Knowledge

Threshold theorem

Source đź“ť

1742: 1732: 95:
Surprisingly, the quantum threshold theorem shows that if the error to perform each gate is a small enough constant, one can perform arbitrarily long quantum computations to arbitrarily good precision, with only some small added overhead in the number of gates. The formal statement of the threshold
298:
on the order of 1%, though estimates range widely and are difficult to calculate due to the exponential difficulty of simulating large quantum systems. At a 0.1% probability of a depolarizing error, the surface code would require approximately 1,000-10,000 physical qubits per logical data qubit,
262:
Threshold theorems for classical computation have the same form as above, except for classical circuits instead of quantum. The proof strategy for quantum computation is similar to that of classical computation: for any particular error model (such as having each gate fail with independent
276:
is a small-enough constant). Then, one can use these better gates to recursively create even better gates, until one has gates with the desired failure probability, which can be used for the desired quantum circuit. According to quantum information theorist
271:
to build better gates out of existing gates. Though these "better gates" are larger, and so are more prone to errors within them, their error-correction properties mean that they have a lower chance of failing than the original gate (provided
864:«The entire content of the Threshold Theorem is that you're correcting errors faster than they're created. That's the whole point, and the whole non-trivial thing that the theorem shows. That's the problem it solves.» 285:"The entire content of the Threshold Theorem is that you're correcting errors faster than they're created. That's the whole point, and the whole non-trivial thing that the theorem shows. That's the problem it solves." 91:
perfectly, some small constant error is inevitable; hypothetically, this could mean that quantum computers with imperfect gates can only apply a constant number of gates before the computation is destroyed by noise.
86:
The key question that the threshold theorem resolves is whether quantum computers in practice could perform long computations without succumbing to noise. Since a quantum computer will not be able to perform
203: 257: 1776: 931: 59: 893: 712:
Fowler, Austin G.; Stephens, Ashley M.; Groszkowski, Peter (2009-11-11). "High-threshold universal quantum computation on the surface code".
338:
It is widely believed that it is exponentially difficult for classical computers to simulate quantum systems. This problem is known as the
1623: 131: 98: 346:, which is one of the main appeals of quantum computing. This is applicable to chemical simulations, drug discovery, energy production, 1524: 1185: 773:
Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe (2017-09-13). "Roads towards fault-tolerant universal quantum computation".
17: 1086: 354:) as well. Because of this, quantum computers may be better than classical computers at aiding design of further quantum computers. 1411: 1771: 612: 396: 1766: 1735: 921: 1693: 1269: 690: 1745: 1633: 886: 656: 1561: 1219: 54:'s threshold theorem for classical computation. This result was proven (for various error models) by the groups of 46:
schemes, suppress the logical error rate to arbitrarily low levels. This shows that quantum computers can be made
42:) states that a quantum computer with a physical error rate below a certain threshold can, through application of 1556: 1284: 1264: 849: 1551: 1063: 1584: 1406: 1309: 970: 1589: 1457: 1048: 879: 1613: 1369: 1229: 1003: 958: 902: 314: 1485: 1357: 1254: 1130: 1058: 965: 648: 224: 1294: 1259: 1155: 1098: 527: 339: 1467: 1440: 1416: 1379: 1170: 1103: 1038: 1023: 993: 916: 308: 43: 1618: 1352: 1244: 1214: 1013: 1688: 1452: 1445: 1192: 1608: 1234: 1160: 1125: 268: 1398: 1147: 998: 792: 731: 549: 500: 478: 8: 1717: 1670: 1500: 1274: 1028: 1008: 943: 938: 377:"Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Components" 96:
theorem depends on the types of error correction codes and error model being considered.
