Knowledge

Protecting group

Source 📝

884: 1749: 872: 436: 1641: 1794: 1948:. The procedure begins actually with redox chemistry at the protected phosphorus atom. A tricoordinate phosphorus, used on account of the high reactivity, is tagged with a cyanoethyl protecting group on a free oxygen. After the coupling step follows an oxidation to phosphate, whereby the protecting group stays attached. Free OH-groups, which did not react in the coupling step, are acetylated in an intermediate step. These additionally-introduced protecting groups then inhibit, that these OH-groups might couple in the next cycle. 1712: 396: 1808: 1422: 529: 236: 22: 1857: 157: 255: 1914: 1697: 1273: 389: 1265: 502: 858: 1952: 1895: 224:
regarding the reaction conditions such as reaction time, temperature and reagents can be standardized so that they are carried out by a machine, while yields of well over 99% can be achieved. Otherwise, the separation of the resulting mixture of reaction products is virtually impossible (see also
1477:
Many groups can suffice for the alcoholic component, and the specific cleaving conditions are contrariwise generally quite similar: each ester can be hydrolyzed in a basic water-alcohol solution. Instead, most ester protecting groups vary in how mildly they can be formed from the original acid.
3028:
András Lipták, János Imre, János Harangi, Pál Nánási, András Neszmélyi: "Chemo-, stereo- and regioselective hydrogenolysis of carbohydrate benzylidene acetals. Synthesis of benzyl ethers of benzyl α-D-, methyl β-D-mannopyranosides and benzyl α-D-rhamnopyranoside by ring cleavage of benzylidene
1636:: the transformation of an alkene with a diene leads to a cyclic alkene, which is nevertheless similarly endangered by electrophilic attack as the original alkene. The cleavage of a protecting diene proceeds thermically, for the Diels-Alder reaction is a reversible (equilibrium) reaction. 3524:
John N. Haseltine, Maria Paz Cabal, Nathan B. Mantlo, Nobuharu Iwasawa, Dennis S. Yamashita, Robert S. Coleman, Samuel J. Danishefsky, Gayle K. Schulte: "Total synthesis of calicheamicinone: new arrangements for actuation of the reductive cycloaromatization of aglycon congeners", in:
2281:
Morris J. Robins, Vicente Samano, Mark D. Johnson: "Nucleic acid-related compounds. 58. Periodinane oxidation, selective primary deprotection, and remarkably stereoselective reduction of tert-butyldimethylsilyl-protected ribonucleosides. Synthesis of 9-(β-D-xylofuranosyl)adenine or
1782:
does not employ protective groups. As an alternative, Baran presented a novel protective-group free synthesis of the compound hapalindole U. The previously published synthesis according to Baran, contained 20 steps with multiple protective group manipulations (two confirmed):
1310:
Cyclic acetals are very much more stable against acid hydrolysis than acyclic acetals. Consequently acyclic acetals are used practically only when a very mild cleavage is required or when two different protected carbonyl groups must be differentiated in their liberation.
147:
As a rule, the introduction of a protecting group is straightforward. The difficulties honestly lie in their stability and in selective removal. Apparent problems in synthesis strategies with protecting groups are rarely documented in the academic literature.
2757:
Karel F. Bernady, M. Brawner Floyd, John F. Poletto, Martin J. Weiss: "Prostaglandins and congeners. 20. Synthesis of prostaglandins via conjugate addition of lithium trans-1-alkenyltrialkylalanate reagents. A novel reagent for conjugate 1,4-additions", in:
1944:‑butyl group (acidic cleavage) and diverse protecting groups for functional groups on the amino acid side-chains are used. Up to four different protecting groups per nucleobase are used for the automated synthesis of DNA and RNA sequences in the 107:
Protecting groups are more common in small-scale laboratory work and initial development than in industrial production because they add additional steps and material costs. However, compounds with repetitive functional groups – generally,
1887:'s research group. Here 42 functional groups (39 hydroxyls, one diol, an amine group, and a carboxylic acid) required protection. These proceeded through 8 different protecting groups (a methyl ester, five acetals, 20 TBDMS esters, nine 3619:
Yves Rubin, Carolyn B. Knobler, Francois Diederich: "Precursors to the cyclocarbons: from 3,4-dialkynyl-3-cyclobutene-1,2-diones and 3,4-dialkynyl-3-cyclobutene-1,2-diols to cyclobutenodehydroannulenes and higher oxides of carbon", in:
1759:
for deprotection of the right-side ester group is reduced and it stays intact. Significantly by placing the deuterium atoms next to the left-side ester group or by changing the wavelength to 254 nm the other monoarene is obtained.
2363:
Leo A. Paquette, Annette M. Doherty, Christopher M. Rayner: "Total synthesis of furanocembranolides. 1. Stereocontrolled preparation of key heterocyclic building blocks and assembly of a complete seco-pseudopterane framework", in:
4180:
Martin Banwell, David Hockless, Bevyn Jarrott, Brian Kelly, Andrew Knill, Robert Longmore, Gregory Simpson: "Chemoenzymatic approaches to the decahydro-as-indacene cores associated with the spinosyn class of insecticide", in:
1689:) and subsequently reaction with chlorotrimethylsilane to a terminally TMS-protected alkyne. Cleavage follows hydrolytically – with potassium carbonate in methanol – or with fluoride ions like for example with 3000:
R.E. Ireland, D.W. Norbeck: "Convergent synthesis of polyether ionophore antibiotics: the synthesis of the monensin bis(tetrahydrofuran) via the Claisen rearrangement of an ester enolate with a β-leaving group", in:
1244:
The most common protecting groups for carbonyls are acetals and typically cyclic acetals with diols. The runners-up used are also cyclic acetals with 1,2‑hydroxythiols or dithioglycols – the so-called
1676:
For alkynes there are in any case two types of protecting groups. For terminal alkynes it is sometimes important to mask the acidic hydrogen atom. This normally proceeds from deprotonation (via a strong base like
1769:
The use of protective groups is pervasive but not without criticism. In practical terms their use adds two steps (protection-deprotection sequence) to a synthesis, either or both of which can dramatically lower
341:; thus silicon protecting groups are almost invariably removed by fluoride ions. Each type of counterion, i.e. cleavage reagent, can also selectively cleave different silicon protecting groups depending on 524:
Aliphatic methyl ethers cleave with difficulty and only under drastic conditions, so that these are in general only used with quinonic phenols. However, hemiacetals and acetals are much easier to cleave.
91:
groups, and cannot be discouraged by any means. When an ester must be reduced in the presence of a carbonyl, hydride attack on the carbonyl must be prevented. One way to do so converts the carbonyl into an
4152:
Hideyuki Tanaka, Takashi Kamikubo, Naoyuki Yoshida, Hideki Sakagami, Takahiko Taniguchi, Kunio Ogasawara: "Enantio- and Diastereocontrolled Synthesis of (−)-Iridolactone and (+)-Pedicularis-lactone", in:
698: — Comparable stability to MOM, MEM und SEM, but also admits reductive removal: sodium in liquid ammonia, catalytic hydrogenation (palladium hydroxide on activated carbon), or Raney nickel in ethanol 2138:
Tod K Jones, Robert A. Reamer, Richard Desmond, Sander G. Mills: "Chemistry of tricarbonyl hemiketals and application of Evans technology to the total synthesis of the immunosuppressant (−)-FK-506", in:
2920:
Toshiyuki Kan, Masaru Hashimoto, Mitsutoshi Yanagiya, Haruhisa Shirahama: "Effective deprotection of 2-(trimethylsilylethoxy)methylated alcohols (SEM ethers). Synthesis of thyrsiferyl-23 acetate", in:
4125:
Antonius J. H. Klunder, Jie Zhu, Binne Zwanenburg: "The Concept of Transient Chirality in the Stereoselective Synthesis of Functionalized Cycloalkenes Applying the Retro-Diels-Alder Methodology", in:
2688:
Serge David, Annie Thieffry, Alain Veyrières: "A mild procedure for the regiospecific benzylation and allylation of polyhydroxy-compounds via their stannylene derivatives in non-polar solvents", in:
3159:
Robert M. Williams, Peter J. Sinclair, Dongguan Zhai, Daimo Chen: "Practical asymmetric syntheses of α-amino acids through carbon-carbon bond constructions on electrophilic glycine templates", in:
1902:
The introduction or modification of a protecting group occasionally influences the reactivity of the whole molecule. For example, diagrammed below is an excerpt of the synthesis of an analogue of
1385:-acetals with acid catalysis from a dithiol and the carbonyl compound. Because of the greater stability of thioacetals, the equilibirum lies on the side of the acetal. In contradistinction to the 761: — More labile than MEM and MOM to acid hydrolysis: 0.1 M hydrochloric acid in methanol, concentrated hydrofluoric acid in acetonitrile, boron trifluoride etherate in dichloromethane, or 3862:
Tainejiro Hiyama, Akihiro Kanakura, Hajime Yamamoto, Hitosi Nozaki: "General Route to α,β-unsaturated Aldehydes of Homoterpenoid and terpenoid Structure. Sythesis of JH-II and β-Sinensal", in:
1411:-acetals. Their formation follows analogously from the thioalcohol. Also their cleavage proceeds under similar conditions and predominantly through mercury(II) compounds in wet acetonitrile. 3377:
Juji Yoshimura, Shigeomi Horito, Hiroriobu Hashimoto: "Facile Synthesis of 2,3,4,6-Tetra-O-benzyl-D-glucopyranosylidene Acetals Using Trimethylsilyl Trifluoromethanesulfonate Catalyst", in:
766: 2730:
Paul A. Wender, Carlos R. D. Correia: "Intramolecular photoinduced diene-diene cyaloadditions: a selective method for the synthesis of complex eight-membered rings and polyquinanes", in:
758: 3497:
Samuel J. Danishefsky, Nathan B. Mantlo, Dennis S. Yamashita, Gayle. Schulte: "Concise route to the calichemicin-esperamicin series: the crystal structure of an aglycone prototype", in:
3565:
Peter Mohr, Nada Waespe-Šarčević, Christoph Tamm, Krystyna Gawronska, Jacek K. Gawronski: "A Study of Stereoselective Hydrolysis of Symmetrical Diesters with Pig Liver Esterase", in:
864:
An exceptional case appears with the benzylideneprotecting group,which also admits reductive cleavage. This proceeds either through catalytic hydrogenation or with the hydride donor
4009:
Timothy S. Butcher, Feng Zhou, Michael R. Detty: "Debrominations of vic-Dibromides with Diorganotellurides. 1. Stereoselectivity, Relative Rates, and Mechanistic Implications", in:
2467:
M.L. García, J. Pascual, L. Borràs, J.A. Andreu, E. Fos, D. Mauleón, G. Carganico, F. Arcamone: "Synthesis of new ether glycerophospholipids structurally related to modulator", in:
2947:
Joseph P. Marino, Scott L. Dax: "An efficient desilylation method for the generation of o-quinone methides: application to the synthesis of (+)- and (−)-hexahydrocannabinol", in:
3955:
Ahmed M. Tafesh, Jens Weiguny: "A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO", in:
609:-Butyldimethylsilyl (TBDMS or TBS) — Cleaved with acetic acid in tetrahydrofuran/water, Pyridinium tosylate in methanol, trifluoroacetic acid in water, hydrofluoric acid in 4522:
Synthetic studies of marine alkaloids hapalindoles. Part 2. Lithium aluminum hydride reduction of the electron-rich carbon-carbon double bond conjugated with the indole nucleus
3674:
G. Bauduin, D. Bondon, Y. Pietrasanta, B. Pucci: "Reactions de transcetalisation – II: Influence des facteurs steriques et electroniques sur les energies de cetalisation", in:
2446: 220:
A common example for this application, the Fmoc peptide synthesis, in which peptides are grown in solution and on solid phase, is very important. The protecting groups in
213:-butyl ether on the phenol group. The benzyl ester can be removed by hydrogenolysis, the fluorenylmethylenoxy group (Fmoc) by bases (such as piperidine), and the phenolic 1280:
Overall, trans-acetalation plays a lesser role in forming protective acetals; they are formed as a rule from glycols through dehydration. Normally a simple glycol like
2547:
H. Nagaoka, W. Rutsch, G. Schmidt, H. Ito, M.R. Johnson, Y. Kishi: "Total synthesis of rifamycins. 1. Stereocontrolled synthesis of the aliphatic building block", in:
1932:
Protecting group chemistry finds itself an important application in the automated synthesis of peptides and nucleosides. The technique was introduced in the field of
3728:
M.P. Bosch, M. Pilar Bosch, Francisco Camps, Jose Coll, Angel Guerrero, Toshio Tatsuoka, Jerrold Meinwald: "A stereoselective total synthesis of (±)-muzigadial", in:
4100: 3431:
Kwan Soo Kim, Yang Heon Song, Bong Ho Lee, Chi Sun Hahn: "Efficient and selective cleavage of acetals and ketals using ferric chloride adsorbed on silica gel", in:
4349:
Rosa F. Lockwood, Kenneth M. Nicholas: "Transition metal-stabilized carbenium ions as synthetic intermediates. I. α- carbenium ions as propargylating agents", in:
1073: 695: 235: 868:(DIBAL). The cleavage with DIBAL deprotects one alcohol group, for the benzyl moiety stays as a benzyl ether on the second, sterically hindered hydroxy group. 1748: 3781:
Ulrich Schmidt, Thomas Beuttler, Albrecht Lieberknecht, Helmut Griesser: "Aminosäuren und peptide – XXXXII. Synthese von Chlamydocin + epi-Chlamydocin", in:
1418:
ions is shown below. Here it is applied, that aldehydes are very much more activated carbonyls than ketones and that many addition reactions are reversible.
