Knowledge

Proton-exchange membrane

Source 📝

128: 187:(SOFC). PEMFCs operate at a lower temperature, are lighter and more compact, which makes them ideal for applications such as cars. However, some disadvantages are: the ~80 °C operating temperature is too low for cogeneration like in SOFCs, and that the electrolyte for PEMFCs must be water-saturated. However, some fuel-cell cars, including the 457: 206:
The fuel for the PEMFC is hydrogen, and the charge carrier is the hydrogen ion (proton). At the anode, the hydrogen molecule is split into hydrogen ions (protons) and electrons. The hydrogen ions permeate across the electrolyte to the cathode, while the electrons flow through an external circuit and
143:
spaceflight program. A number of technical problems led NASA to forego the use of proton-exchange membrane fuel cells in favor of batteries as a lower capacity but more reliable alternative for Gemini missions 1–4. An improved generation of General Electric's PEM fuel cell was used in all subsequent
198:
in reformate. These improvements potentially could lead to higher overall system efficiencies. However, these gains have yet to be realized, as the gold-standard perfluorinated sulfonic acid (PFSA) membranes lose function rapidly at 100 °C and above if hydration drops below ~100%, and begin to
276:
As of 2008, the automotive industry as well as personal and public power generation are the largest markets for proton-exchange membrane fuel cells. PEM fuel cells are popular in automotive applications due to their relatively low operating temperature and their ability to start up quickly even in
295:
is a technique by which proton-exchange membranes are used to decompose water into hydrogen and oxygen gas. The proton-exchange membrane allows for the separation of produced hydrogen from oxygen, allowing either product to be exploited as needed. This process has been used variously to generate
843:
Jiangshui Luo; Annemette H. Jensen; Neil R. Brooks; Jeroen Sniekers; Martin Knipper; David Aili; Qingfeng Li; Bram Vanroy; Michael Wübbenhorst; Feng Yan; Luc Van Meervelt; Zhigang Shao; Jianhua Fang; Zheng-Hong Luo; Dirk E. De Vos; Koen Binnemans; Jan Fransaer (2015).
272:
Early PEM fuel cell applications were focused within the aerospace industry. The then-higher capacity of fuel cells compared to batteries made them ideal as NASA's Project Gemini began to target longer duration space missions than had previously been attempted.
845: 1216: 268:
The primary application of proton-exchange membranes is in PEM fuel cells. These fuel cells have a wide variety of commercial and military applications including in the aerospace, automotive, and energy industries.
191:, operate without humidifiers, relying on rapid water generation and the high rate of back-diffusion through thin membranes to maintain the hydration of the membrane, as well as the ionomer in the catalyst layers. 207:
produce electric power. Oxygen, usually in the form of air, is supplied to the cathode and combines with the electrons and the hydrogen ions to produce water. The reactions at the electrodes are as follows:
199:
creep in this temperature range, resulting in localized thinning and overall lower system lifetimes. As a result, new anhydrous proton conductors, such as protic organic ionic plastic crystals (POIPCs) and
1186: 914: 194:
High-temperature PEMFCs operate between 100 °C and 200 °C, potentially offering benefits in electrode kinetics and heat management, and better tolerance to fuel impurities, particularly
603:"Barton C. Hacker and James M. Grimwood. On the Shoulders of Titans: A History of Project Gemini. Washington, D. C.: National Aeronautics and Space Administration. 1977. Pp. xx, 625. $ 19.00" 878: 101:, there are many other structural motifs used to make ionomers for proton-exchange membranes. Many use polyaromatic polymers, while others use partially fluorinated polymers. 1238: 289:
based on the technology. The primary challenge facing automotive PEM technology is the safe and efficient storage of hydrogen, currently an area of high research activity.
119:
PEM fuel cells use a solid polymer membrane (a thin plastic film) which is permeable to protons when it is saturated with water, but it does not conduct electrons.
502: 846:"1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells" 452:, Townsend, Carl W. & Naselow, Arthur B., "Enhanced membrane-electrode interface", issued 2008-11-30, assigned to 1090: 17: 135:
Early proton-exchange membrane technology was developed in the early 1960s by Leonard Niedrach and Thomas Grubb, chemists working for the
85:
membranes, where other materials are embedded in a polymer matrix. One of the most common and commercially available PEM materials is the
175:
which allowed only protons to pass through the material, making them a potential replacement for fluorinated ionomers as a PEM material.