796: 735: 553: 504: 1433: 1279: 1081: 1018: 824: 782: 755: 721: 618: 573: 539: 490: 456: 430: 418: 88: 684: 561: 1697: 1342: 1249: 1206: 1137: 1033: 988: 948: 926: 859: 816: 808: 759: 747: 662: 652: 608: 577: 565: 448: 392: 67: 31: 27:
Quantum error correction schemes can suppress the logical error rate arbitrarily low
1364: 1314: 1091: 828: 800: 739: 622: 600: 557: 508: 460: 440: 384: 63: 51: 1490: 1428: 1118: 1113: 636: 512: 319: 103: 47: 342:. However, quantum computers can simulate many (though not all) Hamiltonians in 1599: 1576: 1543: 1347: 1224: 855: 743: 680: 376: 278: 259:, and given reasonable assumptions about the noise in the underlying hardware. 55: 871: 592: 444: 388: 1760: 1421: 1239: 1165: 812: 751: 666: 604: 569: 452: 347: 71: 1641: 1566: 820: 640: 299:
though more pathological error types could change this figure drastically.
295: 107: 1651: 1505: 1043: 544: 495: 435: 804: 1712: 1646: 1510: 75: 1495: 845: 1680: 1656: 1515: 1480: 787: 726: 1707: 1324: 597:
Proceedings of 37th Conference on Foundations of Computer Science
599:. Burlington, VT, USA: IEEE Comput. Soc. Press. pp. 56–65. 1684: 1180: 351: 953: 419:"Fault-Tolerant Quantum Computation with Constant Error Rate" 209:) on hardware whose components fail with probability at most 1702: 1175: 1108: 78:, which proved a weaker version of the threshold theorem. 1319: 1304: 711: 383:, Princeton: Princeton University Press, pp. 43–98, 343: 124:
gates may be simulated with probability of error at most
860:"PHYS771 Lecture 14: Skepticism of Quantum Computing" 772: 227: 134: 1146: 198:{\displaystyle O(\log ^{c}(p(n)/\varepsilon )p(n))} 251: 197: 110:, gives the general framework for such a theorem: 74:independently. These results built on a paper of 1758: 901: 679: 417:Aharonov, Dorit; Ben-Or, Michael (2008-01-01). 528:"Fault-tolerant quantum computation by anyons" 416: 289: 887: 685:"Lecture 14: Skepticism of Quantum Computing" 635: 294:Current estimates put the threshold for the 1777:Theorems in computational complexity theory 645:Quantum Computation and Quantum Information 99:Quantum Computation and Quantum Information 894: 880: 114:Threshold theorem for quantum computation: 786: 725: 543: 494: 434: 647:(10th anniversary ed.). Cambridge: 368: 1412:Continuous-variable quantum information 850:"Perpetual Motion of The 21st Century?" 629: 519: 472: 470: 374: 14: 1759: 525: 875: 584: 476: 593:"Fault-tolerant quantum computation" 590: 467: 410: 344:polynomial time with bounded errors 24: 691:Quantum Computing Since Democritus 243: 240: 25: 1788: 839: 252:{\displaystyle p<p_{\rm {th}}} 1741: 1740: 1731: 1730: 350:and fertilizer production (e.g. 766: 479:"Resilient Quantum Computation" 40:quantum fault-tolerance theorem 705: 683:; Granade, Chris (Fall 2006). 673: 375:Neumann, J. von (1956-12-31), 332: 192: 189: 183: 177: 166: 160: 154: 138: 81: 13: 1: 1407:Adiabatic quantum computation 562:10.1016/S0003-4916(02)00018-0 526:Kitaev, A. Yu. (2003-01-01). 