Knowledge

Quasicrystal

Source 📝

879:, diesel engines, and new materials that convert heat to electricity. Shechtman suggested new applications taking advantage of the low coefficient of friction and the hardness of some quasicrystalline materials, for example embedding particles in plastic to make strong, hard-wearing, low-friction plastic gears. The low heat conductivity of some quasicrystals makes them good for heat insulating coatings. One of the special properties of quasicrystals is their smooth surface, which despite the irregular atomic structure, the surface of quasicrystals can be smooth and flat. 887: 234: 4230: 202: 702: 548: 521: 388: 694: 416: 734: 40: 841:. A problem that must be resolved is the tendency for cracking due to the materials' extreme brittleness. The cracking could be suppressed by reducing sample dimensions or coating thickness. Recent studies show typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains at room temperature and sub-micrometer scales (<500 nm). 335:, was ruled out by his experiments. Therefore, Blech looked for a new structure containing cells connected to each other by defined angles and distances but without translational periodicity. He decided to use a computer simulation to calculate the diffraction intensity from a cluster of such a material, which he termed as "multiple 871:
The Nobel citation said that quasicrystals, while brittle, could reinforce steel "like armor". When Shechtman was asked about potential applications of quasicrystals he said that a precipitation-hardened stainless steel is produced that is strengthened by small quasicrystalline particles. It does not
748:
Two types of quasicrystals are known. The first type, polygonal (dihedral) quasicrystals, have an axis of 8-, 10-, or 12-fold local symmetry (octagonal, decagonal, or dodecagonal quasicrystals, respectively). They are periodic along this axis and quasiperiodic in planes normal to it. The second type,
483:
in 2011 for his work on quasicrystals. "His discovery of quasicrystals revealed a new principle for packing of atoms and molecules," stated the Nobel Committee and pointed that "this led to a paradigm shift within chemistry." In 2014, Post of Israel issued a stamp dedicated to quasicrystals and the
3778: 587:(also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. He introduced the notion of a superspace. Bohr showed that quasiperiodic functions arise as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with one or more 463:
in 2010. Analysis indicates it may be meteoritic in origin, possibly delivered from a carbonaceous chondrite asteroid. In 2011, Bindi, Steinhardt, and a team of specialists found more icosahedrite samples from Khatyrka. A further study of Khatyrka meteorites revealed micron-sized grains of another
156:
is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions. Symmetrical diffraction patterns result from the existence of an indefinitely large number of elements with a regular spacing, a property loosely
821:
The quasi-ordered droplet crystals could be formed under Dipolar forces in the Bose Einstein condensate. While the softcore Rydberg dressing interaction has forms triangular droplet-crystals, adding a Gaussian peak to the plateau type interaction would form multiple roton unstable points in the
798:
The origin of the stabilization mechanism is different for the stable and metastable quasicrystals. Nevertheless, there is a common feature observed in most quasicrystal-forming liquid alloys or their undercooled liquids: a local icosahedral order. The icosahedral order is in equilibrium in the
330:
The observation of the ten-fold diffraction pattern lay unexplained for two years until the spring of 1984, when Blech asked Shechtman to show him his results again. A quick study of Shechtman's results showed that the common explanation for a ten-fold symmetrical diffraction pattern, a type of
745:, hundreds of quasicrystals have been reported and confirmed. Quasicrystals are found most often in aluminium alloys (Al–Li–Cu, Al–Mn–Si, Al–Ni–Co, Al–Pd–Mn, Al–Cu–Fe, Al–Cu–V, etc.), but numerous other compositions are also known (Cd–Yb, Ti–Zr–Ni, Zn–Mg–Ho, Zn–Mg–Sc, In–Ag–Yb, Pd–U–Si, etc.). 649:
Using mathematics for construction and analysis of quasicrystal structures is a difficult task for most experimentalists. Computer modeling, based on the existing theories of quasicrystals, however, greatly facilitated this task. Advanced programs have been developed allowing one to construct,
882:
Other potential applications include selective solar absorbers for power conversion, broad-wavelength reflectors, and bone repair and prostheses applications where biocompatibility, low friction and corrosion resistance are required. Magnetron sputtering can be readily applied to other stable
511:
In 2018, chemists from Brown University announced the successful creation of a self-constructing lattice structure based on a strangely shaped quantum dot. While single-component quasicrystal lattices have been previously predicted mathematically and in computer simulations, they had not been
376:
reported twelvefold symmetry in Ni-Cr particles. Soon, eightfold diffraction patterns were recorded in V-Ni-Si and Cr-Ni-Si alloys. Over the years, hundreds of quasicrystals with various compositions and different symmetries have been discovered. The first quasicrystalline materials were
352:. Meanwhile, on seeing the draft of the paper, John Cahn suggested that Shechtman's experimental results merit a fast publication in a more appropriate scientific journal. Shechtman agreed and, in hindsight, called this fast publication "a winning move". This paper, published in the 813:
Most quasicrystals have ceramic-like properties including high thermal and electrical resistance, hardness and brittleness, resistance to corrosion, and non-stick properties. Many metallic quasicrystalline substances are impractical for most applications due to their
3772: 429:
In 2001, Steinhardt hypothesized that quasicrystals could exist in nature and developed a method of recognition, inviting all the mineralogical collections of the world to identify any badly cataloged crystals. In 2007 Steinhardt received a reply by
650:
visualize and analyze quasicrystal structures and their diffraction patterns. The aperiodic nature of quasicrystals can also make theoretical studies of physical properties, such as electronic structure, difficult due to the inapplicability of
503:
of uniformly shaped, nano-sized molecular units at an air-liquid interface. It was demonstrated that these units can be both inorganic and organic. Additionally in the 2010s, two-dimensional molecular quasicrystals were discovered, driven by
868:; and the pan could withstand temperatures of 1,000 °C (1,800 °F) without harm. However, after an initial introduction the pans were a chrome steel, probably because of the difficulty of controlling thin films of the quasicrystal. 749:
icosahedral quasicrystals, are aperiodic in all directions. Icosahedral quasicrystals have a three dimensional quasiperiodic structure and possess fifteen 2-fold, ten 3-fold and six 5-fold axes in accordance with their icosahedral symmetry.
903:
Applications in macroscopic engineering have been suggested, building quasi-crystal-like large scale engineering structures, which could have interesting physical properties. Also, aperiodic tiling lattice structures may be used instead of
132:
Quasicrystals had been investigated and observed earlier, but, until the 1980s, they were disregarded in favor of the prevailing views about the atomic structure of matter. In 2009, after a dedicated search, a mineralogical finding,
176:
alloys produced the unusual diffractograms which today are seen as revelatory of quasicrystal structures. Due to fear of the scientific community's reaction, it took him two years to publish the results for which he was awarded the
476:. This quasicrystal is stable in a narrow temperature range, from 1120 to 1200 K at ambient pressure, which suggests that natural quasicrystals are formed by rapid quenching of a meteorite heated during an impact-induced shock. 4424: 633:
Classical theory of crystals reduces crystals to point lattices where each point is the center of mass of one of the identical units of the crystal. The structure of crystals can be analyzed by defining an associated
377:
thermodynamically unstable: when heated, they formed regular crystals. However, in 1987, the first of many stable quasicrystals were discovered, making it possible to produce large samples for study and applications.
326:
of the NIST, who did not offer any explanation and challenged him to solve the observation. Shechtman quoted Cahn as saying: "Danny, this material is telling us something, and I challenge you to find out what it is".
794:
revealing peak widths as sharp as those of perfect crystals such as Si. Diffraction patterns exhibit fivefold, threefold, and twofold symmetries, and reflections are arranged quasiperiodically in three dimensions.
108:
were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of natural quasicrystals. The discovery of these aperiodic forms in nature has produced a
2102: 442:
Mineralogical Collection. The crystal samples were sent to Princeton University for other tests, and in late 2009, Steinhardt confirmed its quasicrystalline character. This quasicrystal, with a composition of
205:
Girih-tile subdivision found in the decagonal girih pattern on a spandrel from the Darb-i Imam shrine, Isfahan, Iran (1453 C.E.). A subdivision rule to construct perfect quasi-crystalline tilings has been
2610:
Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.; Ye, Xingchen; Chen, Jun; Murray, Christopher B. (2009). "Quasicrystalline order in self-assembled binary nanoparticle superlattices".
822:
Bogoliubov spectrum. Therefore, the excitation around the roton instabilities would grow exponentially and form multiple allowed lattice constants leading to quasi-ordered periodic droplet crystals.
591:), and discussed their Fourier point spectrum. These functions are not exactly periodic, but they are arbitrarily close in some sense, as well as being a projection of an exactly periodic function. 499:
systems. Soft quasicrystal structures have been found in supramolecular dendrimer liquids and ABC Star Polymers in 2004 and 2007. In 2009, it was found that thin-film quasicrystals can be formed by
1268: 2320:
Bindi, L.; Yao, N.; Lin, C.; Hollister, L.S.; Andronicos, C.L.; Distler, V.V.; Eddy, M.P.; Kostin, A.; Kryachko, V.; MacPherson, G.J.; Steinhardt, W.M.; Yudovskaya, M.; Steinhardt, P.J. (2015).
384:
altered its definition of a crystal, reducing it to the ability to produce a clear-cut diffraction pattern and acknowledging the possibility of the ordering to be either periodic or aperiodic.
677:
as temperature tends to zero. It is suggested that the electronic system of some quasicrystals is located at a quantum critical point without tuning, while quasicrystals exhibit the typical
1043: 3255:
Deguchi, Kazuhiko; Matsukawa, Shuya; Sato, Noriaki K.; Hattori, Taisuke; Ishida, Kenji; Takakura, Hiroyuki; Ishimasa, Tsutomu (2012). "Quantum critical state in a magnetic quasicrystal".