1211: 592: 3982:
Evan L. Allred, Boyd R. Beck, Kent J. Voorhees: "Formation of carbon-carbon double bonds by the reaction of vicinal dihalides with sodium in ammonia", in:
851: 630:‑Butyldiphenylsilyl (TBDPS) — Similar conditions to TBS but even longer reaction times (100–250× slower than TBS and 5–10× slower than TIPS) 4742: 4063:
Corrado Malanga, Serena Mannucci, Luciano Lardicci: "Carbon-halogen bond activation by nickel catalyst: Synthesis of alkenes, from 1,2-dihalides", in:
3592:
Théophile Tschamber, Nada Waespe-Šarčević, Christoph Tamm: "Stereocontrolled Synthesis of an Epimer of the C(19)-to-C(27) Segment of Rifamycin S", in:
847: 4443:
Baran, Phil S.; Maimone, Thomas J.; Richter, Jeremy M. (22 March 2007). "Total synthesis of marine natural products without using protecting groups".
1225: 1198: 4804: 2785:
Elias J. Corey, Haruki Niwa, Jochen Knolle: "Total synthesis of (S)-12-hydroxy-5,8,14-cis,-10-trans-eicosatetraenoic acid (Samuelsson's HETE)", in:
273:
exhibit very similar reactivities, a transformation that protects or deprotects a single hydroxy group must be possible for a successful synthesis.
490: 486: 281:
Many reaction conditions have been established that will cleave protecting groups. One can roughly distinguish between the following environments:
1285: 1010: 352: 2193:
David A. Evans, Stephen W. Kaldor, Todd K. Jones, Jon Clardy, Thomas J. Stout: "Total synthesis of the macrolide antibiotic cytovaricin", in:
3274:
Festphasensynthese eines tumorassoziierten Sialyl-Tn-Antigen-Glycopeptids mit einer Partialsequenz aus dem "Tandem Repeat" des MUC-1-Mucins
3404:
Bruce H. Lipshutz, Daniel Pollart, Joseph Monforte, Hiyoshizo Kotsuki: "Pd(II)-catalyzed acetal/ketal hydrolysis/exchange reactions", in:
3064:
James A. Marshall, Joseph D. Trometer, Bruce E. Blough, Thomas D. Crute: "Stereochemistry of SN2' additions to acyclic vinyloxiranes", in
807:
Methyl ethers – Cleavage is by TMSI in dichloromethane or acetonitrile or chloroform. An alternative method to cleave methyl ethers is BBr
4815:
A user site excerpting the classic Greene and Wuts text regarding stability of a few key groups, from this reference's extensive tables.
1342:, which one begins with to form these acetals, have a very unpleasant stench and are poisonous, which severely limit their applications. 1167: 71:, specific parts of the molecules cannot survive the required reagents or chemical environments. These parts (functional groups) must be 2711:
Kaoru Fuji, Shigetoshi Nakano, Eiichi Fujita: "An Improved Method for Methoxymethylation of Alcohols under Mild Acidic Conditions", in:
205:
is a strategy allowing the specific deprotection of one protective group in a multiply-protected structure. For example, the amino acid
2309:
R. Roger F. Newton, Derek P. Reynolds, Colin F. Webb, Stanley M. Roberts: "A short and efficient total synthesis of (±) prostaglandin D
254: 4829: 4654:
Merrifield, R. B.; Barany, G.; Cosand, W. L.; Engelhard, M.; Mojsov, S. (1977). "Proceedings of the 5th American Peptide Symposium".
1654: 1108: 686: 661: 2417:
Michel Bessodes, Dimitri Komiotis, Kostas Antonakis: "Rapid and selective detritylation of primary alcohols using formic acid", in:
830:) present for protecting-group chemistry a special class of alcohols. One can exploit the adjacency of two hydroxy groups, e.g. in 3186:
Glenn L. Stahl, Roderich Walter, Clarck W. Smith: "General procedure for the synthesis of mono-N-acylated 1,6-diaminohexanes", in:
2628:
W. Clark Still, Shizuaki Murata, Gilbert Revial, Kazuo Yoshihara: "Synthesis of the cytotoxic germacranolide eucannabinolide", in:
100:
for the carbonyl. After the hydride step is complete, aqueous acid removes the acetal, restoring the carbonyl. This step is called
3647:
Sunggak Kim, Yong Gil Kim, Deog-il Kim: "A novel method for selective dioxolanation of ketones in the presence of aldehydes", in:
2220:
James A. Marshall, Richard Sedrani: "A convergent, highly stereoselective synthesis of a C-11-C-21 subunit of the macbecins", in:
685:, (DMT) — Removed by weak acid. DMT group is widely used for protection of 5'-hydroxy group in nucleosides, particularly in 1827:
Although the use of protecting groups is not preferred in industrial syntheses, they are still used in industrial contexts, e.g.
1288:
is used for acetalation.Modern variants also use glycols, but with the hydroxyl hydrogens replaced with a trimethylsilyl group.
4693:
Serge L. Beaucage, Radhakrishman P. Iyer: "Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach", in:
1130: 1023: 345:. The advantage of fluoride-labile protecting groups is that no other protecting group is attacked by the cleavage conditions. 4036:
C. J. Li, David N. Harpp: "Bis(triphenylstanyl)telluride a mild and selective reagent for telluration and debromination", in:
2170:-Di-O-methylelaiophylidene – preparation from elaiophylin and total synthesis from (R)-3-hydroxybutyrate and (S)-malate", in: 1621:‑1,2‑dibromoalkane: the regeneration of the alkene then follows with preservation of conformation via elemental 4268:
Barry J. Teobald: "The Nicholas reaction: the use of dicobalt hexacarbonyl-stabilised propargylic cations in synthesis", in:
4226: 2038: 1982: 4090:
Byung Woo Yoo, Seo Hee Kim, Jun Ho Kim: "A Mild, Efficient, and Selective Debromination of vic-Dibromides to Alkenes with Cp
359:(30–40 °C). Because enzymes have very high substrate specificity, the method is quite rare, but extremely attractive. 1362:-acetals, very much stabler against acid hydrolysis. This enables the selective cleavage of the latter in the presence of 2893:
Steven D. Burke, Gregory J. Pacofsky: "The ester enolate claisen rearrangement. Total synthesis of (±)-ethisolide", in:
209:
could be protected as a benzyl ester on the carboxyl group, a fluorenylmethylenoxy carbamate on the amine group, and a
1582:– Removed by strong hot acid (pH < 1, T > 100 °C) or alkali (pH > 12, T > 100 °C), but not e.g. 1560:
Allyl esters — As with allyl ethers, also removed by diverse platinum complexes – connected with acid workup
2494:
Yuji Oikawa, Tadao Yoshioka, Osamu Yonemitsu: "Specific removal of o-methoxybenzyl protection by DDQ oxidation", in:
2166:
Dieter Seebach, Hak-Fun Chow, Richard F.W. Jackson, Marius A. Sutter, Suvit Thaisrivongs, Jürg Zimmermann: "(+)-11,11
563:(Piv) – Removed by acid, base or reductant agents. It is substantially more stable than other acyl protecting groups. 4626:
J.M. McClure, Samuel J. Danishefsky: "A novel Heck arylation reaction: rapid access to congeners of FR 900482", in:
970:
or Birch reduction, but have a decided drawback relative to the carbamates or amides: they retain a basic nitrogen.
2866:
Robert C. Gadwood, Renee M. Lett, Jane E. Wissinger: "Total synthesis of (±)-poitediol and (±)4-epipoitediol", in:
1605:
Alkenes rarely need protection or are protected. They are as a rule only involved in undesired side reactions with
1393:‑acetal case, it is not needed to remove water from the reaction mixture in order to shift the equilibrium. 493:, for these exhibit differential removal. Sterically hindered esters are less susceptible to nucleophilic attack: 3213:
Naomi Sakai, Yasufumi Ohfune: "Total synthesis of galantin I. Acid-catalyzed cyclization of galantinic acid", in:
3889:
F. Huet, A. Lechevallier, M. Pellet, J.M. Conia: "Wet Silica Gel; A Convenient Reagent for Deacetalization", in:
3808:
Elias J. Corey, Plato A. Magriotis: "Total synthesis and absolute configuration of 7,20-diisocyanoadociane", in:
1940:
in 1977. For peptide synthesis via automated machine, the orthogonality of the Fmoc group (basic cleavage), the
4825: 1291:
Acetals can be removed in acidic aqueous conditions. For those ends, the mineral acids are appropriate acids.
883: 4772: 4322:
Richard E. Connor, Kenneth M. Nicholas: "Isolation, characterization, and stability of α- carbonium ions", in:
4183: 2690: 2315: 707: 428:, which is activated through radiation with an appropriate wavelength and so can be removed. For examples the 1917:
Part of the synthesis of an analogue of Mitomycin C with modified reactivity through protecting-group exchange
4805:
A further set of study notes in tutorial form, with guidance and comments, from Profs. Grossman and Cammers.
1724: 1068: 1034: 4847: 1835: 1690: 1554: 1232: 865: 762: 614: 382: 3290: 1891:‑methoxybenzyl ethers, four benzoates, a methyl hemiacetal, an acetone acetal and an SEM ester). 783: 442:
The rare double-layer protecting group is a protected protecting group, which exemplify high stability.
4852: 4820: 3350:
T. Tsunoda, M. Suzuki, R. Noyori: "A facile procedure for acetalization under aprotic conditions", in:
1739: 804:
in methanol, palladium on activated carbon, or diverse platinum complexes – conjoined with acid workup.
