Knowledge

Tree (descriptive set theory)

Source 📝

1077:. The empty sequence is the unique minimal element, and each element has a finite and well-ordered set of predecessors (the set of all of its prefixes). An order-theoretic tree may be represented by an isomorphic tree of sequences if and only if each of its elements has finite height (that is, a finite set of predecessors). 1878: 948:, and an outgoing edge from each nonempty sequence that connects it to the shorter sequence formed by removing its last element. This graph is a tree in the graph-theoretic sense. The root of the tree is the empty sequence. 1568: 882: 759: 415: 272: 1614: 908:
in which every vertex except for a special root vertex has exactly one outgoing edge, and in which the path formed by following these edges from any vertex eventually leads to the root vertex. If
1736: 1415: 201: 151: 344: 1189: 1130: 1353: 1672: 1035: 461: 1455: 1435: 1373: 1321: 1275: 1255: 1235: 1162: 1103: 1075: 1055: 1009: 989: 946: 926: 799: 779: 682: 658: 605: 553: 533: 513: 493: 435: 312: 292: 171: 121: 84: 60: 1728: 1698: 1301: 1215: 579: 1460: 1616:(the subset for which the length of the first sequence is equal to or 1 more than the length of the second sequence). In this way we may identify 971:
set of predecessors. Every tree in descriptive set theory is also an order-theoretic tree, using a partial ordering in which two sequences
804: 27:
This article is about mathematical trees described by prefixes of finite sequences. For trees described by partially ordered sets, see
687: 349: 206: 1873:{\displaystyle p=\{{\vec {x}}\in X^{\omega }|(\exists {\vec {y}}\in Y^{\omega })\langle {\vec {x}},{\vec {y}}\rangle \in \}} 1573: 1570:). Elements in this subspace are identified in the natural way with a subset of the product of two spaces of sequences, 1934: 1927: 928:
is a tree in the descriptive set theory sense, then it corresponds to a graph with one vertex for each sequence in
1951: 1378: 1919: 1956: 17: 176: 126: 87: 317: 1167: 1108: 1332: 35: 1898: 1619: 960: 1014: 1961: 1911: 8: 440: 625: 1440: 1420: 1358: 1306: 1260: 1240: 1220: 1147: 1088: 1060: 1040: 994: 974: 931: 911: 784: 764: 667: 643: 590: 538: 518: 498: 478: 420: 297: 277: 156: 106: 69: 45: 1707: 1677: 1280: 1194: 558: 1930: 1923: 1327: 956: 28: 1133: 964: 63: 1141: 905: 1563:{\displaystyle \langle x_{0},y_{1},x_{2},y_{3}\ldots ,x_{2m},y_{2m+1}\rangle } 1945: 968: 952: 897: 1355:
are considered. In this case, by convention, we consider only the subset
901: 613: 1894: 1890: 629: 632:
with an infinite number of sequences must necessarily be illfounded.
1257:
consist of the set of finite prefixes of the infinite sequences in
877:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{n-1},x\rangle \in T} 754:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{n-1}\rangle \in T} 90:
of a sequence in the collection also belongs to the collection.
103:
The collection of all finite sequences of elements of a set
410:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{m-1}\rangle } 267:{\displaystyle \langle x_{0},x_{1},\ldots ,x_{n-1}\rangle } 1417:, containing only sequences whose even elements come from 884:. A tree that does not have any terminal nodes is called 1739: 1710: 1680: 1622: 1609:{\displaystyle X^{<\omega }\times Y^{<\omega }} 1576: 1463: 1443: 1423: 1381: 1361: 1335: 1309: 1283: 1263: 1243: 1223: 1197: 1170: 1150: 1111: 1091: 1063: 1043: 1017: 997: 977: 934: 914: 807: 787: 767: 690: 670: 646: 593: 561: 541: 521: 501: 481: 463:
shows that the empty sequence belongs to every tree.
