Knowledge

Phase space

Source đź“ť

1124: 1303: 1109: 1314: 1044: 929:, and so can be taken as constant. Within the context of a model system in classical mechanics, the phase-space coordinates of the system at any given time are composed of all of the system's dynamic variables. Because of this, it is possible to calculate the state of the system at any given time in the future or the past, through integration of Hamilton's or Lagrange's equations of motion. 29: 844:
positions and momenta (6 dimensions for an idealized monatomic gas), and for more complex molecular systems additional dimensions are required to describe vibrational modes of the molecular bonds, as well as spin around 3 axes. Phase spaces are easier to use when analyzing the behavior of mechanical
1285:
for each degree of freedom), one may integrate over continuous phase space. Such integration essentially consists of two parts: integration of the momentum component of all degrees of freedom (momentum space) and integration of the position component of all degrees of freedom (configuration space).
831:
initial condition. As a whole, the phase diagram represents all that the system can be, and its shape can easily elucidate qualities of the system that might not be obvious otherwise. A phase space may contain a great number of dimensions. For instance, a gas containing many molecules may require a
1587:
as describing part of this phase space. A point in this phase space is correspondingly called a macrostate. There may easily be more than one microstate with the same macrostate. For example, for a fixed temperature, the system could have many dynamic configurations at the microscopic level. When
1257:
is important in classifying the behaviour of systems by specifying when two different phase portraits represent the same qualitative dynamic behavior. An attractor is a stable point which is also called a "sink". The repeller is considered as an unstable point, which is also known as a "source".
1603:
of much larger dimensions than in the second sense. Clearly, many more parameters are required to register every detail of the system down to the molecular or atomic scale than to simply specify, say, the temperature or the pressure of the system.
1520:-dependent quantum corrections, as the conventional commutative multiplication applying in classical mechanics is generalized to the noncommutative star-multiplication characterizing quantum mechanics and underlying its uncertainty principle. 1974:
Klabukov, I.; Tenchurin, T.; Shepelev, A.; Baranovskii, D.; Mamagulashvili, V.; Dyuzheva, T.; Krasilnikova, O.; Balyasin, M.; Lyundup, A.; Krasheninnikov, M.; Sulina, Y.; Gomzyak, V.; Krasheninnikov, S.; Buzin, A.; Zayratyants, G. (2023).
1453:
Expectation values in phase-space quantization are obtained isomorphically to tracing operator observables with the density matrix in Hilbert space: they are obtained by phase-space integrals of observables, with the
1544:-dimensional phase space describes the dynamic state of every particle in that system, as each particle is associated with 3 position variables and 3 momentum variables. In this sense, as long as the particles are 819:. For every possible state of the system or allowed combination of values of the system's parameters, a point is included in the multidimensional space. The system's evolving state over time traces a path (a 1197: 860:
of classical systems in phase space (top). The systems are a massive particle in a one-dimensional potential well (red curve, lower figure). The initially compact ensemble becomes swirled up over time.
853: 901:
of configuration space, and in this interpretation the procedure above expresses that a choice of local coordinates on configuration space induces a choice of natural local
1880: 1040:
Here the horizontal axis gives the position, and vertical axis the velocity. As the system evolves, its state follows one of the lines (trajectories) on the phase diagram.
1025:, which occurs in classical mechanics for a single particle moving in one dimension, and where the two variables are position and velocity. In this case, a sketch of the 1004: 845:
systems restricted to motion around and along various axes of rotation or translation – e.g. in robotics, like analyzing the range of motion of a
2181: 1286:
Once the phase integral is known, it may be related to the classical partition function by multiplication of a normalization constant representing the number of
1281:(sum over states) known as the phase integral. Instead of summing the Boltzmann factor over discretely spaced energy states (defined by appropriate integer 1536:
contexts, the term "phase space" has two meanings: for one, it is used in the same sense as in classical mechanics. If a thermodynamic system consists of
823:
for the system) through the high-dimensional space. The phase-space trajectory represents the set of states compatible with starting from one particular
1977:"Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering" 2576: 2581: 718: 2444: 459: 2571: 2174: 918: 857: 2231: 1010:, and the qualitative behaviour of the system being immediately visible from the phase line. The simplest non-trivial examples are the 804: 202: 1399:
But they may alternatively retain their classical interpretation, provided functions of them compose in novel algebraic ways (through
1572:, thus describing the system at a microscopic level is often impractical. This leads to the use of phase space in a different sense. 1130: 2344: 333: 1884: 2167: 2388: 374: 2282: 2125: 2106: 1455: 264: 2566: 1083:
for a diagram showing the various regions of stability of the thermodynamic phases of a chemical system, which consists of
926: 711: 282: 166: 2476: 36:. (Here the velocity and position axes have been reversed from the standard convention in order to align the two diagrams) 2491: 2272: 585: 239: 1123: 1958: 1549: 1277:
In classical statistical mechanics (continuous energies) the concept of phase space provides a classical analog to the
947:
For simple systems, there may be as few as one or two degrees of freedom. One degree of freedom occurs when one has an
2277: 2241: 1863: 1790: 1652: 1489:
of the relevant process. (Other familiar deformations in physics involve the deformation of classical Newtonian into
260: 212: 2339: 2251: 1278: 328: 247: 222: 2307: 1584: 948: 704: 897:, which together define co-ordinates on phase space. More abstractly, in classical mechanics phase space is the 2703: 2622: 2221: 1689: 951: 639: 192: 2378: 364: 2698: 2393: 2236: 2226: 2152: 882: 379: 207: 197: 1588:
used in this sense, a phase is a region of phase space where the system in question is in, for example, the
2688: 2246: 2216: 1442:, a complete and logically autonomous reformulation of quantum mechanics. (Its modern abstractions include 1360: 654: 505: 408: 295: 217: 22: 811:
of the system is represented as an axis of a multidimensional space; a one-dimensional system is called a
2481: 2351: 2312: 2147: 1580: 1080: 340: 255: 1599:
Since there are many more microstates than macrostates, the phase space in the first sense is usually a
1260:
A phase portrait graph of a dynamical system depicts the system's trajectories (with arrows) and stable
2693: 1412: 545: 413: 2317: 1461:
Thus, by expressing quantum mechanics in phase space (the same ambit as for classical mechanics), the
2602: 2521: 1749: 1462: 516: 494: 2657: 2627: 659: 2516: 1662: 1639: 1443: 1011: 1007: 938: 812: 732: 510: 418: 827:, located in the full phase space that represents the set of states compatible with starting from 2526: 2496: 2486: 2383: 2142: 1784: 1473: 1437: 1127:
Phase portrait of damped oscillator, with increasing damping strength. The equation of motion is
957: 870: 590: 580: 572: 528: 369: 1708: 1635: 1447: 1428: 1051: 1034: 403: 33: 2642: 2637: 2531: 2455: 2434: 2302: 2297: 2292: 2287: 2211: 2190: 1778: 1768: 1533: 1404: 1287: 1254: 1015: 922: 649: 634: 523: 466: 448: 287: 43: 1432: 2536: 2460: 2429: 1820: 1773: 1506: 906: 792: 535: 471: 444: 8: 2546: 2439: 2333: 1763: 1744: 1703: 1579:
states of the system, such as pressure, temperature, etc. For instance, one may view the
1553: 1389: 902: 764: 760: 748: 567: 552: 453: 317: 156: 123: 114: 2011: 1976: 1824: 1264:(with dots) and unstable steady states (with circles) in a phase space. The axes are of 1241:
of typical trajectories in the phase space. This reveals information such as whether an
1237:
Phase portraits are an invaluable tool in studying dynamical systems. They consist of a
2667: 2506: 2501: 2424: 2256: 1925: 1907: 1836: 1720: 1679: 1617: 1502: 1490: 1466: 1302: 886: 562: 557: 440: 1067:
A plot of position and momentum variables as a function of time is sometimes called a
2121: 2102: 2075: 2067: 2062: 2016: 1998: 1954: 1929: 1859: 1613: 1377: 1306:
Illustration of how a phase portrait would be constructed for the motion of a simple
824: 768: 619: 398: 133: 1840: 788: 674: 2652: 2632: 2057: 2047: 2006: 1988: 1917: 1828: 1734: 1616:, the branch of optics devoted to illumination. It is also an important concept in 1513: 1486: 1420: 1347: 1227: 1219: 1215: 1112: 898: 784: 780: 752: 684: 669: 1711:
for information about state space (similar to phase state) in control engineering.
849:
or determining the optimal path to achieve a particular position/momentum result.
2612: 2541: 2052: 2035: 1993: 1944: 1684: 1569: 1291: 1282: 1238: 1116: 624: 540: 67: 2617: 1119:. Note that the x-axis, being angular, wraps onto itself after every 2Ď€ radians. 679: 2607: 2414: 1739: 1674: 1657: 1529: 1364: 1290:
per unit phase space. This normalization constant is simply the inverse of the
1265: 1207: 1101: 1047: 1029:
may give qualitative information about the dynamics of the system, such as the
1026: 776: 756: 736: 644: 629: 435: 423: 142: 28: 1921: 2682: 2071: 2002: 1545: 1424: 1400: 1393: 1076: 852: 1898:
Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space".
1317:
Time-series flow in phase space specified by the differential equation of a
1294:
raised to a power equal to the number of degrees of freedom for the system.
2662: 2597: 2511: 2079: 2020: 1717:
for information about state space with discrete states in computer science.