322:(later NIST). Shechtman related his observation to Ilan Blech, who responded that such diffractions had been seen before. Around that time, Shechtman also related his finding to 144:, which means that a shifted copy will never match exactly with its original. The more precise mathematical definition is that there is never translational symmetry in more than 3881: 161:. Experimentally, the aperiodicity is revealed in the unusual symmetry of the diffraction pattern, that is, symmetry of orders other than two, three, four, or six. In 1982, 4071: 872:
corrode and is extremely strong, suitable for razor blades and surgery instruments. The small quasicrystalline particles impede the motion of dislocation in the material.
2094: 2867:
Engel, Michael; Damasceno, Pablo F.; Phillips, Carolyn L.; Glotzer, Sharon C. (Dec 8, 2014). "Computational self-assembly of a one-component icosahedral quasicrystal".
2720:
Wasio, Natalie A.; Quardokus, Rebecca C.; Forrest, Ryan P.; Lent, Craig S.; Corcelli, Steven A.; Christie, John A.; Henderson, Kenneth W.; Kandel, S. Alex (Mar 2014).
3943:
Shaginyan, V. R.; Msezane, A. Z.; Popov, K. G.; Japaridze, G. S.; Khodel, V. A. (2013). "Common quantum phase transition in quasicrystals and heavy-fermion metals".
342:
Shechtman accepted Blech's discovery of a new type of material and chose to publish his observation in a paper entitled "The Microstructure of Rapidly Solidified Al
3083: 264:) that can tile the plane but not in a periodic fashion. As further aperiodic sets of tiles were discovered, sets with fewer and fewer shapes were found. In 1974 1587: 339:", and found a ten-fold structure similar to what was observed. The multiple polyhedral structure was termed later by many researchers as icosahedral glass. 3583: 2469: 256:(hence, it would suffice to try to tile bigger and bigger patterns until obtaining one that tiles periodically). Nevertheless, two years later, his student 3811: 2206: 1278: 230:, a glass-like substance formed from fused sand and copper transmission lines. Identified in 2021, they are the oldest known anthropogenic quasicrystals. 3848: 638:. Quasicrystals, on the other hand, are composed of more than one type of unit, so, instead of lattices, quasilattices must be used. Instead of groups, 575:
There are several ways to mathematically define quasicrystalline patterns. One definition, the "cut and project" construction, is based on the work of
2023: 610:
structures; similarly, icosahedral quasicrystals in three dimensions are projected from a six-dimensional hypercubic lattice, as first described by
3667: 2794:
Paßens, M.; Caciuc, V.; Atodiresei, N.; Feuerbacher, M.; Moors, M.; Dunin-Borkowski, R. E.; Blügel, S.; Waser, R.; Karthäuser, S. (May 22, 2017).
818:; the Al–Cu–Fe ternary system and the Al–Cu–Fe–Cr and Al–Co–Fe–Cr quaternary systems, thermally stable up to 700 °C, are notable exceptions. 2589: 189:
were awarded the Aspen Institute 2018 Prize for collaboration and scientific research between Italy and the United States, after they discovered
1347: 226:
nuclear bomb test produced icosahedral quasicrystals. They went unnoticed at the time of the test but were later identified in samples of red
299:. Other puzzling cases have been reported, but until the concept of quasicrystal came to be established, they were explained away or denied. 4119: 1907: 1469: 864:(PFOA); the surface was very hard, claimed to be ten times harder than stainless steel, and not harmed by metal utensils or cleaning in a 706: 423: 2267: 1008:"Nucleation and growth of Ag islands on fivefold Al-Pd-Mn quasicrystal surfaces: Dependence of island density on temperature and flux" 2446: 1781: 3873: 1705: 3234: 1421: 460: 4068: 252:
or not. He conjectured that it is solvable, relying on the hypothesis that every set of tiles that can tile the plane can do it
1957: 381: 272:, that produced only non-periodic tilings of the plane. These tilings displayed instances of fivefold symmetry. One year later 1857: 4054: 3113: 3077: 1463: 1172:"Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals" 295:
cannot be labeled with three indices but needed one more, which implied that the underlying structure had four dimensions in
3691:
Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph (2016).
2377:
Bindi, Luca; John M. Eiler; Yunbin Guan; Lincoln S. Hollister; Glenn MacPherson; Paul J. Steinhardt; Nan Yao (Jan 3, 2012).
697:
Tiling of a plane by regular pentagons is impossible but can be realized on a sphere in the form of pentagonal dodecahedron.
87: 2123:
Ishimasa, T.; Nissen, H.-U.; Fukano, Y. (1985). "New ordered state between crystalline and amorphous in Ni-Cr particles".
4405: 3992: 3453: 2773: 2531: 1802: 1498: 1123: 1729:
Pauling, L (Jan 26, 1987). "So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal".
249: 2296: 786:
Except for the Al–Li–Cu system, all the stable quasicrystals are almost free of defects and disorder, as evidenced by
4479: 4085: 2017: 4443: 4112: 4035: 1007: 810:
A nanoscale icosahedral phase was formed in Zr-, Cu- and Hf-based bulk metallic glasses alloyed with noble metals.
408: 1579: 3359:
C, Cui; M, Shimoda; AP, Tsai (2014). "Studies on icosahedral Ag-In-Yb: A prototype for Tsai-type quasicrystals".
2466: 361:
Originally, the new form of matter was dubbed "Shechtmanite". The term "quasicrystal" was first used in print by
33: 2167: 1978: 4091: 3833: 2486:
Zeng, Xiangbing; Ungar, Goran; Liu, Yongsong; Percec, Virgil; Dulcey, Andrés E.; Hobbs, Jamie K. (Mar 2004).
257: 17: 4385: 348: 319: 75: 4105: 1997: 3029:
Kramer, P.; Neri, R. (1984). "On periodic and non-periodic space fillings of E obtained by projection".
3803: 939: 291:
In 1972, R. M. de Wolf and W. van Aalst reported that the diffraction pattern produced by a crystal of
4209: 891: 599: 1979:"NIST and the Nobel (September 30, 2016, Updated November 17, 2019) The Nobel Moment: Dan Shechtman" 1343: 4474: 3031: 682: 611: 584: 480: 419: 178: 4219: 2912:"Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule" 2663:"Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule" 674: 556: 529: 354: 1929: 1879: 1443: 276:
showed theoretically that the diffraction pattern from the Penrose tiling had a two-dimensional
4489: 3530:"Rydberg noisy dressing and applications in making soliton molecules and droplet quasicrystals" 948: 861: 761: 757: 658: 439: 223: 141: 117:. In crystallography the quasicrystals were predicted in 1981 by a five-fold symmetry study of 83: 4013: 3396:"Icosahedral clusters, icosaheral order and stability of quasicrystals – a view of metallurgy" 1822:"Multiply Twinned Particles at Earlier Stages of Gold Film Formation on Alkalihalide Crystals" 4484: 210:
The first representations of perfect quasicrystalline patterns can be found in several early
91: 3474: 3067: 4001: 3962: 3704: 3627: 3551: 3462: 3407: 3368: 3325: 3274: 3202: 3145: 3040: 2923: 2807: 2733: 2674: 2619: 2565: 2390: 2333: 2243: 2231: 2182: 2132: 2059: 2050: 1941: 1891: 1833: 1738: 1689: 1617: 1532: 1381: 1315: 1220: 1183: 1080: 1019: 838: 791: 505: 303: 281: 4069:"Indiana Steinhardt and the Quest for Quasicrystals – A Conversation with Paul Steinhardt" 2436: 1773: 1580:"Newly discovered quasicrystal was created by the first nuclear explosion at Trinity Site" 358:, repeated Shechtman's observation and used the same illustrations as the original paper. 8: 4453: 4413: 4197: 3922: 3010:
de Bruijn, N. (1981). "Algebraic theory of Penrose's non-periodic tilings of the plane".
2553: 1521:"Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test" 909: 635: 336: 273: 245: 219: 149: 118: 4005: 3966: 3708: 3631: 3555: 3466: 3451:
Louzguine-Luzgin, D. V.; Inoue, A. (2008). "Formation and Properties of Quasicrystals".
3411: 3372: 3329: 3278: 3206: 3149: 3044: 2927: 2811: 2737: 2678: 2623: 2569: 2552:
Hayashida, Kenichi; Dotera, Tomonari; Takano, Atsushi; Matsushita, Yushu (May 8, 2007).
2394: 2337: 2247: 2186: 2136: 2063: 1945: 1895: 1837: 1742: 1693: 1621: 1536: 1385: 1319: 1224: 1187: 1084: 1023: 129:, the possibility of identifying quasiperiodic order in a material through diffraction. 4391: 4291: 4128: 4064:
Quasicrystal Research – Documentary 2011 on the research of the University of Stuttgart
3978: 3952: 3930: 3907: 3725: 3693:"Superior room-temperature ductility of typically brittle quasicrystals at small sizes" 3692: 3659: 3617: 3575: 3541: 3529: 3428: 3419: 3395: 3341: 3298: 3264: 3226: 3166: 3157: 3133: 2849: 2836: 2795: 2765: 2643: 2523: 2413: 2378: 2354: 2321: 2075: 2009: 1555: 1520: 1413: 1244: 1035: 984: – Structure that repeats in time; a novel type or phase of non-equilibrium matter 651: 627: 404: 296: 4425:
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
3563: 3190: 1369: 886: 844:
An application was the use of low-friction Al–Cu–Fe–Cr quasicrystals as a coating for
4418: 4318: 4313: 4254: 4244: 4182: 4017: 3982: 3730: 3651: 3643: 3579: 3567: 3433: 3345: 3337: 3290: 3230: 3218: 3171: 3109: 3073: 2959: 2951: 2946: 2892: 2884: 2841: 2823: 2757: 2749: 2702: 2697: 2635: 2581: 2554:"Polymeric Quasicrystal: Mesoscopic Quasicrystalline Tiling in $ ABC$ Star Polymers" 2515: 2507: 2418: 2359: 2259: 2198: 2148: 2079: 2013: 1953: 1903: 1849: 1754: 1674: 1629: 1560: 1459: 1405: 1397: 1236: 1115: 963: 927: 921: 815: 787: 678: 615: 277: 162: 122: 95: 82:. A quasicrystalline pattern can continuously fill all available space, but it lacks 3750:
Al-Cu-Fe quasicrystalline coatings and composites studied by mechanical spectroscopy
3605: 2853: 2796:"Interface-driven formation of a two-dimensional dodecagonal fullerene quasicrystal" 1417: 1248: 1039: 4269: 4009: 3970: 3753: 3720: 3712: 3663: 3639: 3635: 3559: 3505: 3470: 3423: 3415: 3376: 3333: 3302: 3282: 3214: 3210: 3161: 3153: 3048: 2990: 2941: 2931: 2876: 2831: 2815: 2769: 2741: 2692: 2682: 2647: 2627: 2573: 2527: 2499: 2408: 2398: 2349: 2341: 2251: 2190: 2140: 2067: 2005: 1949: 1899: 1841: 1821: 1746: 1697: 1625: 1550: 1540: 1451: 1389: 1323: 1228: 1191: 1088: 1027: 834: 673:
quasicrystal have revealed a quantum critical point defining the divergence of the
435: 332: 292: 158: 105: 60: 4051: 4041: 2577: 1304:"Metallic Phase with Long-Range Orientational Order and No Translational Symmetry" 1211:
Bindi, L.; Steinhardt, P. J.; Yao, N.; Lu, P. J. (2009). "Natural Quasicrystals".
