share-Alike License 975:{\displaystyle \Phi :\mathbb {R} \times X\to X} 1232:Periodic points of complex quadratic mappings 121:is called periodic point if there exists an 1157: 1038: 956: 889: 218:is a periodic point with the same period 1196:are periodic with the same prime period. 422:{\displaystyle |f_{n}^{\prime }|\neq 1,} 1136:{\displaystyle \Phi (t,x)=\Phi (t+T,x)} 914:{\displaystyle (\mathbb {R} ,X,\Phi ),} 543:{\displaystyle |f_{n}^{\prime }|>1.} 485:{\displaystyle |f_{n}^{\prime }|<1,} 321:. All periodic points are preperiodic. 14: 1252: 53: 868: 202:satisfying the above is called the 24: 1109: 1088: 1014: 949: 902: 850:{\displaystyle {\tfrac {r-1}{r}}.} 524: 463: 400: 356: 25: 1271: 769:{\displaystyle {\tfrac {r-1}{r}}} 303:{\displaystyle f_{n}(x)=f_{m}(x)} 691: 665: 589:A period-one point is called a 364:{\displaystyle f_{n}^{\prime }} 1242:, which is licensed under the 1130: 1112: 1103: 1091: 1042:{\displaystyle \Phi (T,x)=x\,} 1029: 1017: 966: 905: 885: 808:{\displaystyle 1+{\sqrt {6}},} 659: 640: 530: 510: 469: 449: 406: 386: 297: 291: 275: 269: 154: 148: 91: 13: 1: 1167:{\displaystyle \mathbb {R} .} 1067: 1056:with this property is called 780:greater than 3 but less than 875:real global dynamical system 166:{\displaystyle \ f_{n}(x)=x} 7: 1200: 584: 10: 1276: 857:As the value of parameter 565:; if the dimension of its 103:{\displaystyle f:X\to X,} 569:is zero, it is called a 241:If there exist distinct 195:. The smallest positive 1182:then all points on the 1178:Given a periodic point 1073:Given a periodic point 334:differentiable manifold 1168: 1137: 1052:The smallest positive 1043: 976: 915: 851: 809: 770: 711: 544: 486: 423: 365: 304: 167: 104: 1169: 1138: 1044: 977: 916: 852: 810: 771: 712: 545: 487: 424: 366: 305: 168: 105: 1222:Sharkovsky's theorem 1153: 1085: 1011: 946: 882: 821: 786: 743: 605: 506: 445: 382: 343: 256: 214:. If every point in 132: 79: 528: 467: 404: 360: 1164: 1133: 1039: 972: 937:evolution function 911: 847: 842: 805: 766: 764: 707: 540: 514: 482: 453: 419: 390: 361: 346: 300: 163: 100: 54:Iterated functions 36:iterated functions 34:, in the study of 841: 800: 763: 735:all orbits). For 567:unstable manifold 319:preperiodic point 236:periodic function 137: 40:dynamical systems 16:(Redirected from 1267: 1227:Stationary point 1195: 1191: 1181: 1175: 1173: 1171: 1170: 1165: 1160: 1146: 1142: 1140: 1139: 1134: 1080: 1076: 1063: 1055: 1048: 1046: 1045: 1040: 1003: 992: 988: 981: 979: 978: 973: 959: 934: 926: 922: 920: 918: 917: 912: 892: 869:Dynamical system 864: 860: 856: 854: 853: 848: 843: 837: 826: 816: 814: 812: 811: 806: 801: 796: 779: 775: 773: 772: 767: 765: 759: 748: 738: 730: 726: 722: 716: 714: 713: 708: 681: 680: 658: 657: 639: 638: 623: 622: 549: 547: 546: 541: 533: 527: 522: 513: 491: 489: 488: 483: 472: 466: 461: 452: 428: 426: 425: 420: 409: 403: 398: 389: 370: 368: 