361: 1772:Theoretical computer science 1458:Topological quantum computer 513:10.1126/science.279.5349.342 7: 1767:Quantum information science 1736:Quantum information science 903:Quantum information science 315:Physical and logical qubits 302: 290:Threshold value in practice 10: 1793: 1131:quantum gate teleportation 744:10.1103/physreva.80.052312 649:Cambridge University Press 1726: 1669: 1632: 1598: 1575: 1542: 1533: 1466: 1395: 1333: 1293: 1260:Quantum Fourier transform 1205: 1156:Post-quantum cryptography 1099:Entanglement distillation 1072: 981: 909: 445:10.1137/S0097539799359385 423:SIAM Journal on Computing 389:10.1515/9781400882618-003 381:Automata Studies. (AM-34) 340:quantum many body problem 205:gates (for some constant 18:Quantum threshold theorem 1746:Quantum mechanics topics 1441:Quantum machine learning 1417:One-way quantum computer 1270:Quantum phase estimation 1171:Quantum key distribution 1104:Monogamy of entanglement 605:10.1109/SFCS.1996.548464 477:Knill, E. (1998-01-16). 325: 309:Quantum error correction 44:quantum error correction 1353:Randomized benchmarking 1215:Amplitude amplification 217:is below some constant 1453:Quantum Turing machine 1446:quantum neural network 1193:Quantum secret sharing 287: 269:error correcting codes 253: 199: 120:qubits and containing 1525:Entanglement-assisted 1486:quantum convolutional 1161:Quantum coin flipping 1126:Quantum teleportation 1087:entanglement-assisted 917:DiVincenzo's criteria 283: 254: 200: 116:A quantum circuit on 1336:processor benchmarks 1265:Quantum optimization 1148:Quantum cryptography 959:physical vs. logical 225: 132: 58:and Michael Ben-Or; 50:, as an analogue to 1049:Quantum speed limit 944:Quantum programming 939:Quantum information 805:10.1038/nature23460 797:2017Natur.549..172C 736:2009PhRvA..80e2312F 637:Nielsen, Michael A. 591:Shor, P.W. (1996). 554:2003AnPhy.303....2K 505:1998Sci...279..342K 1698:Forest/Rigetti QCS 1434:quantum logic gate 1220:Bernstein–Vazirani 1207:Quantum algorithms 1082:Classical capacity 966:Quantum processors 949:Quantum simulation 694:. Shtetl Optimized 249: 195: 1754: 1753: 1665: 1664: 1562:Linear optical QC 1343:Quantum supremacy 1297:complexity theory 1250:Quantum annealing 1201: 1200: 1138:Superdense coding 927:Quantum computing 781:(7671): 172–179. 714:Physical Review A 614:978-0-8186-7594-2 532:Annals of Physics 489:(5349): 342–345. 398:978-1-4008-8261-8 36:threshold theorem 32:quantum computing 16:(Redirected from 1784: 1744: 1743: 1734: 1733: 1540: 1539: 1470:error correction 1399:computing models 1365:Relaxation times 1255:Quantum counting 1144: 1143: 1092:quantum capacity 1039:No-teleportation 1024:No-communication 896: 889: 882: 873: 872: 833: 832: 790: 770: 764: 763: 729: 709: 703: 702: 700: 699: 677: 671: 670: 641:Chuang, Isaac L. 633: 627: 626: 588: 582: 581: 547: 545:quant-ph/9707021 523: 517: 516: 498: 496:quant-ph/9702058 474: 465: 464: 438: 436:quant-ph/9906129 429:(4): 1207–1282. 