890:
Rendering of a quasicrystalline structure, created using an open-source model for
4192: 4075: 4058: 3069:
Quasicrystals: An Introduction to Structure, Physical Properties and Applications
2473: 2376: 1196: 1171: 933: 849: 775: 714: 643: 603: 362: 186: 114: 79: 3752:(Thesis). École polytechnique fédérale de Lausanne EPFL, Thesis n° 2707 (2002). 3316:
MacIá, Enrique (2006). "The role of aperiodic order in science and technology".
2194: 2044:
Shechtman, Dan; I. A. Blech (1985). "The Microstructure of Rapidly Solidified Al
1455: 1328: 1303: 1093: 1068: 464:
natural quasicrystal, which has a ten-fold symmetry and a chemical formula of Al
4380: 4375: 4308: 4046: 3974: 2144: 1750: 1670: 1273: 1031: 657:
Study of quasicrystals may shed light on the most basic notions related to the
533: 269: 248:
asked whether determining if a set of tiles admits a tiling of the plane is an
238: 126: 110: 3052: 2721: 2487: 1806: 1490: 654:. However, spectra of quasicrystals can still be computed with error control. 594:
In order that the quasicrystal itself be aperiodic, this slice must avoid any
201: 4468: 4370: 4365: 3757: 3647: 3571: 2955: 2888: 2827: 2753: 2511: 2263: 1853: 1701: 1643:
de Wolf, R.M. & van Aalst, W. (1972). "The four dimensional group of γ-Na
1401: 1119: 1003: 768: 742: 662: 623: 595: 500: 488: 285: 265: 165: 4229: 3834:"An Overview of Quasicrystals, Their Types, Preparation Methods, Properties" 2936: 2911: 2687: 2662: 2403: 1545: 1393: 1232: 803:
for the stable quasicrystals, whereas the icosahedral order prevails in the
4281: 4204: 4021: 3734: 3655: 3437: 3294: 3222: 3175: 3065: 2963: 2896: 2845: 2761: 2706: 2639: 2585: 2519: 2422: 2363: 2288: 2202: 2152: 1758: 1564: 1409: 1240: 981: 975: 722: 710: 564: 560: 536: 456: 346:
Mn", which was written around June 1984 and published in a 1985 edition of
323: 190: 134: 1370:"Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture" 1001: 830:
Quasicrystalline substances have potential applications in several forms.
233: 4399: 4357: 4276: 4172: 4167: 3777:. Evanston, Illinois, USA: Northwestern University. pp. Appendix A. 3606:"Supersolid Vortex Crystals in Rydberg-Dressed Bose-Einstein Condensates" 3510: 3493: 1880:"The structure and orientation of crystals in deposits of metals on mica" 1845: 1269:"Tecnion's Shechtman Wins Nobel in Chemistry for Quasicrystals Discovery" 718: 619: 576: 568: 540: 492: 215: 211: 3716: 2819: 2745: 2631: 2503: 284:' peaks arranged in a fivefold symmetric pattern. Around the same time, 4346: 4341: 4259: 4162: 3874:"Could centuries-old islamic patterns be the key to hypersonic flight?" 3604:
Henkel, N.; Cinti, F.; Jain, P.; Pupillo, G.; Pohl, T. (Jun 26, 2012).
3380: 2995: 2978: 2071: 865: 845: 701: 693: 607: 588: 580: 431: 366: 261: 182: 2910:
Chen, Ou; Eggert, Dennis; Zhu, Hua; Nagaoka, Yasutaka (Dec 21, 2018).
2345: 2255: 415: 4448: 4351: 4097: 3286: 2880: 1109: 853: 779: 752:
Quasicrystals fall into three groups of different thermal stability:
670: 547: 311: 307: 227: 173: 169: 71: 52: 48: 44: 2379:"Evidence for the extraterrestrial origin of a natural quasicrystal" 520: 4177: 4142: 3546: 2441: 1444:"Octagon-Based Quasicrystalline Formations in Islamic Architecture" 957: 639: 496: 288:
created a set of aperiodic tiles that produced eightfold symmetry.
99: 3957: 3912: 3622: 3269: 387: 4303: 4298: 4286: 4264: 4249: 4157: 2793: 2232:"Binary Quasicrystals Discovered That Are Stable and Icosahedral" 2168:"Two-dimensional quasicrystal with eightfold rotational symmetry" 905: 856:
and easy to clean; heat transfer and durability were better than
63: 4092:
Quasicrystal Blocks: Description and Cut & Fold Instructions
3494:"Sputtering technique forms versatile quasicrystalline coatings" 2722:"Self-assembly of hydrogen-bonded two-dimensional quasicrystals" 1608:
Mackay, A.L. (1982). "Crystallography and the Penrose Pattern".
942: – A state similar to a liquid and a crystal in properties. 618:
of such a quasicrystal is nonzero only at a dense set of points
39: 2551: 2095:"Impossible' Form of Matter Takes Spotlight In Study of Solids" 969: 875:
Quasicrystals were also being used to develop heat insulation,
726: 552: 525: 137:, offered evidence for the existence of natural quasicrystals. 3942: 2661:
Nagaoka, Yasutaka; Zhu, Hua; Eggert, Dennis; Chen, Ou (2018).
1446:. In Schmid, Siegbert; Withers, Ray L.; Lifshitz, Ron (eds.). 733: 4336: 4063: 3690: 2866: 2609: 685:
and belong to the well-known family of heavy fermion metals.
3774:
Quasicrystalline thin films: growth, structure and interface
966: – Structure found in atomic clusters and nanoparticles 729:, the quasicrystal has faces that are true regular pentagons 606:
can be viewed as two-dimensional slices of five-dimensional
4214: 4152: 4147: 3254: 1156:
Alan L. Mackay, "Crystallography and the Penrose Pattern",
1006:; A.R. Ross; T.A. Lograsso; J.W. Evans; P.A. Thiel (2007). 857: 666: 491:
components, later on quasicrystals were also discovered in
3134:"Software package for structure analysis of quasicrystals" 3106:
Groupoids, inverse semigroups, and their operator algebras
1642: 912:. None of these seem to have been put to use in practice. 487:
While the first quasicrystals discovered were made out of
260:
constructed a set of some 20,000 square tiles (now called
55:(Al–Pd–Mn) quasicrystal surface. Similar to Fig. 6 in Ref. 3189:
Colbrook, Matthew; Roman, Bogdan; Hansen, Anders (2019).
2719: 1301: 1108:
Lifshitz, Ron; Schmid, Siegbert; Withers, Ray L. (2013).
876: 306:
patterns in 1982, while conducting a routine study of an
3906:
Kramer, Peter (2010). "Gateways towards quasicrystals".
3066:
Suck, Jens-Boie; Schreiber, M.; Häussler, Peter (2002).
2004:. Aperiodicity and Order. Vol. 3. pp. 37–104. 1302:
Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. (1984).
