Knowledge

Subobject

Source 📝

724:
by a two-sided ideal. To get maps which truly behave like subobject embeddings or quotients, rather than as arbitrary injective functions or maps with dense image, one must restrict to monomorphisms and epimorphisms satisfying additional hypotheses. Therefore, one might define a "subobject" to be an
671:
However, in some contexts these definitions are inadequate as they do not concord with well-established notions of subobject or quotient object. In the category of topological spaces, monomorphisms are precisely the injective continuous functions; but not all injective continuous functions are
733:
This definition corresponds to the ordinary understanding of a subobject outside category theory. When the category's objects are sets (possibly with additional structure, such as a group structure) and the morphisms are set functions (preserving the additional structure), one thinks of a
725:
equivalence class of so-called "regular monomorphisms" (monomorphisms which can be expressed as an equalizer of two morphisms) and a "quotient object" to be any equivalence class of "regular epimorphisms" (morphisms which can be expressed as a coequalizer of two morphisms)
539: 700: 201: 456: 319: 784: 722: 424: 287: 255: 476: 348: 734:
monomorphism in terms of its image. An equivalence class of monomorphisms is determined by the image of each monomorphism in the class; that is, two monomorphisms
625: 597: 567: 391: 368: 228: 136: 114:
An appropriate categorical definition of "subobject" may vary with context, depending on the goal. One common definition is as follows.
987: 484: 675: 1061: 148: 1034: 1004: 71:. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a 17: 992: 634:; this means that the discussion given is somewhat loose. If the subobject-collection of every object is a 370: 1026: 807: 99: 429: 292: 753: 40: 705: 397: 260: 886: 647: 234: 79: 75:
that describes how one object sits inside another, rather than relying on the use of elements.
44: 461: 327: 944: 545: 1044: 1014: 8: 844: 64: 932: 867: 610: 582: 552: 376: 353: 213: 121: 1030: 1023:
Categorical foundations. Special topics in order, topology, algebra, and sheaf theory
1000: 982: 924:
itself. This is in part because all arrows in such a category will be monomorphisms.
920:
has a greatest element, the subobject partial order of this greatest element will be
635: 571: 746:
are equivalent if and only if their images are the same subset (thus, subobject) of
1040: 1010: 817: 996: 928: 856: 28: 103: 95: 1055: 1025:. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: 604: 631: 140: 91: 60: 786:
of their domains under which corresponding elements of the domains map by
949: 658: 32: 836: 52: 650:, namely that there is a set of morphisms between any two objects). 875: 207: 72: 68: 56: 825: 48: 672:
subspace embeddings. In the category of rings, the inclusion
534:{\displaystyle u\equiv v\iff u\leq v\ {\text{and}}\ v\leq u} 630:
The collection of subobjects of an object may in fact be a
665:
is then an equivalence class of epimorphisms with domain
1021:
Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004).
695:{\displaystyle \mathbb {Z} \hookrightarrow \mathbb {Q} } 47:. The notion is a generalization of concepts such as 756: 708: 678: 613: 585: 555: 487: 464: 432: 400: 379: 356: 330: 295: 263: 237: 216: 151: 124: 896:, ≤), we can form a category with the elements of 778: 716: 694: 619: 591: 561: 533: 470: 450: 418: 385: 362: 342: 313: 281: 249: 222: 195: 130: 835:, or rather the collection of all maps from sets 661:" above and reverse arrows. A quotient object of 646:(this clashes with a different usage of the term 1053: 196:{\displaystyle u:S\to A\ {\text{and}}\ v:T\to A} 1020: 798:; this explains the definition of equivalence. 