Knowledge

Pfaffian orientation

Source πŸ“

349:
to the Pfaffian regardless of which orientation is used; the choice of a Pfaffian orientation ensures that these contributions all have the same sign as each other, so that none of them cancel. This result stands in contrast to the much higher computational complexity of counting matchings in
362:
is Pfaffian. An orientation in which each face of a planar graph has an odd number of clockwise-oriented edges is automatically Pfaffian. Such an orientation can be found by starting with an arbitrary orientation of a
28:
assigns a direction to each edge, so that certain cycles (the "even central cycles") have an odd number of edges in each direction. When a graph has a Pfaffian orientation, the orientation can be used to count the
371:, and their orientations can be chosen according to a bottom-up traversal of the dual spanning tree in order to ensure that each face of the original graph has an odd number of clockwise edges. 548: 482: 441: 405: 112: 75: 512: 347: 308: 272: 252: 225: 205: 185: 162: 287:
for counting the number of perfect matchings in a given graph. In this algorithm, the orientations of the edges are used to assign the values
648: 799: 699:
Little, Charles H. C. (1974), "An extension of Kasteleyn's method of enumerating the 1-factors of planar graphs",
725: 134:
in which every even central cycle is oddly oriented. The terms of this definition have the following meanings:
794: 514:
along shared edges. The same gluing structure can be used to obtain a Pfaffian orientation for these graphs.
733: 729: 621: 579: 131: 41:, which always have Pfaffian orientations. More generally, every graph that does not have the 520: 454: 413: 377: 84: 47: 554:, it is possible to determine whether a Pfaffian orientation exists, and if so find one, in 775: 712: 701:
Combinatorial Mathematics (Proc. Second Australian Conf., Univ. Melbourne, Melbourne, 1973)
683: 658: 605: 490: 329: 290: 142: 8: 625: 448: 407:-minor-free graph has a Pfaffian orientation. These are the graphs that do not have the 763: 745: 257: 237: 210: 190: 170: 147: 644: 755: 671: 636: 591: 228: 127: 30: 25: 771: 708: 679: 654: 601: 555: 551: 484:-minor-free graphs are formed by gluing together copies of planar graphs and the 367:
of the graph. The remaining edges, not in this tree, form a spanning tree of the
596: 485: 788: 408: 364: 284: 42: 34: 359: 326:) gives the number of perfect matchings. Each perfect matching contributes 311: 38: 17: 736:(1999), "Permanents, Pfaffian orientations, and even directed circuits", 444: 323: 319: 138:
An orientation is an assignment of a direction to each edge of the graph.
78: 640: 368: 358:
A graph is said to be Pfaffian if it has a Pfaffian orientation. Every
767: 750: 114:
does not, nor do infinitely many other minimal non-Pfaffian graphs.
759: 315: 231:; central cycles are also sometimes called alternating circuits. 283:
Pfaffian orientations have been studied in connection with the
550:, there are infinitely many minimal non-Pfaffian graphs. For 274:
is consistent with an odd number of edges in the orientation.
635:, vol. 3, ZΓΌrich: Eur. Math. Soc., pp. 963–984, 724: 523: 493: 457: 416: 380: 332: 293: 260: 254:
is oddly oriented if each of the two orientations of
240: 213: 193: 173: 150: 87: 50: 278: 633:International Congress of Mathematicians. Vol. III 542: 506: 476: 435: 399: 341: 302: 266: 246: 219: 199: 179: 156: 106: 69: 786: 164:is even if it contains an even number of edges. 33:of the graph. This is the main idea behind the 626:"A survey of Pfaffian orientations of graphs" 674:(1967), "Graph theory and crystal physics", 577: 678:, London: Academic Press, pp. 43–110, 749: 670: 595: 582:(2008), "Minimally non-Pfaffian graphs", 207:formed by removing all the vertices of 787: 698: 620: 676:Graph Theory and Theoretical Physics 573: 571: 694: 692: 616: 614: 13: 718: 353: 37:for counting perfect matchings in 14: 811: 568: 279:Application to counting matchings 703:, Lecture Notes in Mathematics, 689: 664: 611: 81:has a Pfaffian orientation, but 584:Journal of Combinatorial Theory 187:is central if the subgraph of 117: 1: 561: 443:(which is not Pfaffian) as a 7: 707:, Springer, Berlin: 63–72, 10: 816: 597:10.1016/j.jctb.2007.12.005 314:of the graph. Then, the 310:to the variables in the 800:Matching (graph theory) 543:{\displaystyle K_{3,3}} 477:{\displaystyle K_{3,3}} 436:{\displaystyle K_{3,3}} 400:{\displaystyle K_{3,3}} 107:{\displaystyle K_{3,3}} 70:{\displaystyle K_{3,3}} 544: 508: 478: 437: 401: 374:More generally, every 343: 304: 268: 248: 221: 201: 181: 158: 108: 71: 738:Annals of Mathematics 545: 509: 507:{\displaystyle K_{5}} 479: 438: 402: 344: 342:{\displaystyle \pm 1} 305: 303:{\displaystyle \pm 1} 269: 249: 222: 202: 182: 159: 109: 72: 795:Graph theory objects 521: 491: 455: 414: 378: 330: 318:of this matrix (the 291: 258: 238: 211: 191: 171: 148: 124:Pfaffian orientation 85: 48: 22:Pfaffian orientation 540: 504: 474: 433: 397: 350:arbitrary graphs. 