1669: 953:
Pages displaying short descriptions of redirect targets
268:
discovered a set of just two tiles, now referred to as
121:,—that also brought in 1982, with the crystallographic 3603: 3072:. Springer Science & Business Media. pp. 1–. 646:, is the appropriate tool for studying quasicrystals. 391:
Atomic image of a micron-sized grain of the natural Al
98:
pattern of quasicrystals shows sharp peaks with other
4036:
A Partial Bibliography of Literature on Quasicrystals
3450: 2289:"Quasicrystal – Online Dictionary of Crystallography" 1107: 1002:Ünal, B; V. Fournée; K.J. Schnitzenbaumer; C. Ghosh; 833:
Metallic quasicrystalline coatings can be applied by
90:, can possess only two-, three-, four-, and six-fold 43:
Potential energy surface for silver depositing on an
2909: 2660: 2319: 2122: 2043: 1210: 972: – Collective excitation in aperiodic materials 944:
Pages displaying wikidata descriptions as a fallback
930: – Polyhedra in which all vertices are the same 898: 27:
Ordered chemical structure with no repeating pattern
3188: 1491:"Islamic Quasicrystal Tilings | Paul J. Steinhardt" 1450:. Dordrecht: Springer Netherlands. pp. 49–57. 222:. On July 16, 1945, in Alamogordo, New Mexico, the 193:, the first quasicrystal known to occur naturally. 2485: 1774:"Israeli Scientist Wins Nobel Prize for Chemistry" 1368:Lu, Peter J.; Steinhardt, Paul J. (Feb 23, 2007). 1069:"Quasicrystals: A New Class of Ordered Structures" 960: – Five crystals arranged round a common axis 1675:"Lattice Textures in Cholesteric Liquid Crystals" 951: – Binary sequence from Fibonacci recurrence 140:Roughly, an ordering is non-periodic if it lacks 4466: 1066: 3801: 2488:"Supramolecular dendritic liquid quasicrystals" 2383:Proceedings of the National Academy of Sciences 1877: 1525:Proceedings of the National Academy of Sciences 642:, the mathematical generalization of groups in 369:shortly after Shechtman's paper was published. 3990:Thiel, P. A. (2008). "Quasicrystal Surfaces". 2322:"Natural quasicrystal with decagonal symmetry" 936: – Scientific study of crystal structures 756:Stable quasicrystals grown by slow cooling or 4113: 4042:Quasicrystals: an introduction by R. Lifshitz 3686: 3684: 1771: 860:non-stick cookware and the pan was free from 626:, which are the projections of the primitive 434:, who found a quasicrystalline specimen from 86:. While crystals, according to the classical 3400:Science and Technology of Advanced Materials 3138:Science and Technology of Advanced Materials 1571: 1367: 725:shape of some cubic-system crystals such as 614:and Roberto Neri in 1984. Equivalently, the 3841:Journal of Environmental Friendly Materials 3191:"How to Compute Spectra with Error Control" 2979:"Zur Theorie fastperiodischer Funktionen I" 2165: 1262: 1260: 1258: 924: – Crystal type lacking 3D periodicity 630:vectors of the higher-dimensional lattice. 567:. This is used to understand the aperiodic 214:such as the Gunbad-i-Kabud tomb tower, the 4120: 4106: 4047:Quasicrystals: an introduction by S. Weber 3747: 3681: 3028: 1441: 1169: 883:quasicrystalline alloys such as Al–Pd–Mn. 4014:10.1146/annurev.physchem.59.032607.093736 3956: 3911: 3797: 3795: 3724: 3621: 3545: 3509: 3427: 3268: 3165: 3009: 2994: 2945: 2935: 2835: 2696: 2686: 2412: 2402: 2353: 1554: 1544: 1327: 1195: 1092: 848:. Food did not stick to it as much as to 403:quasicrystal (shown in the inset) from a 3920: 3182: 3131: 3103: 1995: 1826:Journal of the Physical Society of Japan 1819: 1663: 1255: 1143:Alan L. Mackay, "De Nive Quinquangula", 978: – Tiling of a plane in mathematics 885: 732: 700: 692: 665:metals. Experimental measurements on an 622:by integer multiples of a finite set of 546: 519: 414: 386: 232: 200: 38: 3770: 3528:Khazali, Mohammadsadegh (Aug 5, 2021). 3527: 3475:10.1146/annurev.matsci.38.060407.130318 3127: 3125: 2315: 2313: 1930:"Structure of small metallic particles" 1728: 1577: 774:Metastable quasicrystals formed by the 461:International Mineralogical Association 14: 4467: 4127: 3905: 3871: 3792: 3488: 3486: 3484: 3059: 2092: 1927: 1878:Allpress, J.G.; Sanders, J.V. (1967). 1607: 1266: 1067:Levine, Dov; Steinhardt, Paul (1984). 539:overlaid on the diffractogram from an 382:International Union of Crystallography 302:Dan Shechtman first observed ten-fold 4101: 3989: 3831: 3523: 3521: 3315: 1518: 1336: 767:Metastable quasicrystals prepared by 737:TiMn quasicrystal approximant lattice 212:Islamic works of art and architecture 3393: 3358: 3122: 2976: 2310: 2166:Wang, N.; Chen, H.; Kuo, K. (1987). 1971: 1062: 1060: 688: 88:crystallographic restriction theorem 4406:The Chemical Basis of Morphogenesis 3993:Annual Review of Physical Chemistry 3481: 3454:Annual Review of Materials Research 2229: 1344:"The Nobel Prize in Chemistry 2011" 1297: 1295: 598:of the higher-dimensional lattice. 24: 3899: 3518: 2159: 2116: 2093:Browne, Malcolm W. (Sep 5, 1989). 2010:10.1016/B978-0-12-040603-6.50007-6 1795: 1765: 1722: 1636: 1601: 1512: 807:for the metastable quasicrystals. 707:Ho–Mg–Zn dodecahedral quasicrystal 250:algorithmically unsolvable problem 25: 4501: 4088:showing pictures of Quasicrystals 4029: 3564:10.1103/physrevresearch.3.l032033 2467:Crystallography matters ... more! 2437:"Nobel win for crystal discovery" 1820:Ino, Shozo; Ogawa, Shiro (1967). 1204: 1163: 1150: 1057: 899:Non-material science applications 4228: 3802:Kalman, Matthew (Oct 12, 2011). 1292: 741:Since the original discovery by 102:orders—for instance, five-fold. 3884:from the original on 2023-03-20 3878:Josefine Lissner and Lin Kayser 3865: 3854:from the original on 2021-10-31 3825: 3814:from the original on 2020-07-28 3781:from the original on 2024-09-18 3764: 3741: 3670:from the original on 2024-09-18 3597: 3586:from the original on 2024-09-18 3444: 3387: 3352: 3309: 3248: 3237:from the original on 2021-01-22 3097: 3086:from the original on 2024-09-18 3022: 3003: 2970: 2903: 2860: 2787: 2776:from the original on 2024-09-18 2713: 2654: 2603: 2592:from the original on 2024-09-18 2545: 2534:from the original on 2022-11-06 2479: 2460: 2449:from the original on 2011-10-05 2429: 2370: 2299:from the original on 2024-04-04 2281: 2270:from the original on 2021-11-03 2223: 2212:from the original on 2018-07-21 2105:from the original on 2017-12-01 2086: 2037: 2026:from the original on 2021-05-07 2002:Extended Icosahedral Structures 1989: 1960:from the original on 2024-09-18 1921: 1910:from the original on 2023-12-03 1871: 1860:from the original on 2023-03-24 1813: 1784:from the original on 2017-02-19 1711:from the original on 2020-04-26 1590:from the original on 2021-06-21 1578:Mullane, Laura (May 18, 2021). 1501:from the original on 2023-05-29 1483: 1472:from the original on 2023-05-30 1435: 1424:from the original on 2024-09-18 1361: 1350:from the original on 2017-10-05 1126:from the original on 2024-09-18 1046:from the original on 2020-07-28 825: 34:Quasi-crystals (supramolecular) 3640:10.1103/physrevlett.108.265301 3318:Reports on Progress in Physics 3215:10.1103/PhysRevLett.122.250201 1267:Gerlin, Andrea (Oct 5, 2011). 1137: 1101: 995: 515: 13: 1: 3104:Paterson, Alan L. T. (1999). 2578:10.1103/PhysRevLett.98.195502 1998:"The Icosahedral Glass Model" 1772:Kenneth Chang (Oct 5, 2011). 988: 181:in 2011. On 25 October 2018, 3923:"What is... a Quasicrystal?" 3872:Kayser, Lin (Mar 20, 2023). 3420:10.1088/1468-6996/9/1/013008 3158:10.1088/1468-6996/9/3/013001 3012:Nederl. Akad. Wetensch. Proc 2230:Day, Charles (Feb 1, 2001). 