Knowledge

Truncated octahedron

Source đź“ť

856: 1112: 1284: 1314: 1293: 1341: 1570: 1124: 2691: 2680: 159: 1236: 1229: 2725: 2669: 2658: 2720: 2707: 175: 2702: 1414: 2623: 2612: 2579: 2601: 2590: 1356: 1386: 632: 2647: 29: 2634: 1371: 1326: 868: 538: 2528: 1073:
without rotating and tilling space so that it fills the entire face. There are five three-dimensional primary parallelohedrons, one of which is the truncated octahedron. More generally, every permutohedron and parallelohedron is
429: 784: 626: 1911:. But as he writes (p. 429), Voronoi's conjecture for dimensions at most four was already proven by Delaunay. For the classification of three-dimensional parallelohedra into these five types, see 840: 684: 132: 404: 1166:
The truncated octahedron (in fact, the generalized truncated octahedron) appears in the error analysis of quantization index modulation (QIM) in conjunction with repetition coding.
2149:
Perez-Gonzalez, F.; Balado, F.; Martin, J.R.H. (2003). "Performance analysis of existing and new methods for data hiding with known-host information in additive channels".
721: 974: 1018: 930: 1048: 335: 558: 424: 355: 2764: 540:
The surface area of a truncated octahedron can be obtained by summing all polygonals' area, six squares and eight hexagons. Considering the edge length
644:. In other words, it has a highly symmetric and semi-regular polyhedron with two or more different regular polygonal faces that meet in a vertex. The 563: 1926: 2555: 2757: 729: 1313: 2226: 2133: 2102: 2008: 1820: 1723: 1674: 2750: 1509: 789: 2441: 2418: 2317: 1355: 533:{\displaystyle V={\frac {\sqrt {2}}{3}}(3a)^{3}-6\cdot {\frac {\sqrt {2}}{6}}a^{3}=8a^{3}{\sqrt {2}}\approx 11.3137.} 227:(1,1), containing square and hexagonal faces. Like the cube, it can tessellate (or "pack") 3-dimensional space, as a 199:
by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular
96: 1340: 3176: 2548: 1963: 1658: 1748: 658: 106: 855: 1111: 368: 888:, meaning it can be represented with even more symmetric coordinates in four dimensions: all permutations of 2372: 1696:
Mathematical Physics: Proceedings of the 13th Regional Conference, Antalya, Turkey, 27–31 October 2010
1267: 310:
by cutting off all vertices. This resulting polyhedron has six squares and eight hexagons, leaving out six
249:. If the original truncated octahedron has unit edge length, its dual tetrakis hexahedron has edge lengths 2026:"Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses" 1993:
Image Analysis: 21st Scandinavian Conference, SCIA 2019, Norrköping, Sweden, June 11–13, 2019, Proceedings
406:. Because six equilateral square pyramids are removed by truncation, the volume of a truncated octahedron 3171: 2963: 2904: 2695: 2541: 1255: 3181: 3166: 2993: 2953: 2305: 2125: 1709: 1283: 358: 2988: 2983: 693: 3094: 3089: 2968: 2874: 2673: 2408: 2254: 2208: 1971: 1917: 1907:
are combinatorially equivalent to Voronoi tilings, and Erdahl proves this in the special case of
1292: 935: 2958: 2899: 2889: 2834: 2684: 2616: 1385: 1070: 979: 891: 652:. They both have the same three-dimensional symmetry group as the regular octahedron does, the 2484: 2285: 2204: 2119: 2092: 1988: 1967: 1903:. Voronoi conjectured that all tilings of higher dimensional spaces by translates of a single 2978: 2894: 2849: 2797: 2627: 2583: 1802: 1713: 1691: 1652: 1534: 1427: 1140:
In chemistry, the truncated octahedron is the sodalite cage structure in the framework of a
2938: 2812: 2236: 2158: 2037: 1949: 1898: 1771: 1637: 1502: 1259: 1216: 1130: 1026: 1787: 8: 3104: 2973: 2948: 2933: 2869: 2817: 2662: 2521: 2462: 1437: 1160: 1152: 1095: 1079: 653: 649: 246: 220: 143: 101: 2162: 2041: 1595: 317: 3186: 3119: 3084: 2943: 2838: 2787: 2186:"Adventures Among the Toroids – Chapter 5 – Simplest (R)(A)(Q)(T) Toroids of genus p=1" 2068: 2025: 1857: 1853: 1775: 1447: 1370: 543: 409: 340: 307: 235: 2376: 1913: 3099: 2909: 2884: 2828: 2729: 2651: 2564: 2502: 2481: 2466: 2458: 2437: 2414: 2393: 2313: 2282: 2222: 2129: 2098: 2073: 2055: 2004: 1989:"Zonohedral Approximation of Spherical Structuring Element for Volumetric Morphology" 1987:
Jensen, Patrick M.; Trinderup, Camilia H.; Dahl, Anders B.; Dahl, Vedrana A. (2019).