414: 408: 407: 406: 405: 372: 355: 348:climate modeling 336: 258: 256: 255: 250: 248: 247: 246: 204: 202: 201: 196: 173: 150: 149: 64:Raymond Laflamme 21: 1792: 1791: 1787: 1786: 1785: 1783: 1782: 1781: 1757: 1756: 1755: 1750: 1722: 1672: 1661: 1634:Superconducting 1628: 1594: 1585:Neutral atom QC 1577:Ultracold atoms 1571: 1536:implementations 1535: 1529: 1469: 1462: 1429:Quantum circuit 1397: 1391: 1385: 1375: 1335: 1329: 1296: 1289: 1245:Hidden subgroup 1197: 1186:other protocols 1142: 1119:quantum network 1114:Quantum channel 1074: 1068: 1014:No-broadcasting 1004:Gottesman–Knill 977: 905: 900: 869: 842: 837: 836: 771: 767: 710: 706: 697: 695: 681:Aaronson, Scott 678: 674: 659: 634: 630: 615: 589: 585: 524: 520: 475: 468: 415: 411: 403: 401: 399: 373: 369: 364: 359: 358: 337: 333: 328: 320:Fault tolerance 305: 292: 239: 238: 234: 226: 223: 222: 169: 145: 141: 133: 130: 129: 104:Michael Nielsen 89:gate operations 84: 28: 23: 22: 15: 12: 11: 5: 1790: 1780: 1779: 1774: 1769: 1752: 1751: 1749: 1748: 1738: 1727: 1724: 1723: 1721: 1720: 1718:many others... 1715: 1710: 1705: 1700: 1691: 1677: 1675: 1667: 1666: 1663: 1662: 1660: 1659: 1654: 1649: 1644: 1638: 1636: 1630: 1629: 1627: 1626: 1621: 1616: 1611: 1605: 1603: 1596: 1595: 1593: 1592: 1590:Trapped-ion QC 1587: 1581: 1579: 1573: 1572: 1570: 1569: 1564: 1559: 1554: 1548: 1546: 1544:Quantum optics 1537: 1531: 1530: 1528: 1527: 1522: 1521: 1520: 1513: 1508: 1503: 1498: 1493: 1488: 1483: 1474: 1472: 1464: 1463: 1461: 1460: 1455: 1450: 1449: 1448: 1438: 1437: 1436: 1426: 1425: 1424: 1414: 1409: 1403: 1401: 1393: 1392: 1390: 1389: 1388: 1387: 1383: 1377: 1373: 1362: 1361: 1360: 1350: 1348:Quantum volume 1345: 1339: 1337: 1331: 1330: 1328: 1327: 1322: 1317: 1312: 1307: 1301: 1299: 1291: 1290: 1288: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1225:Boson sampling 1222: 1217: 1211: 1209: 1203: 1202: 1199: 1198: 1196: 1195: 1190: 1189: 1188: 1183: 1178: 1168: 1163: 1158: 1152: 1150: 1141: 1140: 1135: 1134: 1133: 1123: 1122: 1121: 1111: 1106: 1101: 1096: 1095: 1094: 1089: 1078: 1076: 1070: 1069: 1067: 1066: 1061: 1059:Solovay–Kitaev 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 985: 983: 979: 978: 976: 975: 974: 973: 963: 962: 961: 951: 946: 941: 936: 935: 934: 924: 919: 913: 911: 907: 906: 899: 898: 891: 884: 876: 867: 866: 856:Scott Aaronson 853: 841: 840:External links 838: 835: 834: 765: 704: 672: 657: 628: 613: 583: 518: 466: 409: 397: 366: 365: 363: 360: 357: 356: 330: 329: 327: 324: 323: 322: 317: 312: 304: 301: 291: 288: 279:Scott Aaronson 245: 242: 237: 233: 230: 194: 191: 188: 185: 182: 179: 176: 172: 168: 165: 162: 159: 156: 153: 148: 144: 140: 137: 83: 80: 68:Wojciech Zurek 56:Dorit Aharanov 48:fault-tolerant 26: 9: 6: 4: 3: 2: 1789: 1778: 1775: 1773: 1770: 1768: 1765: 1764: 1762: 1747: 1739: 1737: 1729: 1728: 1725: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1695: 1692: 1690: 1686: 