1954:10.1016/0039-6028(77)90375-2 1904:10.1016/0039-6028(67)90062-3 1630:10.1016/0378-4371(82)90359-4 1197:10.1524/zkri.219.7.391.35643 512:demonstrated prior to this. 508:and interface-interactions. 420:Electron diffraction pattern 407:fragment. The corresponding 349:Metallurgical Transactions A 320:National Bureau of Standards 7: 3921:Senechal, Marjorie (2006). 3804:"The Quasicrystal Laureate" 2195:10.1103/PhysRevLett.59.1010 1996:Stephens, Peter W. (1989). 1519:Bindi, Luca (Jun 1, 2021). 1456:10.1007/978-94-007-6431-6_7 1329:10.1103/PhysRevLett.53.1951 1094:10.1103/PhysRevLett.53.2477 915: 571:structure of quasicrystals. 506:intermolecular interactions 459:and it was approved by the 411:reveal a ten-fold symmetry. 10: 4506: 3975:10.1103/PhysRevB.87.245122 3338:10.1088/0034-4885/69/2/R03 2145:10.1103/PhysRevLett.55.511 1751:10.1103/PhysRevLett.58.365 1147:, Vol. 26, 910–919 (1981). 1032:10.1103/PhysRevB.75.064205 940:Disordered hyperuniformity 852:making the pan moderately 579:(mathematician brother of 479:Shechtman was awarded the 372:Also in 1985, T. Ishimasa 196: 31: 4436: 4386:D'Arcy Wentworth Thompson 4329: 4237: 4226: 4135: 3108:. Springer. p. 164. 3053:10.1107/S0108767384001203 2947:21.11116/0000-0002-B8DF-4 2698:21.11116/0000-0002-B8DF-4 1442:Al Ajlouni, Rima (2013). 892:Computational Engineering 4480:Condensed matter physics 3758:10.5075/epfl-thesis-2707 3534:Physical Review Research 3132:Yamamoto, Akiji (2008). 3032:Acta Crystallographica A 1702:10.1002/prop.19810290503 805:undercooled liquid state 683:thermodynamic properties 585:almost periodic function 481:Nobel Prize in Chemistry 179:Nobel Prize in Chemistry 32:Not to be confused with 3610:Physical Review Letters 3195:Physical Review Letters 2937:10.1126/science.aav0790 2688:10.1126/science.aav0790 2558:Physical Review Letters 2404:10.1073/pnas.1111115109 2175:Physical Review Letters 2125:Physical Review Letters 1731:Physical Review Letters 1682:Fortschritte der Physik 1546:10.1073/pnas.2101350118 1394:10.1126/science.1135491 1308:Physical Review Letters 1233:10.1126/science.1170827 1073:Physical Review Letters 709:formed as a pentagonal 675:magnetic susceptibility 557:rhombic triacontahedron 530:orthographic projection 355:Physical Review Letters 3394:Tsai, An Pang (2008). 949:Fibonacci quasicrystal 895: 862:perfluorooctanoic acid 738: 730: 698: 659:quantum critical point 572: 544: 440:University of Florence 426: 412: 241: 207: 168:observed that certain 142:translational symmetry 84:translational symmetry 56: 4220:Widmanstätten pattern 4052:Steinhardt's proposal 3808:MIT Technology Review 3771:Widjaja, Edy (2004). 3697:Nature Communications 2800:Nature Communications 889: 736: 721:. Unlike the similar 704: 696: 583:). The concept of an 550: 543:Ho–Mg–Zn quasicrystal 523: 424:Ho–Mg–Zn quasicrystal 418: 390: 280:consisting of sharp ' 236: 204: 92:rotational symmetries 42: 4094:Space-filling models 3511:10.1557/mrs.2011.190 2051:Metall Mater Trans A 1846:10.1143/JPSJ.22.1365 1673:and Maki K. (1981). 839:magnetron sputtering 792:electron diffraction 409:diffraction patterns 304:electron diffraction 150:linearly independent 4454:Mathematics and art 4444:Pattern recognition 4414:Aristid Lindenmayer 4006:2008ARPC...59..129T 3967:2013PhRvB..87x5122S 3748:Fikar, Jan (2003). 3717:10.1038/ncomms12261 3709:2016NatCo...712261Z 3632:2012PhRvL.108z5301H 3556:2021PhRvR...3c2033K 3467:2008AnRMS..38..403L 3412:2008STAdM...9a3008T 3373:2014RSCAd...446907C 3367:(87): 46907–46921. 3330:2006RPPh...69..397M 3279:2012NatMa..11.1013D 3207:2019PhRvL.122y0201C 3150:2008STAdM...9a3001Y 3045:1984AcCrA..40..580K 2928:2018Sci...362.1396N 2922:(6421): 1396–1400. 2820:10.1038/ncomms15367 2812:2017NatCo...815367P 2746:10.1038/nature12993 2738:2014Natur.507...86W 2679:2018Sci...362.1396N 2673:(6421): 1396–1400. 2632:10.1038/nature08439 2624:2009Natur.461..964T 2570:2007PhRvL..98s5502H 2504:10.1038/nature02368 2395:2012PNAS..109.1396B 2338:2015NatSR...5E9111B 2293:dictionary.iucr.org 2248:2001PhT....54b..17D 2187:1987PhRvL..59.1010W 2137:1985PhRvL..55..511I 2064:1985MTA....16.1005S 1946:1977SurSc..67..139G 1896:1967SurSc...7....1A 1838:1967JPSJ...22.1365I 1743:1987PhRvL..58..365P 1694:1981ForPh..29..219K 1653:Acta Crystallogr. A 1622:1982PhyA..114..609M 1537:2021PNAS..11801350B 1531:(22): e2101350118. 1386:2007Sci...315.1106L 1380:(5815): 1106–1110. 1320:1984PhRvL..53.1951S 1225:2009Sci...324.1306B 1188:2004ZK....219..391S 1182:(7–2004): 391–446. 1170:Steurer W. (2004). 1085:1984PhRvL..53.2477L 1024:2007PhRvB..75f4205U 816:thermal instability 555:projected into the 220:Al-Attarine Madrasa 163:materials scientist 119:Alan Lindsay Mackay 4392:On Growth and Form 4292:Logarithmic spiral 4129:Patterns in nature 4074:2016-11-04 at the 4057:2016-10-18 at the 3931:Notices of the AMS 3381:10.1039/C4RA07980A 2996:10.1007/BF02395468 2472:2018-12-21 at the 2326:Scientific Reports 2072:10.1007/BF02811670 1928:Gillet, M (1977). 1495:paulsteinhardt.org 1448:Aperiodic Crystals 1346:. Nobelprize.org. 1160:114 A, 609 (1982). 1111:Aperiodic crystals 910:honeycomb patterns 896: 739: 731: 699: 628:reciprocal lattice 573: 545: 484:2011 Nobel Prize. 427: 422:of an icosahedral 413: 405:Khatyrka meteorite 242: 208: 152:directions, where 57: 4462: 4461: 4419:Benoît Mandelbrot 4319:Self-organization 4255:Natural selection 4245:Pattern formation 3945:Physical Review B 3115:978-0-8176-4051-4 3079:978-3-540-64224-4 2977:Bohr, H. (1925). 2618:(7266): 964–967. 2498:(6979): 157–160. 2346:10.1038/srep09111 2256:10.1063/1.1359699 1465:978-94-007-6431-6 1314:(20): 1951–1953. 1079:(26): 2477–2480. 1012:Physical Review B 964:Icosahedral twins 928:Archimedean solid 922:Aperiodic crystal 689:Materials science 679:scaling behaviour 616:Fourier transform 278:Fourier transform 123:Fourier transform 106:Aperiodic tilings 96:Bragg diffraction 16:(Redirected from 4497: 4270:Sexual selection 4232: 4122: 4115: 4108: 4099: 4098: 4025: 3986: 3960: 3939: 3927: 3917: 3915: 3893: 3892: 3890: 3889: 3869: 3863: 3862: 3860: 3859: 3853: 3838: 3829: 3823: 3822: 3820: 3819: 3799: 3790: 3789: 3787: 3786: 3768: 3762: 3761: 3745: 3739: 3738: 3728: 3688: 3679: 3678: 3676: 3675: 3625: 3601: 3595: 3594: 3592: 3591: 3549: 3525: 3516: 3515: 3513: 3504:(8): 581. 2011. 3490: 3479: 3478: 3448: 3442: 3441: 3431: 3391: 3385: 3384: 3356: 3350: 3349: 3313: 3307: 3306: 3287:10.1038/nmat3432 3272: 3257:Nature Materials 3252: 3246: 3245: 3243: 3242: 3186: 3180: 3179: 3169: 3129: 3120: 3119: 3101: 3095: 3094: 3092: 3091: 3063: 3057: 3056: 3026: 3020: 3019: 3007: 3001: 3000: 2998: 2983:Acta Mathematica 2974: 2968: 2967: 2949: 2939: 2907: 2901: 2900: 2881:10.1038/nmat4152 2869:Nature Materials 2864: 2858: 2857: 2839: 2791: 2785: 2784: 2782: 2781: 2717: 2711: 2710: 2700: 2690: 2658: 2652: 2651: 2607: 2601: 2600: 2598: 2597: 2549: 2543: 2542: 2540: 2539: 2483: 2477: 2464: 2458: 2457: 2455: 2454: 2433: 2427: 2426: 2416: 2406: 2389:(5): 1396–1401. 2374: 2368: 2367: 2357: 2317: 2308: 2307: 2305: 2304: 2285: 2279: 2278: 2276: 2275: 2227: 2221: 2220: 2218: 2217: 2211: 2181:(9): 1010–1013. 2172: 2163: 2157: 2156: 2120: 2114: 2113: 2111: 2110: 2090: 2084: 2083: 2058:(6): 1005–1012. 2041: 2035: 2034: 2032: 2031: 1993: 1987: 1986: 1975: 1969: 1968: 1966: 1965: 1925: 1919: 1918: 1916: 1915: 1875: 1869: 1868: 1866: 1865: 1832:(6): 1365–1374. 