Knowledge

Plesiohedron

Source đź“ť

80: 786:
of the plane by congruent convex polygons (and each of the subtypes of these tilings with different symmetry groups) can be realized as the Voronoi cells of a symmetric Delone set in the plane. It follows that the prisms over each of these shapes are plesiohedra. As well as the triangular prisms,
794:
is a stereohedron but not a plesiohedron, because the points at the centers of the cells of its face-to-face tiling (where they are forced to go by symmetry) have differently-shaped Voronoi cells. However, a flattened version of the gyrobifastigium, with faces made of
841:
Many other plesiohedra are known. Two different ones with the largest known number of faces, 38, were discovered by crystallographer Peter Engel. For many years the maximum number of faces of a plesiohedron was an
853:
fill space, are all congruent to each other, and can be made to have arbitrarily large numbers of faces. However, the points on a helix are not a Delone set and their Voronoi cells are not bounded polyhedra.
1119:. But as he writes (p. 429), Voronoi's conjecture for dimensions at most four was already proven by Delaunay. For the classification of three-dimensional parallelohedra into these five types, see 732:. These are polyhedra that can tile space in such a way that every tile is symmetric to every other tile by a translational symmetry, without rotation. Equivalently, they are the Voronoi cells of 740:, the prototiles of isohedral tilings more generally. For this reason (and because Voronoi diagrams are also known as Dirichlet tesselations) they have also been called "Dirichlet stereohedra" 89: 166: 991: 234: 206: 713:, meaning that it not only has a single prototile ("monohedral") but also that any copy of this tile can be taken to any other copy by a symmetry of the tiling. 699: 675: 652: 632: 608: 588: 568: 548: 528: 501: 478: 458: 438: 418: 398: 374: 354: 334: 314: 294: 274: 254: 186: 132: 892: 1199: 811: 825: 995: 1399: 709:
shape, the shape of these Voronoi cells. This shape is called a plesiohedron. The tiling generated in this way is
846:, but analysis of the possible symmetries of three-dimensional space has shown that this number is at most 38. 829: 779: 807: 821: 743:
There are only finitely many combinatorial types of plesiohedron. Notable individual plesiohedra include:
1039:(2011), "On the number of facets of three-dimensional Dirichlet stereohedra IV: quarter cubic groups", 480: 145: 967: 614:. The faces of this polyhedron lie on the planes that perpendicularly bisect the line segments from 211: 1267: 796: 530:
of points partitions space into regions called Voronoi cells that are nearer to one given point of
28: 191: 1262: 1115:
are combinatorially equivalent to Voronoi tilings, and Erdahl proves this in the special case of
887: 736:, as these are the translationally-symmetric Delone sets. Plesiohedra are a special case of the 764: 43:
can be completely filled by copies of any one of these shapes, with no overlaps. The resulting
1111:. Voronoi conjectured that all tilings of higher dimensional spaces by translates of a single 1376: 1134: 1036: 934: 678: 1353: 1341: 1326:(2003), "Arbitrarily large neighborly families of congruent symmetric convex 3-polytopes", 1248: 1228: 1176: 1146: 1107: 1070: 1018: 915: 768: 760: 702: 98: 63: 59: 44: 1163:; Dolbilin, N. P.; Ĺ togrin, M. I. (1978), "Combinatorial and metric theory of planigons", 701:
must also be symmetries of the Voronoi diagram. In this case, the Voronoi diagram forms a
8: 1330:, Monogr. Textbooks Pure Appl. Math., vol. 253, Dekker, New York, pp. 267–278, 932:(September 1991), "Voronoi diagrams—a survey of a fundamental geometric data structure", 1345: 1232: 1084:
Erdahl, R. M. (1999), "Zonotopes, dicings, and Voronoi's conjecture on parallelohedra",
1331: 1284: 1048: 684: 660: 637: 617: 593: 573: 553: 533: 513: 486: 463: 443: 423: 403: 383: 359: 339: 319: 299: 279: 259: 239: 171: 117: 1191: 883: 1372: 929: 611: 316:
is symmetric (in the sense needed to define a plesiohedron) if, for every two points
276:
fills space, but its points never come too close to each other. For this to be true,
1306: 906: 1276: 1236: 1221:
Zeitschrift fĂĽr Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie
1093: 1058: 1004: 961: 943: 901: 800: 775: 710: 1240: 1349: 1244: 1172: 1142: 1112: 1103: 1066: 1014: 911: 815: 791: 756: 733: 729: 507: 135: 102: 55: 40: 32: 1219:
Engel, Peter (1981), "Ăśber Wirkungsbereichsteilungen von kubischer Symmetrie",
1160: 752: 717: 47:
will have symmetries that take any copy of the plesiohedron to any other copy.