1416: 1353: 1339: 1261: 664: 614: 500: 128: 1108: 2159: 2036:"A phase space model of hemopoiesis and the concept of stem cell renewal" 1714: 1668: 1624: 1575:
The phase space can also refer to the space that is parameterized by the
1313: 1250: 1223: 1203: 1088: 1030: 1022: 942: 846: 816: 72: 2647: 1408: 783:. The concept of phase space was developed in the late 19th century by 689: 1832: 759:
are represented, with each possible state corresponding to one unique
2409: 1950: 1242: 1211: 808: 430: 151: 94: 84: 1973: 1471:(generalization) of classical mechanics, with deformation parameter 2449: 1600: 1318: 1307: 1246: 1084: 772: 1912: 105: 100: 89: 2118:
Galileo Unbound: A Path Across Life, the Universe and Everything
2099:
Introduction to Modern Dynamics: Chaos, Networks, Space and Time
1589: 1226:. Each set of initial conditions is represented by a different 1192:{\displaystyle {\ddot {x}}+2\gamma {\dot {x}}+\omega ^{2}x=0.} 32:
Diagram showing the periodic orbit of a mass-spring system in
1593: 1231: 1043: 767:, the phase space usually consists of all possible values of 1512:
Classical expressions, observables, and operations (such as
1523: 1253:
is present for the chosen parameter value. The concept of
1856:
Statistical Thermodynamics: Fundamentals and Applications
1560:! points, corresponding to all possible exchanges of the 1006:
with the resulting one-dimensional system being called a
1811:
Nolte, D. D. (2010). "The tangled tale of phase space".
1021:
The phase space of a two-dimensional system is called a
912: 1325:
axis corresponds to the pendulum's position, and the
1133: 960: 925:. The local density of points in such systems obeys 1791:
Characteristics in phase space of quantum mechanics
18:
Space of all possible states that a system can take
1465:facilitates recognition of quantum mechanics as a 1191: 998: 2577:List of nonlinear ordinary differential equations 1946:Introduction to Nonimaging Optics, Second Edition 1014:/decay (one unstable/stable equilibrium) and the 921:of systems in this space is studied by classical 2680: 2582:List of nonlinear partial differential equations 1415:on phase space, and conversely, as specified by 1407:of quantum mechanics. Every quantum mechanical 1897: 1501:; or the deformation of Newtonian gravity into 1435:(1949), these completed the foundations of the 2572:List of linear ordinary differential equations 1638:, the phase space method is used to visualize 2175: 815:, while a two-dimensional system is called a 712: 1781:for information about state space in physics 1018:(two equilibria, one stable, one unstable). 2189: 2182: 2168: 1853: 719: 705: 2061: 2051: 2010: 1992: 1936: 1911: 1548:, a point in phase space is said to be a 2033: 1858:. New York: Cambridge University Press. 1524:Thermodynamics and statistical mechanics 1338:Classic examples of phase diagrams from 1312: 1301: 1122: 1107: 1042: 851: 27: 1878: 832:separate dimension for each particle's 2681: 1942: 1427:(1932); and, in a grand synthesis, by 881:for the position (i.e. coordinates on 869:In classical mechanics, any choice of 2163: 2115: 2096: 1810: 1456:Wigner quasi-probability distribution 2567:List of named differential equations 1411:corresponds to a unique function or 1371: 932: 913:Statistical ensembles in phase space 864: 751:in which all possible "states" of a 167:List of named differential equations 2492:Method of undetermined coefficients 2273:Dependent and independent variables 1612:Phase space is extensively used in 1079:", is more usually reserved in the 1057: 240:Dependent and independent variables 13: 2090: 1556:a microstate consists of a set of 1458:effectively serving as a measure. 