1817: 1811: 1810: 1805:. Archived from 1799: 1793: 1792: 1790: 1789: 1769: 1763: 1762: 1726: 1720: 1719: 1717: 1716: 1710: 1679: 1667: 1661: 1660: 1640: 1634: 1633: 1605: 1599: 1598: 1596: 1595: 1575: 1569: 1568: 1558: 1548: 1516: 1510: 1509: 1507: 1506: 1487: 1481: 1480: 1478: 1477: 1439: 1433: 1432: 1430: 1429: 1365: 1359: 1358: 1356: 1355: 1340: 1334: 1333: 1331: 1299: 1290: 1289: 1287: 1286: 1277:. Archived from 1264: 1253: 1252: 1219:(5932): 1306–9. 1208: 1202: 1201: 1199: 1167: 1161: 1154: 1148: 1145:Krystallografiya 1141: 1135: 1134: 1132: 1131: 1105: 1099: 1098: 1096: 1064: 1055: 1054: 1052: 1051: 999: 954: 945: 835:Thermal spraying 760:with subsequent 333:crystal twinning 297:reciprocal space 293:sodium carbonate 159:long-range order 113:in the field of 21: 4505: 4504: 4500: 4499: 4498: 4496: 4495: 4494: 4475:Crystallography 4465: 4464: 4463: 4458: 4432: 4325: 4233: 4224: 4131: 4126: 4076:Wayback Machine 4059:Wayback Machine 4032: 3925: 3902: 3900:Further reading 3897: 3896: 3887: 3885: 3870: 3866: 3857: 3855: 3851: 3836: 3830: 3826: 3817: 3815: 3800: 3793: 3784: 3782: 3769: 3765: 3746: 3742: 3689: 3682: 3673: 3671: 3602: 3598: 3589: 3587: 3526: 3519: 3492: 3491: 3482: 3449: 3445: 3392: 3388: 3357: 3353: 3314: 3310: 3253: 3249: 3240: 3238: 3187: 3183: 3130: 3123: 3116: 3102: 3098: 3089: 3087: 3080: 3064: 3060: 3027: 3023: 3008: 3004: 2975: 2971: 2908: 2904: 2865: 2861: 2792: 2788: 2779: 2777: 2732:(7490): 86–89. 2718: 2714: 2659: 2655: 2608: 2604: 2595: 2593: 2550: 2546: 2537: 2535: 2484: 2480: 2474:Wayback Machine 2465: 2461: 2452: 2450: 2445:. Oct 5, 2011. 2435: 2434: 2430: 2375: 2371: 2318: 2311: 2302: 2300: 2287: 2286: 2282: 2273: 2271: 2228: 2224: 2215: 2213: 2209: 2170: 2164: 2160: 2121: 2117: 2108: 2106: 2091: 2087: 2047: 2042: 2038: 2029: 2027: 2020: 1994: 1990: 1985:. Sep 30, 2016. 1977: 1976: 1972: 1963: 1961: 1934:Surface Science 1926: 1922: 1913: 1911: 1884:Surface Science 1876: 1872: 1863: 1861: 1818: 1814: 1801: 1800: 1796: 1787: 1785: 1770: 1766: 1727: 1723: 1714: 1712: 1708: 1677: 1668: 1664: 1650: 1646: 1641: 1637: 1606: 1602: 1593: 1591: 1576: 1572: 1517: 1513: 1504: 1502: 1489: 1488: 1484: 1475: 1473: 1466: 1440: 1436: 1427: 1425: 1366: 1362: 1353: 1351: 1342: 1341: 1337: 1300: 1293: 1284: 1282: 1265: 1256: 1209: 1205: 1168: 1164: 1155: 1151: 1142: 1138: 1129: 1127: 1106: 1102: 1065: 1058: 1049: 1047: 1000: 996: 991: 952: 943: 934:Crystallography 918: 901: 850:stainless steel 828: 776:crystallization 691: 652:Bloch's theorem 644:category theory 604:Penrose tilings 518: 475: 471: 467: 454: 450: 446: 402: 398: 394: 363:Paul Steinhardt 345: 317: 218:shrine and the 199: 187:Paul Steinhardt 148: – 1 115:crystallography 37: 28: 23: 22: 15: 12: 11: 5: 4503: 4493: 4492: 4487: 4482: 4477: 4460: 4459: 4457: 4456: 4451: 4446: 4440: 4438: 4434: 4433: 4431: 4430: 4429: 4428: 4416: 4411: 4410: 4409: 4397: 4396: 4395: 4383: 4381:Wilson Bentley 4378: 4376:Joseph Plateau 4373: 4368: 4363: 4362: 4361: 4349: 4344: 4339: 4333: 4331: 4327: 4326: 4324: 4323: 4322: 4321: 4316: 4314:Plateau's laws 4311: 4309:Fluid dynamics 4306: 4296: 4295: 4294: 4289: 4284: 4274: 4273: 4272: 4267: 4262: 4257: 4247: 4241: 4239: 4235: 4234: 4227: 4225: 4223: 4222: 4217: 4212: 4207: 4202: 4201: 4200: 4195: 4190: 4185: 4175: 4170: 4165: 4160: 4155: 4150: 4145: 4139: 4137: 4133: 4132: 4125: 4124: 4117: 4110: 4102: 4096: 4095: 4089: 4083: 4080:Ideas Roadshow 4066: 4061: 4049: 4044: 4039: 4031: 4030:External links 4028: 4027: 4026: 3987: 3940: 3918: 3901: 3898: 3895: 3894: 3864: 3832:Bakhtiari, H. 3824: 3791: 3763: 3740: 3680: 3616:(26): 265301. 3596: 3517: 3480: 3443: 3386: 3351: 3324:(2): 397–441. 3308: 3263:(12): 1013–6. 3247: 3201:(25): 250201. 3181: 3121: 3114: 3096: 3078: 3058: 3039:(5): 580–587. 3021: 3002: 2969: 2902: 2875:(1): 109–116. 2859: 2786: 2712: 2653: 2602: 2564:(19): 195502. 2544: 2478: 2459: 2428: 2369: 2309: 2280: 2222: 2158: 2131:(5): 511–513. 2115: 2099:New York Times 2085: 2045: 2036: 2018: 1988: 1970: 1940:(1): 139–157. 1920: 1870: 1812: 1809:on 2011-10-07. 1794: 1764: 1737:(4): 365–368. 1721: 1688:(5): 219–259. 1662: 1648: 1644: 1635: 1616:(1): 609–613. 1600: 1570: 1511: 1482: 1464: 1434: 1360: 1335: 1291: 1254: 1203: 1176:Z. Kristallogr 1162: 1149: 1136: 1100: 1056: 993: 992: 990: 987: 986: 985: 979: 973: 967: 961: 955: 946: 937: 931: 925: 917: 914: 900: 897: 827: 824: 784: 783: 772: 765: 690: 687: 534:Petrie polygon 532:into 2D using 517: 514: 473: 469: 465: 452: 448: 444: 400: 396: 392: 343: 318:Mn, at the US 315: 239:Penrose tiling 198: 195: 127:Penrose tiling 111:paradigm shift 26: 9: 6: 4: 3: 2: 4502: 4491: 4490:Quasicrystals 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4472: 4470: 4455: 4452: 4450: 4447: 4445: 4442: 4441: 4439: 4435: 4427: 4426: 4422: 4421: 4420: 4417: 4415: 4412: 4408: 4407: 4403: 4402: 4401: 4398: 4394: 4393: 4389: 4388: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4371:Ernst Haeckel 4369: 4367: 4366:Adolf Zeising 4364: 4360: 4359: 4355: 4354: 4353: 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4334: 4332: 4328: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4301: 4300: 4297: 4293: 4290: 4288: 4285: 4283: 4280: 4279: 4278: 4275: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4252: 4251: 4248: 4246: 4243: 4242: 4240: 4236: 4231: 4221: 4218: 4216: 4213: 4211: 4210:Vortex street 4208: 4206: 4203: 4199: 4196: 4194: 4191: 4189: 4188:Quasicrystals 4186: 4184: 4181: 4180: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4141: 4140: 4138: 4134: 4130: 4123: 4118: 4116: 4111: 4109: 4104: 4103: 4100: 4093: 4090: 4087: 4084: 4081: 4077: 4073: 4070: 4067: 4065: 4062: 4060: 4056: 4053: 4050: 4048: 4045: 4043: 4040: 4037: 4034: 4033: 4023: 4019: 4015: 4011: 4007: 4003: 3999: 3995: 3994: 3988: 3984: 3980: 3976: 3972: 3968: 3964: 3959: 3954: 3951:(24) 245122. 3950: 3946: 3941: 3938:(8): 886–887. 3937: 3933: 3932: 3924: 3919: 3914: 3909: 3904: 3903: 3883: 3879: 3875: 3868: 3850: 3846: 3842: 3835: 3828: 3813: 3809: 3805: 3798: 3796: 3780: 3776: 3775: 3767: 3759: 3755: 3751: 3744: 3736: 3732: 3727: 3722: 3718: 3714: 3710: 3706: 3702: 3698: 3694: 3687: 3685: 3669: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3629: 3624: 3619: 3615: 3611: 3607: 3600: 3585: 3581: 3577: 3573: 3569: 3565: 3561: 3557: 3553: 3548: 3543: 3540:(3): 032033. 3539: 3535: 3531: 3524: 3522: 3512: 3507: 3503: 3499: 3495: 3489: 3487: 3485: 3476: 3472: 3468: 3464: 3460: 3456: 3455: 3447: 3439: 3435: 3430: 3425: 3421: 3417: 3413: 3409: 3406:(1): 013008. 3405: 3401: 3397: 3390: 3382: 3378: 3374: 3370: 3366: 3362: 3355: 3347: 3343: 3339: 3335: 3331: 3327: 3323: 3319: 3312: 3304: 3300: 3296: 3292: 3288: 3284: 3280: 3276: 3271: 3266: 3262: 3258: 3251: 3236: 3232: 3228: 3224: 3220: 3216: 3212: 3208: 3204: 3200: 3196: 3192: 3185: 3177: 3173: 3168: 3163: 3159: 3155: 3151: 3147: 3144:(1): 013001. 