915:"Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes" 292: 71: 913:
Jiangshui Luo; Jin Hu; Wolfgang Saak; Rüdiger Beckhaus; Gunther Wittstock; Ivo F. J. Vankelecom; Carsten Agert; Olaf Conrad (2011).
281:
being the most popular model. PEM fuel cells have seen successful implementation in other forms of heavy machinery as well, with
389: 680: 586: 363: 1233: 723:
Hu, S.; Lozado-Hidalgo, M.; Wang, F.C.; et al. (26 November 2014). "Proton transport through one atom thick crystals".
1268: 424: 277:
below-freezing conditions. As of March 2019 there were 6,558 fuel cell vehicles on the road in the United States, with the
1035:
Li, Mengxiao; Bai, Yunfeng; Zhang, Caizhi; Song, Yuxi; Jiang, Shangfeng; Grouset, Didier; Zhang, Mingjun (23 April 2019).
498: 1306: 1187:"Air Liquide invests in the world's largest membrane-based electrolyzer to develop its carbon-free hydrogen production" 67: 850: 472: 74:: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane. 886: 308:
PEM electrolyzer plant in Québec. Similar PEM-based devices are available for the industrial production of ozone.
139:. Significant government resources were devoted to the study and development of these membranes for use in NASA's 1449: 1533: 1404: 922: 318: 156:
plastics chemist Walther Grot. Grot also demonstrated its usefulness as an electrochemical separator membrane.
1214:, "PEM (proton exchange membrane) low-voltage electrolysis ozone generating device", issued 2011-05-16 1444: 670: 1538: 1327: 1140: 1036: 530:"Batteries with Solid Ion-Exchange Membrane Electrolytes: II . Low-Temperature Hydrogen-Oxygen Fuel Cells" 1497: 1414: 1357: 358: 333: 105: 63: 1434: 1296: 449: 1523: 1424: 1342: 1301: 1091:"Fact of the Month March 2019: There Are More Than 6,500 Fuel Cell Vehicles On the Road in the U.S." 709: 1337: 1261: 353: 164: 131:
Leonard Niedrach (left) and Thomas Grubb (right), inventors of proton-exchange membrane technology.
1419: 1352: 1332: 348: 1439: 1378: 153: 152:, which is today the most widely utilized proton-exchange membrane material, was developed by 1347: 1311: 842: 338: 282: 184: 43: 949: 529: 1362: 1152: 1048: 988: 799: 744: 643: 8: 1518: 1383: 1254: 343: 323: 200: 1156: 1052: 992: 803: 748: 1291: 1072: 1037:"Review on the research of hydrogen storage system fast refueling in fuel cell vehicle" 1014: 825: 768: 734: 697: 297: 82: 1528: 1168: 1076: 1064: 1018: 1006: 817: 760: 676: 618: 582: 549: 1212: 1114: 573:. Advances in Chemistry. Vol. 47. WASHINGTON, D.C.: AMERICAN CHEMICAL SOCIETY. 1484: 1479: 1474: 1469: 1164: 1160: 1060: 1056: 996: 931: 895: 859: 829: 807: 772: 752: 725: 610: 574: 541: 396: 136: 51: 1139:
Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen; Stolten, Detlef (22 April 2013).
1543: 473:"New Proton Exchange Membrane Developed – Nafion promises inexpensive fuel-cells" 453: 328: 195: 912: 722: 506: 145: 140: 876: 1512: 1399: 1172: 1068: 1010: 622: 553: 499:"Research Topics for Materials and Processes for PEM Fuel Cells REU for 2008" 172: 86: 1409: 821: 764: 614: 368: 278: 188: 602: 568: 578: 305: 812: 787: 756: 97:
product. While Nafion is an ionomer with a perfluorinated backbone like
935: 899: 863: 301: 160: 127: 545: 54:
while acting as an electronic insulator and reactant barrier, e.g. to
1277: 879:"Imidazolium methanesulfonate as a high temperature proton conductor" 476: 296:
hydrogen fuel and oxygen for life-support systems in vessels such as
1001: 976: 1461: 448: 286: 183:
PEMFCs have some advantages over other types of fuel cells such as
168: 109: 59: 1239:
EC-supported STREP program on high pressure PEM water electrolysis
739: 78: 47: 104:
Proton-exchange membranes are primarily characterized by proton
644:"Collecting the History of Proton Exchange Membrane Fuel Cells" 149: 98: 94: 90: 62:
gas. This is their essential function when incorporated into a
55: 1246: 203:, are actively studied for the development of suitable PEMs. 304:
submarines. A recent example is the construction of a 20 MW
567:
Young, George J.; Linden, Henry R., eds. (1 January 1969).