373:
Only a few protecting groups can be detached oxidatively: the methoxybenzyl ethers, which oxidize to a
133: 4548:
Synthetic studies of marine alkaloids hapalindoles. Part 3 Total synthesis of (±)-hapalindoles H and U
4496:
Synthetic studies of marine alkaloids hapalindoles. Part I Total synthesis of (±)-hapalindoles J and M
2812:
Elias J. Corey, Mark G. Bock: "Protection of primary hydroxyl groups as methylthiomethyl ethers", in:
1921:
The exchange of a protecting group from a methyl ether to a MOM-ether inhibits here the opening of an
514: 4708: 4372:
K.M. Nicholas, R. Pettit: "On the stability of α-(alkynyl)dicobalt hexacarbonyl carbonium ions", in:
4360: 4337: 4310: 4283: 4078: 4051: 3877: 3796: 3662: 3419: 3365: 3121: 2935: 2908: 2827: 2509: 2482: 2432: 1945: 1876: 1583: 752: 618: 76: 4799: 4387: 4113: 3689: 3052: 2839:
Elias J. Corey, Duy H. Hua, Bai Chuan Pan, Steven P. Seitz: "Total synthesis of aplasmomycin", in:
2336:
Kyriacos C. Nicolaou, R. A. Daines, T. K. Chakraborty: "Total synthesis of amphoteronolide B", in:
917:. These characteristics imply that new protecting groups for amines are always under development. 517:
byproduct. The trimethylsilyl ethers are also extremely sensitive to acid hydrolysis (for example
4241:
Wenzel E. Davidsohn, Malcolm C. Henry: "Organometallic Acetylenes of the Main Groups III–V", in:
4218: 4214: 4207: 2030: 1937: 1678: 1546: 967: 3318:
Moussa, Ziad; D. Romo (2006). "Mild deprotection of primary N-(p-toluenesufonyl) amides with SmI
2066:
Michael Schelhaas, Herbert Waldmann: "Schutzgruppenstrategien in der organischen Synthese", in:
1997:
Michael Schelhaas, Herbert Waldmann: "Schutzgruppenstrategien in der organischen Synthese", in:
946:, which admit reductive cleavage, and the trifluoroacetamides, which hydrolyze easily in base. 939:-butoxycarbonyl, benzoxycarbonyl, fluorenylmethylenoxycarbonyl, and allyloxycarbonyl compounds. 4617:, 4th Ed., John Wiley & Sons Inc., Hoboken, New Jersey, pp. 10–13; ISBN 0-471-69754-0. 1865: 1845:
An important example of industrial applications of protecting group theory is the synthesis of
1743: 1296: 1053: 733: 378: 3835:
Elias J. Corey, Kyriacos C. Nicolaou, Takeshi Toru: "Total synthesis of (±)-vermiculine", in:
1441:– Removed by acid. Normally, the cleavage of acyclic acetals is easier than of cyclic acetals. 1133:(trichloroethyl chloroformate ) group – Removed by Zn insertion in the presence of acetic acid 674:‑Dimethoxybenzyl ether — Removed via oxidation with DDQ or ceric ammonium chloride 521:
suffices as a proton donator) and are consequently rarely used nowadays as protecting groups.
4550: 4524: 4498: 2181: 1832: 1705: 1704:
In order to protect the triple bond itself, sometimes a transition metal-alkyne complex with
1696: 1626: 1590: 510: 221: 2313:
methyl ester involving a new method for the cleavage of a dimethyl-t-butylsilyl ether", in:
1295:
is a common cosolvent, used to promote dissolution. For a non-acidic cleavage technique, a
624:
Triisopropylsilyl (TIPS) ethers) — Similar conditions to TBS but longer reaction times.
4760: 4588: 4573:
T. Reichstein, A. Grüssner: "Eine ergiebige Synthese der L-Ascorbinsäure (C-Vitamin)", in:
4454: 3607: 3580: 3254: 2081: 2012: 1779: 1633: 1518: 1470:
are the esters of various alcohols. Occasionally, esters are protected as ortho-esters or
1156: 741: 871: 8: 4374: 4324: 3891: 2713: 2095: 1735: 1179: 1171: 717: 583: 84: 61: 4458: 334:
Various groups are cleaved in acid or base conditions, but the others are more unusual.
4478: 2674: 2657: 2172: 2093:
V.N. Rajasekharan Pillai: "Photoremovable Protecting Groups in Organic Synthesis", in:
1907: 1850: 1494: 1414:
For aldehydes, a temporary protection of the carbonyl group the presence of ketones as
1300: 575: 241:
Schematic diagram of a solid-state peptide synthesis with orthogonal protecting groups
4562: 4536: 4510: 4401: 1872:
and then deprotected after the oxidation of the primary alcohols to carboxylic acids.
595: — 10–100× stabler than a TMS group. Cleaved with trifluoroacetic acid in water/ 4814: 4747: 4667: 4628: 4470: 4425: 4351: 4297: 4222: 4038: 3915: 3864: 3837: 3810: 3783: 3703: 3649: 3622: 3527: 3499: 3406: 3352: 3215: 3161: 3108: 3003: 2922: 2895: 2868: 2841: 2814: 2787: 2732: 2630: 2603: 2549: 2496: 2419: 2366: 2338: 2256: 2195: 2141: 2068: 2034: 1999: 1978: 1933: 1686: 1531: 1498: 1049: 906: 723: 702: 600: 2658:"Metabolism of 3,4-dimethoxycinnamyl alcohol and derivatives by Coriolus versicolor" 1793: 1338:-acetals also have an application, albeit scant, as carbonyl protecting groups too. 751:
Tris(isopropyl)silyloxymethyl (TOM) — Commonly protects 2'-hydroxy function in
4724: 4663: 4604:, VCH Verlagsgesellschaft mbH, Weinheim 1996, pp. 711–729, ISBN 3-527-29284-5. 4575: 4558: 4532: 4506: 4482: 4462: 4445: 4417: 3923: 3594: 3567: 3333: 2699: 2669: 2324: 1728: 1594: 1004: 787: 356: 342: 309: 125: 68: 57: 53: 4794: 4641: 4256: 3997: 3928: 3910: 3850: 3823: 3743: 3716: 3635: 3540: 3512: 3446: 3392: 3228: 3201: 3174: 3077: 3016: 2962: 2881: 2854: 2800: 2773: 2745: 2643: 2616: 2589: 2562: 2379: 2351: 2297: 2269: 2235: 2208: 2154: 1467: 1281: 843: 814: 682: 596: 117: 25: 660:(PMB) — Removed by acid, hydrogenolysis, or oxidation – commonly with 4738:, 4th Ed., John Wiley & Sons Inc., Hoboken, New Jersey, ISBN 0-471-69754-0. 1775: 1771: 1613:
or catalytic hydration. For alkenes two protecting groups are basically known:
1567: 1403:-Acetals are hydrolyzed a factor of 10,000 times faster than the corresponding 1215: 1205: 1193: 1017: 992: 932: 745: 642: 571: 505:
Trimethylsilyl chloride, activated with imidazole, protects a secondary alcohol
464: 324: 270: 195: 183: 1807: 1774:. Crucially, added complexity impedes the use of synthetic total synthesis in 1640: 509:
Triorganosilyl sources have quite variable prices, and the most economical is
395: 4841: 4809: 4767: 4168: 4140: 4024: 4011: 3984: 3970: 3730: 3433: 3188: 2949: 2760: 2576: 2284: 2222: 1884: 1846: 1756: 1732: 1711: 1610: 1064: 988: 548: 482: 406: 363: 137: 1509:‑dimethylformamide, or methanol and catalytic trimethylsilyl chloride 21: 4781: 4474: 4429: 4402:"Isotope Effects in Photochemistry: Application to Chromatic Orthogonality" 4192: 2601:
Masahiro Hirama, Mitsuko Uei: "A chiral total synthesis of compactin", in:
1787:
Protected and unprotected syntheses of the marine alkaloid, hapalindole U.
1682: 1606: 839: 720:(MOM) — Removed by 6 M hydrochloric acid in tetrahydrofuran/water 711: 701:
Ethoxyethyl ethers (EE) – Cleavage more trivial than simple ethers e.g. 1N
610: 374: 367: 266: 4557:, Pages 6351–6360 Hideaki Muratake, Harumi Kumagami and Mitsutaka Natsume 3337: 1856: 4695: 4270: 4205:
Clayden, Jonathan; Greeves, Nick; Warren, Stuart; Wothers, Peter (2000).
4065: 3701:
John E. McMurry, Stephen J. Isser: "Total synthesis of longifolene", in:
3676: 3379: 3039: 2469: 2251: 1903: 1839: 1573: 1538: 1124: 1029:(Boc) group — Removed by concentrated strong acid (such as HCl or CF 943: 920: 914: 910: 793: 737: 579: 467: 460: 425: 410: 402: 291: 175: 156: 141: 109: 16:
Group of atoms introduced into a compound to prevent subsequent reactions
4466: 962:‑sulfonylamides,which are far too stable with aliphatic amines. 4409: 4243: 4155: 4127: 3957: 1811: 1530:
esters – Also removed by acid and some reductants. Can be formed from
1524: 1448: 1415: 1343: 1304: 1175: 1060: 1045: 518: 435: 414: 121: 4421: 1421: 265:
A further important example of orthogonal protecting groups occurs in
124:– may require protecting groups to order their assembly. Also, cheap 3909:
Romanski, J.; Nowak, P.; Kosinski, K.; Jurczak, J. (September 2012).
1880: 1828: 1579: 1471: 1000: 982: 955: 928: 924: 654: 315: 160:
Orthogonal protection of L-Tyrosine (Protecting groups are marked in
4800:
Senior undergraduate study notes on this subject, from Prof. Rizzo.
1913: 260:
Fmoc solid state peptide synthesis with orthogonal protecting groups
4731:, 1st ed., Georg Thieme Verlag, Stuttgart 1994, ISBN 3-13-135601-4. 1926: 1542: 1454: 1264: 1112: 1076:
group — Removed with complexes of metals like palladium(0) or
996: 587: 560: 481:
The most important esters with common protecting-group use are the
388: 297: 206: 88: 4295:
Kenneth M. Nicholas, R. Pettit: "An alkyne protection group", in:
3259:(PDF; 663 kB) In: Michael W. Pennington, Ben M. Dunn (eds.): 1972: 1272: 321:
Protecting groups cleaved by heavy metal salts or their complexes.
217:-butyl ether cleaved with acids (e.g. with trifluoroacetic acid). 96:, which does not react with hydrides. The acetal is then called a 3911:"High-pressure transesterification of sterically hindered esters" 3324: 1922: 1875:
A very spectacular example application of protecting groups from
1869: 1653:
2-cyanoethyl – removed by mild base. The group is widely used in
1292: 1152: 1120: 1116: 1098: 951: 888: 554: 501: 418: 338: 113: 60:
in a subsequent chemical reaction. It plays an important role in
2574:
W. Clark Still, Dominick Mobilio: "Synthesis of asperdiol", in:
1708:
is used. The release of the cobalt then follows from oxidation.
4653: 1951: 1660: 1512: 1490: 1487: 1444: 1434: 1363: 1189: 1148: 1088: 1077: 947: 835: 834:, in that one protects both hydroxy groups codependently as an 831: 827: 710:(MEM) — Removed by hydrobromic acid in tetrahydrofuran or 651:(triphenylmethyl, Tr) — Removed by acid and hydrogenolysis 648: 638: 544: 471: 348: 303: 93: 33: 29: 4795:
Introduction of protecting group and mechanism of deprotection
958: — verily any aza-heterocycle — admit protection as 726:(THP) — Removed by acetic acid in tetrahydrofuran/water, 4745:: "Schutzgruppenstrategien in der organischen Synthese", in: 1864:
In order to prevent oxidation of the secondary alcohols with
1798: 1563: 1438: 1339: 1163: 1136: 857: 801: 475: 456: 80: 37: 4684:. Reprint 2004, Oxford University Press, ISBN 0-19-963724-5. 3908: 1894: 645:. Bn group is widely used in sugar and nucleoside chemistry. 52:
is introduced into a molecule by chemical modification of a
4204: 1622: 1041: 285: 3759:, Ferdinand Enke Verlag, Stuttgart 1965, pp. 127–133. 1557:-catalyzed high-pressure methanolysis at room temperature. 692:
Methoxytrityl (MMT) – Removed by acid and hydrogenolysis.
557:(Bz) – Removed by acid or base, more stable than Ac group. 528: 4602:
Classics in Total Synthesis: Targets, Strategies, Methods
4531:, Pages 6343–6350 Hideaki Muratake and Mitsutaka Natsume 4505:, Pages 6331–6342 Hideaki Muratake and Mitsutaka Natsume 2250:
James D. White, Motoji Kawasaki: "Total synthesis of (+)-
3263:
volume 35, 1995, ISBN 978-0-89603-273-6, pp. 17–27.