3143: 3139: 3135: 3128: 3126: 3117: 3111: 3107: 3100: 3085: 3081: 3075: 3071: 3070: 3062: 3054: 3050: 3046: 3042: 3038: 3034: 3033: 3025: 3017: 3013: 3006: 2997: 2992: 2988: 2984: 2980: 2973: 2965: 2961: 2957: 2953: 2948: 2943: 2938: 2933: 2929: 2925: 2921: 2917: 2913: 2906: 2898: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2863: 2855: 2851: 2847: 2843: 2838: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2790: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2716: 2708: 2704: 2699: 2694: 2689: 2684: 2680: 2676: 2672: 2668: 2664: 2657: 2649: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2606: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2555: 2548: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2482: 2475: 2471: 2468: 2463: 2448: 2444: 2443: 2438: 2432: 2424: 2420: 2415: 2410: 2405: 2400: 2396: 2392: 2388: 2384: 2380: 2373: 2365: 2361: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2316: 2314: 2298: 2294: 2290: 2284: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2236:Physics Today 2233: 2226: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2169: 2162: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2119: 2104: 2100: 2096: 2089: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2052: 2040: 2025: 2021: 2019:9780120406036 2015: 2011: 2007: 2003: 1999: 1992: 1984: 1980: 1974: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1874: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1816: 1808: 1804: 1803:"QC Hot News" 1798: 1783: 1779: 1775: 1768: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1725: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1676: 1672: 1666: 1658: 1654: 1639: 1631: 1627: 1623: 1619: 1615: 1611: 1604: 1589: 1585: 1581: 1574: 1566: 1562: 1557: 1552: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1500: 1496: 1492: 1486: 1471: 1467: 1461: 1457: 1453: 1449: 1445: 1438: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1364: 1349: 1345: 1339: 1330: 1325: 1321: 1317: 1313: 1309: 1305: 1298: 1296: 1281:on 2014-12-05 1280: 1276: 1275: 1270: 1263: 1261: 1259: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1207: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1159: 1153: 1146: 1140: 1125: 1121: 1117: 1113: 1112: 1104: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1061: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1018:(6): 064205. 1017: 1013: 1009: 1005: 998: 994: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 950: 947: 941: 938: 935: 932: 929: 926: 923: 920: 919: 913: 911: 907: 893: 888: 884: 880: 878: 873: 869: 867: 863: 859: 855: 851: 847: 842: 840: 836: 831: 823: 819: 817: 811: 808: 806: 802: 796: 793: 789: 781: 777: 773: 770: 769:melt spinning 766: 763: 759: 755: 754: 753: 750: 746: 744: 743:Dan Shechtman 735: 728: 724: 720: 716: 712: 708: 703: 695: 686: 684: 680: 676: 672: 668: 664: 663:heavy fermion 660: 655: 653: 647: 645: 641: 637: 631: 629: 625: 624:basis vectors 621: 617: 613: 609: 605: 601: 597: 596:lattice plane 592: 590: 586: 582: 578: 570: 566: 565:basis vectors 562: 558: 554: 549: 542: 538: 537:basis vectors 535: 531: 527: 522: 513: 509: 507: 502: 501:self-assembly 498: 494: 490: 489:intermetallic 485: 482: 477: 462: 458: 441: 437: 433: 425: 421: 417: 410: 406: 389: 385: 383: 380:In 1992, the 378: 375: 370: 368: 364: 359: 357: 356: 351: 350: 340: 338: 334: 328: 325: 321: 313: 309: 305: 300: 298: 294: 289: 287: 286:Robert Ammann 283: 279: 275: 271: 270:Penrose tiles 267: 266:Roger Penrose 263: 259: 258:Robert Berger 255: 251: 247: 240: 235: 231: 229: 225: 221: 217: 213: 203: 194: 192: 188: 184: 180: 175: 171: 167: 166:Dan Shechtman 164: 160: 157:described as 155: 151: 147: 143: 138: 136: 130: 128: 124: 120: 116: 112: 107: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 62: 61:quasiperiodic 54: 50: 46: 41: 35: 30: 19: 18:Quasicrystals 4485:Tessellation 4423: 4404: 4390: 4356: 4282:Chaos theory 4205:Tessellation 4187: 4079: 4038:(1996–2008). 3997: 3991: 3948: 3944: 3935: 3929: 3886:. Retrieved 3877: 3867: 3856:. Retrieved 3844: 3840: 3827: 3816:. Retrieved 3807: 3783:. Retrieved 3773: 3766: 3749: 3743: 3700: 3696: 3672:. Retrieved 3613: 3609: 3599: 3588:. Retrieved 3537: 3533: 3501: 3498:MRS Bulletin 3497: 3458: 3452: 3446: 3403: 3399: 3389: 3364: 3361:RSC Advances 3360: 3354: 3321: 3317: 3311: 3260: 3256: 3250: 3239:. Retrieved 3198: 3194: 3184: 3141: 3137: 3105: 3099: 3088:. Retrieved 3068: 3061: 3036: 3030: 3024: 3015: 3011: 3005: 2986: 2982: 2972: 2919: 2915: 2905: 2872: 2868: 2862: 2803: 2799: 2789: 2778:. Retrieved 2729: 2725: 2715: 2670: 2666: 2656: 2615: 2611: 2605: 2594:. Retrieved 2561: 2557: 2547: 2536:. Retrieved 2495: 2491: 2481: 2476:iycr2014.org 2462: 2451:. Retrieved 2440: 2431: 2386: 2382: 2372: 2329: 2325: 2301:. Retrieved 2292: 2283: 2272:. Retrieved 2242:(2): 17–18. 2239: 2235: 2225: 2214:. Retrieved 2178: 2174: 2161: 2128: 2124: 2118: 2107:. Retrieved 2098: 2088: 2055: 2049: 2039: 2028:. Retrieved 2001: 1991: 1982: 1973: 1962:. Retrieved 1937: 1933: 1923: 1912:. Retrieved 1887: 1883: 1873: 1862:. Retrieved 1829: 1825: 1815: 1807:the original 1797: 1786:. Retrieved 1777: 1767: 1734: 1730: 1724: 1713:. Retrieved 1685: 1681: 1665: 1656: 1652: 1638: 1613: 1609: 1603: 1592:. Retrieved 1583: 1573: 1528: 1524: 1514: 1503:. Retrieved 1494: 1485: 1474:. Retrieved 1447: 1437: 1426:. Retrieved 1377: 1373: 1363: 1352:. Retrieved 1338: 1311: 1307: 1283:. Retrieved 1279:the original 1272: 1216: 1212: 1206: 1179: 1175: 1165: 1157: 1152: 1144: 1139: 1128:. Retrieved 1114:. Springer. 1110: 1103: 1076: 1072: 1048:. Retrieved 1015: 1011: 997: 982:Time crystal 976:Tessellation 902: 881: 874: 870: 843: 832: 829: 826:Applications 820: 812: 809: 804: 801:liquid state 800: 797: 785: 751: 747: 740: 723:pyritohedron 711:dodecahedron 661:observed in 656: 648: 632: 612:Peter Kramer 602:showed that 593: 574: 561:golden ratio 510: 486: 478: 457:icosahedrite 455:, was named 428: 379: 373: 371: 360: 353: 347: 341: 329: 324:John W. Cahn 301: 290: 254:periodically 253: 243: 209: 191:icosahedrite 153: 145: 139: 135:icosahedrite 131: 104: 68:quasicrystal 67: 58: 29: 4400:Alan Turing 4358:Liber Abaci 4277:Mathematics 4183:in crystals 4173:Soap bubble 4168:Phyllotaxis 4086:BBC webpage 4000:: 129–152. 3461:: 403–423. 2806:(1) 15367. 1890:(1): 1–25. 1671:Kleinert H. 846:frying pans 719:icosahedron 589:hyperplanes 577:Harald Bohr 569:icosahedral 541:icosahedral 516:Mathematics 493:soft-matter 274:Alan Mackay 216:Darb-e Imam 4469:Categories 4347:Empedocles 4342:Pythagoras 4260:Camouflage 4198:in biology 4193:in flowers 4163:Parastichy 3888:2023-03-20 3858:2021-10-31 3818:2016-02-12 3785:2023-12-02 3674:2021-09-30 3590:2021-09-30 3547:2007.01039 3241:2020-09-02 3090:2016-10-29 2780:2022-11-06 2596:2022-11-06 2538:2022-11-06 2453:2011-10-05 2303:2024-04-04 2274:2021-01-10 2216:2018-12-21 2109:2017-02-12 2030:2021-05-07 1964:2023-03-24 1914:2023-03-24 1864:2023-03-24 1788:2017-02-12 1715:2011-10-07 1594:2021-05-21 1505:2023-05-29 1476:2023-05-30 1428:2023-05-30 1354:2011-10-06 1285:2019-01-04 1130:2022-12-13 1050:2018-12-21 1004:C.J. Jenks 989:References 866:dishwasher 608:hypercubic 581:Niels Bohr 559:using the 432:Luca Bindi 367:Dov Levine 337:polyhedral 262:Wang tiles 206:identified 183:Luca Bindi 4449:Emergence 4352:Fibonacci 3983:119239115 3958:1302.1806 3913:1101.0061 3847:: 69–76. 3703:: 12261. 3648:0031-9007 3623:1111.5761 3580:220301701 3572:2643-1564 3346:120125675 3270:1210.3160 3231:198463498 2956:0036-8075 2889:1476-4660 2828:2041-1723 2754:1476-4687 2512:1476-4687 2264:0031-9228 2080:136733193 1854:0031-9015 1610:Physica A 1402:0036-8075 1274:Bloomberg 1120:847002667 854:non-stick 780:amorphous 762:annealing 681:of their 640:groupoids 600:De Bruijn 497:molecular 314:alloy, Al 312:manganese 308:aluminium 244:In 1961, 228:Trinitite 174:manganese 170:aluminium 72:structure 53:manganese 49:palladium 45:aluminium 4178:Symmetry 4136:Patterns 4072:Archived 4055:Archived 4022:17988201 3882:Archived 3849:Archived 3812:Archived 3779:Archived 3735:27515779 3668:Archived 3656:23004994 3584:Archived 3438:27877926 3295:23042414 3235:Archived 3223:31347861 3176:27877919 3084:Archived 2964:30573624 2897:25485986 2854:22736155 2846:28530242 2774:Archived 2762:24598637 2707:30573624 2640:19829378 2590:Archived 2586:17677627 2532:Archived 2520:15014524 2470:Archived 2447:Archived 2442:BBC News 2423:22215583 2364:25765857 2332:: 9111. 