339: 300: 264: 244: 217: 197: 177: 154: 104: 67: 740:, Second Series, 650:978-3-98547-038-9 578:Norine, Serguei; 267:{\displaystyle C} 247:{\displaystyle C} 220:{\displaystyle C} 200:{\displaystyle G} 180:{\displaystyle C} 157:{\displaystyle C} 31:perfect matchings 807: 779: 778: 753: 722: 716: 715: 696: 687: 686: 672:Kasteleyn, P. W. 668: 662: 661: 641:10.4171/022-3/47 630: 618: 609: 608: 599: 590:(5): 1038–1055, 575: 552:bipartite graphs 549: 547: 546: 541: 539: 538: 513: 511: 510: 505: 503: 502: 483: 481: 480: 475: 473: 472: 449:Wagner's theorem 442: 440: 439: 434: 432: 431: 406: 404: 403: 398: 396: 395: 348: 346: 345: 340: 309: 307: 306: 301: 273: 271: 270: 265: 253: 251: 250: 245: 229:perfect matching 226: 224: 223: 218: 206: 204: 203: 198: 186: 184: 183: 178: 163: 161: 160: 155: 128:undirected graph 113: 111: 110: 105: 103: 102: 76: 74: 73: 68: 66: 65: 26:undirected graph 815: 814: 810: 809: 808: 806: 805: 804: 785: 784: 783: 782: 726:Robertson, Neil 723: 719: 697: 690: 669: 665: 651: 628: 619: 612: 576: 569: 564: 556:polynomial time 528: 524: 522: 519: 518: 498: 494: 492: 489: 488: 462: 458: 456: 453: 452: 421: 417: 415: 412: 411: 385: 381: 379: 376: 375: 356: 354:Pfaffian graphs 331: 328: 327: 292: 289: 288: 281: 259: 256: 255: 239: 236: 235: 212: 209: 208: 192: 189: 188: 172: 169: 168: 149: 146: 145: 120: 92: 88: 86: 83: 82: 55: 51: 49: 46: 45: 12: 11: 5: 813: 803: 802: 797: 781: 780: 760:10.2307/121059 744:(3): 929–975, 730:Seymour, P. D. 717: 688: 663: 649: 610: 566: 565: 563: 560: 537: 534: 531: 527: 501: 497: 486:complete graph 471: 468: 465: 461: 430: 427: 424: 420: 394: 391: 388: 384: 355: 352: 338: 335: 299: 296: 280: 277: 276: 275: 263: 243: 232: 216: 196: 176: 165: 153: 139: 119: 116: 101: 98: 95: 91: 64: 61: 58: 54: 9: 6: 4: 3: 2: 812: 801: 798: 796: 793: 792: 790: 777: 773: 769: 765: 761: 757: 752: 747: 743: 739: 735: 734:Thomas, Robin 731: 727: 721: 714: 710: 706: 702: 695: 693: 685: 681: 677: 673: 667: 660: 656: 652: 646: 642: 638: 634: 627: 623: 622:Thomas, Robin 617: 615: 607: 603: 598: 593: 589: 585: 581: 580:Thomas, Robin 574: 572: 567: 559: 557: 553: 535: 532: 529: 525: 515: 499: 495: 487: 469: 466: 463: 459: 450: 446: 428: 425: 422: 418: 410: 409:utility graph 392: 389: 386: 382: 372: 370: 366: 365:spanning tree 361: 351: 336: 333: 325: 321: 317: 313: 297: 294: 286: 285:FKT algorithm 261: 241: 233: 230: 214: 194: 174: 166: 151: 144: 140: 137: 136: 135: 133: 129: 125: 115: 99: 96: 93: 89: 80: 62: 59: 56: 52: 44: 43:utility graph 40: 39:planar graphs 36: 35:FKT algorithm 32: 27: 23: 19: 751:math/9911268 741: 737: 720: 704: 700: 675: 666: 632: 587: 586:, Series B, 583: 516: 373: 360:planar graph 357: 312:Tutte matrix 282: 123: 121: 21: 18:graph theory 15: 517:Along with 445:graph minor 324:determinant 320:square root 132:orientation 118:Definitions 79:graph minor 789:Categories 562:References 369:dual graph 334:± 295:± 624:(2006), 316:Pfaffian 167:A cycle 776:1740989 713:0382062 684:0253689 659:2275714 606:2442595 322:of its 774:  768:121059 766:  711:  682:  657:  647:  604:  451:, the 234:Cycle 227:has a 130:is an 126:of an 24:of an 764:JSTOR 746:arXiv 629:(PDF) 447:. By 143:cycle 77:as a 645:ISBN 20:, a 756:doi 742:150 705:403 637:doi 592:doi 16:In 791:: 772:MR 770:, 762:, 754:, 732:; 728:; 709:MR 691:^ 680:MR 655:MR 653:, 643:, 631:, 613:^ 602:MR 600:, 588:98 570:^ 558:. 141:A 122:A 758:: 748:: 639:: 594:: 536:3 533:, 530:3 526:K 500:5 496:K 470:3 467:, 464:3 460:K 429:3 426:, 423:3 419:K 393:3 390:, 387:3 383:K 337:1 298:1 262:C 242:C 215:C 195:G 175:C 152:C 100:3 97:, 94:3 90:K 63:3 60:, 57:3 53:K

Index

graph theory
undirected graph
perfect matchings
FKT algorithm
planar graphs
utility graph
graph minor
undirected graph
orientation
cycle
perfect matching
FKT algorithm
Tutte matrix
Pfaffian
square root
determinant
planar graph
spanning tree
dual graph
utility graph
graph minor
Wagner's theorem
complete graph
bipartite graphs
polynomial time


Thomas, Robin
doi
10.1016/j.jctb.2007.12.005

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