1816: 1779: 1739: 1719: 1670: 1629: 1569: 1556: 1541: 1494: 1263: 1207: 1179: 641: 204: 192: 86: 39: 2690: 2679: 1991:. In Felsberg, Michael; Forssén, Per-Erik; Sintorn, Ida-Maria; Unger, Jonas (eds.). 1940: 1921: 1849: 3038: 2505: 2359: 2214: 2166: 2063: 2045: 1996: 1935: 1884: 1845: 1808: 1783: 1757: 1662: 1625: 1457: 1419: 1362: 166: 2724: 2668: 2657: 2329: 1325: 1235: 1228: 2719: 2232: 2185: 1945: 1904: 1894: 1767: 1633: 1467: 1346: 1252: 1066: 1021: 645: 242: 158: 138: 76: 66: 44: 2706: 2859: 2782: 2701: 2594: 1545: 1190: 1183: 1156: 311: 208: 2622: 2611: 2578: 2218: 2000: 1812: 1666: 1413: 932:
form the vertices of a truncated octahedron in the three-dimensional subspace
426:
is obtained by subtracting the volume of a regular octahedron from those six:
3160: 3064: 2920: 2854: 2638: 2600: 2589: 2059: 1498: 1083: 1053:
The truncated octahedron can be used as a tilling space. It is classified as
881: 687: 362: 228: 174: 150: 49: 2170: 2050: 1248:
by a hyperplane so that its sliced cross-section is a truncated octahedron.
1123: 1020:
and each edge represents a single pairwise swap of two elements. It has the
2350:
Gaiha, P. & Guha, S.K. (1977). "Adjacent vertices on a permutohedron".
2077: 1889: 1872: 1762: 1743: 1574: 1563: 1549: 1522: 1477: 1058: 1054: 54: 2148: 1189:
Removing the central octahedron and 2 or 4 triangular cupolae creates two
726:
The dihedral angle of a truncated octahedron between square-to-hexagon is
2529:
Editable printable net of a truncated octahedron with interactive 3D view
1559: 1538: 1518: 1490: 2310:
The Geometrical Foundation of Natural Structure: A Source Book of Design
1836:
Crisman, Karl-Dieter (2011). "The Symmetry Group of the Permutahedron".
1715:
The Geometrical Foundation of Natural Structure: A Source Book of Design
3129: 3017: 2807: 2774: 2646: 1692:"Coxeter groups, quaternions, symmetries of polyhedra and 4D polytopes" 1530: 1301: 1175: 1075: 1062: 631: 216: 196: 59: 2333: 867: 686:. A square and two hexagons surround each of its vertex, denoting its 28: 3124: 3114: 3059: 3043: 2879: 2711: 2633: 2533: 2510: 2489: 2471: 2290: 1245: 1141: 2363: 1573:
Three different Hamiltonian cycles described by the three different
1266:. The truncated octahedron is one of five three-dimensional primary 3010: 2742: 2479: 2280: 1908: 184: 2330:"Figure 5.5: Uniform space-filling using only truncated octahedra" 3134: 3109: 1391: 1145: 365:). From the equilateral square pyramid's property, its volume is 200: 1873:"Zonotopes, dicings, and Voronoi's conjecture on parallelohedra" 1376: 2457: 1133:, showing symmetry labels for high symmetry lines and points. 314:. Considering that each length of the regular octahedron is 2802: 1332: 779:{\textstyle \arccos(-1/{\sqrt {3}})\approx 125.26^{\circ }} 621:{\displaystyle (6+12{\sqrt {3}})a^{2}\approx 26.7846a^{2}.} 1098:, a polyhedron with either hexagonal or pentagonal faces. 207:), 36 edges, and 24 vertices. Since each of its faces has 1616:
Berman, Martin (1971). "Regular-faced convex polyhedra".
1174:
The truncated octahedron can be dissected into a central
976:. Therefore, each vertex corresponds to a permutation of 1986: 2500: 792: 732: 373: 371: 2327: 1029: 982: 938: 894: 696: 661: 566: 546: 432: 412: 343: 320: 109: 2349: 1800: 234:The truncated octahedron was called the "mecon" by 1042: 1012: 968: 924: 861:Truncated octahedron as a permutahedron of order 4 834: 778: 715: 678: 620: 552: 532: 418: 398: 349: 329: 126: 2213:, Universitext, New York: Springer, p. 109, 835:{\textstyle \arccos(-1/3)\approx 109.47^{\circ }} 3158: 2406: 2378:Virtual Polyhedra: The Encyclopedia of Polyhedra 2094:Chemical Processes for Environmental Engineering 1912: 845: 640:The truncated octahedron is one of the thirteen 2030:Proceedings of the National Academy of Sciences 880:The truncated octahedron can be described as a 786:, and that between adjacent hexagonal faces is 2202: 2758: 2549: 2394:"The Uniform Polyhedra: Truncated Octahedron" 2203:Borovik, Alexandre V.; Borovik, Anna (2010), 2121:Introduction to the Electron Theory of Metals 1927:Bulletin of the American Mathematical Society 1399: 337:, and the edge length of a square pyramid is 306:A truncated octahedron is constructed from a 2432:. United Kingdom: Cambridge. pp. 79–86 2427: 2271:Master Thesis, University of TĂĽbingen, 2018 2023: 1801:Johnson, Tom; Jedrzejewski, Franck (2014). 