1682: 1679: 1678: 1676: 1674: 1668: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1639: 1637: 1635: 1631: 1625: 1622: 1620: 1617: 1615: 1614:Spin qubit QC 1612: 1610: 1607: 1606: 1604: 1601: 1597: 1591: 1588: 1586: 1583: 1582: 1580: 1578: 1574: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1549: 1547: 1545: 1541: 1538: 1532: 1526: 1523: 1519: 1518: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1478: 1476: 1475: 1473: 1471: 1465: 1459: 1456: 1454: 1451: 1447: 1444: 1443: 1442: 1439: 1435: 1432: 1431: 1430: 1427: 1423: 1422:cluster state 1420: 1419: 1418: 1415: 1413: 1410: 1408: 1405: 1404: 1402: 1400: 1394: 1386: 1382: 1378: 1376: 1372: 1368: 1367: 1366: 1363: 1359: 1356: 1355: 1354: 1351: 1349: 1346: 1344: 1341: 1340: 1338: 1332: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1302: 1300: 1298: 1292: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1230:Deutsch–Jozsa 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1212: 1210: 1208: 1204: 1194: 1191: 1187: 1184: 1182: 1179: 1177: 1174: 1173: 1172: 1169: 1167: 1166:Quantum money 1164: 1162: 1159: 1157: 1154: 1153: 1151: 1149: 1145: 1139: 1136: 1132: 1129: 1128: 1127: 1124: 1120: 1117: 1116: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1093: 1090: 1088: 1085: 1084: 1083: 1080: 1079: 1077: 1075:communication 1071: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 986: 984: 980: 972: 969: 968: 967: 964: 960: 957: 956: 955: 952: 950: 947: 945: 942: 940: 937: 933: 930: 929: 928: 925: 923: 920: 918: 915: 914: 912: 908: 904: 897: 892: 890: 885: 883: 878: 877: 874: 870: 865: 861: 857: 854: 851: 847: 844: 843: 830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 789: 784: 780: 776: 769: 761: 757: 753: 749: 745: 741: 737: 733: 728: 723: 720:(5): 052312. 719: 715: 708: 693: 692: 686: 682: 676: 668: 664: 660: 658:9780511992773 654: 650: 646: 643:(June 2012). 642: 638: 632: 624: 620: 616: 610: 606: 602: 598: 594: 587: 579: 575: 571: 567: 563: 559: 555: 551: 546: 541: 537: 533: 529: 522: 514: 510: 506: 502: 497: 492: 488: 484: 480: 473: 471: 462: 458: 454: 450: 446: 442: 437: 432: 428: 424: 420: 413: 400: 394: 390: 386: 382: 378: 371: 367: 353: 349: 345: 341: 335: 331: 321: 318: 316: 313: 310: 307: 306: 300: 297: 286: 282: 280: 275: 270: 266: 260: 235: 231: 228: 220: 216: 212: 208: 186: 180: 174: 170: 163: 157: 151: 146: 142: 135: 127: 123: 119: 115: 111: 109: 105: 101: 100: 93: 90: 79: 77: 73: 72:Alexei Kitaev 69: 65: 61: 60:Emanuel Knill 57: 53: 49: 45: 41: 37: 33: 19: 1642:Charge qubit 1567:KLM protocol 1516: 1380: 1370: 1064:Purification 1053: 994:Eastin–Knill 868: 863: 778: 774: 768: 717: 713: 707: 696:. Retrieved 688: 675: 644: 631: 596: 586: 535: 531: 521: 486: 482: 426: 422: 412: 402:, retrieved 380: 370: 334: 296:surface code 293: 284: 273: 264: 263:probability 261: 218: 214: 210: 206: 125: 121: 117: 113: 112: 108:Isaac Chuang 97: 94: 85: 39: 35: 29: 1673:programming 1652:Phase qubit 1557:Circuit QED 1029:No-deleting 971:cloud-based 538:(1): 2–30. 