474:, deprotected by weak acids. In rarer cases, a carbon 1127:. Too stable to readily remove from aliphatic amides. 1814:'s protecting-group free synthesis, reported in 2007. 1497:. Can be formed from diazomethane in diethyl ether, 1044:) group — Removed by base, such as 20–50 % 786:(tBu) – Removed with anhydrous trifluoroacetic acid, 1671: 1461: 4442: 1752:
Orthogonal protection Application in Photochemistry
1033:COOH), or by heating to >80 °C. Common in 497:
Chloroacetyl > acetyl > benzoyl > pivaloyl
79:is a highly reactive reagent that usefully reduces 4206: 3104:An Exceptionally Mild Deprotection of Phthalimides 2246: 2244: 1576:– Converted to standard ester by mild aqueous acid 1534:: isobutene in dioxane and catalytic sulfuric acid 1521:esters — Same as benzyl, but easier to cleave 780:-Methoxyphenyl ether (PMP) – Removed by oxidation. 617:in THF. Commonly protects 2'-hydroxy function in 1139:(Ts) group – Removed by concentrated acid (HBr, H 966:‑benzylated amines can be removed through 455:The classical protecting groups for alcohols are 4839: 4831:Schutzgruppen in der organischen Synthesechemie 3280:volume 109, 1997, pp. 629–631 (in German). 2655: 2241: 4736:Green's Protective Groups in Organic Synthesis 4615:Green's Protective Groups in Organic Synthesis 4400:Blanc, Aurélien; Bochet, Christian G. (2007). 3102:John O. Osby, Michael G. Martin, Bruce Ganem: 1647: 470:, deprotected by acids and fluoride ions; and 370:: ethers, esters, urethanes, carbonates, etc. 40:reduction, vs. unprotected reduction to a diol 3317: 1973:Theodora W. Greene; Peter G. M. Wuts (1999). 1731:orthogonal deprotection is demonstrated in a 1515:esters — Also removed by hydrogenolysis. 1457:– Removed by metal salts or oxidizing agents. 1377:-acetals normally follows analogously to the 1239: 1119:. Removed by base, often aqueous or gaseous 790:in acetic acid, or 4 N hydrochloric acid 1747: 1307:can be performed with workup in chloroform. 942:Other, more exotic amine protectors are the 527: 450: 434: 394: 387: 226: 4399: 1860:The Reichstein synthesis (of ascorbic acid) 931:. When a carbamate deprotects, it evolves 599:, acetic acid in water/tetrahydrofuran, or 445: 2282:3'-deuterioadenosine from adenosine", in: 1868:, they are protected via acetalation with 1822: 878: 613:, pyridinium fluoride in tetrahydrofuran, 276: 3927: 2673: 2024: 1617:Temporary halogenation with bromine to a 1466:The most important protecting groups for 1007:, or lithium or sodium in liquid ammonia. 985:group – Removed by acid and mild heating. 935:. The commonest-used carbamates are the 4766:Krzysztof Jarowicki, Philip Kocieński: " 1950: 1912: 1893: 1855: 1806: 1797:Hideaki Muratake's 1990 synthesis using 1792: 1271: 1263: 882: 730:‑toluenesulfonic acid in methanol 500: 432:-nitrobenzylgroup ought be listed here. 421:(resp. amine) hydrolyzes in light acid. 337:Fluoride ions form very strong bonds to 155: 151: 20: 2025:Chan, Weng C.; White, Peter D. (2004). 1428: 4840: 4674: 1975:Protecting Groups in Organic Synthesis 1663:(Me) – removed by strong nucleophiles 4734:Peter G.M. Wuts, Theodora W. Greene: 4613:Peter G.M. Wuts, Theodora W. Greene: 1178:or other soft thiol nucleophiles, or 759:β‑(Trimethylsilyl)ethoxymethyl 424:Photolabile protecting groups bear a 3256:Methods for Removing the Fmoc Group. 1481: 905:Amines have a special importance in 547:(Ac) – Removed by acid or base (see 409:to a vinyl group in the presence of 3292:Fmoc Solid Phase Peptide Synthesis. 2656:Kamaya, Yasushi; T Higuchi (2006). 2018: 1955:Automatic oligonucleotide synthesis 1595:Grignard (organomagnesium) reagents 1299:acetonitrile complex in acetone or 838:. Common in this situation are the 767:Hexamethyl phosphoric acid triamide 351:and other enzymes cleave ethers at 13: 4718: 4682:Fmoc Solid Phase Peptide Synthesis 3242:Fmoc Solid Phase Peptide Synthesis 2675:10.1111/j.1574-6968.1984.tb01309.x 2055:Fmoc Solid Phase Peptide Synthesis 2027:Fmoc Solid Phase Peptide Synthesis 1801:protecting groups (shown in blue). 1710: 1695: 1639: 1566:esters – Also removed by base and 1420: 895:-butyloxycarbonyl group is marked 870: 856: 14: 4864: 4788: 4709:doi:10.1016/S0040-4020(01)88752-4 4361:doi:10.1016/S0040-4039(01)83455-9 4338:doi:10.1016/S0022-328X(00)89454-1 4311:doi:10.1016/S0040-4039(01)97209-0 4284:doi:10.1016/S0040-4020(02)00315-0 4079:doi:10.1016/S0040-4020(97)10203-4 4052:doi:10.1016/S0040-4039(00)97045-X 3878:doi:10.1016/S0040-4039(01)94936-6 3797:doi:10.1016/S0040-4039(00)88171-X 3663:doi:10.1016/S0040-4039(00)92243-3 3420:doi:10.1016/S0040-4039(00)89114-5 3366:doi:10.1016/S0040-4039(00)74575-8 3322:following trifluoroacetylation". 3122:doi:10.1016/S0040-4039(01)81169-2 2936:doi:10.1016/S0040-4039(00)82883-X 2909:doi:10.1016/S0040-4039(00)85501-X 2828:doi:10.1016/S0040-4039(00)91422-9 2510:doi:10.1016/S0040-4039(00)86974-9 2483:doi:10.1016/S0040-4020(01)96051-X 2433:doi:10.1016/S0040-4039(00)84045-9 1672:Terminal alkyne protecting groups 1462:Carboxylic acid protecting groups 1016:(Moz or MeOZ) group – Removed by 67:In many preparations of delicate 4687: 4647: 4620: 4607: 4594: 4567: 4541: 4515: 4489: 4436: 4393: 4388:doi:10.1016/0022-328X(72)80037-8 4366: 4343: 4114:doi:10.5012/bkcs.2010.31.10.2757 3690:doi:10.1016/0040-4020(78)80243-9 3053:doi:10.1016/0040-4020(82)80083-5 1537:2,6‑Dialkylphenols (e.g. 1493: — Also removed by acid or 1147:) & strong reducing agents ( 1107:) groups — common in 923:are primarily protected through 330:Double-layered protecting groups 269:chemistry. As carbohydrates or 253: 234: 194:-butyl ether protected phenolic 4316: 4289: 4262: 4235: 4198: 4174: 4146: 4119: 4084: 4057: 4030: 4003: 3976: 3949: 3936: 3902: 3883: 3856: 3829: 3802: 3775: 3762: 3749: 3722: 3695: 3668: 3641: 3613: 3586: 3559: 3546: 3518: 3491: 3478: 3465: 3452: 3425: 3398: 3371: 3344: 3311: 3298: 3283: 3266: 3247: 3234: 3207: 3180: 3153: 3140: 3127: 3096: 3083: 3058: 3022: 2994: 2981: 2968: 2941: 2914: 2887: 2860: 2833: 2806: 2779: 2751: 2724: 2705: 2682: 2649: 2622: 2595: 2568: 2541: 2528: 2515: 2488: 2461: 2438: 2411: 2398: 2385: 2357: 2330: 2303: 2275: 2214: 2187: 2160: 1879:is the 1994 total synthesis of 796: — Removed with potassium 4773:J. Chem. Soc., Perkin Trans. 1 4680:Weng C. Chan, Peter D. White: 4600:K.C. Nicolaou, E.J. Sorensen: 4184:J. Chem. Soc., Perkin Trans. 1 3240:Weng C. Chan, Peter D. White: 2691:J. Chem. Soc., Perkin Trans. 1 2316:J. Chem. Soc., Perkin Trans. 1 2132: 2119: 2106: 2087: 2060: 2053:Weng C. Chan, Peter D. White: 2047: 1991: 1966: 1354:-acetals are, unlike the pure 1040:9-Fluorenylmethyloxycarbonyl ( 991:(Cbz) group — Removed by 740:metal oxidants: base-buffered 417:(from a protected alcohol) or 227:§ Industrial applications 1: 4810:A review by Prof. Kocienski. 4563:10.1016/S0040-4020(01)96007-7 4537:10.1016/S0040-4020(01)96006-5 4511:10.1016/S0040-4020(01)96005-3 2182:doi:10.1002/jlac.198619860714 1959: 1842:(Tamiflu, an antiviral drug) 1725:Photolabile protecting groups 1069:solid phase peptide synthesis 1035:solid phase peptide synthesis 166:, the amino acid is shown in 4761:doi:10.1002/ange.19961081805 4668:10.1016/0307-4412(79)90078-5 4589:doi:10.1002/hlca.19340170136 3929:10.1016/j.tetlet.2012.07.094 3608:doi:10.1002/hlca.19860690311 3581:doi:10.1002/hlca.19830660815 2082:doi:10.1002/ange.19961081805 2013:doi:10.1002/ange.19961081805 1764: 1366:-protected carbonyl groups. 973: 821: 377:. They can be removed with 7: 3295:retrieved 16 November 2013. 3261:Peptide Synthesis Protocols 1691:tetrabutylammonium fluoride 1648:Phosphate protecting groups 1233:ammonium cerium(IV) nitrate 1170:) groups — Removed by 913:and also relatively strong 866:diisobutyl aluminum hydride 763:tetrabutylammonium fluoride 736: — Removed by acid or 615:tetrabutylammonium fluoride 383:dichlorodicyanobenzoquinone 62:multistep organic synthesis 10: 4869: 3029:derivatives with the LiAlH 2447:Carbonhydr. Chem. Biochem. 