1062: 1393: 208:
apart from each other and such that every point of space is within distance
1141:, University of California Press, Berkeley, Calif.-London, pp. 48–50, 1098: 951:. See especially section 1.2.1, "Regularly Placed Sites", pp. 354–355. 843: 783: 737: 377: 947: 787:
these include prisms over certain quadrilaterals, pentagons, and hexagons.
835: 106: 1288: 1009: 139: 36: 1381: 1336: 1323: 706: 1280: 677:
is symmetric as well as being Delone, the Voronoi cells must all be
79: 1116: 88: 20: 1053: 66:. The largest number of faces that a plesiohedron can have is 38. 1370: 1265:(1985), "69.14 Space Filling with Identical Symmetrical Solids", 850: 748: 51: 50:
The plesiohedra include such well-known shapes as the
1165:
Trudy Matematicheskogo Instituta Imeni V. A. Steklova
1159: 970: 687: 663: 640: 620: 596: 576: 556: 536: 516: 489: 466: 446: 426: 406: 386: 362: 342: 322: 302: 282: 262: 242: 214: 194: 174: 148: 120: 985: 849:The Voronoi cells of points uniformly spaced on a 693: 669: 646: 626: 602: 582: 562: 542: 522: 495: 472: 452: 432: 412: 392: 368: 348: 328: 308: 288: 268: 248: 228: 200: 180: 160: 126: 1308:On Space Groups and Dirichlet-Voronoi Stereohedra 1391: 1120: 882: 570:is a Delone set, the Voronoi cell of each point 1034: 960: 893:Bulletin of the American Mathematical Society 1200:Notices of the American Mathematical Society 1321: 928: 1300: 1298: 782:. More generally, each of the 11 types of 716:As with any space-filling polyhedron, the 1335: 1097: 1052: 1008: 973: 964:; Moews, D. (1995), "Polytopes that fill 905: 1261: 890:(1980), "Tilings with congruent tiles", 296:must be infinite. Additionally, the set 1304: 1295: 812:triakis truncated tetrahedral honeycomb 720:of a plesiohedron is necessarily zero. 1392: 1189: 1083: 1030: 1028: 878: 876: 874: 872: 870: 828:and the plesiohedron generated by the 826:trapezo-rhombic dodecahedral honeycomb 814:and the plesiohedron generated by the 1371: 1218: 857:A modern survey is given by Schmitt. 681:to each other, for the symmetries of 1132: 1025: 996:Discrete and Computational Geometry 867: 13: 1190:Schoen, Alan H. (June–July 2008), 1041:Beiträge zur Algebra und Geometrie 834:The 17-sided Voronoi cells of the 14: 1411: 1364: 1086:European Journal of Combinatorics 728:The plesiohedra include the five 161:{\displaystyle \varepsilon >0} 986:{\displaystyle \mathbb {R} ^{n}} 705:in which there is only a single 97:A 17-sided plesiohedron and its 87: 78: 16:Type of space-filling polyhedron 1315: 1255: 907:10.1090/S0273-0979-1980-14827-2 1212: 1183: 1153: 1126: 1121:GrĂĽnbaum & Shephard (1980) 1077: 954: 922: 780:triangular prismatic honeycomb 229:{\displaystyle 1/\varepsilon } 168:such that every two points of 1: 1241:10.1524/zkri.1981.154.3-4.199 860: 808:triakis truncated tetrahedron 747:The five parallelohedra: the 460:. That is, the