443: 423: 352: 320: 300: 280: 209: 179: 159: 129: 109: 72: 48: 1700:for over the product space. We may then form the 891: 1872: 1722: 1692: 1666: 1608: 1562: 1449: 1429: 1409: 1367: 1347: 1315: 1295: 1269: 1249: 1229: 1209: 1183: 1156: 1124: 1097: 1069: 1049: 1029: 1003: 983: 940: 920: 876: 793: 773: 753: 676: 652: 599: 573: 547: 527: 507: 487: 455: 429: 409: 338: 306: 286: 266: 195: 165: 153:. With this notation, a tree is a nonempty subset 145: 115: 78: 54: 1943: 664:if it is not a prefix of a longer sequence in 1867: 1852: 1822: 1755: 1557: 1464: 865: 808: 742: 691: 404: 353: 261: 210: 955:, a different notion of a tree is used: an 515:, each of whose finite prefixes belongs to 1410:{\displaystyle (X\times Y)^{<\omega }} 640:A finite sequence that belongs to a tree 1144:. In this topology, every closed subset 1910: 495:is an infinite sequence of elements of 14: 1944: 610:A tree that has no branches is called 466: 1323:forms a closed set in this topology. 618:; a tree with at least one branch is 1085:The set of infinite sequences over 761:is terminal if there is no element 24: 1791: 535:. The set of all branches through 25: 1973: 635: 1916:Classical Descriptive Set Theory 892:Relation to other types of trees 196:{\displaystyle X^{<\omega }} 146:{\displaystyle X^{<\omega }} 1864: 1858: 1846: 1831: 1819: 1800: 1788: 1784: 1764: 1749: 1743: 1717: 1711: 1687: 1681: 1661: 1645: 1639: 1623: 1395: 1382: 1290: 1284: 1204: 1198: 568: 562: 346:, then the shortened sequence 93: 13: 1: 1920:Graduate Texts in Mathematics 1904: 967:in which each element has a 339:{\displaystyle 0\leq m<n} 7: 1884: 1437:and odd elements come from 1184:{\displaystyle X^{\omega }} 1125:{\displaystyle X^{\omega }} 1080: 10: 1978: 437:. In particular, choosing 26: 1893:, a type of tree used in 1348:{\displaystyle X\times Y} 274:is a sequence of length 98: 1897:as part of a notion of 1667:{\displaystyle \times } 1277:. Conversely, the body 1952:Descriptive set theory 1874: 1724: 1694: 1668: 1610: 1564: 1451: 1431: 1411: 1375:of the product space, 1369: 1349: 1317: 1297: 1271: 1251: 1231: 1211: 1185: 1158: 1126: 1099: 1071: 1057:is a proper prefix of 1051: 1031: 1030:{\displaystyle T<U} 1005: 985: 942: 922: 878: 795: 775: 755: 678: 654: 601: 575: 549: 529: 509: 489: 457: 431: 411: 340: 308: 288: 268: 197: 167: 147: 117: 80: 56: 36:descriptive set theory 1912:Kechris, Alexander S. 1875: 1725: 1695: 1669: 1611: 1565: 1452: 1432: 1412: 1370: 1350: 1318: 1298: 1272: 1252: 1232: 1217:for some pruned tree 1212: 1186: 1159: 1127: 1100: 1072: 1052: 1032: 1006: 986: 961:partially ordered set 943: 923: 879: 796: 776: 756: 679: 