1805: 1740:trimethylsilyldiazomethane 1240:Carbonyl protecting groups 366:removes a wide variety of 134:enantioselective synthesis 2662:FEMS Microbiology Letters 1946:oligonucleotide synthesis 1877:natural product synthesis 1655:oligonucleotide synthesis 1600: 1553:) — Also removed in 1231:(PMP) group – Removed by 1208:, more labile than benzyl 1109:oligonucleotide synthesis 1014:-Methoxybenzyloxycarbonyl 909:, but are a quite potent 753:oligonucleotide synthesis 708:Methoxyethoxymethyl ether 687:oligonucleotide synthesis 619:oligonucleotide synthesis 451:Alcohol protecting groups 318:-labile protecting groups 312:-labile protecting groups 306:-labile protecting groups 300:-labile protecting groups 294:-labile protecting groups 288:-labile protecting groups 182:) benzyl ester protected 77:lithium aluminium hydride 2700:doi:10.1039/P19810001796 2481:, pp. 10023–10034; 2325:doi:10.1039/P19810002055 1977:(3 ed.). J. Wiley. 1718: 1192:(Bn) group – Removed by 817:(THF) – Removed by acid. 446:Common protecting groups 126:chiral protecting groups 87:. It always reacts with 4642:doi:10.1021/ja00067a026 4553:, Volume 46, Issue 18, 4527:, Volume 46, Issue 18, 4501:, Volume 46, Issue 18, 4257:doi:10.1021/cr60245a003 4215:Oxford University Press 4101:Bull. Korean Chem. Soc. 3998:doi:10.1021/jo00926a024 3851:doi:10.1021/ja00841a058 3824:doi:10.1021/ja00235a052 3757:Katalytische Hydrierung 3744:doi:10.1021/jo00356a002 3717:doi:10.1021/ja00775a044 3636:doi:10.1021/ja00160a047 3541:doi:10.1021/ja00010a030 3513:doi:10.1021/ja00228a051 3447:doi:10.1021/jo00353a027 3393:doi:10.1246/cl.1981.375 3229:doi:10.1021/ja00029a031 3202:doi:10.1021/jo00405a045 3175:doi:10.1021/ja00213a031 3078:doi:10.1021/jo00253a020 3017:doi:10.1021/ja00297a038 2963:doi:10.1021/jo00193a051 2882:doi:10.1021/ja00325a032 2855:doi:10.1021/ja00388a074 2801:doi:10.1021/ja00474a058 2774:doi:10.1021/jo01323a017 2746:doi:10.1021/ja00242a053 2644:doi:10.1021/ja00341a055 2617:doi:10.1021/ja00379a037 2590:doi:10.1021/jo00172a070 2563:doi:10.1021/ja00547a037 2380:doi:10.1021/ja00036a045 2352:doi:10.1021/ja00241a063 2298:doi:10.1021/jo00289a004 2270:doi:10.1021/ja00168a071 2236:doi:10.1021/jo00019a004 2209:doi:10.1021/ja00175a038 2155:doi:10.1021/ja00164a023 2031:Oxford University Press 1938:Robert Bruce Merrifield 1823:Industrial applications 1755:Due to this effect the 1679:methylmagnesium bromide 1111:for protection of N in 968:catalytic hydrogenation 879:Amine protecting groups 769:) or in tetrahydrofuran 744:in wet acetonitrile or 641:(Bn) — Removed by 535: 277:Cleavage categorization 4819:Organic-Reaction.com: 4780:, pp. 4005–4037; 4759:, pp. 2192–2219; 4707:, pp. 2223–2311; 4640:, pp. 6094–6100; 4359:, pp. 4163–4166; 4309:, pp. 3475–3478; 4282:, pp. 4133–4170; 4191:, pp. 3555–3558; 4139:, pp. 1163–1190; 4112:, pp. 2757–2758; 4077:, pp. 1021–1028; 4050:, pp. 6291–6293; 3996:, pp. 1426–1427; 3969:, pp. 2035–2052; 3876:, pp. 3051–3054; 3849:, pp. 2287–2288; 3795:, pp. 3573–3576; 3715:, pp. 7132–7137; 3688:, pp. 3269–3274; 3661:, pp. 2565–2566; 3634:, pp. 1607–1617; 3579:, pp. 2501–2511; 3539:, pp. 3850–3866; 3511:, pp. 6890–6891; 3364:, pp. 1357–1358; 3200:, pp. 2285–2286; 3120:, pp. 2093–2096; 3051:, pp. 3721–3727; 3015:, pp. 3279–3285; 2961:, pp. 3671–3672; 2934:, pp. 5417–5418; 2880:, pp. 3869–3870; 2853:, pp. 6818–6820; 2826:, pp. 3269–3270; 2799:, pp. 1942–1943; 2772:, pp. 1438–1447; 2744:, pp. 2523–2525; 2698:, pp. 1796–1801; 2615:, pp. 4251–4253; 2588:, pp. 4785–4786; 2561:, pp. 7962–7965; 2525:‑methoxybenzyl. 2378:, pp. 3910–3926; 2350:, pp. 2208–2210; 2323:, pp. 2055–2058; 2268:, pp. 4991–4993; 2234:, pp. 5496–5498; 2207:, pp. 7001–7031; 2180:, pp. 1281–1308; 2153:, pp. 2998–3017; 2080:, pp. 2195–2200; 1956: 1918: 1899: 1866:potassium permanganate 1861: 1815: 1802: 1753: 1744:kinetic isotope effect 1715: 1701: 1644: 1591:organolithium reagents 1425: 1297:palladium(II) chloride 1277: 1269: 1020:, more labile than Cbz 902: 875: 861: 826:The 1,2‑diols ( 748:in wet tetrahydrofuran 734:Methylthiomethyl ether 532: 506: 439: 399: 392: 379:ceric ammonium nitrate 199: 41: 4656:Biochemical Education 4169:doi:10.1021/ol0070029 4141:doi:10.1021/cr9803840 4025:doi:10.1021/jo9713363 3971:doi:10.1021/cr950083f 3338:10.1055/s-2006-951530 3227:, pp. 998–1010; 3173:, p. 1547–1557; 3076:, pp. 4274–4282 1954: 1916: 1897: 1859: 1810: 1796: 1751: 1714: 1706:dicobalt octacarbonyl 1700:Alkyne TMS protection 1699: 1643: 1632:Protection through a 1627:titanocene dichloride 1543:2,6-diisopropylphenol 1501:and methyl iodide in 1424: 1275: 1267: 1063:in DMF for sensitive 1057:-Methyl-2-pyrrolidone 886: 874: 860: 531: 511:chlorotrimethylsilane 504: 438: 398: 391: 222:solid-phase synthesis 203:Orthogonal protection 159: 152:Orthogonal protection 24: 4782:doi:10.1039/A803688H 4587:, pp. 311–328; 4193:doi:10.1039/b006759h 4167:, pp. 679–681; 4023:, pp. 169–176; 3822:, pp. 287–289; 3742:, pp. 773–784; 3606:, pp. 621–625; 3445:, pp. 404–407; 3418:, pp. 705–708; 3391:, pp. 375–376; 2907:, pp. 445–448; 2642:, pp. 625–627; 2508:, pp. 885–888; 2431:, pp. 579–580; 2296:, pp. 410–412; 1780:biomimetic synthesis 1634:Diels-Alder reaction 1429:Types of protectants 1276:1,3‑Propadiol 1214:(DMPM) – Removed by 1157:sodium naphthalenide 658:-Methoxybenzyl ether 603:in water or pyridine 4826:Universität Marburg 4741:Michael Schelhaas, 4725:Philip J. Kocieński 4467:10.1038/nature05569 4459:2007Natur.446..404B 4375:J. Organomet. Chem. 4325:J. Organomet. Chem. 4255:, pp. 73–106; 3946:, pp. 139–142. 3488:, pp. 178–180. 3308:, pp. 199–201. 3272:B. Liebe, H. Kunz: 3137:, pp. 220–227. 2721:, pp. 276–277. 2521:See literature for 1831:(sweetener) or the 1788: 1736:transesterification 1685:in tetrahydrofuran/ 1218:, more labile than 1212:3,4-Dimethoxybenzyl 1204:(PMB) – Removed by 1180:tributyltin hydride 1162:Other sulfonamide ( 718:Methoxymethyl ether 584:potassium carbonate 4848:Chemical synthesis 3755:F. Zymalkokowski: 3462:, S. 167–170. 2173:Liebigs Ann. Chem. 1957: 1919: 1900: 1862: 1816: 1803: 1786: 1754: 1716: 1702: 1667:. thiophenole/TEA. 1645: 1539:2,6-dimethylphenol 1495:pig liver esterase 1426: 1301:iron(III) chloride 1278: 1270: 903: 876: 862: 714:in dichloromethane 576:Potassium fluoride 533: 507: 440: 400: 393: 200: 42: 4853:Protecting groups 4768:Protecting groups 4748:Angewandte Chemie 4729:Protecting Groups 4629:J. Am. Chem. Soc. 4453:(7134): 404–408. 4422:10.1021/ol070820h 4416:(14): 2649–2651. 4352:Tetrahedron Lett. 4298:Tetrahedron Lett. 4228:978-0-19-850346-0 4209:Organic Chemistry 4098:/Ga System", in: 4039:Tetrahedron Lett. 3944:Protecting Groups 3922:(39): 5287–5289. 3916:Tetrahedron Lett. 3899:, pp. 63–64. 3865:Tetrahedron Lett. 3838:J. Am. Chem. Soc. 3811:J. Am. Chem. Soc. 3784:Tetrahedron Lett. 3770:Protecting Groups 3704:J. Am. Chem. Soc. 3650:Tetrahedron Lett. 3623:J. Am. Chem. Soc. 3554:Protecting Groups 3528:J. Am. Chem. Soc. 3500:J. Am. Chem. Soc. 3486:Protecting Groups 3473:Protecting Groups 3460:Protecting Groups 3407:Tetrahedron Lett. 3353:Tetrahedron Lett. 3332:(19): 3294–3298. 3306:Protecting Groups 3253:Gregg B. Fields: 3244:, pp. 27–30. 3216:J. Am. Chem. Soc. 3162:J. Am. Chem. Soc. 3148:Protecting Groups 3135:Protecting Groups 3109:Tetrahedron Lett. 3091:Protecting Groups 3004:J. Am. Chem. Soc. 2989:Protecting Groups 2978:, pp. 59–60. 2976:Protecting Groups 2923:Tetrahedron Lett. 2896:Tetrahedron Lett. 2869:J. Am. Chem. Soc. 2842:J. Am. Chem. Soc. 2815:Tetrahedron Lett. 2788:J. Am. Chem. Soc. 2733:J. Am. Chem. Soc. 2631:J. Am. Chem. Soc. 2604:J. Am. Chem. Soc. 2550:J. Am. Chem. Soc. 2536:Protecting Groups 2497:Tetrahedron Lett. 2420:Tetrahedron Lett. 2408:, pp. 46–49. 