702:is an epimorphism but is not the quotient of 995:, vol. 5 (2nd ed.), New York, NY: 43:that sits inside another object in the same 851:. The subobject partial order of a set in 750:. In that case there is the isomorphism 501: 497: 139:be an object of some category. Given two 710: 688: 680: 988:Categories for the Working Mathematician 981: 962: 794:, respectively, to the same element of 231:, we define an equivalence relation by 14: 1054: 900:as objects, and a single arrow from 90:. This generalizes concepts such as 607:on the collection of subobjects of 548:on the monomorphisms with codomain 24: 25: 1073: 728: 574:of these monomorphisms are the 257:if there exists an isomorphism 684: 498: 451:{\displaystyle u=v\circ \phi } 410: 314:{\displaystyle u=v\circ \phi } 273: 187: 161: 109: 13: 1: 993:Graduate Texts in Mathematics 975: 779:{\displaystyle g^{-1}\circ f} 657:, replace "monomorphism" by " 717:{\displaystyle \mathbb {Z} } 419:{\displaystyle \phi :S\to T} 282:{\displaystyle \phi :S\to T} 82:concept to a subobject is a 7: 938: 801: 653:To get the dual concept of 10: 1078: 1027:Cambridge University Press 805: 394:—that is, if there exists 1062:Objects (category theory) 808:Category:Quotient objects 638:, the category is called 603:The relation ≤ induces a 250:{\displaystyle u\equiv v} 39:is, roughly speaking, an 955: 570:, and the corresponding 887:partially ordered class 471:{\displaystyle \equiv } 458:. The binary relation 343:{\displaystyle u\leq v} 324:Equivalently, we write 780: 718: 696: 621: 593: 563: 535: 472: 452: 420: 387: 364: 344: 315: 283: 251: 224: 197: 132: 781: 719: 697: 622: 594: 564: 536: 473: 453: 421: 388: 365: 345: 316: 284: 252: 225: 198: 133: 945:Subobject classifier 870:, the subobjects of 754: 706: 676: 611: 583: 553: 546:equivalence relation 485: 462: 430: 398: 377: 354: 328: 293: 261: 235: 214: 149: 122: 855:is just its subset 572:equivalence classes 983:Mac Lane, Saunders 933:subterminal object 874:correspond to the 868:category of groups 776: 714: 692: 617: 589: 559: 531: 468: 448: 416: 383: 360: 340: 311: 279: 247: 220: 193: 128: 927:A subobject of a 824:corresponds to a 820:, a subobject of 620:{\displaystyle A} 592:{\displaystyle A} 562:{\displaystyle A} 521: 517: 513: 386:{\displaystyle v} 363:{\displaystyle u} 223:{\displaystyle A} 177: 173: 169: 131:{\displaystyle A} 16:(Redirected from 1069: 1048: 1017: 969: 968:Mac Lane, p. 126 966: 818:category of sets 785: 783: 782: 777: 769: 768: 723: 721: 720: 715: 713: 701: 699: 698: 693: 691: 683: 626: 624: 623: 618: 598: 596: 595: 590: 568: 566: 565: 560: 540: 538: 537: 532: 519: 518: 515: 511: 477: 475: 474: 469: 457: 455: 454: 449: 425: 423: 422: 417: 392: 390: 389: 384: 369: 367: 366: 361: 349: 347: 346: 341: 320: 318: 317: 312: 288: 286: 285: 280: 256: 254: 253: 248: 229: 227: 226: 221: 202: 200: 199: 194: 175: 174: 171: 167: 137: 135: 134: 129: 88: 87: 21: 1077: 1076: 1072: 1071: 1070: 1068: 1067: 1066: 1052: 1051: 1037: 1007: 997:Springer-Verlag 978: 973: 972: 967: 963: 958: 941: 929:terminal object 810: 804: 761: 757: 755: 752: 751: 742:into an object 731: 709: 707: 704: 703: 687: 679: 677: 674: 673: 655:quotient object 612: 609: 608: 584: 581: 580: 554: 551: 550: 514: 486: 483: 482: 463: 460: 459: 431: 428: 427: 399: 396: 395: 378: 375: 374: 371:factors through 355: 352: 351: 329: 326: 325: 294: 291: 290: 262: 259: 258: 236: 233: 232: 215: 212: 211: 170: 150: 147: 146: 123: 120: 119: 117:In detail, let 112: 104:quotient graphs 100:quotient spaces 96:quotient groups 86:quotient object 85: 84: 29:category theory 23: 22: 18:Quotient object 15: 12: 11: 5: 1075: 1065: 1064: 1050: 1049: 1035: 1018: 1005: 977: 974: 971: 970: 960: 959: 957: 