655: 602: 576: 550: 530: 510: 490: 458: 432: 412: 341: 309: 289: 269: 198: 168: 148: 118: 81: 57: 1737: 1708: 1678: 1620: 1574: 1461: 1441: 1421: 1379: 1359: 1333: 1326:Frequently trees on 1307: 1281: 1261: 1241: 1221: 1195: 1168: 1148: 1109: 1089: 1061: 1041: 1015: 995: 975: 957:order-theoretic tree 932: 912: 805: 785: 765: 688: 668: 644: 591: 559: 539: 519: 499: 479: 441: 421: 350: 318: 298: 278: 207: 177: 157: 127: 107: 70: 46: 1132:) may be given the 467:Branches and bodies 456:{\displaystyle m=0} 62:is a collection of 1957:Trees (set theory) 1870: 1720: 1690: 1664: 1606: 1560: 1447: 1427: 1407: 1365: 1345: 1328:Cartesian products 1313: 1293: 1267: 1247: 1227: 1207: 1181: 1154: 1122: 1095: 1067: 1047: 1027: 1001: 981: 938: 918: 874: 791: 771: 751: 674: 650: 597: 571: 545: 525: 505: 485: 453: 427: 407: 336: 304: 284: 264: 193: 163: 143: 113: 76: 52: 1849: 1834: 1803: 1767: 1450:{\displaystyle Y} 1430:{\displaystyle X} 1368:{\displaystyle T} 1316:{\displaystyle T} 1270:{\displaystyle C} 1250:{\displaystyle T} 1230:{\displaystyle T} 1157:{\displaystyle C} 1098:{\displaystyle X} 1070:{\displaystyle U} 1050:{\displaystyle T} 1004:{\displaystyle U} 984:{\displaystyle T} 941:{\displaystyle T} 921:{\displaystyle T} 794:{\displaystyle X} 774:{\displaystyle x} 677:{\displaystyle T} 653:{\displaystyle T} 600:{\displaystyle T} 548:{\displaystyle T} 528:{\displaystyle T} 508:{\displaystyle X} 488:{\displaystyle T} 430:{\displaystyle T} 307:{\displaystyle T} 287:{\displaystyle n} 166:{\displaystyle T} 116:{\displaystyle X} 79:{\displaystyle X} 55:{\displaystyle X} 29:Tree (set theory) 16:(Redirected from 1969: 1938: 1879: 1877: 1876: 1871: 1851: 1850: 1842: 1836: 1835: 1827: 1818: 1817: 1805: 1804: 1796: 1787: 1782: 1781: 1769: 1768: 1760: 1729: 1727: 1726: 1723:{\displaystyle } 1721: 1699: 1697: 1696: 1693:{\displaystyle } 1691: 1673: 1671: 1670: 1665: 1660: 1659: 1638: 1637: 1615: 1613: 1612: 1607: 1605: 1604: 1589: 1588: 1569: 1567: 1566: 1561: 1556: 1555: 1534: 1533: 1515: 1514: 1502: 1501: 1489: 1488: 1476: 1475: 1456: 1454: 1453: 1448: 1436: 1434: 1433: 1428: 1416: 1414: 1413: 1408: 1406: 1405: 1374: 1372: 1371: 1366: 1354: 1352: 1351: 1346: 1322: 1320: 1319: 1314: 1302: 1300: 1299: 1296:{\displaystyle } 1294: 1276: 1274: 1273: 1268: 1256: 1254: 1253: 1248: 1236: 1234: 1233: 1228: 1216: 1214: 1213: 1210:{\displaystyle } 1208: 1190: 1188: 1187: 1182: 1180: 1179: 1163: 1161: 1160: 1155: 1134:product topology 1131: 1129: 1128: 1123: 1121: 1120: 1104: 1102: 1101: 1096: 1076: 1074: 1073: 1068: 1056: 1054: 1053: 1048: 1036: 1034: 1033: 1028: 1010: 1008: 1007: 1002: 990: 988: 987: 982: 947: 