2406:Protecting Groups 2393:Protecting Groups 2367:J. Am. Chem. Soc. 2339:J. Am. Chem. Soc. 2257:J. Am. Chem. Soc. 2196:J. Am. Chem. Soc. 2142:J. Am. Chem. Soc. 2127:Protecting Groups 2114:Protecting Groups 2069:Angewandte Chemie 2040:978-0-19-963724-9 2011:, pp. 2194; 2000:Angewandte Chemie 1984:978-0-471-16019-9 1934:peptide synthesis 1849:(Vitamin C) à la 1820: 1819: 1687:dimethylsulfoxide 1532:carboalkoxylation 1499:caesium carbonate 1482:Protecting groups 1369:The formation of 1074:Allyloxycarbamate 1050:dimethylformamide 1027:-Butyloxycarbonyl 927:, typically as a 907:peptide synthesis 800:‑butoxide 784:Tert-butyl ethers 742:mercuric chloride 724:Tetrahydropyranyl 703:hydrochloric acid 601:hydrogen fluoride 459:, deprotected by 327:protecting groups 174:) Fmoc-protected 69:organic compounds 4860: 4821:Protecting Group 4743:Herbert Waldmann 4712: 4691: 4685: 4678: 4672: 4671: 4651: 4645: 4624: 4618: 4611: 4605: 4598: 4592: 4576:Helv. Chim. Acta 4571: 4565: 4545: 4539: 4519: 4513: 4493: 4487: 4486: 4440: 4434: 4433: 4406: 4397: 4391: 4370: 4364: 4347: 4341: 4320: 4314: 4293: 4287: 4266: 4260: 4239: 4233: 4232: 4212: 4202: 4196: 4178: 4172: 4150: 4144: 4123: 4117: 4088: 4082: 4061: 4055: 4034: 4028: 4007: 4001: 3980: 3974: 3953: 3947: 3942:P.J. Kocieński: 3940: 3934: 3933: 3931: 3906: 3900: 3887: 3881: 3860: 3854: 3833: 3827: 3806: 3800: 3779: 3773: 3768:P.J. Kocieński: 3766: 3760: 3753: 3747: 3726: 3720: 3699: 3693: 3672: 3666: 3645: 3639: 3617: 3611: 3595:Helv. Chim. Acta 3590: 3584: 3568:Helv. Chim. Acta 3563: 3557: 3552:P.J. Kocieński: 3550: 3544: 3522: 3516: 3495: 3489: 3484:P.J. Kocieński: 3482: 3476: 3471:P.J. Kocieński: 3469: 3463: 3458:P.J. Kocieński: 3456: 3450: 3429: 3423: 3402: 3396: 3375: 3369: 3348: 3342: 3341: 3315: 3309: 3304:P.J. Kocieński: 3302: 3296: 3287: 3281: 3270: 3264: 3251: 3245: 3238: 3232: 3211: 3205: 3184: 3178: 3157: 3151: 3146:P.J. Kocieński: 3144: 3138: 3133:P.J. Kocieński: 3131: 3125: 3100: 3094: 3089:P.J. Kocieński: 3087: 3081: 3062: 3056: 3026: 3020: 2998: 2992: 2987:P.J. Kocieński: 2985: 2979: 2974:P.J. Kocieński: 2972: 2966: 2945: 2939: 2918: 2912: 2891: 2885: 2864: 2858: 2837: 2831: 2810: 2804: 2783: 2777: 2755: 2749: 2728: 2722: 2709: 2703: 2686: 2680: 2679: 2677: 2668:(2–3): 225–229. 2653: 2647: 2626: 2620: 2599: 2593: 2572: 2566: 2545: 2539: 2534:P.J. Kocieński: 2532: 2526: 2519: 2513: 2492: 2486: 2465: 2459: 2442: 2436: 2415: 2409: 2404:P.J. Kocieński: 2402: 2396: 2391:P.J. Kocieński: 2389: 2383: 2361: 2355: 2334: 2328: 2307: 2301: 2279: 2273: 2248: 2239: 2218: 2212: 2191: 2185: 2169: 2164: 2158: 2136: 2130: 2125:P.J. Kocieński: 2123: 2117: 2112:P.J. Kocieński: 2110: 2104: 2103:, pp. 1–26. 2091: 2085: 2064: 2058: 2057:, S. 10–12. 2051: 2045: 2044: 2022: 2016: 1995: 1989: 1988: 1970: 1789: 1785: 1729:proof of concept 1468:carboxylic acids 1106: 1105: 1096: 1095: 1005:activated carbon 900: 852:cyclopentylidene 788:hydrogen bromide 413:. The residual 343:steric hindrance 257: 238: 165: 118:oligosaccharides 98:protecting group 58:chemoselectivity 54:functional group 50:protective group 46:protecting group 4868: 4867: 4863: 4862: 4861: 4859: 4858: 4857: 4838: 4837: 4791: 4721: 4719:Further reading 4716: 4715: 4692: 4688: 4679: 4675: 4652: 4648: 4625: 4621: 4612: 4608: 4599: 4595: 4572: 4568: 4546: 4542: 4520: 4516: 4494: 4490: 4441: 4437: 4404: 4398: 4394: 4371: 4367: 4348: 4344: 4321: 4317: 4294: 4290: 4267: 4263: 4240: 4236: 4229: 4203: 4199: 4179: 4175: 4151: 4147: 4124: 4120: 4097: 4093: 4089: 4085: 4062: 4058: 4035: 4031: 4008: 4004: 3981: 3977: 3954: 3950: 3941: 3937: 3907: 3903: 3888: 3884: 3861: 3857: 3834: 3830: 3807: 3803: 3780: 3776: 3772:, pp. 136. 3767: 3763: 3754: 3750: 3727: 3723: 3700: 3696: 3673: 3669: 3646: 3642: 3618: 3614: 3591: 3587: 3564: 3560: 3556:, pp. 119. 3551: 3547: 3523: 3519: 3496: 3492: 3483: 3479: 3475:, pp. 176. 3470: 3466: 3457: 3453: 3430: 3426: 3403: 3399: 3376: 3372: 3349: 3345: 3321: 3316: 3312: 3303: 3299: 3288: 3284: 3271: 3267: 3252: 3248: 3239: 3235: 3212: 3208: 3185: 3181: 3158: 3154: 3145: 3141: 3132: 3128: 3101: 3097: 3088: 3084: 3063: 3059: 3036: 3032: 3027: 3023: 2999: 2995: 2986: 2982: 2973: 2969: 2946: 2942: 2919: 2915: 2892: 2888: 2865: 2861: 2838: 2834: 2811: 2807: 2784: 2780: 2756: 2752: 2729: 2725: 2710: 2706: 2687: 2683: 2654: 2650: 2627: 2623: 2600: 2596: 2573: 2569: 2546: 2542: 2533: 2529: 2520: 2516: 2493: 2489: 2466: 2462: 2443: 2439: 2416: 2412: 2403: 2399: 2390: 2386: 2362: 2358: 2335: 2331: 2312: 2308: 2304: 2280: 2276: 2249: 2242: 2219: 2215: 2192: 2188: 2167: 2165: 2161: 2137: 2133: 2124: 2120: 2111: 2107: 2092: 2088: 2065: 2061: 2052: 2048: 2041: 2023: 2019: 1996: 1992: 1985: 1971: 1967: 1962: 1825: 1767: 1721: 1674: 1650: 1603: 1587: 1484: 1464: 1431: 1282:ethylene glycol 1268:Ethylene glycol 1242: 1172:samarium iodide 1146: 1142: 1103: 1102: 1093: 1092: 1032: 976: 896: 881: 848:cyclohexylidene 824: 815:Tetrahydrofuran 810: 696:Benzyloxymethyl 683:Dimethoxytrityl 634:Benzyl ethers: 597:tetrahydrofuran 538: 491:pivalate esters 478:might be used. 453: 448: 403:Allyl compounds 279: 271:hydroxyl groups 261: 258: 249: 239: 161: 154: 75:. For example, 26:Ethylene glycol 17: 12: 11: 5: 4866: 4856: 4855: 4850: 4836: 4835: 4823: 4817: 4812: 4807: 4802: 4797: 4790: 4789:External links 4787: 4786: 4785: 4764: 4739: 4732: 4720: 4717: 4714: 4713: 4686: 4673: 4646: 4619: 4606: 4593: 4566: 4540: 4514: 4488: 4435: 4392: 4365: 4342: 4315: 4288: 4261: 4234: 4227: 4197: 4173: 4145: 4118: 4095: 4091: 4083: 4056: 4029: 4002: 3975: 3948: 3935: 3901: 3882: 3855: 3828: 3801: 3774: 3761: 3748: 3721: 3694: 3667: 3640: 3612: 3585: 3558: 3545: 3517: 3490: 3477: 3464: 3451: 3424: 3397: 3370: 3343: 3319: 3310: 3297: 3289:ChemPep Inc.: 3282: 3265: 3246: 3233: 3206: 3179: 3152: 3150:, p. 195. 3139: 3126: 3095: 3093:, p. 186. 3082: 3057: 3037:reagent", in: 3034: 3030: 3021: 2993: 2980: 2967: 2940: 2913: 2886: 2859: 2832: 2805: 2778: 2750: 2723: 2704: 2681: 2648: 2621: 2594: 2567: 2540: 2527: 2514: 2487: 2460: 2458:, pp. 79. 2444:B. Helferich: 2437: 2410: 2397: 2384: 2356: 2329: 2310: 2302: 2274: 2240: 2213: 2186: 2159: 2131: 2118: 2105: 2086: 2059: 2046: 2039: 2017: 1990: 1983: 1964: 1963: 1961: 1958: 1824: 1821: 1818: 1817: 1804: 1778:. In contrast 1776:drug discovery 1772:chemical yield 1766: 1763: 1762: 1761: 1742:utilizing the 1720: 1717: 1673: 1670: 1669: 1668: 1658: 1649: 1646: 1638: 1637: 1630: 1602: 1599: 1598: 1597: 1585: 1577: 1571: 1568:organometallic 1561: 1558: 1535: 1522: 1516: 1510: 1483: 1480: 1463: 1460: 1459: 1458: 1452: 1442: 1430: 1427: 1346:and the mixed 1322:-acetals, the 1241: 1238: 1237: 1236: 1229:-Methoxyphenyl 1223: 1222:-methoxybenzyl 1216:hydrogenolysis 1209: 1206:hydrogenolysis 1202:-Methoxybenzyl 1196: 1194:hydrogenolysis 1185:Benzylamines: 1183: 1182: 1160: 1144: 1140: 1134: 1128: 1084:Other amides: 1082: 1081: 1071: 1038: 1030: 1021: 1018:hydrogenolysis 1008: 993:hydrogenolysis 989:Carbobenzyloxy 986: 975: 972: 933:carbon dioxide 880: 877: 844:isopropylidene 823: 820: 819: 818: 812: 808: 805: 791: 781: 773:Other ethers: 771: 770: 756: 749: 746:silver nitrate 731: 721: 715: 705: 699: 693: 690: 676: 675: 665: 652: 646: 643:hydrogenolysis 632: 631: 625: 622: 604: 590: 572:Trimethylsilyl 567:Silyl ethers: 565: 564: 558: 552: 537: 534: 515:Direct Process 499: 498: 465:triorganosilyl 452: 449: 447: 444: 332: 331: 328: 322: 319: 313: 307: 301: 295: 289: 278: 275: 263: 262: 259: 252: 250: 240: 233: 196:hydroxyl group 184:carboxyl group 153: 150: 15: 9: 6: 4: 3: 2: 4865: 4854: 4851: 4849: 4846: 4845: 4843: 4833: 4832: 4827: 4824: 4822: 4818: 4816: 4813: 4811: 4808: 4806: 4803: 4801: 4798: 4796: 4793: 4792: 4783: 4779: 4775: 4774: 4769: 4765: 4762: 4758: 4754: 4750: 4749: 4744: 4740: 4737: 4733: 4730: 4726: 4723: 4722: 4710: 4706: 4702: 4698: 4697: 4690: 4683: 4677: 4669: 4665: 4661: 4657: 4650: 4643: 4639: 4635: 4631: 4630: 4623: 4616: 4610: 4603: 4597: 4590: 4586: 4582: 4578: 4577: 4570: 4564: 4560: 4556: 4552: 4549: 4544: 4538: 4534: 4530: 4526: 4523: 4518: 4512: 4508: 4504: 4500: 4497: 4492: 4484: 4480: 4476: 4472: 4468: 4464: 4460: 4456: 4452: 4448: 4447: 4439: 4431: 4427: 4423: 4419: 4415: 4412: 4411: 4403: 4396: 4389: 4385: 4381: 4377: 4376: 4369: 4362: 4358: 4354: 4353: 4346: 4339: 4335: 4331: 4327: 4326: 4319: 4312: 4308: 4304: 4300: 4299: 4292: 4285: 4281: 4277: 4273: 4272: 4265: 4258: 4254: 4250: 4246: 4245: 4238: 4230: 4224: 4220: 4216: 4211: 4210: 4201: 4194: 4190: 4186: 4185: 4177: 4170: 4166: 4162: 4158: 4157: 4149: 4142: 4138: 4134: 4130: 4129: 4122: 4115: 4111: 4107: 4103: 4102: 4087: 4080: 4076: 4072: 4068: 4067: 4060: 4053: 4049: 4045: 4041: 4040: 4033: 4026: 4022: 4018: 4014: 4013: 4012:J. Org. Chem. 4006: 3999: 3995: 3991: 3987: 3986: 3985:J. Org. Chem. 3979: 3972: 3968: 3964: 3960: 3959: 3952: 3945: 3939: 3930: 3925: 3921: 3918: 3917: 3912: 3905: 3898: 3894: 3893: 3886: 3879: 3875: 3871: 3867: 3866: 3859: 3852: 3848: 3844: 3840: 3839: 3832: 3825: 3821: 3817: 3813: 3812: 3805: 3798: 3794: 3790: 3786: 3785: 3778: 3771: 3765: 3758: 3752: 3745: 3741: 3737: 3733: 3732: 3731:J. Org. Chem. 3725: 3718: 3714: 3710: 3706: 3705: 3698: 3691: 3687: 3683: 3679: 3678: 3671: 3664: 3660: 3656: 3652: 3651: 3644: 3637: 3633: 3629: 3625: 3624: 3616: 3609: 3605: 3601: 3597: 3596: 3589: 3582: 3578: 3574: 3570: 3569: 3562: 3555: 3549: 3542: 3538: 3534: 3530: 3529: 3521: 3514: 3510: 3506: 3502: 3501: 3494: 3487: 3481: 3474: 3468: 3461: 3455: 3448: 3444: 3440: 3436: 3435: 3434:J. Org. Chem. 3428: 3421: 3417: 3413: 3409: 3408: 3401: 3394: 3390: 3386: 3382: 3381: 3374: 3367: 3363: 3359: 3355: 3354: 3347: 3339: 3335: 3331: 3327: 3326: 3314: 3307: 3301: 3294: 3293: 3286: 3279: 3275: 3269: 3262: 3258: 3257: 3250: 3243: 3237: 3230: 3226: 3222: 3218: 3217: 3210: 3203: 3199: 3195: 3191: 3190: 3189:J. Org. Chem. 3183: 3176: 3172: 3168: 3164: 3163: 3156: 3149: 3143: 3136: 3130: 3123: 3119: 3115: 3111: 3110: 3105: 3099: 3092: 3086: 3079: 3075: 3071: 3067: 3066:J. Org. Chem. 3061: 3054: 3050: 3046: 3042: 3041: 3025: 3018: 3014: 3010: 3006: 3005: 2997: 2991:, p. 62. 