367: 362: 359: 354: 327: 316: 309: 307: 306: 301: 290: 289: 268: 267: 248: 244: 233: 225: 221: 217: 213: 201: 194: 186: 182: 172: 170: 169: 164: 147: 146: 135: 124: 120: 116: 109: 107: 106: 101: 71: 64: 21: 1275: 1274: 1270: 1269: 1268: 1266: 1265: 1264: 1250: 1249: 1203: 1193: 1190: 1186: 1179: 1156: 1154: 1151: 1150: 1148: 1144: 1086: 1083: 1082: 1078: 1074: 1070: 1061: 1053: 1012: 1009: 1008: 1001: 990: 986: 955: 947: 944: 943: 932: 924: 888: 883: 880: 879: 877: 871: 862: 858: 827: 824: 822: 819: 818: 795: 787: 784: 783: 781: 777: 749: 746: 744: 741: 740: 736: 728: 724: 720: 676: 672: 653: 649: 634: 630: 612: 608: 606: 603: 602: 587: 559:stable manifold 529: 523: 518: 509: 507: 504: 503: 468: 462: 457: 448: 446: 443: 442: 405: 399: 394: 385: 383: 380: 379: 355: 350: 344: 341: 340: 325: 314: 285: 281: 263: 259: 257: 254: 253: 246: 242: 231: 223: 219: 215: 211: 199: 192: 184: 181: 177: 142: 138: 133: 130: 129: 122: 118: 114: 80: 77: 76: 69: 62: 56: 28: 23: 22: 15: 12: 11: 5: 1273: 1263: 1262: 1235: 1234: 1229: 1224: 1219: 1214: 1209: 1202: 1199: 1198: 1197: 1188: 1176: 1163: 1159: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1069: 1066: 1050: 1049: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 983: 982: 971: 968: 965: 962: 958: 954: 951: 910: 907: 904: 901: 898: 895: 891: 887: 870: 867: 846: 840: 836: 833: 830: 804: 799: 794: 791: 762: 758: 755: 752: 706: 703: 700: 697: 694: 690: 687: 684: 679: 675: 671: 668: 664: 661: 656: 652: 648: 645: 642: 637: 633: 629: 626: 621: 618: 615: 611: 586: 583: 551: 550: 539: 536: 532: 526: 521: 517: 512: 493: 492: 481: 478: 475: 471: 465: 460: 456: 451: 430: 429: 418: 415: 412: 408: 402: 397: 393: 388: 358: 353: 349: 336:, so that the 330:diffeomorphism 311: 310: 299: 296: 293: 288: 284: 280: 277: 274: 271: 266: 262: 179: 174: 173: 162: 159: 156: 153: 150: 145: 141: 125:>0 so that 111: 110: 99: 96: 93: 90: 87: 84: 55: 52: 44:periodic point 26: 18:Periodic orbit 9: 6: 4: 3: 2: 1272: 1261: 1258: 1257: 1255: 1248: 1247: 1245: 1241: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1204: 1185: 1177: 1161: 1127: 1124: 1121: 1118: 1115: 1106: 1100: 1097: 1094: 1072: 1071: 1065: 1060:of the point 1059: 1035: 1032: 1026: 1023: 1020: 1007: 1006: 1005: 1000: 996: 969: 963: 960: 952: 942: 941: 940: 938: 930: 908: 899: 896: 893: 876: 866: 844: 838: 834: 831: 828: 802: 797: 792: 789: 760: 756: 753: 750: 734: 717: 704: 701: 698: 695: 692: 688: 685: 682: 677: 673: 669: 666: 662: 654: 650: 646: 643: 635: 631: 627: 624: 619: 616: 613: 609: 600: 599: 594: 592: 582: 580: 576: 572: 568: 564: 560: 556: 537: 534: 519: 515: 502: 501: 500: 498: 479: 476: 473: 458: 454: 441: 440: 439: 437: 436: 416: 413: 410: 395: 391: 378: 377: 376: 374: 351: 347: 339: 335: 331: 322: 320: 294: 286: 282: 278: 272: 264: 260: 252: 251: 250: 239: 237: 229: 210:of the point 209: 205: 198: 190: 160: 157: 151: 143: 