945: 944: 939: 927: 925: 924: 919: 883: 881: 880: 875: 858: 857: 833: 832: 820: 819: 800: 798: 797: 792: 780: 778: 777: 772: 760: 758: 757: 752: 741: 740: 716: 715: 703: 702: 684:. Equivalently, 683: 681: 680: 675: 659: 657: 656: 651: 606: 604: 603: 598: 580: 578: 577: 574:{\displaystyle } 572: 554: 552: 551: 546: 534: 532: 531: 526: 514: 512: 511: 506: 494: 492: 491: 486: 462: 460: 459: 454: 436: 434: 433: 428: 417:also belongs to 416: 414: 413: 408: 403: 402: 378: 377: 365: 364: 345: 343: 342: 337: 313: 311: 310: 305: 293: 291: 290: 285: 273: 271: 270: 265: 260: 259: 235: 234: 222: 221: 202: 200: 199: 194: 192: 191: 172: 170: 169: 164: 152: 150: 149: 144: 142: 141: 122: 120: 119: 114: 86:such that every 85: 83: 82: 77: 64:finite sequences 61: 59: 58: 53: 21: 1977: 1976: 1972: 1971: 1970: 1968: 1967: 1966: 1942: 1941: 1922:156. Springer. 1907: 1887: 1841: 1840: 1826: 1825: 1813: 1809: 1795: 1794: 1783: 1777: 1773: 1759: 1758: 1738: 1735: 1734: 1709: 1706: 1705: 1679: 1676: 1675: 1652: 1648: 1630: 1626: 1621: 1618: 1617: 1597: 1593: 1581: 1577: 1575: 1572: 1571: 1542: 1538: 1526: 1522: 1510: 1506: 1497: 1493: 1484: 1480: 1471: 1467: 1462: 1459: 1458: 1442: 1439: 1438: 1422: 1419: 1418: 1398: 1394: 1380: 1377: 1376: 1360: 1357: 1356: 1334: 1331: 1330: 1308: 1305: 1304: 1282: 1279: 1278: 1262: 1259: 1258: 1242: 1239: 1238: 1222: 1219: 1218: 1196: 1193: 1192: 1191:is of the form 1175: 1171: 1169: 1166: 1165: 1149: 1146: 1145: 1116: 1112: 1110: 1107: 1106: 1090: 1087: 1086: 1083: 1062: 1059: 1058: 1042: 1039: 1038: 1037:if and only if 1016: 1013: 1012: 1011:are ordered by 996: 993: 992: 976: 973: 972: 965:minimal element 933: 930: 929: 913: 910: 909: 894: 847: 843: 828: 824: 815: 811: 806: 803: 802: 801:such that that 786: 783: 782: 766: 763: 762: 730: 726: 711: 707: 698: 694: 689: 686: 685: 669: 666: 665: 645: 642: 641: 638: 592: 589: 588: 581:and called the 560: 557: 556: 540: 537: 536: 520: 517: 516: 500: 497: 496: 480: 477: 476: 475:through a tree 469: 442: 439: 438: 422: 419: 418: 392: 388: 373: 369: 360: 356: 351: 348: 347: 319: 316: 315: 299: 296: 295: 279: 276: 275: 249: 245: 230: 226: 217: 213: 208: 205: 204: 203:, such that if 184: 180: 178: 175: 174: 158: 155: 154: 134: 130: 128: 125: 124: 108: 105: 104: 101: 96: 71: 68: 67: 66:of elements of 47: 44: 43: 32: 23: 22: 15: 12: 11: 5: 1975: 1965: 1964: 1959: 1954: 1940: 1939: 1906: 1903: 1902: 1901: 1886: 1883: 1882: 1881: 1869: 1866: 1863: 1860: 1857: 1854: 1848: 1845: 1839: 1833: 1830: 1824: 1821: 1816: 1812: 1808: 1802: 1799: 1793: 1790: 1786: 1780: 1776: 1772: 1766: 1763: 1757: 1754: 1751: 1748: 1745: 1742: 1719: 1716: 