1075:. However the latter expression, " 14: 2715: 2135: 1653:Configuration space (mathematics) 1568:is typically on the order of the 1272: 1094: 2389:CarathĂ©odory's existence theorem 1540:particles, then a point in the 6 1100:This section is an excerpt from 375:CarathĂ©odory's existence theorem 1900:Asia Pacific Physics Newsletter 1854:Laurendeau, Normand M. (2005). 1403:). This is consistent with the 1388:of phase space normally become 1333: 1297: 2027: 1967: 1891: 1872: 1847: 1804: 1401:Groenewold's 1946 star product 990: 984: 952:ordinary differential equation 462: / Integral solutions 1: 1797: 1505:, with deformation parameter 1493:, with deformation parameter 1361:complex quadratic polynomials 1062: 887:conjugate generalized momenta 798: 2217:Notation for differentiation 2053:10.1016/j.exphem.2004.02.013 1994:10.3390/biomedicines11030745 1509:/characteristic dimension.) 506:Exponential response formula 252:Coupled / Decoupled 23:Phase space (disambiguation) 7: 2313:Exact differential equation 2148:Encyclopedia of Mathematics 2120:. Oxford University Press. 2101:. Oxford University Press. 1645: 1629: 1585:temperature–entropy diagram 1554:indistinguishable particles 1419:(1927) and supplemented by 999:{\displaystyle dy/dt=f(y),} 10: 2720: 1622: 1429:H. J. Groenewold 1099: 936: 20: 2623:JĂłzef Maria Hoene-WroĹ„ski 2603:Gottfried Wilhelm Leibniz 2590: 2559: 2469: 2402: 2394:Cauchy–Kowalevski theorem 2371: 2364: 2326: 2265: 2204: 2197: 1922:10.1142/S2251158X12000069 1642:physiological responses. 1607: 640:JĂłzef Maria Hoene-WroĹ„ski 586:Undetermined coefficients 495:Method of characteristics 380:Cauchy–Kowalevski theorem 2517:Finite difference method 1881:"Configuration integral" 1444:deformation quantization 1352:population growth (i.e. 1115:and phase portrait of a 1012:exponential growth model 939:Phase line (mathematics) 803:In a phase space, every 763:in the phase space. For 733:dynamical systems theory 365:Picard–Lindelöf theorem 359:Existence and uniqueness 2497:Variation of parameters 2487:Separation of variables 2384:Peano existence theorem 2379:Picard–Lindelöf theorem 2266:Attributes of variables 2040:Experimental Hematology 2034:Kirkland, M.A. (2004). 1785:Phase-space formulation 1581:pressure–volume diagram 1438:phase-space formulation 1255:topological equivalence 871:generalized coordinates 591:Variation of parameters 581:Separation of variables 370:Peano existence theorem 2658:Carl David TolmĂ© Runge 2232:Differential-algebraic 2191:Differential equations 1943:Chaves, Julio (2015). 1709:State space (controls) 1491:relativistic mechanics 1448:geometric quantization 1330: 1310: 1214:representation of the 1199: 1193: 1120: 1054: 1052:Van der Pol oscillator 1037:shown in the diagram. 1035:Van der Pol oscillator 1000: 954:in a single variable, 909:on a cotangent space. 861: 821:phase-space trajectory 660:Carl David TolmĂ© Runge 203:Differential-algebraic 44:Differential equations 37: 34:simple harmonic motion 2704:Hamiltonian mechanics 2643:Augustin-Louis Cauchy 2638:Joseph-Louis Lagrange 2532:Finite element method 2522:Crank–Nicolson method 2456:Numerical integration 2435:Exponential stability 2327:Relation to processes 2212:Differential operator 2116:Nolte, D. D. (2018). 2097:Nolte, D. D. (2015). 2063:10536/DRO/DU:30101092 1779:State space (physics) 1769:Hamiltonian mechanics 1750:Wigner–Weyl transform 1623:Further information: 1534:statistical mechanics 1433:J. E. Moyal 1405:uncertainty principle 1316: 1305: 1288:quantum energy states 1194: 1126: 1111: 1046: 1016:logistic growth model 1001: 923:statistical mechanics 855: 775:variables. It is the 650:Augustin-Louis Cauchy 635:Joseph-Louis Lagrange 467:Numerical integration 449:Exponential stability 312:Relation to processes 31: 2699:Dimensional analysis 2537:Finite volume method 2461:Dirac delta function 2430:Asymptotic stability 2372:Existence/uniqueness 2237:Integro-differential 1879:Vu-Quoc, L. (2008). 