1089: 679:{\displaystyle \mathrm {O} _{\mathrm {h} }} 127:{\displaystyle \mathrm {O} _{\mathrm {h} }} 2765: 2751: 2556: 2542: 2370: 2335:Nanomedicine, Volume I: Basic Capabilities 2248: 1962: 1956: 1193:, with dihedral and tetrahedral symmetry: 301: 173: 157: 27: 2522:"3D convex uniform polyhedra x3x4o - toe" 2067: 2049: 1939: 1888: 1761: 399:{\textstyle {\tfrac {\sqrt {2}}{6}}a^{3}} 2391: 2304: 2117: 2111: 1708: 1689: 1611: 1609: 1568: 1117:The structure of the faujasite framework 629: 2097:. Imperial College Press. p. 338. 1835: 1738: 1718:. Dover Publications, Inc. p. 78. 1702: 1683: 1533:of the truncated octahedron. It has 24 1304:nets often include truncated octahedra. 3159: 2563: 2338:. Georgetown, Texas: Landes Bioscience 2151:IEEE Transactions on Signal Processing 1870: 1829: 1732: 1650: 1615: 2746: 2537: 2501: 2480: 2281: 1864: 1744:"Convex polyhedra with regular faces" 1644: 1606: 873:Truncated octahedron in tilling space 2772: 2519: 2373:"VRML model of truncated octahedron" 2269:Engineering Linear Layouts with SAT. 1980: 2352:SIAM Journal on Applied Mathematics 2249:Read, R. C.; Wilson, R. J. (1998), 2090: 2084: 1995:. Springer. p. 131–132. 1163:lattice is a truncated octahedron. 1057:, meaning it can be defined as the 13: 2183: 2017: 1577:for the truncated octahedral graph 670: 664: 636:3D model of a truncated octahedron 296: 118: 112: 14: 3198: 2451: 2413:. Berlin: Springer. p. 539. 2024:Schein, S.; Gayed, J. M. (2014). 1877:European Journal of Combinatorics 1794: 1618:Journal of the Franklin Institute 648:of a truncated octahedron is the 2723: 2718: 2705: 2700: 2689: 2678: 2667: 2656: 2645: 2632: 2621: 2610: 2599: 2588: 2577: 1412: 1384: 1369: 1354: 1339: 1324: 1312: 1291: 1282: 1234: 1227: 1122: 1110: 1065:. The plesiohedron includes the 866: 854: 2274: 2261: 2242: 2196: 2177: 2142: 1941:10.1090/S0273-0979-1980-14827-2 1850:10.4169/college.math.j.42.2.135 1838:The College Mathematics Journal 1749:Canadian Journal of Mathematics 1698:. World Scientific. p. 48. 1654:Multi-shell Polyhedral Clusters 1101: 630: 2328:Freitas, Robert A. Jr (1999). 1922:"Tilings with congruent tiles" 1690:Koca, M.; Koca, N. O. (2013). 1588: 1510:Table of graphs and parameters 1094:The truncated octahedron is a 1007: 983: 919: 895: 816: 799: 760: 739: 586: 567: 461: 451: 211:the truncated octahedron is a 1: 1976:. Springer. pp. 349–359. 1581: 1169: 1082:that can be defined by using 846:As a tilling space polyhedron 3145:Degenerate polyhedra are in 2485:"Truncated octahedral graph" 2286:"Truncated octahedral graph" 1630:10.1016/0016-0032(71)90071-8 1566:in multiple ways: , , and . 716:{\displaystyle 4\cdot 6^{2}} 7: 2964:pentagonal icositetrahedron 2905:truncated icosidodecahedron 2696:Truncated icosidodecahedron 2312:. Dover Publications, Inc. 1562:, it can be represented by 1531:graph of vertices and edges 1264:body-centered cubic lattice 1256:bitruncated cubic honeycomb 195:that arises from a regular 10: 3203: 2994:pentagonal hexecontahedron 2954:deltoidal icositetrahedron 2126:Cambridge University Press 2118:Mizutani, Uichiro (2001). 1527:truncated octahedral graph 1407:Truncated octahedral graph 1400:Truncated octahedral graph 1273: 1244:It is possible to slice a 1205: 969:{\displaystyle x+y+z+w=10} 357:(the square pyramid is an 3143: 3077: 3052: 3034: 3027: 3002: 2989:disdyakis triacontahedron 2984:deltoidal hexecontahedron 2918: 2826: 2781: 2571: 2407:Alexandrov, A.D. (1958). 