Knowledge

Regular polyhedron

Source 📝

2514: 1896: 1728: 2488: 1019: 1942: 1903: 2870: 1452: 1750: 1761: 2859: 2247: 2261: 2228: 375: 2501: 2235: 2199: 396: 382: 368: 2527: 2221: 267: 281: 1873: 2365: 1772: 1188: 2254: 389: 1040: 1179: 2469: 2456: 2430: 2417: 1990: 2443: 2012: 1917: 2881: 2308: 2268: 2214: 2001: 1979: 2023: 2848: 2783: 2315: 2287: 2275: 2797: 2349: 1739: 2811: 2301: 1590: 1953: 1928: 1882: 1859: 2769: 274: 1967: 1311: 1304: 1958: 1933: 1887: 1864: 2837: 2755: 1603: 288: 1297: 1290: 1170: 998: 2294: 165: 172: 144: 2329: 1564: 158: 151: 1577: 1318: 709:. Why these objects were made, or how their creators gained the inspiration for them, is a mystery. There is doubt regarding the mathematical interpretation of these objects, as many have non-platonic forms, and perhaps only one has been found to be a true icosahedron, as opposed to a reinterpretation of the icosahedron dual, the dodecahedron. 1094:
Around the same time as the Pythagoreans, Plato described a theory of matter in which the five elements (earth, air, fire, water and spirit) each comprised tiny copies of one of the five regular solids. Matter was built up from a mixture of these polyhedra, with each substance having different
700:
and may be as much as 4,000 years old. Some of these stones show not only the symmetries of the five Platonic solids, but also some of the relations of duality amongst them (that is, that the centres of the faces of the cube gives the vertices of an octahedron). Examples of these stones are on
1078:
and for a decade tried to establish the Pythagorean ideal by finding a match between the sizes of the polyhedra and the sizes of the planets' orbits. His search failed in its original objective, but out of this research came Kepler's discoveries of the Kepler solids as regular polytopes, the
835:. Some of these star polyhedra may have been discovered by others before Kepler's time, but Kepler was the first to recognise that they could be considered "regular" if one removed the restriction that regular polyhedra be convex. Two hundred years later 1669:
if its combinatorial symmetries are transitive on its flags – that is to say, that any flag can be mapped onto any other under a symmetry of the polyhedron. Abstract regular polytopes remain an active area of research.
878:, or reciprocal, to some facetting of the dual polyhedron. The regular star polyhedra can also be obtained by facetting the Platonic solids. This was first done by Bertrand around the same time that Cayley named them. 1511:
just as polyhedra are inscribed in a sphere (which contains zero ideal points). The sequence extends when hyperbolic tilings are themselves used as facets of noncompact hyperbolic tessellations, as in the
843:(circuits around each corner), enabling him to discover two new regular star polyhedra along with rediscovering Kepler's. These four are the only regular star polyhedra, and have come to be known as the 1083:
for which he is now famous. In Kepler's time only five planets (excluding the earth) were known, nicely matching the number of Platonic solids. Kepler's work, and the discovery since that time of
1665:
is a connected set of elements of each dimension – for a polyhedron that is the body, a face, an edge of the face, a vertex of the edge, and the null polytope. An abstract polytope is said to be
800:(since although all the faces are regular, the square base is not congruent to the triangular sides), or the shape formed by joining two tetrahedra together (since although all faces of that 1039: 2633: 590:
of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.
1121:
In the first decades, Coxeter and Petrie allowed "saddle" vertices with alternating ridges and valleys, enabling them to construct three infinite folded surfaces which they called
768:, used all five in a correspondence between the polyhedra and the nature of the universe as it was then perceived – this correspondence is recorded in Plato's dialogue 997: 3164:(Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.) 1556:. The tetrahedron does not have a projective counterpart as it does not have pairs of parallel faces which can be identified, as the other four Platonic solids do. 598:
The sum of the distances from any point in the interior of a regular polyhedron to the sides is independent of the location of the point (this is an extension of
1018: 483:
The property of having a similar arrangement of faces around each vertex can be replaced by any of the following equivalent conditions in the definition:
792:
A regular polyhedron is a solid (convex) figure with all faces being congruent regular polygons, the same number arranged all alike around each vertex.