401: 391:
Alternative electrochemical systems for ozonation of water
1115:"Material Handling – Fuel Cell Solutions | Ballard Power" 877:
Jiangshui Luo, Olaf Conrad; Ivo F. J. Vankelecom (2013).
260:
The theoretical exothermic potential is +1.23 V overall.
1138: 425:"Novel inorganic/organic hybrid electrolyte membranes" 167:
published initial results on atom thick monolayers of
144:
Gemini missions, but was abandoned for the subsequent
977:"Status and development of PEM fuel cell technology" 1141:"A comprehensive review on PEM water electrolysis" 528:Grubb, W. T.; Niedrach, L. W. (1 February 1960). 1510: 1034: 496: 1262: 527: 470: 382: 974: 566: 422: 1269: 1255: 432:Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem 27:Ion-exchange membrane specific for protons 1000: 950:"Could This Hydrogen-Powered Drone Work?" 811: 738: 293:Polymer electrolyte membrane electrolysis 1145:International Journal of Hydrogen Energy 1041:International Journal of Hydrogen Energy 981:International Journal of Energy Research 126: 14: 1511: 785: 716: 534:Journal of the Electrochemical Society 1250: 1234:Dry solid polymer electrolyte battery 1030: 1028: 786:Karnik, Rohit N. (26 November 2014). 638: 636: 634: 632: 464: 442: 364:Proton exchange membrane electrolysis 72:proton-exchange membrane electrolyser 668: 490: 24: 1307:Proton-exchange membrane fuel cell 1025: 851:Energy & Environmental Science 672:Fluorinated Ionomers – 2nd Edition 629: 471:Gabriel Gache (17 December 2007). 148:missions. The fluorinated ionomer 77:PEMs can be made from either pure 68:proton-exchange membrane fuel cell 25: 1555: 1227: 423:Zhiwei Yang; et al. (2004). 887:Journal of Materials Chemistry A 1450:Unitized regenerative fuel cell 1205: 1193:. Air Liquide. 25 February 2019 1179: 1132: 1107: 1083: 975:Barbir, F.; Yazici, S. (2008). 968: 942: 906: 870: 836: 779: 662: 263: 1276: 1165:10.1016/j.ijhydene.2013.01.151 1061:10.1016/j.ijhydene.2019.02.208 923:Journal of Materials Chemistry 669:Grot, Walther (15 July 2011). 607:The American Historical Review 595: 560: 521: 416: 319:Alkali anion exchange membrane 13: 1: 1445:Solid oxide electrolyzer cell 375: 1328:Direct borohydride fuel cell 254:O + heat + electrical energy 178: 36:polymer-electrolyte membrane 18:Polymer electrolyte membrane 7: 1415:Membrane electrode assembly 1358:Reformed methanol fuel cell 359:Membrane electrode assembly 334:Dynamic mechanical analysis 311: 64:membrane electrode assembly 10: 1560: 1435:Protonic ceramic fuel cell 1405:Electro-galvanic fuel cell 1297:Molten carbonate fuel cell 788:"Breakthrough for protons" 404:. 20 March 2007. MSC-23045 122: 116:), and thermal stability. 