2219:10.1007/978-0-387-79066-4 2001:10.1007/978-3-030-20205-7 1813:10.1007/978-3-0348-0554-4 1667:10.1007/978-3-319-64123-2 1508: 1486: 1476: 1466: 1456: 1446: 1436: 1426: 1411: 1406: 1361:model made with Polydron 1013:{\displaystyle (1,2,3,4)} 925:{\displaystyle (1,2,3,4)} 172: 165: 156: 149: 137: 95: 85: 75: 65: 35: 26: 21: 1807:. Springer. p. 15. 1258:can also be seen as the 1129:First Brillouin zone of 1090:As a Goldberg polyhedron 3177:Space-filling polyhedra 3095:gyroelongated bipyramid 2969:rhombic triacontahedron 2875:truncated cuboctahedron 2674:Truncated cuboctahedron 2255:Oxford University Press 2210:Mirrors and Reflections 2171:10.1109/TSP.2003.809368 2051:10.1073/pnas.1310939111 1858:college.math.j.42.2.135 1537:and 36 edges, and is a 1078:, a polyhedron that is 302:As an Archimedean solid 3090:truncated trapezohedra 2959:disdyakis dodecahedron 2925:(duals of Archimedean) 2900:rhombicosidodecahedron 2890:truncated dodecahedron 2685:Rhombicosidodecahedron 2617:Truncated dodecahedron 1890:10.1006/eujc.1999.0294 1871:Erdahl, R. M. (1999). 1763:10.4153/cjm-1966-021-8 1651:Diudea, M. V. (2018). 1596:"Truncated Octahedron" 1578: 1069:, a polyhedron can be 1044: 1014: 970: 926: 836: 780: 717: 680: 637: 622: 554: 534: 420: 400: 351: 331: 128: 2979:pentakis dodecahedron 2895:truncated icosahedron 2850:truncated tetrahedron 2628:Truncated icosahedron 2584:Truncated tetrahedron 2428:Cromwell, P. (1997). 1572: 1222:, , (*332), order 24 1045: 1043:{\displaystyle S_{4}} 1015: 971: 927: 837: 781: 718: 681: 635: 623: 555: 535: 421: 401: 352: 332: 129: 2939:rhombic dodecahedron 2865:truncated octahedron 2606:Truncated octahedron 2463:Truncated octahedron 2091:Yen, Teh F. (2007). 1968:"8.1 Parallelohedra" 1260:Voronoi tessellation 1213:, , (2*3), order 12 1186:above the vertices. 1182:on each face, and 6 1027: 980: 936: 892: 790: 730: 694: 659: 564: 544: 430: 410: 369: 341: 318: 189:truncated octahedron 107: 22:Truncated octahedron 2974:triakis icosahedron 2949:tetrakis hexahedron 2934:triakis tetrahedron 2870:rhombicuboctahedron 2663:Rhombicuboctahedron 2520:Klitzing, Richard. 2163:2003ITSP...51..960P 2042:2014PNAS..111.2920S 1319:ancient Chinese die 1161:face-centered cubic 1153:solid-state physics 1096:Goldberg polyhedron 1080:centrally symmetric 654:octahedral symmetry 650:tetrakis hexahedron 247:tetrakis hexahedron 221:Goldberg polyhedron 144:tetrakis hexahedron 102:octahedral symmetry 3172:Archimedean solids 2944:triakis octahedron 2829:Archimedean solids 2565:Archimedean solids 2503:Weisstein, Eric W. 2482:Weisstein, Eric W. 2459:Weisstein, Eric W. 2434:Archimedean solids 2283:Weisstein, Eric W. 2251:An Atlas of Graphs 1804:Looking at Numbers 1740:Johnson, Norman W. 1579: 1180:triangular cupolae 1178:, surrounded by 8 1040: 1010: 966: 922: 832: 776: 713: 676: 642:Archimedean solids 638: 618: 550: 530: 416: 396: 384: 347: 330:{\displaystyle 3a} 327: 308:regular octahedron 236:Buckminster Fuller 124: 3182:Truncated tilings 3167:Uniform polyhedra 3154: 3153: 3073: 3072: 2910:snub dodecahedron 2885:icosidodecahedron 2740: 2739: 2735: 2734: 2730:Snub dodecahedron 2652:Icosidodecahedron 2467:Archimedean solid 2228:978-0-387-79065-7 2135:978-0-521-58709-9 2104:978-1-86094-759-9 2010:978-3-030-20205-7 1964:Alexandrov, A. D. 1822:978-3-0348-0554-4 1725:978-0-486-23729-9 1676:978-3-319-64123-2 1600:Wolfram Mathworld 1542:Archimedean graph 1515: 1514: 1418:3-fold symmetric 1242: 1241: 758: 584: 553:{\displaystyle a} 522: 489: 485: 449: 445: 419:{\displaystyle V} 383: 379: 350:{\displaystyle a} 219:. It is also the 193:Archimedean solid 181: 180: 40:Archimedean solid 16:Archimedean solid 3194: 3032: 3031: 3028:Dihedral uniform 3003:Dihedral regular 2926: 2842: 2791: 2767: 2760: 2753: 2744: 2743: 2727: 2722: 2709: 2704: 2693: 2682: 2671: 2660: 2649: 2636: 2625: 2614: 2603: 2592: 2581: 2574: 2573: 2558: 2551: 2544: 2535: 2534: 2525: 2516: 2515: 2495: 2494: 2476: 2447: 2424: 2410:Konvexe Polyeder 2403: 2401: 2400: 2388: 2386: 2385: 2371:Hart, George W. 2367: 2346: 2344: 2343: 2323: 2306:Williams, Robert 2297: 2296: 2295: 2278: 2272: 2265: 2259: 2258: 2246: 2240: 2239: 2200: 2194: 2193: 2181: 2175: 2174: 2146: 2140: 2139: 2115: 2109: 2108: 2088: 2082: 2081: 2071: 2053: 2036:(8): 2920–2925. 