1787:of quantum mechanics 1774:Lagrangian mechanics 1671:, 2-dimensional case 1665:, 1-dimensional case 1552:of the system. (For 1507:Schwarzschild radius 1440:of quantum mechanics 1131: 958: 907:symplectic structure 793:Josiah Willard Gibbs 779:of direct space and 472:Dirac delta function 208:Integro-differential 21:For other uses, see 2689:Concepts in physics 2547:Perturbation theory 2527:Runge–Kutta methods 2507:Integral transforms 2440:Rate of convergence 2336:(discrete analogue) 1825:2010PhT....63d..33N 1764:Classical mechanics 1745:Symplectic manifold 1704:Optical phase space 1390:Hermitian operators 1359:parameter plane of 1091:, and composition. 927:Liouville's theorem 903:Darboux coordinates 883:configuration space 568:Perturbation theory 563:Integral transforms 454:Rate of convergence 320:(discrete analogue) 157:Population dynamics 124:Continuum mechanics 115:Applied mathematics 2668:Sofya Kovalevskaya 2502:Integrating factor 2425:Lyapunov stability 2345:Stochastic partial 1887:on April 28, 2012. 1721:Molecular dynamics 1680:Phase space method 1618:Hamiltonian optics 1516:) are modified by 1503:general relativity 1380:, the coordinates 1331: 1311: 1279:partition function 1200: 1189: 1121: 1055: 996: 862: 765:mechanical systems 558:Integrating factor 399:Initial conditions 334:Stochastic partial 38: 2694:Dynamical systems 2676: 2675: 2555: 2554: 2360: 2359: 2127:978-0-19-880584-7 2108:978-0-19-965703-2 1833:10.1063/1.3397041 1614:nonimaging optics 1378:quantum mechanics 1372:Quantum mechanics 1164: 1143: 1081:physical sciences 933:In low dimensions 917:The motion of an 905:for the standard 865:Conjugate momenta 825:initial condition 805:degree of freedom 729: 728: 620:Gottfried Leibniz 511:Finite difference 303: 302: 164: 163: 134:Dynamical systems 2711: 2653:Phyllis Nicolson 2633:Rudolf Lipschitz 2470:Solution methods 2445:Series solutions 2369: 2368: 2202: 2201: 2184: 2177: 2170: 2161: 2160: 2156: 2131: 2112: 2084: 2083: 2065: 2055: 2031: 2025: 2024: 2014: 1996: 1971: 1965: 1964: 1940: 1934: 1933: 1915: 1895: 1889: 1888: 1883:. Archived from 1876: 1870: 1869: 1851: 1845: 1844: 1808: 1735:Cotangent bundle 1640:multidimensional 1634:In medicine and 1514:Poisson brackets 1421:John von Neumann 1348:Lorenz attractor 1220:dynamical system 1198: 1196: 1195: 1190: 1179: 1178: 1166: 1165: 1157: 1145: 1144: 1136: 1113:Potential energy 1058:Related concepts 1005: 1003: 1002: 997: 971: 899:cotangent bundle 856:Evolution of an 785:Ludwig Boltzmann 781:reciprocal space 753:dynamical system 721: 714: 707: 685:Phyllis Nicolson 670:Rudolf Lipschitz 553:Green's function 529:Infinite element 520: 485:Solution methods 463: 321: 232:By variable type 186: 185: 68:Natural sciences 61: 60: 40: 39: 2719: 2718: 2714: 2713: 2712: 2710: 2709: 2708: 2679: 2678: 2677: 2672: 2613:Jacob Bernoulli 2586: 2551: 2542:Galerkin method 2465: 2403:Solution topics 2398: 2356: 2322: 2261: 2193: 2188: 2141: 2138: 2128: 2109: 2093: 2091:Further reading 2088: 2087: 2032: 2028: 1972: 1968: 1961: 1941: 1937: 1896: 1892: 1877: 1873: 1866: 1852: 1848: 1809: 1805: 1800: 1795: 1685:Parameter space 1648: 1632: 1627: 1610: 1570:Avogadro number 1546:distinguishable 1526: 1374: 1336: 1329:axis its speed. 1300: 1292:Planck constant 1283:quantum numbers 1275: 1270: 1269: 1266:state variables 1174: 1170: 1156: 1155: 1135: 1134: 1132: 1129: 1128: 1117:simple pendulum 1105: 1097: 1065: 1060: 967: 959: 956: 955: 945: 937:Main articles: 935: 915: 896: 880: 867: 801: 725: 696: 695: 694: 625:Jacob Bernoulli 609: 596: 595: 577: 546:Petrov–Galerkin 514: 499: 486: 478: 477: 476: 458: 404:Boundary values 393: 385: 384: 360: 347: 346: 345: 319: 313: 305: 304: 292: 269: 227: 183: 170: 169: 165: 143:Social sciences 99: 77: 58: 26: 19: 12: 11: 5: 2717: 2707: 2706: 2701: 2696: 2691: 2674: 2673: 2671: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2635: 2630: 2628:Ernst Lindelöf 2625: 2620: 2615: 