139: 128: 127: 126: 97: 94: 88: 85: 82: 75: 74: 73: 72:into itself, 68: 61: 51: 49: 45: 41: 37: 33: 19: 1237: 1236: 1077:with period 1058:prime period 1057: 1051: 998: 994: 984: 872: 718: 601: 598:logistic map 595: 588: 579:saddle point 574: 570: 562: 552: 496: 494: 433: 431: 372: 323: 318: 317:is called a 312: 240: 230:with period 227: 208:least period 207: 204:prime period 203: 175: 112: 57: 43: 29: 1207:Limit cycle 929:phase space 729:0, 0, 0, …, 591:fixed point 432:that it is 32:mathematics 1260:Limit sets 1240:PlanetMath 1217:Stable set 1068:Properties 993:is called 495:and it is 435:attractive 373:hyperbolic 338:derivative 249:such that 226:is called 1212:Limit set 1110:Φ 1089:Φ 1015:Φ 967:→ 961:× 950:Φ 903:Φ 832:− 754:− 702:≤ 696:≤ 683:≤ 670:≤ 647:− 555:dimension 525:′ 497:repelling 464:′ 411:≠ 401:′ 357:′ 92:→ 1254:Category 1201:See also 1192:through 1143:for all 995:periodic 985:a point 873:Given a 733:attracts 585:Examples 228:periodic 113:a point 58:Given a 48:function 1174:⁠ 1149:⁠ 1081:, then 921:⁠ 878:⁠ 815:⁠ 782:⁠ 557:of the 553:If the 222:, then 197:integer 189:iterate 183:is the 65:from a 60:mapping 1187:γ 999:period 731:which 723:. For 575:saddle 563:source 176:where 136:  1184:orbit 997:with 923:with 332:of a 328:is a 313:then 46:of a 935:the 931:and 927:the 596:The 571:sink 535:> 474:< 245:and 42:, a 38:and 1147:in 1004:if 989:in 577:or 499:if 438:if 375:if 324:If 238:). 206:or 191:of 187:th 117:in 67:set 30:In 1256:: 1064:. 939:, 593:. 581:. 538:1. 1246:. 1194:x 1189:x 1180:x 1162:. 1158:R 1145:t 1131:) 1128:x 1125:, 1122:T 1119:+ 1116:t 1113:( 1107:= 1104:) 1101:x 1098:, 1095:t 1092:( 1079:T 1075:x 1062:x 1054:T 1036:x 1033:= 1030:) 1027:x 1024:, 1021:T 1018:( 1002:T 991:X 987:x 970:X 964:X 957:R 953:: 933:Φ 925:X 909:, 906:) 900:, 897:X 894:, 890:R 886:( 863:r 859:r 845:. 839:r 835:1 829:r 803:, 798:6 793:+ 790:1 778:r 761:r 757:1 751:r 737:r 725:r 721:r 705:4 699:r 693:0 689:, 686:1 678:t 674:x 667:0 663:, 660:) 655:t 651:x 644:1 641:( 636:t 632:x 628:r 625:= 620:1 617:+ 614:t 610:x 531:| 520:n 516:f 511:| 480:, 477:1 470:| 459:n 455:f 450:| 417:, 414:1 407:| 396:n 392:f 387:| 352:n 348:f 326:f 315:x 298:) 295:x 292:( 287:m 283:f 279:= 276:) 273:x 270:( 265:n 261:f 247:m 243:n 232:n 224:f 220:n 216:X 212:x 200:n 193:f 185:n 180:n 178:f 161:x 158:= 155:) 152:x 149:( 144:n 140:f 123:n 119:X 115:x 98:, 95:X 89:X 86:: 83:f 70:X 63:f 20:)

Index

Periodic orbit
mathematics
iterated functions
dynamical systems
function
mapping
set
iterate
integer
periodic function
diffeomorphism
differentiable manifold
derivative
attractive
dimension
stable manifold
unstable manifold
saddle point
fixed point
logistic map
attracts
real global dynamical system
phase space
evolution function
orbit
Limit cycle
Limit set
Stable set
Sharkovsky's theorem
Stationary point

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.