2021: 2015: 2014: 1984: 1978: 1977: 1973:Convex Polyhedra 1960: 1954: 1953: 1943: 1914:GrĂĽnbaum, Branko 1902: 1892: 1868: 1862: 1861: 1833: 1827: 1826: 1798: 1792: 1791: 1765: 1736: 1730: 1729: 1710:Williams, Robert 1706: 1700: 1699: 1687: 1681: 1680: 1648: 1642: 1641: 1613: 1604: 1603: 1592: 1458:Chromatic number 1420:Schlegel diagram 1416: 1404: 1403: 1388: 1373: 1363:construction set 1358: 1343: 1328: 1316: 1295: 1286: 1238: 1231: 1196: 1195: 1126: 1114: 1049: 1047: 1046: 1041: 1039: 1038: 1019: 1017: 1016: 1011: 975: 973: 972: 967: 931: 929: 928: 923: 870: 858: 841: 839: 838: 833: 831: 830: 812: 785: 783: 782: 777: 775: 774: 759: 754: 752: 722: 720: 719: 714: 712: 711: 685: 683: 682: 677: 675: 674: 673: 667: 634: 627: 625: 624: 619: 614: 613: 598: 597: 585: 580: 559: 557: 556: 551: 539: 537: 536: 531: 523: 518: 516: 515: 500: 499: 490: 481: 480: 469: 468: 450: 441: 440: 425: 423: 422: 417: 405: 403: 402: 397: 395: 394: 385: 375: 374: 356: 354: 353: 348: 336: 334: 333: 328: 292: 291: 286: 284: 283: 280: 277: 270: 269: 264: 262: 261: 258: 255: 177: 161: 133: 131: 130: 125: 123: 122: 121: 115: 31: 19: 18: 3202: 3201: 3197: 3196: 3195: 3193: 3192: 3191: 3157: 3156: 3155: 3150: 3139: 3078:Dihedral others 3069: 3048: 3023: 2998: 2927: 2924: 2923: 2914: 2843: 2832: 2831: 2822: 2785: 2783:Platonic solids 2777: 2771: 2741: 2736: 2728: 2710: 2694: 2683: 2672: 2661: 2650: 2637: 2626: 2615: 2604: 2593: 2582: 2567: 2562: 2506:"Permutohedron" 2454: 2444: 2421: 2398: 2396: 2383: 2381: 2364:10.1137/0132025 2341: 2339: 2320: 2301: 2300: 2279: 2275: 2267:Wolz, Jessica; 2266: 2262: 2247: 2243: 2229: 2205:"Exercise 14.4" 2201: 2197: 2182: 2178: 2147: 2143: 2136: 2128:. p. 112. 2116: 2112: 2105: 2089: 2085: 2022: 2018: 2011: 1985: 1981: 1961: 1957: 1918:Shephard, G. C. 1905:convex polytope 1869: 1865: 1834: 1830: 1823: 1799: 1795: 1737: 1733: 1726: 1707: 1703: 1688: 1684: 1677: 1649: 1645: 1614: 1607: 1594: 1593: 1589: 1584: 1422: 1402: 1395: 1389: 1380: 1374: 1365: 1359: 1350: 1344: 1335: 1329: 1320: 1317: 1308: 1307: 1306: 1305: 1298: 1297: 1296: 1288: 1287: 1276: 1253:cell-transitive 1220: 1211: 1191:Stewart toroids 1184:square pyramids 1172: 1138: 1137: 1136: 1135: 1134: 1127: 1119: 1118: 1115: 1104: 1092: 1067:parallelohedron 1061:of a symmetric 1034: 1030: 1028: 1025: 1024: 1022:symmetric group 981: 978: 977: 937: 934: 933: 893: 890: 889: 886:4-permutohedron 878: 877: 876: 875: 874: 871: 863: 862: 859: 848: 826: 822: 808: 791: 788: 787: 770: 766: 753: 748: 731: 728: 727: 707: 703: 695: 692: 691: 669: 668: 663: 662: 660: 657: 656: 646:dual polyhedron 609: 605: 593: 589: 579: 565: 562: 561: 545: 542: 541: 517: 511: 507: 495: 491: 479: 464: 460: 439: 431: 428: 427: 411: 408: 407: 390: 386: 372: 370: 367: 366: 342: 339: 338: 319: 316: 315: 312:square pyramids 304: 299: 297:Classifications 289: 287: 281: 278: 275: 274: 272: 267: 265: 259: 256: 253: 252: 250: 243:dual polyhedron 226: 139:Dual polyhedron 117: 116: 111: 110: 108: 105: 104: 58: 53: 48: 45:Parallelohedron 43: 17: 12: 11: 5: 3200: 3190: 3189: 3184: 3179: 3174: 3169: 3152: 3151: 3144: 3141: 3140: 3138: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3097: 3092: 3087: 3081: 3079: 3075: 3074: 3071: 3070: 3068: 3067: 3062: 3056: 3054: 3050: 3049: 3047: 3046: 3041: 3035: 3029: 3025: 3024: 3022: 