1493: 1460: 1425:Photoelectrochemical cell 1392: 1371: 1343:Direct methanol fuel cell 1320: 1302:Phosphoric acid fuel cell 1284: 650:. Smithsonian Institution 1430:Proton-exchange membrane 1338:Direct-ethanol fuel cell 354:Isotope electrochemistry 165:University of Manchester 137:General Electric Company 32:proton-exchange membrane 1420:Membraneless Fuel Cells 1353:Metal hydride fuel cell 1333:Direct carbon fuel cell 349:Gas diffusion electrode 239:Overall cell reaction: 1440:Regenerative fuel cell 1379:Enzymatic biofuel cell 648:americanhistory.si.edu 185:solid oxide fuel cells 132: 44:semipermeable membrane 1534:Hydrogen technologies 1348:Formic acid fuel cell 1312:Solid oxide fuel cell 450:US patent 5266421 339:Electrolysis of water 283:Ballard Power Systems 130: 615:10.1086/ahr/84.2.593 579:10.1021/ba-1965-0047 497:Nakhiah Goulbourne. 400:(Technical report). 201:protic ionic liquids 46:generally made from 1539:Membrane technology 1384:Microbial fuel cell 1157:2013IJHE...38.4901C 1053:2019IJHE...4410677L 1047:(21): 10677–10693. 993:2008IJER...32..369B 930:(28): 10426–10436. 813:10.1038/nature14074 804:2014Natur.516..173K 757:10.1038/nature14015 749:2014Natur.516..227H 509:on 27 February 2009 344:Electroosmotic pump 324:Artificial membrane 1292:Alkaline fuel cell 936:10.1039/C0JM04306K 900:10.1039/C2TA00713D 864:10.1039/C4EE02280G 675:. William Andrew. 223:Cathode reaction: 133: 81:membranes or from 1506: 1505: 1151:(12): 4901–4934. 798:(7530): 173–174. 682:978-1-4377-4457-6 588:978-0-8412-0048-7 570:Fuel Cell Systems 546:10.1149/1.2427622 16:(Redirected from 1551: 1524:Electrochemistry 1363:Zinc–air battery 1271: 1264: 1257: 1248: 1247: 1221: 1220: 1219: 1215: 1209: 1203: 1202: 1200: 1198: 1183: 1177: 1176: 1136: 1130: 1129: 1127: 1125: 1111: 1105: 1104: 1102: 1100: 1087: 1081: 1080: 1032: 1023: 1022: 1004: 972: 966: 965: 963: 961: 946: 940: 939: 919: 910: 904: 903: 883: 874: 868: 867: 840: 834: 833: 815: 783: 777: 776: 742: 733:(7530): 227–30. 720: 714: 713: 707: 703: 701: 693: 691: 689: 666: 660: 659: 657: 655: 640: 627: 626: 599: 593: 592: 564: 558: 557: 525: 519: 518: 516: 514: 505:. Archived from 494: 488: 487: 485: 483: 468: 462: 461: 460: 456: 446: 440: 439: 429: 420: 414: 413: 411: 409: 397:NASA Tech Briefs 386: 211:Anode reaction: 50:and designed to 21: 1559: 1558: 1554: 1553: 1552: 1550: 1549: 1548: 1509: 1508: 1507: 1502: 1489: 1456: 1388: 1367: 1316: 1280: 1275: 1244: 1230: 1225: 1224: 1217: 1211: 1210: 1206: 1196: 1194: 1185: 1184: 1180: 1137: 1133: 1123: 1121: 1113: 1112: 1108: 1098: 1096: 1089: 1088: 1084: 1033: 1026: 1002:10.1002/er.1371 973: 969: 959: 957: 954:Popular Science 948: 947: 943: 917: 911: 907: 881: 875: 871: 841: 837: 784: 780: 721: 717: 705: 704: 695: 694: 687: 685: 683: 667: 663: 653: 651: 642: 641: 630: 601: 600: 596: 589: 565: 561: 526: 522: 512: 510: 495: 491: 481: 479: 469: 465: 458: 454:Hughes Aircraft 447: 443: 427: 421: 417: 407: 405: 388: 387: 383: 378: 373: 329:Dry electrolyte 314: 266: 253: 249: 245: 233: 229: 217: 181: 125: 52:conduct protons 28: 23: 22: 15: 12: 11: 5: 1557: 1547: 1546: 1541: 1536: 1531: 1526: 1521: 1504: 1503: 1501: 1500: 1494: 1491: 1490: 1488: 1487: 1482: 1477: 1472: 1466: 1464: 1458: 1457: 1455: 1454: 1453: 1452: 1447: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1396: 1394: 1390: 1389: 1387: 1386: 1381: 1375: 1373: 1369: 1368: 1366: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1324: 1322: 1318: 1317: 1315: 1314: 1309: 1304: 1299: 1294: 1288: 1286: 1285:By electrolyte 1282: 1281: 1274: 1273: 1266: 1259: 1251: 1242: 1241: 1236: 1229: 1228:External links 1226: 1223: 1222: 1204: 1178: 1131: 1106: 1082: 1024: 987:(5): 369–378. 