847:. It was not until the mid-19th century, several decades after Poinsot published, that Cayley gave them their modern English names: (Kepler's) 1684: 744:
records of the regular convex solids originated from Classical Greece. When these solids were all discovered and by whom is not known, but
1209:
Finite regular skew polyhedra exist in 4-space. These finite regular skew polyhedra in 4-space can be seen as a subset of the faces of
3012:
Hagino, K., Onuma, R., Kawachi, M. and Horiguchi, T. (2013) "Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in
1649:(poset) of elements. The elements of an abstract polyhedron are its body (the maximal element), its faces, edges, vertices and the 896:. These by no means exhaust the numbers of possible forms of crystals (Smith, 1982, p212), of which there are 48. Neither the 525:
A convex regular polyhedron has all of three related spheres (other polyhedra lack at least one kind) which share its centre:
2723:
connected "back-to-back", so that the resulting object has no depth, analogously to how a digon can be constructed with two
1080: 2915:= 2, we obtain the polyhedron {2,2}, which is both a hosohedron and a dihedron. All of these have Euler characteristic 2. 1107:
The 20th century saw a succession of generalisations of the idea of a regular polyhedron, leading to several new classes.
2078:
whose vertices and edges correspond to the vertices and edges of the original polyhedron, and whose faces are the set of
1712: 3206: 1340: 1335: 908:, which is visually almost indistinguishable from a regular dodecahedron. Truly icosahedral crystals may be formed by 3322: 3304: 3288: 3230: 3161: 3126: 3093: 3059: 2970: 1617:
These occur as dual pairs in the same way as the original Platonic solids do. Their Euler characteristics are all 1.
827:
as their secret sign, but they did not use them to construct polyhedra. It was not until the early 17th century that
716:
preceded the Greeks in their awareness of at least some of the regular polyhedra, as evidenced by the discovery near
3259: 1637:
in any number of dimensions. The second half of the century saw the development of abstract algebraic ideas such as
1517: 804:
would be equilateral triangles, that is, congruent and regular, some vertices have 3 triangles and others have 4).
2570: 1715:. In the diagrams below, the hyperbolic tiling images have colors corresponding to those of the polyhedra images. 677:
The SchlÀfli symbol of the dual is just the original written backwards, for example the dual of {5, 3} is {3, 5}.
2987: 97:), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra. 1732: 1765: 1480: 1325: 752:) was the first to give a mathematical description of all five (Van der Waerden, 1954), (Euclid, book XIII). 51:. In classical contexts, many different equivalent definitions are used; a common one is that the faces are 3292: 3225:, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, p. 192, 2518: 2492: 1330: 927:, the most easily produced fullerene, looks more or less spherical, some of the larger varieties (such as C 852: 848: 844: 666: 655: 309: 295: 257: 121: 94: 1754: 1513: 410: 881:
By the end of the 19th century there were therefore nine regular polyhedra – five convex and four star.
686: 618:
pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa.
3368: 2075: 1456: 745: 431: 417: 358: 2016: 1994: 1626: 1116: 1099:
would show this idea to be along the right lines, though not related directly to the regular solids.
1096: 1008: 947: 2709: 2027: 2005: 1638: 1267: 1248: 2924: 1204: 1122: 32: 939:) are hypothesised to take on the form of slightly rounded icosahedra, a few nanometres across. 2929: 1776: 1673:
Five such regular abstract polyhedra, which can not be realised faithfully, were identified by
979:; the shapes of these creatures are indicated by their names. The outer protein shells of many 424: 3220: 2405:
The usual five regular polyhedra can also be represented as spherical tilings (tilings of the
1495:
that can be closed by bending one way or the other. If the tiling is properly scaled, it will
1468: 3311:
E. P. Dutton, New York. (Dover Publications edition, 1958). Chapter X: The Regular Polytopes.
3275: 3046: 1983: 1646: 1529: 866:
The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called
713: 85:
the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the
52: 3173: 1439:, discovered over the preceding century, led to the discovery of more new polyhedra such as 3000: 2400: 2338: 2148: 2034: 1549: 1533: 1436: 1239:
generate regular skew polyhedra as {4, 4 | n}. In the infinite limit these approach a
1218: 1154: 901: 801: 599: 587: 578:
Any shapes with icosahedral or octahedral symmetry will also contain tetrahedral symmetry.
403: 216: 200: 8: 2473: 1568: 897: 644: 207: 1895: 3339: 3187: 3132: 3118: 3085: 2934: 2505: 1743: 1687:
in his paper "The combinatorially regular polyhedra of index 2" (1987). All five have C
1631:
By now, polyhedra were firmly understood as three-dimensional examples of more general
1210: 860: 769: 659: 302: 3063: 2513: 2487: 1727: 1126: 1066:
believed that there was a harmony between the regular polyhedra and the orbits of the
807:
This concept of a regular polyhedron would remain unchallenged for almost 2000 years.