3021: 3014: 3006: 3004: 3000: 2999: 2997: 2996: 2991: 2986: 2981: 2976: 2971: 2966: 2961: 2956: 2951: 2946: 2941: 2936: 2930: 2928: 2921:Catalan solids 2919: 2916: 2915: 2913: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2877: 2872: 2867: 2862: 2860:truncated cube 2857: 2852: 2846: 2844: 2827: 2824: 2823: 2821: 2820: 2815: 2810: 2805: 2800: 2794: 2792: 2779: 2778: 2770: 2769: 2762: 2755: 2747: 2738: 2737: 2733: 2732: 2715: 2714: 2698: 2687: 2676: 2665: 2654: 2642: 2641: 2630: 2619: 2608: 2597: 2595:Truncated cube 2586: 2572: 2569: 2568: 2561: 2560: 2553: 2546: 2538: 2532: 2531: 2526: 2517: 2498: 2497: 2496: 2453: 2452:External links 2450: 2449: 2448: 2442: 2425: 2419: 2404: 2392:Mäder, Roman. 2389: 2368: 2358:(2): 323–327. 2347: 2325: 2318: 2299: 2298: 2273: 2260: 2241: 2227: 2195: 2190:www.doskey.com 2184:Doskey, Alex. 2176: 2157:(4): 960–980. 2141: 2134: 2110: 2103: 2083: 2016: 2009: 1979: 1955: 1934:(3): 951–973. 1930:. New Series. 1883:(6): 527–549. 1863: 1844:(2): 135–139. 1828: 1821: 1793: 1731: 1724: 1701: 1682: 1675: 1661:. p. 39. 1643: 1624:(5): 329–352. 1605: 1586: 1585: 1583: 1580: 1546:book thickness 1513: 1512: 1506: 1505: 1503:zero-symmetric 1488: 1484: 1483: 1480: 1474: 1473: 1470: 1468:Book thickness 1464: 1463: 1460: 1454: 1453: 1450: 1444: 1443: 1440: 1434: 1433: 1430: 1424: 1423: 1417: 1409: 1408: 1401: 1398: 1397: 1396: 1390: 1383: 1381: 1375: 1368: 1366: 1360: 1353: 1351: 1345: 1338: 1336: 1330: 1323: 1321: 1318: 1311: 1300: 1299: 1290: 1289: 1281: 1280: 1279: 1278: 1277: 1275: 1272: 1268:parallelohedra 1240: 1239: 1232: 1224: 1223: 1218: 1214: 1209: 1204: 1203: 1200: 1171: 1168: 1157:Brillouin zone 1128: 1121: 1120: 1116: 1109: 1108: 1107: 1106: 1105: 1103: 1100: 1091: 1088: 1037: 1033: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 985: 965: 962: 959: 956: 953: 950: 947: 944: 941: 921: 918: 915: 912: 909: 906: 903: 900: 897: 884:of order 4 or 872: 865: 864: 860: 853: 852: 851: 850: 849: 847: 844: 829: 825: 821: 818: 815: 811: 807: 804: 801: 798: 795: 773: 769: 765: 762: 757: 751: 747: 744: 741: 738: 735: 710: 706: 702: 699: 672: 666: 617: 612: 608: 604: 601: 596: 592: 588: 583: 578: 575: 572: 569: 549: 529: 526: 521: 514: 510: 506: 503: 498: 494: 488: 484: 478: 475: 472: 467: 463: 459: 456: 453: 448: 444: 438: 435: 415: 393: 389: 382: 378: 346: 326: 323: 303: 300: 298: 295: 224: 209:point symmetry 179: 178: 170: 169: 163: 162: 154: 153: 147: 146: 141: 135: 134: 120: 114: 99: 97:Symmetry group 93: 92: 89: 83: 82: 79: 73: 72: 69: 63: 62: 37: 33: 32: 24: 23: 15: 9: 6: 4: 3: 2: 3199: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3164: 3162: 3148: 3142: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3082: 3080: 3076: 3066: 3063: 3061: 3058: 3057: 3055: 3051: 3045: 3042: 3040: 3037: 3036: 3033: 3030: 3026: 3020: 3019: 3015: 3013: 3012: 3008: 3007: 3005: 3001: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2931: 2929: 2922: 2917: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2855:cuboctahedron 2853: 2851: 2848: 2847: 2845: 2840: 2836: 2830: 2825: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2795: 2793: 2789: 2784: 2780: 2776: 2768: 2763: 2761: 2756: 2754: 2749: 2748: 2745: 2731: 2726: 2721: 2717: 2716: 2713: 2708: 2703: 2699: 2697: 2692: 2688: 2686: 2681: 2677: 2675: 2670: 2666: 2664: 2659: 2655: 2653: 2648: 2644: 2643: 2640: 2639:Cuboctahedron 2635: 2631: 2629: 2624: 2620: 2618: 2613: 2609: 2607: 2602: 2598: 2596: 2591: 2587: 2585: 2580: 2576: 2575: 2570: 2566: 2559: 2554: 2552: 2547: 2545: 2540: 2539: 2536: 2530: 2527: 2523: 2518: 2513: 2512: 2507: 2504: 2499: 2492: 2491: 2486: 2483: 2478: 2477: 2474: 2473: 2468: 2464: 2460: 2456: 2455: 2445: 2443:0-521-55432-2 2439: 2435: 2431: 2426: 2422: 2420:3-540-23158-7 2416: 2412: 2411: 2405: 2395: 2390: 2380: 2379: 2374: 2369: 2365: 2361: 2357: 2353: 2348: 2337: 2336: 