symmetries of 69: 1139:Polyhedra: a visual approach 822:trapezo-rhombic dodecahedron 201:{\displaystyle \varepsilon } 7: 723: 10: 1416: 1377:"Space-Filling Polyhedron" 993:and scissors congruence", 634:to other nearby points of 1135:"Close-packing polyhedra" 1063:10.1007/s13366-011-0010-5 797:isosceles right triangles 236:of at least one point in 188:are at least at distance 142:if there exists a number 1305:Schmitt, Moritz (2016), 1268:The Mathematical Gazette 550:than to any other. When 29:space-filling polyhedron 1400:Space-filling polyhedra 1192:"On the graph (10,3)-a" 830:hexagonal close-packing 824:, the prototile of the 810:, the prototile of the 778:, the prototile of the 751:(or more generally the 1133:Pugh, Anthony (1976), 1099:10.1006/eujc.1999.0294 987: 765:elongated dodecahedron 695: 671: 648: 628: 604: 584: 564: 544: 524: 497: 474: 454: 434: 414: 394: 370: 350: 330: 310: 290: 270: 250: 230: 202: 182: 162: 128: 988: 948:10.1145/116873.116880 935:ACM Computing Surveys 696: 672: 649: 629: 605: 585: 565: 545: 525: 498: 475: 455: 435: 415: 395: 371: 351: 331: 311: 291: 271: 251: 231: 203: 183: 163: 129: 27:is a special kind of 968: 803:, is a plesiohedron. 769:truncated octahedron 761:rhombic dodecahedron 685: 661: 638: 618: 594: 574: 554: 534: 514: 487: 464: 444: 424: 404: 384: 380:of space that takes 360: 340: 320: 300: 280: 260: 240: 212: 192: 172: 146: 118: 64:truncated octahedron 60:rhombic dodecahedron 39:. Three-dimensional 1346:2001math......6095E 1233:1981ZK....154..199E 1373:Weisstein, Eric W. 1035:Sabariego, Pilar; 1010:10.1007/BF02574064 983: 930:Aurenhammer, Franz 691: 667: 644: 624: 600: 580: 560: 540: 520: 493: 470: 450: 430: 410: 390: 366: 346: 326: 306: 286: 266: 246: 226: 198: 178: 158: 124: 1328:Discrete geometry 1037:Santos, Francisco 801:silver rectangles 694:{\displaystyle S} 670:{\displaystyle S} 647:{\displaystyle S} 627:{\displaystyle p} 612:convex polyhedron 603:{\displaystyle S} 583:{\displaystyle p} 563:{\displaystyle S} 543:{\displaystyle S} 523:{\displaystyle S} 496:{\displaystyle S} 473:{\displaystyle S} 453:{\displaystyle q} 433:{\displaystyle p} 413:{\displaystyle S} 393:{\displaystyle S} 376:, there exists a 369:{\displaystyle S} 349:{\displaystyle q} 329:{\displaystyle p} 309:{\displaystyle S} 289:{\displaystyle S} 269:{\displaystyle S} 249:{\displaystyle S} 181:{\displaystyle S} 127:{\displaystyle S} 31:, defined as the 1407: 1386: 1385: 1358: 1356: 1339: 1322:Erickson, Jeff; 1319: 1313: 1311: 1302: 1293: 1291: 1275:(448): 117–120, 1259: 1253: 1251: 1227:(3–4): 199–215, 1216: 1210: 1208: 1196: 1187: 1181: 1179: 1171:: 109–140, 275, 1157: 1151: 1149: 1130: 1124: 1110: 1101: 1081: 1075: 1073: 1056: 1032: 1023: 1021: 1012: 1003:(3–4): 573–583, 992: 990: 989: 984: 982: 981: 976: 958: 952: 950: 926: 920: 918: 909: 884:GrĂĽnbaum, Branko 880: 776:triangular