2610: 2608:Leonhard Euler 2605: 2600: 2594: 2592: 2591:Mathematicians 2588: 2587: 2585: 2584: 2579: 2574: 2569: 2563: 2561: 2557: 2556: 2553: 2552: 2550: 2549: 2544: 2539: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2473: 2471: 2467: 2466: 2464: 2463: 2458: 2453: 2447: 2442: 2437: 2432: 2427: 2422: 2417: 2415:Phase portrait 2412: 2406: 2404: 2400: 2399: 2397: 2396: 2391: 2386: 2381: 2375: 2373: 2366: 2362: 2361: 2358: 2357: 2355: 2354: 2349: 2348: 2347: 2337: 2330: 2328: 2324: 2323: 2321: 2320: 2318:On jet bundles 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2283:Nonhomogeneous 2280: 2275: 2269: 2267: 2263: 2262: 2260: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2208: 2206: 2199: 2198:Classification 2195: 2194: 2187: 2186: 2179: 2172: 2164: 2158: 2157: 2137: 2136:External links 2134: 2133: 2132: 2126: 2113: 2107: 2092: 2089: 2086: 2085: 2046:(6): 511–519. 2026: 1966: 1960:978-1482206739 1959: 1935: 1890: 1871: 1864: 1846: 1802: 1801: 1799: 1796: 1794: 1793: 1788: 1782: 1776: 1771: 1766: 1760: 1759: 1757: 1753: 1752: 1747: 1742: 1740:Dynamic system 1737: 1731: 1730: 1728: 1724: 1723: 1718: 1712: 1706: 1700: 1699: 1697: 1693: 1692: 1687: 1682: 1677: 1675:Phase portrait 1672: 1666: 1660: 1658:Minisuperspace 1655: 1649: 1647: 1644: 1636:bioengineering 1631: 1628: 1609: 1606: 1530:thermodynamics 1525: 1522: 1431:(1946). With 1373: 1370: 1369: 1368: 1365:Mandelbrot set 1357: 1350: 1335: 1332: 1299: 1296: 1274: 1273:Phase integral 1271: 1208:phase portrait 1188: 1185: 1182: 1177: 1173: 1169: 1163: 1160: 1154: 1151: 1148: 1142: 1139: 1106: 1102:Phase portrait 1098: 1096: 1095:Phase portrait 1093: 1064: 1061: 1059: 1056: 1048:Phase portrait 1027:phase portrait 995: 992: 989: 986: 983: 980: 977: 974: 970: 966: 963: 934: 931: 914: 911: 892: 876: 866: 863: 800: 797: 789:Henri PoincarĂ© 777:direct product 757:control system 737:control theory 727: 726: 724: 723: 716: 709: 701: 698: 697: 693: 692: 687: 682: 677: 675:Ernst Lindelöf 672: 667: 662: 657: 652: 647: 645:Joseph Fourier 642: 637: 632: 630:Leonhard Euler 627: 622: 617: 611: 610: 607: 606: 603: 602: 598: 597: 594: 593: 588: 583: 576: 575: 570: 565: 560: 555: 550: 549: 548: 538: 533: 532: 531: 524:Finite element 521: 517:Crank–Nicolson 508: 503: 497: 492: 488: 487: 484: 483: 480: 479: 475: 474: 469: 464: 456: 451: 438: 436:Phase portrait 433: 428: 427: 426: 424:Cauchy problem 421: 416: 411: 401: 395: 394: 392:General topics 391: 390: 387: 386: 383: 382: 377: 372: 367: 361: 358: 357: 354: 353: 349: 348: 344: 343: 338: 337: 336: 325: 324: 323: 314: 311: 310: 307: 306: 301: 300: 299: 298: 291: 290: 285: 279: 276: 275: 271: 270: 268: 267: 265:Nonhomogeneous 258: 253: 250: 244: 243: 242: 234: 233: 229: 228: 226: 225: 220: 215: 210: 205: 200: 195: 189: 184: 181: 180: 177: 176: 175:Classification 172: 171: 162: 161: 160: 159: 154: 146: 145: 139: 138: 137: 136: 131: 126: 118: 117: 111: 110: 109: 108: 103: 97: 92: 87: 79: 78: 76: 75: 70: 64: 59: 56: 55: 52: 51: 47: 46: 17: 9: 6: 4: 3: 2: 2716: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2686: 2684: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2595: 2593: 2589: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2564: 2562: 2558: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2474: 2472: 2468: 2462: 2459: 2457: 2454: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2407: 2405: 2401: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2376: 2374: 2370: 2367: 2363: 2353: 2350: 2346: 2343: 2342: 2341: 2338: 2335: 2332: 2331: 2329: 2325: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2270: 2268: 2264: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2209: 2207: 2203: 2200: 2196: 2192: 2185: 2180: 2178: 2173: 2171: 2166: 2165: 2162: 2154: 2150: 2149: 2144: 2143:"Phase space" 2140: 2139: 2129: 2123: 2119: 2114: 2110: 2104: 2100: 2095: 2094: 