954: 953: 952: 947: 940: 937: 803: 800: 775: 772: 767: 764: 760: 730: 729:Interpretation 727: 712: 690: 686: 682: 616: 588: 558: 542: 541: 530: 527: 524: 510: 507: 504: 500: 496: 493: 490: 467: 447: 444: 441: 438: 435: 415: 412: 409: 406: 403: 382: 359: 339: 336: 333: 310: 307: 304: 301: 298: 278: 275: 272: 269: 266: 246: 243: 240: 219: 204: 203: 192: 189: 186: 183: 180: 166: 163: 160: 157: 154: 127: 111: 108: 31:, a branch of 9: 6: 4: 3: 2: 1074: 1063: 1060: 1059: 1057: 1046: 1042: 1038: 1036:0-521-83414-7 1032: 1028: 1024: 1019: 1016: 1012: 1008: 1006:0-387-98403-8 1002: 998: 994: 990: 989: 984: 980: 979: 965: 961: 951: 948: 946: 943: 942: 936: 934: 930: 925: 923: 919: 915: 911: 907: 903: 899: 895: 891: 888: 883: 881: 877: 873: 869: 865: 860: 858: 854: 850: 846: 842: 838: 834: 830: 827: 823: 819: 815: 809: 799: 797: 793: 789: 773: 770: 765: 762: 758: 749: 745: 741: 737: 726: 669: 668: 664: 660: 656: 651: 649: 648:locally small 645: 644:locally small 641: 637: 633: 628: 614: 606: 605:partial order 601: 599: 586: 577: 573: 569: 556: 547: 528: 525: 522: 508: 505: 502: 494: 491: 488: 481: 480: 479: 465: 445: 442: 439: 436: 433: 413: 407: 404: 401: 393: 380: 372: 357: 337: 334: 331: 322: 308: 305: 302: 299: 296: 276: 270: 267: 264: 244: 241: 238: 230: 217: 209: 190: 184: 181: 178: 164: 158: 155: 152: 145: 144: 143: 142: 141:monomorphisms 138: 125: 115: 107: 105: 101: 97: 93: 92:quotient sets 89: 81: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 19: 1022: 986: 964: 931:is called a 926: 921: 917: 913: 909: 905: 901: 897: 893: 889: 884: 879: 871: 863: 861: 852: 848: 840: 832: 828: 821: 813: 811: 795: 791: 787: 747: 743: 739: 735: 732: 670: 666: 662: 654: 652: 643: 642:or, rarely, 640:well-powered 639: 632:proper class 629: 602: 579: 575: 549: 543: 373: 323: 210: 205: 118: 116: 113: 83: 77: 61:group theory 36: 26: 950:Subquotient 659:epimorphism 478:defined by 110:Definitions 33:mathematics 1045:1034.18001 1015:0906.18001 976:References 837:equipotent 806:See also: 576:subobjects 426:such that 53:set theory 876:subgroups 771:∘ 763:− 685:↪ 526:≤ 506:≤ 499:⟺ 492:≡ 466:≡ 446:ϕ 443:∘ 411:→ 402:ϕ 335:≤ 309:ϕ 306:∘ 274:→ 265:ϕ 242:≡ 188:→ 162:→ 65:subspaces 57:subgroups 37:subobject 1056:Category 985:(1998), 939:See also 885:Given a 847:exactly 802:Examples 208:codomain 73:morphism 69:topology 45:category 857:lattice 106:, etc. 49:subsets 1043:  1033:  1013:  1003:  866:, the 826:subset 816:, the 544:is an 520:  512:  176:  168:  63:, and 41:object 956:Notes 916:. If 845:image 843:with 289:with 206:with 67:from 59:from 51:from 1031:ISBN 1001:ISBN 908:iff 790:and 738:and 80:dual 78:The 35:, a 1041:Zbl 1011:Zbl 904:to 892:= ( 878:of 864:Grp 862:In 853:Set 839:to 831:of 814:Set 812:In 636:set 578:of 516:and 350:if 172:and 27:In 1058:: 1039:. 1029:. 1009:, 999:, 991:, 935:. 912:≤ 882:. 859:. 667:A. 627:. 600:. 321:. 102:, 98:, 94:, 55:, 1047:. 922:P 918:P 914:q 910:p 906:q 902:p 898:P 894:P 890:P 880:A 872:A 849:B 841:B 833:A 829:B 822:A 796:T 792:g 788:f 774:f 766:1 759:g 748:T 744:T 740:g 736:f 711:Z 689:Q 681:Z 663:A 615:A 587:A 557:A 529:u 523:v 509:v 503:u 495:v 489:u 440:v 437:= 434:u 414:T 408:S 405:: 381:v 358:u 338:v 332:u 303:v 300:= 297:u 277:T 271:S 268:: 245:v 239:u 218:A 191:A 185:T 182:: 179:v 165:A 159:S 156:: 153:u 126:A 20:)

Index

Quotient object
category theory
mathematics
object
category
subsets
set theory
subgroups
group theory
subspaces
topology
morphism
dual
quotient sets
quotient groups
quotient spaces
quotient graphs
monomorphisms
codomain
factors through
equivalence relation
equivalence classes
partial order
proper class
set
locally small
epimorphism
Category:Quotient objects
category of sets
subset

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.