prism 700: 698: 697: 692: 676: 674: 673: 668: 653: 651: 650: 645: 633: 631: 630: 625: 609: 607: 606: 601: 589: 587: 586: 581: 569: 567: 566: 561: 549: 547: 546: 541: 529: 527: 526: 521: 502: 500: 499: 494: 481:act transitively 479: 477: 476: 471: 459: 457: 456: 451: 439: 437: 436: 431: 419: 417: 416: 411: 399: 397: 396: 391: 375: 373: 372: 367: 355: 353: 352: 347: 335: 333: 332: 327: 315: 313: 312: 307: 295: 293: 292: 287: 275: 273: 272: 267: 255: 253: 252: 247: 235: 233: 232: 227: 222: 207: 205: 204: 199: 187: 185: 184: 179: 167: 165: 164: 159: 133: 131: 130: 125: 91: 82: 1415: 1414: 1410: 1409: 1408: 1406: 1405: 1404: 1390: 1389: 1367: 1362: 1361: 1320: 1316: 1303: 1296: 1281:10.2307/3616930 1263:Shephard, G. C. 1260: 1256: 1217: 1213: 1194: 1188: 1184: 1158: 1154: 1131: 1127: 1113:convex polytope 1082: 1078: 1033: 1026: 977: 972: 971: 969: 966: 965: 962:Lagarias, J. C. 959: 955: 927: 923: 888:Shephard, G. C. 881: 868: 863: 816:diamond lattice 792:gyrobifastigium 757:hexagonal prism 726: 686: 683: 682: 662: 659: 658: 639: 636: 635: 619: 616: 615: 595: 592: 591: 575: 572: 571: 555: 552: 551: 535: 532: 531: 515: 512: 511: 508:Voronoi diagram 488: 485: 484: 465: 462: 461: 445: 442: 441: 425: 422: 421: 405: 402: 401: 385: 382: 381: 361: 358: 357: 341: 338: 337: 321: 318: 317: 301: 298: 297: 281: 278: 277: 261: 258: 257: 241: 238: 237: 218: 213: 210: 209: 193: 190: 189: 173: 170: 169: 147: 144: 143: 136:Euclidean space 119: 116: 115: 112: 111: 110: 109: 103:Voronoi diagram 94: 93: 92: 84: 83: 72: 56:hexagonal prism 41:Euclidean space 35:of a symmetric 17: 12: 11: 5: 1413: 1403: 1402: 1388: 1387: 1366: 1365:External links 1363: 1360: 1359: 1314: 1294: 1254: 1211: 1182: 1152: 1125: 1092:(6): 527–549, 1076: 1047:(2): 237–263, 1024: 980: 975: 953: 942:(3): 345–405, 921: 900:(3): 951–973, 896:, New Series, 865: 864: 862: 859: 839: 838: 832: 818: 804: 788: 772: 753:parallelepiped 730:parallelohedra 725: 722: 718:Dehn invariant 690: 666: 643: 623: 599: 579: 559: 539: 519: 492: 469: 449: 429: 409: 389: 365: 345: 325: 305: 285: 265: 245: 225: 221: 217: 197: 177: 157: 154: 151: 123: 96: 95: 86: 85: 77: 76: 75: 74: 73: 71: 68: 15: 9: 6: 4: 3: 2: 1412: 1401: 1398: 1397: 1395: 1384: 1383: 1378: 1374: 1369: 1368: 1355: 1351: 1347: 1343: 1338: 1333: 1329: 1325: 1318: 1310: 1309: 1301: 1299: 1290: 1286: 1282: 1278: 1274: 1270: 1269: 1264: 1258: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1206: 1202: 1201: 1193: 1186: 1178: 1174: 1170: 1166: 1162: 1161:Delone, B. N. 1156: 1148: 1144: 1140: 1136: 1129: 1122: 1118: 1114: 1109: 1105: 1100: 1095: 1091: 1087: 1080: 1072: 1068: 1064: 1060: 1055: 1050: 1046: 1042: 1038: 1031: 1029: 1020: 1016: 1011: 1006: 1002: 998: 997: 978: 963: 957: 949: 945: 941: 937: 936: 931: 925: 917: 913: 908: 903: 899: 895: 894: 889: 885: 879: 877: 875: 873: 871: 866: 858: 855: 