2081: 2077: 2073: 2069: 2064: 2059: 2054: 2049: 2045: 2041: 2037: 2030: 2022: 2018: 2013: 2008: 2004: 2000: 1995: 1990: 1986: 1982: 1978: 1970: 1962: 1956: 1952: 1948: 1947: 1939: 1931: 1927: 1923: 1919: 1914: 1909: 1905: 1901: 1894: 1886: 1882: 1875: 1867: 1865:0-521-84635-8 1861: 1857: 1850: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1813:Physics Today 1807: 1803: 1792: 1789: 1786: 1783: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1761: 1758: 1755: 1754: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1732: 1729: 1726: 1725: 1722: 1719: 1716: 1713: 1710: 1707: 1705: 1702: 1701: 1698: 1695: 1694: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1670: 1667: 1664: 1661: 1659: 1656: 1654: 1651: 1650: 1643: 1641: 1637: 1626: 1621: 1619: 1615: 1605: 1602: 1597: 1595: 1591: 1586: 1582: 1578: 1573: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1521: 1519: 1515: 1510: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1475: 1470: 1469: 1464: 1459: 1457: 1451: 1449: 1445: 1441: 1439: 1434: 1430: 1426: 1425:Eugene Wigner 1422: 1418: 1414: 1410: 1406: 1402: 1397: 1395: 1394:Hilbert space 1391: 1387: 1383: 1379: 1366: 1362: 1358: 1355: 1351: 1349: 1345: 1344: 1343: 1341: 1328: 1324: 1320: 1315: 1309: 1304: 1295: 1293: 1289: 1284: 1280: 1267: 1263: 1262:steady states 1259: 1256: 1252: 1248: 1244: 1240: 1235: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1186: 1183: 1180: 1175: 1171: 1167: 1161: 1158: 1152: 1149: 1146: 1140: 1137: 1125: 1118: 1114: 1110: 1103: 1092: 1090: 1086: 1082: 1078: 1077:phase diagram 1074: 1073:phase diagram 1070: 1053: 1049: 1045: 1041: 1038: 1036: 1032: 1028: 1024: 1019: 1017: 1013: 1009: 993: 987: 981: 978: 975: 972: 968: 964: 961: 953: 950: 944: 940: 930: 928: 924: 920: 910: 908: 904: 900: 895: 891: 888: 884: 879: 875: 872: 859: 854: 850: 848: 843: 839: 835: 830: 826: 822: 818: 814: 810: 806: 796: 794: 790: 786: 782: 778: 774: 770: 766: 762: 758: 754: 750: 746: 742: 738: 734: 722: 717: 715: 710: 708: 703: 702: 700: 699: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 612: 605: 604: 600: 599: 592: 589: 587: 584: 582: 579: 578: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 547: 544: 543: 542: 539: 537: 536:Finite volume 534: 530: 527: 526: 525: 522: 518: 512: 509: 507: 504: 502: 498: 496: 493: 490: 489: 482: 481: 473: 470: 468: 465: 461: 457: 455: 452: 450: 446: 442: 439: 437: 434: 432: 429: 425: 422: 420: 417: 415: 412: 410: 407: 406: 405: 402: 400: 397: 396: 389: 388: 381: 378: 376: 373: 371: 368: 366: 363: 362: 356: 355: 351: 350: 342: 339: 335: 332: 331: 330: 327: 326: 322: 316: 315: 309: 308: 297: 294: 293: 289: 286: 284: 281: 280: 278: 277: 273: 272: 266: 262: 259: 257: 254: 251: 249: 246: 245: 241: 238: 237: 236: 235: 231: 230: 224: 221: 219: 216: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 190: 188: 187: 179: 178: 174: 173: 168: 158: 155: 153: 150: 149: 148: 147: 144: 141: 140: 135: 132: 130: 127: 125: 122: 121: 120: 119: 116: 113: 112: 107: 104: 102: 98: 96: 93: 91: 88: 86: 83: 82: 81: 80: 74: 71: 69: 66: 65: 63: 62: 54: 53: 49: 48: 45: 42: 41: 35: 30: 24: 16: 2663:Martin Kutta 2618:Émile Picard 2598:Isaac Newton 2512:Euler method 2482:Substitution 2419: 2146: 2117: 2098: 2043: 2039: 2029: 1984: 1981:Biomedicines 1980: 1969: 1945: 1938: 1903: 1899: 1893: 1885:the original 1874: 1855: 1849: 1819:(4): 33–38. 1816: 1812: 1806: 1696:Applications 1633: 1611: 1598: 1596:phase, etc. 1576: 1574: 1565: 1564:particles.) 