2990: 2984: 2977: 2971: 2964: 2960: 2956: 2952: 2951: 2950:J. Org. Chem. 2944: 2937: 2933: 2929: 2925: 2924: 2917: 2910: 2906: 2902: 2898: 2897: 2890: 2883: 2879: 2875: 2871: 2870: 2863: 2856: 2852: 2848: 2844: 2843: 2836: 2829: 2825: 2821: 2817: 2816: 2809: 2802: 2798: 2794: 2790: 2789: 2782: 2775: 2771: 2767: 2763: 2762: 2761:J. Org. Chem. 2754: 2747: 2743: 2739: 2735: 2734: 2727: 2720: 2716: 2715: 2708: 2701: 2697: 2693: 2692: 2685: 2676: 2671: 2667: 2663: 2659: 2652: 2645: 2641: 2637: 2633: 2632: 2625: 2618: 2614: 2610: 2606: 2605: 2598: 2591: 2587: 2583: 2579: 2578: 2577:J. Org. Chem. 2571: 2564: 2560: 2556: 2552: 2551: 2544: 2538:, p. 77. 2537: 2531: 2524: 2518: 2511: 2507: 2503: 2499: 2498: 2491: 2484: 2480: 2476: 2472: 2471: 2464: 2457: 2453: 2449: 2448: 2441: 2434: 2430: 2426: 2422: 2421: 2414: 2407: 2401: 2395:, p. 40. 2394: 2388: 2381: 2377: 2373: 2369: 2368: 2360: 2353: 2349: 2345: 2341: 2340: 2333: 2326: 2322: 2318: 2317: 2306: 2299: 2295: 2291: 2287: 2286: 2285:J. Org. Chem. 2278: 2271: 2267: 2263: 2259: 2258: 2253: 2247: 2245: 2237: 2233: 2229: 2225: 2224: 2223:J. Org. Chem. 2217: 2210: 2206: 2202: 2198: 2197: 2190: 2183: 2179: 2175: 2174: 2163: 2156: 2152: 2148: 2144: 2143: 2135: 2129:, p. 31. 2128: 2122: 2116:, p. 29. 2115: 2109: 2102: 2098: 2097: 2090: 2083: 2079: 2075: 2071: 2070: 2063: 2056: 2050: 2042: 2036: 2032: 2028: 2021: 2014: 2010: 2006: 2002: 2001: 1994: 1986: 1980: 1976: 1969: 1965: 1953: 1949: 1947: 1943: 1939: 1935: 1930: 1928: 1924: 1915: 1911: 1909: 1905: 1896: 1892: 1890: 1886: 1885:Yoshito Kishi 1882: 1878: 1873: 1871: 1867: 1858: 1854: 1852: 1848: 1847:ascorbic acid 1843: 1841: 1837: 1834: 1830: 1813: 1809: 1800: 1795: 1791: 1790: 1784: 1781: 1777: 1773: 1758: 1757:quantum yield 1750: 1745: 1741: 1737: 1734: 1733:photochemical 1730: 1726: 1723: 1722: 1713: 1709: 1707: 1698: 1694: 1692: 1688: 1684: 1680: 1666: 1662: 1659: 1656: 1652: 1651: 1642: 1635: 1631: 1628: 1624: 1620: 1616: 1615: 1614: 1612: 1611:isomerization 1608: 1607:electrophilic 1596: 1592: 1588: 1581: 1578: 1575: 1572: 1569: 1565: 1562: 1559: 1556: 1552: 1550: 1544: 1540: 1536: 1533: 1529: 1527: 1523: 1520: 1517: 1514: 1511: 1508: 1504: 1500: 1496: 1492: 1489: 1486: 1485: 1479: 1475: 1473: 1469: 1456: 1453: 1450: 1447:– Removed by 1446: 1443: 1440: 1436: 1433: 1432: 1423: 1419: 1417: 1412: 1410: 1406: 1402: 1398: 1394: 1392: 1388: 1384: 1380: 1376: 1372: 1367: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1312: 1308: 1306: 1302: 1298: 1294: 1289: 1287: 1286:1,3-propadiol 1283: 1274: 1266: 1262: 1260: 1256: 1252: 1248: 1234: 1230: 1228: 1224: 1221: 1217: 1213: 1210: 1207: 1203: 1201: 1197: 1195: 1191: 1188: 1187: 1186: 1181: 1177: 1173: 1169: 1165: 1161: 1158: 1154: 1150: 1138: 1135: 1132: 1129: 1126: 1122: 1118: 1114: 1110: 1100: 1090: 1087: 1086: 1085: 1079: 1075: 1072: 1070: 1067:. Common in 1066: 1065:glycopeptides 1062: 1058: 1056: 1051: 1047: 1043: 1039: 1036: 1028: 1026: 1022: 1019: 1015: 1013: 1009: 1006: 1002: 998: 994: 990: 987: 984: 981: 980: 979: 971: 969: 965: 961: 957: 953: 949: 945: 940: 938: 934: 930: 926: 922: 918: 916: 912: 908: 899: 894: 890: 885: 873: 869: 867: 859: 855: 853: 849: 845: 841: 837: 833: 829: 816: 813: 806: 803: 799: 795: 792: 789: 785: 782: 779: 776: 775: 774: 768: 764: 760: 757: 754: 750: 747: 743: 739: 735: 732: 729: 725: 722: 719: 716: 713: 709: 706: 704: 700: 697: 694: 691: 688: 684: 681: 680: 679: 673: 669: 666: 663: 659: 657: 653: 650: 647: 644: 640: 637: 636: 635: 629: 626: 623: 620: 616: 612: 608: 605: 602: 598: 594: 593:Triethylsilyl 591: 589: 585: 581: 577: 574:(TMS) — 573: 570: 569: 568: 562: 559: 556: 553: 550: 549:Acetoxy group 546: 543: 542: 541: 530: 526: 522: 520: 516: 512: 503: 496: 495: 494: 492: 488: 484: 479: 477: 473: 472:(hemi)acetals 469: 466: 462: 458: 443: 437: 433: 431: 427: 422: 420: 416: 412: 408: 404: 397: 390: 386: 384: 380: 376: 371: 369: 368:benzyl groups 365: 364:hydrogenation 360: 358: 354: 353:biological pH 350: 346: 344: 340: 335: 329: 326: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 284: 283: 282: 274: 272: 268: 256: 251: 248: 244: 237: 232: 231: 230: 228: 223: 218: 216: 212: 208: 204: 197: 193: 189: 185: 181: 177: 173: 169: 164: 158: 149: 145: 143: 139: 138:shikimic acid 135: 131: 127: 123: 119: 115: 111: 105: 103: 99: 95: 90: 86: 82: 78: 74: 70: 65: 63: 59: 55: 51: 47: 39: 35: 31: 27: 23: 19: 4830: 4777: 4771: 4763:(in German). 4756: 4752: 4746: 4735: 4728: 4704: 4700: 4694: 4689: 4681: 4676: 4662:(4): 93–94. 4659: 4655: 4649: 4637: 4633: 4627: 4622: 4614: 4609: 4601: 4596: 4584: 4580: 4574: 4569: 4554: 4547: 4543: 4528: 4521: 4517: 4502: 4495: 4491: 4450: 4444: 4438: 4413: 4408: 4395: 4383: 4379: 4373: 4368: 4356: 4350: 4345: 4333: 4329: 4323: 4318: 4306: 4302: 4296: 4291: 4279: 4275: 4269: 4264: 4252: 4248: 4242: 4237: 4208: 4200: 4188: 4182: 4176: 4164: 4160: 4154: 4148: 4136: 4132: 4126: 4121: 4109: 4105: 4099: 4086: 4074: 4070: 4064: 4059: 4047: 4043: 4037: 4032: 4020: 4016: 4010: 4005: 3993: 3989: 3983: 3978: 3966: 3962: 3956: 3951: 3943: 3938: 3919: 3914: 3904: 3896: 3890: 3885: 3873: 3869: 3863: 3858: 3846: 3842: 3836: 3831: 3819: 3815: 3809: 3804: 3799:(in German). 3792: 3788: 3782: 3777: 3769: 3764: 3756: 3751: 3739: 3735: 3729: 3724: 3712: 3708: 3702: 3697: 3685: 3681: 3675: 3670: 3658: 3654: 3648: 3643: 3631: 3627: 3621: 3615: 3603: 3599: 3593: 3588: 3576: 3572: 3566: 3561: 3553: 3548: 3536: 3532: 3526: 3520: 3508: 3504: 3498: 3493: 3485: 3480: 3472: 3467: 3459: 3454: 3442: 3438: 3432: 3427: 3415: 3411: 3405: 3400: 3388: 3384: 3378: 3373: 3361: 3357: 3351: 3346: 3329: 3323: 3313: 3305: 3300: 3291: 3285: 3278:Angew. Chem. 3277: 3273: 3268: 3260: 3255: 3249: 3241: 3236: 3224: 3220: 3214: 3209: 3197: 3193: 3187: 3182: 3170: 3166: 3160: 3155: 3147: 3142: 3134: 3129: 3117: 3113: 3107: 3103: 3098: 3090: 3085: 3073: 3069: 3065: 3060: 3048: 3044: 3038: 3024: 3012: 3008: 3002: 2996: 2988: 2983: 2975: 2970: 2958: 2954: 2948: 2943: 2931: 2927: 2921: 2916: 2904: 2900: 2894: 2889: 2877: 2873: 2867: 2862: 2850: 2846: 2840: 2835: 2823: 2819: 2813: 2808: 2796: 2792: 2786: 2781: 2769: 2765: 2759: 2753: 2741: 2737: 2731: 2726: 2718: 2712: 2707: 2695: 2689: 2684: 2665: 2661: 2651: 2639: 2635: 2629: 2624: 2612: 2608: 2602: 2597: 2585: 2581: 2575: 2570: 2558: 2554: 2548: 2543: 2535: 2530: 2522: 2517: 2505: 2501: 2495: 2490: 2478: 2474: 2468: 2463: 2455: 2451: 2445: 2440: 2428: 2424: 2418: 2413: 2405: 2400: 2392: 2387: 2375: 2371: 2365: 2359: 2347: 2343: 2337: 2332: 2320: 2314: 2305: 2293: 2289: 2283: 2277: 2265: 2261: 2255: 2231: 2227: 2221: 2216: 2204: 2200: 2194: 2189: 2177: 2171: 2162: 2150: 2146: 2140: 2134: 2126: 2121: 2113: 2108: 2100: 2094: 2089: 2084:(in German). 2077: 2073: 2067: 2062: 2054: 2049: 2026: 2020: 2015:(in German). 