967: 941: 905: 869: 835: 778: 715: 706:|website= 681: 661: 628: 609:. April 1979. 594: 587: 559: 520: 489: 463: 441: 415: 380: 379: 377: 374: 372: 371: 366: 361: 356: 351: 346: 341: 336: 331: 326: 321: 315: 313: 310: 265: 262: 258: 257: 256: 255: 251: 247: 243: 237: 236: 235: 231: 230:+ 4H + 4e → 2H 227: 221: 220: 219: 215: 180: 177: 141:Project Gemini 124: 121: 112:permeability ( 26: 9: 6: 4: 3: 2: 1556: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1516: 1514: 1499: 1496: 1495: 1492: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1467: 1465: 1463: 1459: 1451: 1448: 1446: 1443: 1442: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1397: 1395: 1391: 1385: 1382: 1380: 1377: 1376: 1374: 1372:Biofuel cells 1370: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1325: 1323: 1319: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1289: 1287: 1283: 1279: 1272: 1267: 1265: 1260: 1258: 1253: 1252: 1249: 1245: 1240: 1237: 1235: 1232: 1231: 1213: 1208: 1192: 1188: 1182: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1120: 1116: 1110: 1095: 1092: 1086: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1031: 1029: 1020: 1016: 1012: 1008: 1003: 998: 994: 990: 986: 982: 978: 971: 956:. 23 May 2015 955: 951: 945: 937: 933: 929: 925: 924: 916: 909: 901: 897: 893: 889: 888: 880: 873: 865: 861: 857: 853: 852: 847: 839: 831: 827: 823: 819: 814: 809: 805: 801: 797: 793: 789: 782: 774: 770: 766: 762: 758: 754: 750: 746: 741: 736: 732: 728: 727: 719: 711: 699: 684: 678: 674: 673: 665: 649: 645: 639: 637: 635: 633: 624: 620: 616: 612: 608: 604: 598: 590: 584: 580: 576: 572: 571: 563: 555: 551: 547: 543: 539: 535: 531: 524: 508: 504: 503:Virginia Tech 500: 493: 478: 474: 467: 455: 451: 445: 437: 433: 426: 419: 403: 399: 398: 393: 392: 385: 381: 370: 367: 365: 362: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 316: 309: 307: 303: 299: 294: 290: 288: 284: 280: 274: 270: 261: 241: 240: 238: 225: 224: 222: 213: 212: 210: 209: 208: 204: 202: 197: 192: 190: 186: 176: 174: 173:boron nitride 170: 166: 162: 157: 155: 151: 147: 142: 138: 129: 120: 117: 115: 111: 107: 102: 100: 96: 92: 88: 87:fluoropolymer 84: 80: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1429: 1410:Flow battery 1243: 1207: 1195:. Retrieved 1190: 1181: 1148: 1144: 1134: 1122:. Retrieved 1118: 1109: 1097:. Retrieved 1093: 1085: 1044: 1040: 984: 980: 970: 958:. Retrieved 953: 944: 927: 921: 908: 891: 885: 872: 855: 849: 838: 795: 791: 781: 730: 724: 718: 686:. Retrieved 671: 664: 652:. Retrieved 647: 606: 597: 569: 562: 537: 533: 523: 511:. Retrieved 507:the original 492: 480:. Retrieved 466: 444: 435: 431: 418: 406:. Retrieved 395: 390: 384: 369:Roll-to-roll 291: 279:Toyota Mirai 275: 271: 267: 264:Applications 259: 205: 193: 189:Toyota Mirai 182: 158: 134: 118: 113: 106:conductivity 103: 76: 39: 35: 31: 29: 1400:Blue energy 1191:newswire.ca 1119:ballard.com 894:(6): 2238. 