213:, provided 82:Explanation 52:von Neumann 1761:Categories 1713:libquantum 1647:Flux qubit 1552:Cavity QED 1501:Bacon–Shor 1491:stabilizer 1019:No-cloning 788:1612.07330 698:2018-12-27 404:2020-10-10 362:References 76:Peter Shor 1619:NV center 1054:Threshold 1034:No-hiding 999:Gleason's 846:Gil Kalai 813:0028-0836 760:119228385 752:1050-2947 727:0803.0272 689:PHYS771: 667:700706156 578:119087885 570:0003-4916 453:0097-5397 219:threshold 175:ε 152:⁡ 1681:OpenQASM 1657:Transmon 1534:Physical 1334:Quantum 1235:Grover's 1009:Holevo's 982:Theorems 932:timeline 922:NISQ era 821:28905902 303:See also 1671:Quantum 1609:Kane QC 1468:Quantum 1396:Quantum 1325:PostBQP 1295:Quantum 1280:Simon's 1073:Quantum 910:General 829:4446310 793:Bibcode 732:Bibcode 623:7508572 550:Bibcode 501:Bibcode 483:Science 461:8969800 311:schemes 267:), use 1689:IBM QX 1685:Qiskit 1624:NMR QC 1602:-based 1506:Steane 1477:Codes 1275:Shor's 1181:SARG04 989:Bell's 827:  819:  811:  775:Nature 758:  750:  665:  655:  621:  611:  576:  568:  459:  451:  395:  352:FeMoco 128:using 70:; and 66:, and 34:, the 1511:Toric 954:Qubit 825:S2CID 783:arXiv 756:S2CID 722:arXiv 619:S2CID 574:S2CID 540:arXiv 491:arXiv 457:S2CID 431:arXiv 326:Notes 102:, by 1703:Cirq 1694:Quil 1600:Spin 1496:Shor 1176:BB84 1109:LOCC 817:PMID 809:ISSN 748:ISSN 663:OCLC 653:ISBN 609:ISBN 566:ISSN 449:ISSN 393:ISBN 232:< 122:p(n) 106:and 38:(or 1517:gnu 1481:CSS 1358:XEB 1320:QMA 1315:QIP 1310:EQP 1305:BQP 1285:VQE 1240:HHL 1044:PBR 801:doi 779:549 740:doi 601:doi 558:doi 536:303 509:doi 487:279 441:doi 385:doi 143:log 30:In 1763:: 1708:Q# 862:: 858:. 848:. 823:. 815:. 807:. 799:. 791:. 777:. 754:. 746:. 738:. 730:. 718:80 716:. 687:. 661:. 651:. 639:; 617:. 607:. 595:. 572:. 564:. 556:. 548:. 534:. 530:. 507:. 499:. 485:. 481:. 469:^ 455:. 447:. 439:. 427:38 425:. 421:. 391:, 379:, 221:, 62:, 1696:– 1687:– 1683:– 1384:2 1381:T 1374:1 1371:T 895:e 888:t 881:v 852:. 831:. 803:: 795:: 785:: 762:. 742:: 734:: 724:: 701:. 669:. 625:. 603:: 580:. 560:: 552:: 542:: 515:. 511:: 503:: 493:: 463:. 443:: 433:: 387:: 281:: 274:p 265:p 244:h 241:t 236:p 229:p 215:p 211:p 207:c 193:) 190:) 187:n 184:( 181:p 178:) 171:/ 167:) 164:n 161:( 158:p 155:( 147:c 139:( 136:O 126:ε 118:n 20:)

Index

Quantum threshold theorem
quantum computing
quantum error correction
fault-tolerant
von Neumann
Dorit Aharanov
Emanuel Knill
Raymond Laflamme
Wojciech Zurek
Alexei Kitaev
Peter Shor
gate operations
Quantum Computation and Quantum Information
Michael Nielsen
Isaac Chuang
error correcting codes
Scott Aaronson
surface code
Quantum error correction
Physical and logical qubits
Fault tolerance
quantum many body problem
polynomial time with bounded errors
climate modeling
FeMoco
"Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Components"
doi
10.1515/9781400882618-003
ISBN
978-1-4008-8261-8

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