1713: 1689: 1686: 1683: 1663: 1658: 1655: 1651: 1647: 1644: 1641: 1636: 1633: 1629: 1625: 1603: 1600: 1596: 1592: 1587: 1584: 1580: 1559: 1554: 1551: 1548: 1545: 1541: 1537: 1532: 1529: 1525: 1521: 1518: 1513: 1509: 1505: 1500: 1496: 1492: 1487: 1483: 1479: 1474: 1470: 1466: 1446: 1426: 1404: 1401: 1397: 1393: 1390: 1387: 1384: 1364: 1344: 1341: 1338: 1312: 1303:of every tree 1292: 1289: 1286: 1266: 1246: 1237:. Namely, let 1226: 1206: 1203: 1200: 1178: 1174: 1153: 1142:discrete space 1119: 1115: 1094: 1082: 1079: 1066: 1046: 1026: 1023: 1020: 1000: 980: 937: 917: 906:directed graph 893: 890: 873: 870: 867: 864: 861: 856: 853: 850: 846: 842: 839: 836: 831: 827: 823: 818: 814: 810: 790: 770: 750: 747: 744: 739: 736: 733: 729: 725: 722: 719: 714: 710: 706: 701: 697: 693: 673: 649: 637: 636:Terminal nodes 634: 628:, a tree on a 596: 570: 567: 564: 544: 524: 504: 484: 468: 465: 452: 449: 446: 426: 406: 401: 398: 395: 391: 387: 384: 381: 376: 372: 368: 363: 359: 355: 335: 332: 329: 326: 323: 303: 283: 263: 258: 255: 252: 248: 244: 241: 238: 233: 229: 225: 220: 216: 212: 190: 187: 183: 162: 140: 137: 133: 112: 100: 97: 95: 92: 75: 51: 9: 6: 4: 3: 2: 1974: 1963: 1960: 1958: 1955: 1953: 1950: 1949: 1947: 1936: 1935:3-540-94374-9 1932: 1929: 1928:0-387-94374-9 1925: 1921: 1917: 1913: 1909: 1908: 1900: 1896: 1892: 1889: 1888: 1861: 1855: 1843: 1837: 1828: 1814: 1810: 1806: 1797: 1778: 1774: 1770: 1761: 1752: 1746: 1740: 1733: 1732: 1731: 1714: 1703: 1684: 1656: 1653: 1649: 1642: 1634: 1631: 1627: 1601: 1598: 1594: 1590: 1585: 1582: 1578: 1552: 1549: 1546: 1543: 1539: 1535: 1530: 1527: 1523: 1519: 1516: 1511: 1507: 1503: 1498: 1494: 1490: 1485: 1481: 1477: 1472: 1468: 1444: 1424: 1402: 1399: 1391: 1388: 1385: 1362: 1342: 1339: 1336: 1329: 1324: 1310: 1287: 1264: 1244: 1224: 1201: 1176: 1172: 1151: 1143: 1139: 1135: 1117: 1113: 1092: 1078: 1064: 1044: 1024: 1021: 1018: 998: 978: 970: 966: 962: 958: 954: 949: 935: 915: 907: 903: 899: 889: 887: 871: 868: 862: 859: 854: 851: 848: 844: 840: 837: 834: 829: 825: 821: 816: 812: 788: 768: 748: 745: 737: 734: 731: 727: 723: 720: 717: 712: 708: 704: 699: 695: 671: 663: 662:terminal node 647: 633: 631: 627: 626:Kőnig's lemma 623: 622: 617: 616: 615: 608: 594: 586: 585: 565: 542: 522: 502: 482: 474: 464: 450: 447: 444: 424: 399: 396: 393: 389: 385: 382: 379: 374: 370: 366: 361: 357: 333: 330: 327: 324: 321: 301: 281: 256: 253: 250: 246: 242: 239: 236: 231: 227: 223: 218: 214: 188: 185: 181: 160: 138: 135: 131: 110: 91: 89: 73: 65: 49: 41: 37: 30: 19: 1915: 1701: 1325: 1137: 1105:(denoted as 1084: 969:well-ordered 953:order theory 950: 898:graph theory 895: 