1561: 1557: 1541: 1537: 1527: 1517: 1511: 1498: 1494: 1482: 1478: 1472: 1467: 1460: 1452: 1436: 1417:Hermann Weyl 1413:distribution 1398: 1385: 1381: 1375: 1354:logistic map 1340:chaos theory 1337: 1334:Chaos theory 1326: 1322: 1298:Applications 1276: 1236: 1201: 1072: 1068: 1066: 1039: 1020: 946: 916: 893: 889: 877: 873: 868: 841: 837: 833: 828: 820: 802: 744: 740: 730: 680:Émile Picard 665:Martin Kutta 655:George Green 615:Isaac Newton 447: / 443: / 263: / 129:Chaos theory 15: 2420:Phase space 2278:Homogeneous 1727:Mathematics 1715:State space 1669:Phase plane 1625:Vague torus 1577:macroscopic 1468:deformation 1251:limit cycle 1224:phase plane 1204:mathematics 1089:temperature 1031:limit cycle 1023:phase plane 943:Phase plane 847:robotic arm 817:phase plane 745:state space 741:phase space 573:Runge–Kutta 318:Difference 261:Homogeneous 73:Engineering 2683:Categories 2648:John Crank 2477:Inspection 2340:Stochastic 2334:Difference 2308:Autonomous 2252:Non-linear 2242:Fractional 2205:Operations 1987:(3): 745. 1798:References 1690:Separatrix 1663:Phase line 1592:phase, or 1550:microstate 1409:observable 1069:phase plot 1063:Phase plot 1008:phase line 949:autonomous 885:) defines 813:phase line 799:Principles 690:John Crank 491:Inspection 445:Asymptotic 329:Stochastic 248:Autonomous 223:Non-linear 213:Fractional 2452:solutions 2410:Wronskian 2365:Solutions 2293:Decoupled 2257:Holonomic 2153:EMS Press 2072:0301-472X 2003:2227-9059 1951:CRC Press 1930:119230734 1913:1104.5269 1906:: 37–46. 1243:attractor 1212:geometric 1172:ω 1162:˙ 1153:γ 1141:¨ 809:parameter 431:Wronskian 409:Dirichlet 152:Economics 95:Chemistry 85:Astronomy 2560:Examples 2450:Integral 2222:Ordinary 2080:15183891 2021:36979723 2012:10044742 1841:17205307 1646:See also 1630:Medicine 1601:manifold 1481:, where 1463:Weyl map 1423:(1931); 1319:pendulum 1308:pendulum 1247:repellor 1085:pressure 919:ensemble 858:ensemble 773:momentum 769:position 541:Galerkin 441:Lyapunov 352:Solution 296:Notation 288:Operator 274:Features 193:Ordinary 2288:Coupled 2227:Partial 2155:, 2001 1821:Bibcode 1756:Physics 1485:is the 1222:in the 1050:of the 1033:of the 414:Neumann 198:Partial 106:Geology 101:Biology 90:Physics 2303:Degree 2247:Linear 2124:  2105:  2078:  2070:  2019:  2009:  2001:  1957:  1928:  1862:  1839:  1608:Optics 1590:liquid 1487:action 1321:. The 1216:orbits 791:, and 601:People 513:  460:Series 218:Linear 57:Fields 2352:Delay 2298:Order 1926:S2CID 1908:arXiv 1837:S2CID 1594:solid 1392:in a 1363:with 1342:are: 1232:curve 1228:point 1218:of a 1210:is a 1071:or a 761:point 755:or a 749:space 747:is a 501:Euler 419:Robin 341:Delay 283:Order 256:Exact 182:Types 50:Scope 2122:ISBN 2103:ISBN 2076:PMID 2068:ISSN 2017:PMID 1999:ISSN 1955:ISBN 1860:ISBN 1532:and 1446:and 1384:and 1346:the 1245:, a 1239:plot 1206:, a 941:and 840:and 771:and 739:, a 735:and 608:List 2058:hdl 2048:doi 2007:PMC 1989:doi 1918:doi 1829:doi 1583:or 1528:In 1450:.) 1376:In 1249:or 1230:or 1202:In 829:any 807:or 743:or 731:In 2685:: 2151:, 2145:, 2074:. 2066:. 2056:. 2044:32 2042:. 2038:. 2015:. 2005:. 1997:. 1985:11 1983:. 1979:. 1953:. 1949:. 1924:. 1916:. 1904:01 1902:. 1835:. 1827:. 1817:63 1815:. 1620:. 1396:. 1234:. 1187:0. 1087:, 836:, 795:. 787:, 2183:e 2176:t 2169:v 2130:. 2111:. 2082:. 2060:: 2050:: 2023:. 1991:: 1963:. 1932:. 1920:: 1910:: 1868:. 1843:. 1831:: 1823:: 1566:N 1562:N 1558:N 1542:N 1538:N 1518:ħ 1499:c 1497:/ 1495:v 1483:S 1479:S 1477:/ 1474:ħ 1386:q 1382:p 1367:. 1356:) 1327:Y 1323:X 1268:. 1184:= 1181:x 1176:2 1168:+ 1159:x 1150:2 1147:+ 1138:x 1104:. 994:, 991:) 988:y 985:( 982:f 979:= 976:t 973:d 969:/ 965:y 962:d 894:i 890:p 878:i 874:q 842:z 838:y 834:x 720:e 713:t 706:v 519:) 515:( 25:.

Index

Phase space (disambiguation)

simple harmonic motion
Differential equations
Natural sciences
Engineering
Astronomy
Physics
Chemistry
Biology
Geology
Applied mathematics
Continuum mechanics
Chaos theory
Dynamical systems
Social sciences
Economics
Population dynamics
List of named differential equations
Ordinary
Partial
Differential-algebraic
Integro-differential
Fractional
Linear
Non-linear
Dependent and independent variables
Autonomous
Exact
Homogeneous

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