858:(4): 1276. 306:Air Liquide 66:(MEA) of a 1519:Fuel cells 1513:Categories 1278:Fuel cells 1094:Energy.gov 540:(2): 131. 408:17 January 376:References 302:Royal Navy 285:supplying 161:Andre Geim 1197:28 August 1173:0360-3199 1077:108785340 1069:0360-3199 1019:110367501 1011:1099-114X 960:7 January 740:1410.8724 708:ignored ( 698:cite book 623:1937-5239 554:1945-7111 477:Softpedia 438:(2): 599. 287:forklifts 218:→ 4H + 4e 179:Fuel cell 159:In 2014, 83:composite 1529:Polymers 1498:Glossary 1462:Hydrogen 1124:19 April 1099:19 April 822:25470064 765:25470058 688:19 April 654:19 April 312:See also 169:graphene 110:methanol 70:or of a 60:hydrogen 48:ionomers 42:), is a 1485:Vehicle 1480:Storage 1475:Station 1470:Economy 1321:By fuel 1153:Bibcode 1049:Bibcode 989:Bibcode 830:4390672 800:Bibcode 773:4455321 745:Bibcode 513:18 July 482:18 July 163:of the 123:History 89:(PFSA) 79:polymer 1544:Proton 1393:Others 1218:  1171:  1075:  1067:  1017:  1009:  828:  820:  792:Nature 771:  763:  726:Nature 679:  621:  585:  552:  459:  154:DuPont 150:Nafion 146:Apollo 99:Teflon 95:DuPont 91:Nafion 56:oxygen 1073:S2CID 1015:S2CID 918:(PDF) 882:(PDF) 826:S2CID 769:S2CID 735:arXiv 428:(PDF) 108:(σ), 34:, or 1199:2020 1169:ISSN 1126:2021 1101:2021 1065:ISSN 1007:ISSN 962:2016 818:PMID 761:PMID 710:help 690:2021 677:ISBN 656:2021 619:ISSN 583:ISBN 550:ISSN 515:2008 484:2008 410:2015 402:NASA 300:and 250:→ 2H 171:and 93:, a 58:and 1161:doi 1057:doi 997:doi 932:doi 896:doi 860:doi 808:doi 796:516 753:doi 731:516 611:doi 575:doi 542:doi 538:107 246:+ O 40:PEM 1515:: 1189:. 1167:. 1159:. 1149:38 1147:. 1143:. 1117:. 1071:. 1063:. 1055:. 1045:44 1043:. 1039:. 1027:^ 1013:. 1005:. 995:. 985:32 983:. 979:. 952:. 928:21 926:. 920:. 890:. 884:. 854:. 848:. 824:. 816:. 806:. 794:. 790:. 767:. 759:. 751:. 743:. 729:. 702:: 700:}} 696:{{ 646:. 631:^ 617:. 605:. 581:. 548:. 536:. 532:. 501:. 475:. 436:49 434:. 430:. 394:. 298:US 242:2H 214:2H 196:CO 30:A 1270:e 1263:t 1256:v 1201:. 1175:. 1163:: 1155:: 1128:. 1103:. 1079:. 1059:: 1051:: 1021:. 999:: 991:: 964:. 938:. 934:: 902:. 898:: 892:1 866:. 862:: 856:8 832:. 810:: 802:: 775:. 755:: 747:: 737:: 712:) 692:. 658:. 625:. 613:: 591:. 577:: 556:. 544:: 517:. 486:. 412:. 252:2 248:2 244:2 234:O 232:2 228:2 226:O 216:2 114:P 38:( 20:)

Index

Polymer electrolyte membrane
semipermeable membrane
ionomers
conduct protons
oxygen
hydrogen
membrane electrode assembly
proton-exchange membrane fuel cell
proton-exchange membrane electrolyser
polymer
composite
fluoropolymer
Nafion
DuPont
Teflon
conductivity
methanol

General Electric Company
Project Gemini
Apollo
Nafion
DuPont
Andre Geim
University of Manchester
graphene
boron nitride
solid oxide fuel cells
Toyota Mirai
CO

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.