2331: 2326: 2324:(Section 3–9) 2321: 2319:0-486-23729-X 2315: 2311: 2307: 2303: 2302: 2293: 2292: 2287: 2284: 2277: 2270: 2264: 2257:, p. 269 2256: 2252: 2245: 2238: 2234: 2230: 2224: 2220: 2216: 2212: 2211: 2206: 2199: 2191: 2187: 2180: 2172: 2168: 2164: 2160: 2156: 2152: 2145: 2137: 2131: 2127: 2123: 2122: 2114: 2106: 2100: 2096: 2095: 2087: 2079: 2075: 2070: 2065: 2061: 2057: 2052: 2047: 2043: 2039: 2035: 2031: 2027: 2020: 2012: 2006: 2002: 1998: 1994: 1990: 1983: 1975: 1974: 1969: 1965: 1959: 1951: 1947: 1942: 1937: 1933: 1929: 1928: 1923: 1919: 1915: 1910: 1906: 1900: 1896: 1891: 1886: 1882: 1878: 1874: 1867: 1859: 1855: 1851: 1847: 1843: 1839: 1832: 1824: 1818: 1814: 1810: 1806: 1805: 1797: 1789: 1785: 1781: 1777: 1773: 1769: 1764: 1759: 1755: 1751: 1750: 1745: 1741: 1735: 1727: 1721: 1717: 1716: 1711: 1705: 1697: 1693: 1686: 1678: 1672: 1668: 1664: 1660: 1656: 1655: 1647: 1639: 1635: 1631: 1627: 1623: 1619: 1612: 1610: 1601: 1597: 1591: 1587: 1576: 1575:LCF notations 1571: 1567: 1565: 1561: 1558: 1553: 1551: 1547: 1543: 1540: 1536: 1532: 1528: 1524: 1520: 1511: 1507: 1504: 1500: 1496: 1492: 1489: 1485: 1481: 1479: 1475: 1471: 1469: 1465: 1461: 1459: 1455: 1451: 1449: 1448:Automorphisms 1445: 1441: 1439: 1435: 1431: 1429: 1425: 1421: 1415: 1410: 1405: 1393: 1387: 1382: 1378: 1372: 1367: 1364: 1357: 1352: 1348: 1342: 1337: 1334: 1331:sculpture in 1327: 1322: 1315: 1310: 1309: 1303: 1294: 1285: 1271: 1269: 1265: 1261: 1257: 1254: 1249: 1247: 1237: 1233: 1230: 1226: 1225: 1221: 1215: 1212: 1206: 1201: 1198: 1197: 1194: 1192: 1187: 1185: 1181: 1177: 1167: 1164: 1162: 1158: 1154: 1149: 1147: 1143: 1132: 1125: 1113: 1099: 1097: 1087: 1085: 1084:Minkowski sum 1081: 1077: 1072: 1068: 1064: 1060: 1056: 1051: 1035: 1031: 1023: 1004: 1001: 998: 995: 992: 989: 986: 963: 960: 957: 954: 951: 948: 945: 942: 939: 916: 913: 910: 907: 904: 901: 898: 887: 883: 882:permutohedron 869: 857: 843: 827: 823: 819: 813: 809: 805: 802: 796: 793: 771: 767: 763: 755: 749: 745: 742: 736: 733: 724: 708: 704: 700: 697: 689: 688:vertex figure 655: 651: 647: 643: 633: 628: 615: 610: 606: 602: 599: 594: 590: 581: 576: 573: 570: 547: 527: 524: 519: 512: 508: 504: 501: 496: 492: 486: 482: 476: 473: 470: 465: 457: 454: 446: 442: 436: 433: 413: 391: 387: 380: 376: 364: 363:Johnson solid 360: 344: 324: 321: 313: 309: 294: 248: 244: 239: 237: 232: 230: 229:permutohedron 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 176: 171: 168: 164: 160: 155: 152: 151:Vertex figure 148: 145: 142: 140: 136: 103: 100: 98: 94: 90: 88: 84: 80: 78: 74: 70: 68: 64: 61: 56: 51: 50:Permutohedron 46: 41: 38: 34: 30: 25: 20: 3146: 3065:trapezohedra 3016: 3009: 2864: 2813:dodecahedron 2605: 2509: 2488: 2470: 2433: 2429: 2409: 2397:. Retrieved 2382:. Retrieved 2377: 2355: 2351: 2340:. Retrieved 2334: 2309: 2289: 2276: 2268: 2263: 2250: 2244: 2209: 2198: 2189: 2179: 2154: 2150: 2144: 2120: 2113: 2093: 2086: 2033: 2029: 2019: 1992: 1982: 1972: 1958: 1931: 1925: 1880: 1876: 1866: 1841: 1837: 1831: 1803: 1796: 1753: 1747: 1734: 1714: 1704: 1695: 1685: 1653: 1646: 1621: 1617: 1599: 1590: 1564:LCF notation 1554: 1550:queue number 1526: 1523:graph theory 1519:mathematical 1516: 1478:Queue number 1347:Rubik's Cube 1250: 1243: 1188: 1173: 1165: 1155:, the first 1150: 1139: 1102:Applications 1093: 1059:Voronoi cell 1055:plesiohedron 1052: 885: 879: 725: 639: 361:, the first 305: 240: 233: 212: 188: 182: 55:Plesiohedron 2835:semiregular 2818:icosahedron 2798:tetrahedron 1756:: 169–200. 1560:cubic graph 1557:Hamiltonian 1495:Hamiltonian 1131:FCC lattice 560:, this is: 359:equilateral 3161:Categories 3130:prismatoid 3060:bipyramids 3044:antiprisms 3018:hosohedron 2808:octahedron 2399:2006-09-08 2384:2006-09-08 2342:2006-09-08 1788:0132.14603 1582:References 1487:Properties 1302:Jungle gym 1176:octahedron 1170:Dissection 1148:crystals. 