2297:Archived 2268:Archived 2207:Archived 2203:10035936 2153:10032372 2103:Archived 2024:Archived 1958:Archived 1908:Archived 1858:Archived 1782:Archived 1778:NY Times 1759:10034915 1706:Archived 1588:Archived 1584:Phys.org 1565:34001665 1499:Archived 1470:Archived 1422:Archived 1418:10374218 1410:17322056 1348:Archived 1249:14512017 1241:19498165 1124:Archived 1044:Archived 1040:53382207 958:Fiveling 916:See also 436:Khatyrka 246:Hao Wang 100:symmetry 80:periodic 78:but not 74:that is 4437:Related 4304:Crystal 4299:Physics 4287:Fractal 4265:Mimicry 4250:Biology 4158:Meander 4002:Bibcode 3963:Bibcode 3726:4990631 3705:Bibcode 3664:1782501 3628:Bibcode 3552:Bibcode 3463:Bibcode 3429:5099795 3408:Bibcode 3369:Bibcode 3326:Bibcode 3303:7686382 3275:Bibcode 3203:Bibcode 3167:5099788 3146:Bibcode 3041:Bibcode 2989:: 580. 2924:Bibcode 2916:Science 2837:5458153 2808:Bibcode 2770:4401013 2734:Bibcode 2675:Bibcode 2667:Science 2648:4344953 2620:Bibcode 2566:Bibcode 2528:4429689 2414:3277151 2391:Bibcode 2355:4357871 2334:Bibcode 2244:Bibcode 2183:Bibcode 2133:Bibcode 2060:Bibcode 1942:Bibcode 1892:Bibcode 1834:Bibcode 1739:Bibcode 1690:Bibcode 1659:: S111. 1618:Bibcode 1556:8179242 1533:Bibcode 1382:Bibcode 1374:Science 1316:Bibcode 1221:Bibcode 1213:Science 1184:Bibcode 1158:Physica 1081:Bibcode 1020:Bibcode 906:isogrid 778:of the 758:casting 717:of the 620:spanned 563:in the 438:in the 224:Trinity 197:History 76:ordered 70:, is a 64:crystal 4330:People 4238:Causes 4082:, 2016 4020:  3981:  3733:  3723:  3662:  3654:  3646:  3578:  3570:  3436:  3426:  3344:  3301:  3293:  3229:  3221:  3174:  3164:  3112:  3076:  2962:  2954:  2895:  2887:  2852:  2844:  2834:  2826:  2768:  2760:  2752:  2726:Nature 2705:  2646:  2638:  2612:Nature 2584:  2526:  2518:  2510:  2492:Nature 2421:  2411:  2362:  2352:  2262:  2201:  2151:  2078:  2016:  1852:  1757:  1563:  1553:  1462:  1416:  1408:  1400:  1247:  1239:  1118:  1038:  970:Phason 782:phase. 727:pyrite 713:, the 553:6-cube 528:as an 526:5-cube 374:et al. 94:, the 4337:Plato 4143:Crack 3979:S2CID 3953:arXiv 3926:(PDF) 3908:arXiv 3852:(PDF) 3837:(PDF) 3660:S2CID 3618:arXiv 3576:S2CID 3542:arXiv 3342:S2CID 3299:S2CID 3265:arXiv 3227:S2CID 3018:: 39. 2850:S2CID 2766:S2CID 2644:S2CID 2524:S2CID 2210:(PDF) 2171:(PDF) 2076:S2CID 2048:Mn". 1709:(PDF) 1678:(PDF) 1414:S2CID 1245:S2CID 1036:S2CID 788:X-ray 771:, and 636:group 282:delta 125:of a 66:, or 4215:Wave 4153:Foam 4148:Dune 4018:PMID 3731:PMID 3652:PMID 3644:ISSN 3568:ISSN 3434:PMID 3291:PMID 3219:PMID 3172:PMID 3110:ISBN 3074:ISBN 2960:PMID 2952:ISSN 2893:PMID 2885:ISSN 2842:PMID 2824:ISSN 2758:PMID 2750:ISSN 2703:PMID 2636:PMID 2582:PMID 2516:PMID 2508:ISSN 2419:PMID 2360:PMID 2260:ISSN 2199:PMID 2149:PMID 2014:ISBN 1983:NIST 1850:ISSN 1755:PMID 1561:PMID 1460:ISBN 1406:PMID 1398:ISSN 1237:PMID 1116:OCLC 877:LEDs 858:PTFE 790:and 715:dual 669:–Al– 495:and 365:and 185:and 4010:doi 3971:doi 3754:doi 3721:PMC 3713:doi 3636:doi 3614:108 3560:doi 3506:doi 3471:doi 3424:PMC 3416:doi 3377:doi 3334:doi 3283:doi 3211:doi 3199:122 3162:PMC 3154:doi 3049:doi 3016:A84 2991:doi 2942:hdl 2932:doi 2920:362 2877:doi 2832:PMC 2816:doi 2742:doi 2730:507 2693:hdl 2683:doi 2671:362 2628:doi 2616:461 2574:doi 2500:doi 2496:428 2409:PMC 2399:doi 2387:109 2350:PMC 2342:doi 2252:doi 2191:doi 2141:doi 2068:doi 2056:16A 2006:doi 1950:doi 1900:doi 1842:doi 1747:doi 1698:doi 1651:". 1626:doi 1614:114 1551:PMC 1541:doi 1529:118 1452:doi 1390:doi 1378:315 1324:doi 1229:doi 1217:324 1192:doi 1180:219 1089:doi 1028:doi 908:or 837:or 4471:: 4078:, 4016:. 4008:. 3998:59 3996:. 3977:. 3969:. 3961:. 3949:87 3947:. 3936:53 3934:. 3928:. 3880:. 3876:. 3843:. 3839:. 3810:. 3806:. 3794:^ 3729:. 3719:. 3711:. 3699:. 3695:. 3683:^ 3666:. 3658:. 3650:. 3642:. 3634:. 3626:. 3612:. 3608:. 3582:. 3574:. 3566:. 3558:. 3550:. 3536:. 3532:. 3520:^ 3502:36 3500:. 3496:. 3483:^ 3469:. 3459:38 3457:. 3432:. 3422:. 3414:. 3402:. 3398:. 3375:. 3363:. 3340:. 3332:. 3322:69 3320:. 3297:. 3289:. 3281:. 3273:. 3261:11 3259:. 3233:. 3225:. 3217:. 3209:. 3197:. 3193:. 3170:. 3160:. 3152:. 3140:. 3136:. 3124:^ 3082:. 3047:. 3037:40 3035:. 3014:. 2987:45 2985:. 2981:. 2958:. 2950:. 2940:. 2930:. 2918:. 2914:. 2891:. 2883:. 2873:14 2871:. 2848:. 2840:. 2830:. 2822:. 2814:. 2802:. 2798:. 2772:. 2764:. 2756:. 2748:. 2740:. 2728:. 2724:. 2701:. 2691:. 2681:. 2669:. 2665:. 2642:. 2634:. 2626:. 2614:. 2588:. 2580:. 2572:. 2562:98 2560:. 2556:. 2530:. 2522:. 2514:. 2506:. 2494:. 2490:. 2439:. 2417:. 2407:. 2397:. 2385:. 2381:. 2358:. 2348:. 2340:. 2328:. 2324:. 2312:^ 2295:. 2291:. 2266:. 2258:. 2250:. 2240:54 2238:. 2234:. 2205:. 2197:. 2189:. 2179:59 2177:. 2173:. 2147:. 2139:. 2129:55 2127:. 2101:. 2097:. 2074:. 2066:. 2054:. 2022:. 2012:. 2000:. 1981:. 1956:. 1948:. 1938:67 1936:. 1932:. 1906:. 1898:. 1886:. 1882:. 1856:. 1848:. 1840:. 1830:22 1828:. 1824:. 1780:. 1776:. 1753:. 1745:. 1735:58 1733:. 1704:. 1696:. 1686:29 1684:. 1680:. 1657:28 1655:. 1647:CO 1624:. 1612:. 1586:. 1582:. 1559:. 1549:. 1539:. 1527:. 1523:. 1497:. 1493:. 1468:. 1458:. 1420:. 1412:. 1404:. 1396:. 1388:. 1376:. 1372:. 1322:. 1312:53 1310:. 1306:. 1294:^ 1271:. 1257:^ 1243:. 1235:. 1227:. 1215:. 1190:. 1178:. 1174:. 1122:. 1087:. 1077:53 1075:. 1071:. 1059:^ 1042:. 1034:. 1026:. 1016:75 1014:. 1010:. 705:A 671:Yb 667:Au 551:A 524:A 472:Fe 470:24 468:Ni 466:71 453:13 451:Fe 449:24 447:Cu 445:63 443:Al 399:Fe 397:24 395:Ni 393:71 237:A 59:A 4121:e 4114:t 4107:v 4024:. 4012:: 4004:: 3985:. 3973:: 3965:: 3955:: 3916:. 3910:: 3891:. 3861:. 3845:5 3821:. 3788:. 3760:. 3756:: 3737:. 3715:: 3707:: 3701:7 3677:. 3638:: 3630:: 3620:: 3593:. 3562:: 3554:: 3544:: 3538:3 3514:. 3508:: 3477:. 3473:: 3465:: 3440:. 3418:: 3410:: 3404:9 3383:. 3379:: 3371:: 3365:4 3348:. 3336:: 3328:: 3305:. 3285:: 3277:: 3267:: 3244:. 3213:: 3205:: 3178:. 3156:: 3148:: 3142:9 3118:. 3093:. 3055:. 3051:: 3043:: 2999:. 2993:: 2966:. 2944:: 2934:: 2926:: 2899:. 2879:: 2856:. 2818:: 2810:: 2804:8 2783:. 2744:: 2736:: 2709:. 2695:: 2685:: 2677:: 2650:. 2630:: 2622:: 2599:. 2576:: 2568:: 2541:. 2502:: 2456:. 2425:. 2401:: 2393:: 2366:. 2344:: 2336:: 2330:5 2306:. 2277:. 2254:: 2246:: 2219:. 2193:: 2185:: 2155:. 2143:: 2135:: 2112:. 2082:. 2070:: 2062:: 2046:6 2033:. 2008:: 1967:. 1952:: 1944:: 1917:. 1902:: 1894:: 1888:7 1867:. 1844:: 1836:: 1791:. 1761:. 1749:: 1741:: 1718:. 1700:: 1692:: 1649:3 1645:2 1632:. 1628:: 1620:: 1597:. 1567:. 1543:: 1535:: 1508:. 1479:. 1454:: 1431:. 1392:: 1384:: 1357:. 1332:. 1326:: 1318:: 1288:. 1251:. 1231:: 1223:: 1200:. 1194:: 1186:: 1133:. 1097:. 1091:: 1083:: 1053:. 1030:: 1022:: 894:. 764:, 474:5 401:5 344:6 316:6 310:– 172:– 154:n 146:n 51:– 47:– 36:. 20:)

Index

Quasicrystals
Quasi-crystals (supramolecular)

aluminium
palladium
manganese
quasiperiodic
crystal
structure
ordered
periodic
translational symmetry
crystallographic restriction theorem
rotational symmetries
Bragg diffraction
symmetry
Aperiodic tilings
paradigm shift
crystallography
Alan Lindsay Mackay
Fourier transform
Penrose tiling
icosahedrite
translational symmetry
linearly independent
long-range order
materials scientist
Dan Shechtman
aluminium
manganese

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.