885: 661: 660:is called a 639: 620: 619: 612: 611: 609: 587:of the tree 583: 582: 472: 470: 102: 39: 33: 1962:Determinacy 1136:, treating 902:rooted tree 614:wellfounded 555:is denoted 123:is denoted 94:Definitions 18:Pruned tree 1946:Categories 1905:References 1895:set theory 1891:Laver tree 1702:projection 630:finite set 621:illfounded 1856:∈ 1853:⟩ 1847:→ 1832:→ 1823:⟨ 1815:ω 1807:∈ 1801:→ 1792:∃ 1779:ω 1771:∈ 1765:→ 1657:ω 1643:× 1635:ω 1602:ω 1591:× 1586:ω 1558:⟩ 1517:… 1465:⟨ 1403:ω 1389:× 1340:× 1177:ω 1118:ω 963:with one 869:∈ 866:⟩ 852:− 838:… 809:⟨ 746:∈ 743:⟩ 735:− 721:… 692:⟨ 405:⟩ 397:− 383:… 354:⟨ 325:≤ 314:, and if 262:⟩ 254:− 240:… 211:⟨ 189:ω 139:ω 42:on a set 1914:(1995). 1885:See also 1081:Topology 1899:forcing 1457:(e.g., 1933:  1926:  886:pruned 624:. By 473:branch 88:prefix 1674:with 1140:as a 959:is a 904:is a 99:Trees 1931:ISBN 1924:ISBN 1654:< 1632:< 1599:< 1583:< 1400:< 1022:< 991:and 900:, a 584:body 331:< 186:< 136:< 40:tree 38:, a 1704:of 1164:of 951:In 896:In 781:of 294:in 173:of 34:In 1948:: 1918:. 1730:, 888:. 607:. 471:A 1937:. 1880:. 1868:} 1865:] 1862:T 1859:[ 1844:y 1838:, 1829:x 1820:) 1811:Y 1798:y 1789:( 1785:| 1775:X 1762:x 1756:{ 1753:= 1750:] 1747:T 1744:[ 1741:p 1718:] 1715:T 1712:[ 1688:] 1685:T 1682:[ 1662:] 1650:Y 1646:[ 1640:] 1628:X 1624:[ 1595:Y 1579:X 1553:1 1550:+ 1547:m 1544:2 1540:y 1536:, 1531:m 1528:2 1524:x 1520:, 1512:3 1508:y 1504:, 1499:2 1495:x 1491:, 1486:1 1482:y 1478:, 1473:0 1469:x 1445:Y 1425:X 1396:) 1392:Y 1386:X 1383:( 1363:T 1343:Y 1337:X 1311:T 1291:] 1288:T 1285:[ 1265:C 1245:T 1225:T 1205:] 1202:T 1199:[ 1173:X 1152:C 1138:X 1114:X 1093:X 1065:U 1045:T 1025:U 1019:T 999:U 979:T 936:T 916:T 872:T 863:x 860:, 855:1 849:n 845:x 841:, 835:, 830:1 826:x 822:, 817:0 813:x 789:X 769:x 749:T 738:1 732:n 728:x 724:, 718:, 713:1 709:x 705:, 700:0 696:x 672:T 648:T 595:T 569:] 566:T 563:[ 543:T 523:T 503:X 483:T 451:0 448:= 445:m 425:T 400:1 394:m 390:x 386:, 380:, 375:1 371:x 367:, 362:0 358:x 334:n 328:m 322:0 302:T 282:n 257:1 251:n 247:x 243:, 237:, 232:1 228:x 224:, 219:0 215:x 182:X 161:T 132:X 111:X 74:X 50:X 31:. 20:)

Index

Pruned tree
Tree (set theory)
descriptive set theory
finite sequences
prefix
wellfounded
Kőnig's lemma
finite set
graph theory
rooted tree
directed graph
order theory
order-theoretic tree
partially ordered set
minimal element
well-ordered
product topology
discrete space
Cartesian products
Laver tree
set theory
forcing
Kechris, Alexander S.
Graduate Texts in Mathematics
ISBN
0-387-94374-9
ISBN
3-540-94374-9
Categories
Descriptive set theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.