1076:zonohedron 1071:translated 1063:Delone set 217:zonohedron 197:octahedron 60:Zonohedron 3187:Zonohedra 3125:birotunda 3115:bifrustum 2880:snub cube 2775:polyhedra 2712:Snub cube 2511:MathWorld 2490:MathWorld 2472:MathWorld 2430:Polyhedra 2291:MathWorld 2060:0027-8424 1909:zonotopes 1780:122006114 1544:. It has 1521:field of 1246:tesseract 1144:-type of 1142:faujasite 828:∘ 820:≈ 803:− 797:⁡ 772:∘ 764:≈ 743:− 737:⁡ 701:⋅ 600:≈ 525:≈ 477:⋅ 471:− 3105:bicupola 3085:pyramids 3011:dihedron 2308:(1979). 2078:24516137 1966:(2005). 1920:(1980). 1742:(1966). 1712:(1979). 1659:Springer 1535:vertices 1428:Vertices 1202:Genus 3 1199:Genus 2 528:11.3137. 201:hexagons 185:geometry 87:Vertices 3147:italics 3135:scutoid 3120:rotunda 3110:frustum 2839:uniform 2788:regular 2773:Convex 2237:2561378 2159:Bibcode 2069:3939887 2038:Bibcode 1950:0585178 1899:1703597 1772:0185507 1638:0290245 1529:is the 1517:In the 1499:regular 1394:crystal 1392:Boleite 1379:crystal 1349:variant 1274:Objects 1262:of the 1159:of the 1146:zeolite 603:26.7846 288:√ 285:⁠ 273:⁠ 266:√ 263:⁠ 251:⁠ 245:is the 205:squares 191:is the 3100:cupola 3053:duals: 3039:prisms 2469:") at 2440:  2417:  2316:  2235:  2225:  2132:  2101:  2076:  2066:  2058:  2007:  1948:  1897:  1856:  1819:  1786:  1778:  1770:  1722:  1673:  1636:  1548:3 and 1377:Pyrite 824:109.47 794:arccos 768:125.26 734:arccos 203:and 6 187:, the 1854:JSTOR 1776:S2CID 1555:As a 1539:cubic 1491:Cubic 1438:Edges 77:Edges 67:Faces 2803:cube 2465:" (" 2438:ISBN 2415:ISBN 2314:ISBN 2223:ISBN 2130:ISBN 2099:ISBN 2074:PMID 2056:ISSN 2005:ISBN 1817:ISBN 1720:ISBN 1671:ISBN 1525:, a 1333:Bonn 1251:The 271:and 241:Its 36:Type 2837:or 2461:, " 2360:doi 2215:doi 2167:doi 2064:PMC 2046:doi 2034:111 1997:doi 1936:doi 1885:doi 1846:doi 1809:doi 1784:Zbl 1758:doi 1663:doi 1626:doi 1622:291 1552:2. 1151:In 690:as 183:In 167:Net 3163:: 2508:. 2487:. 2436:. 2375:. 2356:32 2354:. 2332:. 2288:. 2253:, 2233:MR 2231:, 2221:, 2207:, 2188:. 2165:. 2155:51 2153:. 2124:. 2072:. 2062:. 2054:. 2044:. 2032:. 2028:. 2003:. 1970:. 1946:MR 1944:. 1924:. 1916:; 1895:MR 1893:. 1881:20 1879:. 1875:. 1852:. 1842:42 1840:. 1815:. 1782:. 1774:. 1768:MR 1766:. 1754:18 1752:. 1746:. 1694:. 1669:. 1657:. 1634:MR 1632:. 1620:. 1608:^ 1598:. 1501:, 1497:, 1493:, 1452:48 1442:36 1432:24 1270:. 1210:3d 1086:. 1050:. 964:10 842:. 723:. 577:12 293:. 238:. 231:. 225:IV 91:24 81:36 71:14 3149:. 2841:) 2833:( 2790:) 2786:( 2766:e 2759:t 2752:v 2557:e 2550:t 2543:v 2524:. 2514:. 2493:. 2475:. 2446:. 2423:. 2402:. 2387:. 2366:. 2362:: 2345:. 2322:. 2294:. 2217:: 2192:. 2173:. 2169:: 2161:: 2138:. 2107:. 2080:. 2048:: 2040:: 2013:. 1999:: 1952:. 1938:: 1932:3 1901:. 1887:: 1860:. 1848:: 1825:. 1811:: 1790:. 1760:: 1728:. 1679:. 1665:: 1640:. 1628:: 1602:. 1482:2 1472:3 1462:2 1219:d 1217:T 1208:D 1036:4 1032:S 1008:) 1005:4 1002:, 999:3 996:, 993:2 990:, 987:1 984:( 961:= 958:w 955:+ 952:z 949:+ 946:y 943:+ 940:x 920:) 917:4 914:, 911:3 908:, 905:2 902:, 899:1 896:( 817:) 814:3 810:/ 806:1 800:( 761:) 756:3 750:/ 746:1 740:( 709:2 705:6 698:4 671:h 665:O 616:. 611:2 607:a 595:2 591:a 587:) 582:3 574:+ 571:6 568:( 548:a 520:2 513:3 509:a 505:8 502:= 497:3 493:a 487:6 483:2 474:6 466:3 462:) 458:a 455:3 452:( 447:3 443:2 437:= 434:V 414:V 392:3 388:a 381:6 377:2 345:a 325:a 322:3 290:2 282:2 279:/ 276:3 268:2 260:8 257:/ 254:9 223:G 215:- 213:6 119:h 113:O 57:, 52:, 47:, 42:,

Index


Archimedean solid
Parallelohedron
Permutohedron
Plesiohedron
Zonohedron
Faces
Edges
Vertices
Symmetry group
octahedral symmetry
Dual polyhedron
tetrakis hexahedron
Vertex figure

Net

geometry
Archimedean solid
octahedron
hexagons
squares
point symmetry
zonohedron
Goldberg polyhedron
permutohedron
Buckminster Fuller
dual polyhedron
tetrakis hexahedron
regular octahedron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