2008: 2004: 1998: 1993: 1974: 1968: 1941: 1931: 1920: 1901: 1888: 1874: 1863: 1844: 1826: 1768: 1703: 1683:butyllithium 1675: 1664: 1618: 1604: 1551:-butylphenol 1548: 1525: 1506: 1502: 1476: 1465: 1413: 1408: 1404: 1400: 1396: 1395: 1390: 1386: 1382: 1378: 1374: 1370: 1368: 1359: 1355: 1351: 1347: 1335: 1331: 1327: 1323: 1319: 1315: 1314:Besides the 1313: 1309: 1290: 1279: 1258: 1254: 1250: 1246: 1243: 1226: 1219: 1199: 1184: 1083: 1054: 1024: 1011: 978:Carbamates: 977: 963: 959: 944:phthalimides 941: 936: 921:Amine groups 919: 904: 897: 892: 863: 825: 797: 777: 772: 727: 712:zinc bromide 677: 671: 667: 655: 633: 627: 611:acetonitrile 606: 566: 539: 523: 513:(TMS-Cl), a 508: 480: 461:nucleophiles 454: 441: 429: 423: 411:noble metals 401: 375:quinomethide 372: 361: 357:temperatures 347: 336: 333: 280: 267:carbohydrate 264: 246: 242: 219: 214: 210: 202: 201: 198:of Tyrosine. 191: 187: 179: 171: 167: 162: 146: 129: 110:biomolecules 106: 102:deprotection 101: 97: 72: 66: 49: 45: 43: 36:) during an 18: 4834:(in German) 4696:Tetrahedron 4551:Tetrahedron 4525:Tetrahedron 4499:Tetrahedron 4386:, C21–C24; 4336:, C45–C48; 4271:Tetrahedron 4217:. pp.  4066:Tetrahedron 3677:Tetrahedron 3380:Chem. Lett. 3040:Tetrahedron 2470:Tetrahedron 2252:latrunculin 1908:Danishefsky 1904:Mitomycin C 1840:oseltamivir 1574:Orthoesters 1449:Lewis acids 1344:Thioacetals 1125:methylamine 911:nucleophile 840:benzylidene 580:acetic acid 426:chromophore 325:Photolabile 176:amino group 142:oseltamivir 122:nucleotides 28:protects a 4842:Categories 4410:Org. Lett. 4244:Chem. Rev. 4156:Org. Lett. 4128:Chem. Rev. 3958:Chem. Rev. 1960:References 1851:Reichstein 1812:Phil Baran 1519:Benzhydryl 1472:oxazolines 1416:hemiaminal 1305:silica gel 1176:thiophenol 1151:in liquid 1061:morpholine 1046:piperidine 956:imidazoles 519:silica gel 415:enol ether 362:Catalytic 355:(5-9) and 128:may often 56:to obtain 3892:Synthesis 2714:Synthesis 2096:Synthesis 1898:Palytoxin 1881:palytoxin 1836:synthesis 1829:sucralose 1765:Criticism 1580:Oxazoline 1570:reagents. 1455:Dithianes 1261:-acetals. 1115:and N in 1059:, or 50% 1052:(DMF) or 1001:palladium 983:Carbamate 974:Selection 929:carbamate 925:acylation 854:acetals. 822:1,2-Diols 765:in HMPT ( 678:Acetals: 407:isomerize 381:(CAN) or 316:Oxidation 310:Reduction 73:protected 4475:17377577 4430:17555322 2254:A", in: 1927:aldehyde 1883:acid by 1625:or with 1609:attack, 1113:cytosine 997:hydrogen 952:pyrroles 588:methanol 561:Pivaloyl 540:Esters: 487:benzoate 298:Fluoride 207:tyrosine 114:peptides 89:carbonyl 85:alcohols 4770:", in: 4483:4357378 4455:Bibcode 3325:Synlett 1923:epoxide 1870:acetone 1547:2,6-di- 1445:Acylals 1435:Acetals 1293:Acetone 1153:ammonia 1121:ammonia 1117:adenine 1099:Benzoyl 948:Indoles 889:glycine 828:glycols 555:Benzoyl 483:acetate 419:enamine 385:(DDQ). 349:Lipases 339:silicon 130:shorten 32:(as an 4481:  4473:  4446:Nature 4428:  4225:  3106:, in: 2037:  1981:  1925:to an 1661:Methyl 1601:Alkene 1528:-Butyl 1513:Benzyl 1491:esters 1488:Methyl 1439:Ketals 1364:sulfur 1340:Thiols 1330:- and 1190:Benzyl 1166:& 1149:sodium 1089:Acetyl 1078:nickel 891:. The 836:acetal 832:sugars 811:in DCM 649:Trityl 639:Benzyl 545:Acetyl 489:, and 468:ethers 457:esters 304:Enzyme 136:(e.g. 94:acetal 81:esters 34:acetal 30:ketone 4479:S2CID 4405:(PDF) 3033:-AlCl 1833:Roche 1799:Tosyl 1727:As a 1719:Other 1619:trans 1584:LiAlH 1564:Silyl 1253:– or 1235:(CAN) 1164:Nosyl 1137:Tosyl 915:bases 802:DABCO 794:Allyl 476:ether 405:will 229:). 186:and ( 168:black 112:like 38:ester 4778:1998 4753:1996 4701:1992 4634:1993 4581:1934 4555:1990 4529:1990 4503:1990 4471:PMID 4426:PMID 4380:1972 4357:1977 4330:1977 4303:1971 4276:2002 4249:1967 4223:ISBN 4219:1291 4189:2000 4161:2001 4133:1999 4106:2010 4094:TiCl 4071:1998 4044:1990 4017:1998 3990:1974 3963:1996 3897:1978 3870:1978 3843:1975 3816:1987 3789:1983 3736:1986 3709:1972 3682:1978 3655:1992 3628:1990 3600:1986 3573:1983 3533:1991 3505:1988 3439:1986 3412:1985 3385:1981 3358:1980 3330:2006 3276:In: 3221:1992 3194:1978 3167:1988 3114:1984 3070:1988 3045:1982 3009:1985 2955:1984 2928:1988 2901:1986 2874:1984 2847:1982 2820:1975 2793:1978 2766:1979 2738:1987 2719:1975 2696:1981 2636:1983 2609:1982 2582:1983 2555:1980 2502:1982 2475:1991 2452:1948 2425:1986 2372:1991 2344:1987 2321:1981 2290:1990 2262:1990 2228:1991 2201:1990 2178:1986 2147:1990 2101:1980 2074:1996 2035:ISBN 2005:1996 1979:ISBN 1942:tert 1623:zinc 1549:tert 1526:tert 1437:and 1131:Troc 1080:(0). 1042:Fmoc 1025:tert 999:and 954:und 937:tert 898:blue 893:tert 887:BOC 846:and 798:tert 738:soft 628:tert 607:tert 536:List 292:Base 286:Acid 245:and 215:tert 211:tert 192:tert 170:). ( 163:blue 140:for 4757:103 4664:doi 4638:115 4559:doi 4533:doi 4507:doi 4463:doi 4451:446 4418:doi 4334:125 3924:doi 3820:109 3632:112 3537:113 3509:110 3334:doi 3225:114 3171:110 3013:107 2878:106 2851:104 2797:100 2742:109 2670:doi 2640:105 2613:104 2559:102 2376:109 2348:109 2266:112 2205:112 2151:112 2078:103 2009:103 1936:by 1906:by 1838:of 1746:: 1738:by 1681:or 1665:e.c 1593:or 1555:DBU 1303:on 1284:or 1168:Nps 1155:or 1123:or 1097:), 1048:in 1003:on 850:or 662:DDQ 586:in 582:or 178:, ( 144:). 132:an 120:or 83:to 48:or 4844:: 4828:: 4776:, 4755:, 4751:, 4727:: 4705:48 4703:, 4699:, 4658:. 4636:, 4632:, 4585:17 4583:, 4579:, 4477:. 4469:. 4461:. 4449:. 4424:. 4407:. 4384:44 4382:, 4378:, 4355:, 4332:, 4328:, 4307:37 4305:, 4301:, 4280:58 4278:, 4274:, 4253:67 4251:, 4247:, 4221:. 4213:. 4187:, 4163:, 4159:, 4137:99 4135:, 4131:, 4110:31 4108:, 4104:, 4075:54 4073:, 4069:, 4048:31 4046:, 4042:, 4021:63 4019:, 4015:, 3994:39 3992:, 3988:, 3967:96 3965:, 3961:, 3920:53 3913:. 3895:, 3874:19 3872:, 3868:, 3847:97 3845:, 3841:, 3818:, 3814:, 3793:24 3791:, 3787:, 3740:51 3738:, 3734:, 3713:94 3711:, 3707:, 3686:34 3684:, 3680:, 3659:33 3657:, 3653:, 3630:, 3626:, 3604:69 3602:, 3598:, 3577:66 3575:, 3571:, 3535:, 3531:, 3507:, 3503:, 3443:51 3441:, 3437:, 3416:26 3414:, 3410:, 3389:10 3387:, 3383:, 3362:21 3360:, 3356:, 3328:. 3223:, 3219:, 3198:43 3196:, 3192:, 3169:, 3165:, 3118:25 3116:, 3112:, 3074:53 3072:, 3068:, 3049:38 3047:, 3043:, 3011:, 3007:, 2959:49 2957:, 2953:, 2932:29 2930:, 2926:, 2905:27 2903:, 2899:, 2876:, 2872:, 2849:, 2845:, 2824:16 2822:, 2818:, 2795:, 2791:, 2770:44 2768:, 2764:, 2740:, 2736:, 2717:, 2694:, 2666:24 2664:. 2660:. 2638:, 2634:, 2611:, 2607:, 2586:48 2584:, 2580:, 2557:, 2553:, 2506:23 2504:, 2500:, 2479:47 2477:, 2473:, 2454:, 2450:, 2429:27 2427:, 2423:, 2374:, 2370:, 2346:, 2342:, 2319:, 2294:55 2292:, 2288:, 2264:, 2260:, 2243:^ 2232:56 2230:, 2226:, 2203:, 2199:, 2176:, 2149:, 2145:, 2099:, 2076:, 2072:, 2033:. 2029:. 2007:, 2003:, 1929:. 1910:. 1853:. 1693:. 1589:, 1545:, 1541:, 1474:. 1174:, 1143:SO 1104:Bz 1094:Ac 995:: 950:, 842:, 578:, 551:). 485:, 463:; 190:) 116:, 104:. 64:. 44:A 4784:. 4711:. 4670:. 4666:: 4660:7 4644:. 4591:. 4561:: 4535:: 4509:: 4485:. 4465:: 4457:: 4432:. 4420:: 4414:9 4390:. 4363:. 4340:. 4313:. 4286:. 4259:. 4231:. 4195:. 4171:. 4165:3 4143:. 4116:. 4096:2 4092:2 4081:. 4054:. 4027:. 4000:. 3973:. 3932:. 3926:: 3880:. 3853:. 3826:. 3746:. 3719:. 3692:. 3665:. 3638:. 3610:. 3583:. 3543:. 3515:. 3449:. 3422:. 3395:. 3368:. 3340:. 3336:: 3320:2 3231:. 3204:. 3177:. 3124:. 3080:. 3055:. 3035:3 3031:4 3019:. 2965:. 2938:. 2911:. 2884:. 2857:. 2830:. 2803:. 2776:. 2748:. 2702:. 2678:. 2672:: 2646:. 2619:. 2592:. 2565:. 2523:p 2512:. 2485:. 2456:3 2435:. 2382:. 2354:. 2327:. 2311:2 2300:. 2272:. 2238:. 2211:. 2184:. 2168:′ 2157:. 2043:. 1987:. 1889:p 1657:. 1629:. 1586:4 1507:N 1505:, 1503:N 1451:. 1409:S 1407:, 1405:S 1401:O 1399:, 1397:S 1391:O 1389:, 1387:O 1383:O 1381:, 1379:O 1375:S 1373:, 1371:S 1360:O 1358:, 1356:O 1352:O 1350:, 1348:S 1336:S 1334:, 1332:S 1328:O 1326:, 1324:S 1320:O 1318:, 1316:O 1259:S 1257:, 1255:S 1251:S 1249:, 1247:O 1227:p 1220:p 1200:p 1159:) 1145:4 1141:2 1101:( 1091:( 1055:N 1037:. 1031:3 1012:p 964:N 960:N 901:. 809:3 778:p 755:. 728:p 689:. 672:m 670:, 668:p 664:. 656:p 621:. 430:o 247:Y 243:X 188:3 180:2 172:1

Index


Ethylene glycol
ketone
acetal
ester
functional group
chemoselectivity
multistep organic synthesis
organic compounds
lithium aluminium hydride
esters
alcohols
carbonyl
acetal
biomolecules
peptides
oligosaccharides
nucleotides
chiral protecting groups
enantioselective synthesis
shikimic acid
oseltamivir

amino group
carboxyl group
hydroxyl group
tyrosine
solid-phase synthesis
§ Industrial applications
Schematic diagram of a solid-state peptide synthesis with orthogonal protecting groups X and Y

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.