852: 847: 845: 837: 833: 831: 827: 823: 819: 817: 813: 809: 805: 802: 798: 793: 789: 785: 781: 777: 773: 770: 766: 762: 758: 754: 750: 746: 745: 744: 741: 739: 735: 731: 721: 719: 714: 712: 708: 704: 688: 680: 664: 655: 641: 621: 613: 597: 577: 557: 537: 517: 509: 504: 490: 482: 467: 447: 427: 407: 387: 379: 363: 343: 323: 303: 283: 263: 243: 223: 219: 215: 195: 175: 155: 152: 149: 141: 137: 134:of points in 121: 108: 104: 100: 90: 81: 67: 65: 61: 57: 53: 48: 46: 42: 38: 34: 30: 26: 22: 1380: 1337:math/0106095 1327: 1317: 1307: 1272: 1266: 1257: 1224: 1220: 1214: 1204: 1198: 1185: 1168: 1164: 1155: 1138: 1128: 1089: 1085: 1079: 1044: 1040: 1000: 994: 956: 939: 933: 924: 897: 891: 856: 848: 844:open problem 840: 784:Laves tiling 742: 727: 715: 656: 505: 378:rigid motion 113: 49: 33:Voronoi cell 25:plesiohedron 24: 18: 836:Laves graph 738:stereohedra 510:of any set 107:Laves graph 1324:Kim, Scott 861:References 140:Delone set 70:Definition 37:Delone set 1382:MathWorld 1117:zonotopes 1054:0708.2114 711:isohedral 707:prototile 703:honeycomb 679:congruent 224:ε 196:ε 150:ε 99:honeycomb 45:honeycomb 1394:Category 1207:(6): 663 734:lattices 724:Examples 21:geometry 1354:2034721 1342:Bibcode 1289:3616930 1249:0598811 1229:Bibcode 1177:0558946 1147:0451161 1108:1703597 1071:2842627 1019:1318797 916:0585178 105:of the 1352:  1287:  1247:  1175:  1145:  1106:  1069:  1017:  914:  767:, and 114:A set 101:, the 62:, and 1332:arXiv 1285:JSTOR 1195:(PDF) 1049:arXiv 851:helix 657:When 610:is a 256:. So 138:is a 820:The 806:The 799:and 790:The 774:The 749:cube 506:The 420:and 336:and 153:> 52:cube 23:, a 1277:doi 1237:doi 1225:154 1169:148 1094:doi 1059:doi 1005:doi 944:doi 902:doi 755:), 590:in 483:on 440:to 400:to 356:of 19:In 1396:: 1379:, 1375:, 1350:MR 1348:, 1340:, 1297:^ 1283:, 1273:69 1271:, 1245:MR 1243:, 1235:, 1223:, 1205:55 1203:, 1197:, 1173:MR 1167:, 1143:MR 1137:, 1104:MR 1102:, 1090:20 1088:, 1067:MR 1065:, 1057:, 1045:52 1043:, 1027:^ 1015:MR 1013:, 1001:13 999:, 940:23 938:, 912:MR 910:, 886:; 869:^ 763:, 759:, 654:. 503:. 58:, 54:, 1357:. 1344:: 1334:: 1312:. 1292:. 1279:: 1252:. 1239:: 1231:: 1209:. 1180:. 1150:. 1123:. 1096:: 1074:. 1061:: 1051:: 1022:. 1007:: 979:n 974:R 946:: 919:. 904:: 898:3 771:. 689:S 665:S 642:S 622:p 598:S 578:p 558:S 538:S 518:S 491:S 468:S 448:q 428:p 408:S 388:S 364:S 344:q 324:p 304:S 284:S 264:S 244:S 220:/ 216:1 176:S 156:0 122:S

Index

geometry
space-filling polyhedron
Voronoi cell
Delone set
Euclidean space
honeycomb
cube
hexagonal prism
rhombic dodecahedron
truncated octahedron


honeycomb
Voronoi diagram
Laves graph
Euclidean space
Delone set
rigid motion
act transitively
Voronoi diagram
convex polyhedron
congruent
honeycomb
prototile
isohedral
Dehn invariant
parallelohedra
lattices
stereohedra
cube

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