66: 3336: 3318: 3284: 3226: 3157: 3122: 3089: 3055: 2966: 2531: 1679: 1642: 1594: 1541: 1345: 856: 706: 670: 316: 59: 44: 3136: 1451: 3114: 3081: 3025: 2960: 2939: 2728: 2712: 2658: 1941: 1902: 1749: 1674: 1607: 1545: 1484: 1476: 1460: 1440: 1428: 963:, some of whose shells are shaped like various regular polyhedra. Examples include 765: 702: 696:
Stones carved in shapes resembling clusters of spheres or knobs have been found in
2869: 3029: 2705: 2666: 1581: 1537: 1214: 1071: 1004: 943: 875: 832: 828: 615: 506: 116: 55: 48: 40: 36: 2246: 1760: 3314: 3209:
Beitrage zur Algebra und Geometrie 52(2):357–387 · November 2010, Table 3, p.27
3186:
Cutler, Anthony M.; Schulte, Egon (2010). "Regular Polyhedra of Index Two, I".
2639: 2541: 2260: 2227: 2082: 1553: 1432: 1063: 797: 786: 760:(400 BC) with having made models of them, and mentions that one of the earlier 753: 561: 495: 134: 111: 106: 90: 86: 28: 3353: 2858: 2234: 2198: 374: 3362: 2220: 1872: 1850: 1488: 1424: 1261: 1221: 1130: 956: 840: 836: 502: 395: 381: 367: 280: 266: 2500: 2364: 2740: 2724: 2526: 2460: 2079: 1653:
or empty set. These abstract elements can be mapped into ordinary space or
1492: 1029: 960: 909: 905: 824: 761: 725: 648: 544: 3109:
STRAUSS, JAMES H.; STRAUSS, ELLEN G. (2008). "The Structure of Viruses".
2421: 2253: 2071: 2065: 1771: 1711:
faces around each vertex, can be repeated indefinitely as tilings of the
1504: 1240: 1187: 1075: 1025: 626: 513: 388: 179: 3293:
http://caliban.mpiz-koeln.mpg.de/~stueber/haeckel/kunstformen/natur.html
2468: 2455: 2442: 2429: 2416: 2011: 1989: 1178: 2880: 2674: 2547: 2447: 2307: 2267: 2213: 2022: 2000: 1978: 1508: 1464: 952: 867: 637: 603: 193: 24: 2847: 2796: 2782: 2654:≄ 3 enforces that the polygonal faces must have at least three sides. 2348: 2314: 2286: 2274: 1916: 1418: 3344: 2810: 2300: 1738: 1589: 1500: 1054: 920: 889:
Each of the Platonic solids occurs naturally in one form or another.
871: 820: 816: 774:. Euclid's reference to Plato led to their common description as the 729: 537: 2768: 2673:= 2 admits a new infinite class of regular polyhedra, which are the 1966: 1657:
as geometrical figures. Some abstract polyhedra have well-formed or
273: 2985:
Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem",
2836: 2801: 2773: 2754: 2697: 2551: 1952: 1927: 1881: 1858: 1695:
symmetry but can only be realised with half the symmetry, that is C
1633: 1602: 1236: 1046: 988: 912:
which are very rare in nature but can be produced in a laboratory.
697: 557: 530: 287: 3192: 1957: 1932: 1886: 1863: 1703:
or icosahedral symmetry. They are all topologically equivalent to
1169: 987:
is enclosed in a regular icosahedron, as is the head of a typical
3149: 2815: 2720: 1576: 1382: 1364: 1317: 1310: 1303: 1232: 1088: 893: 2665:(2-gons) can be represented as spherical lunes, having non-zero 1296: 1289: 2787: 2736: 2406: 2293: 1704: 1523: 1353: 1228: 1084: 1067: 1050: 916: 831:
realised that pentagrams could be used as the faces of regular
749: 488: 164: 1443:
which could only take regular geometric form in those spaces.
171: 143: 3317:; Regular Polytopes (third edition). Dover Publications Inc. 2759: 2662: 1244: 1163:
Infinite regular skew polyhedra in 3-space (partially drawn)
980: 757: 721: 717: 157: 150: 3354:
YouTube video 'there are 48 regular polyhedra' by jan Misali
2542:
Regular polyhedra that can only exist as spherical polyhedra
1079:
realisation that the orbits of planets are not circles, and
819:(star pentagon) were also known to the ancient Greeks – the 3334: 2434: 2328: 1563: 1528:
Another group of regular polyhedra comprise tilings of the
1516:{7,3,3}; they are inscribed in an equidistant surface (a 2- 789:) planar figure with all edges equal and all corners equal. 732:, and dating back more than 2,500 years (Lindemann, 1987). 633: 186: 39:. A regular polyhedron is highly symmetrical, being all of 2677:. On a spherical surface, the regular polyhedron {2,  984: 487:
The vertices of a convex regular polyhedron all lie on a
1446: 781:
One might characterise the Greek definition as follows:
2731:, a dihedron can exist as nondegenerate form, with two 915:
A more recent discovery is of a series of new types of
904:
are amongst them, but crystals can have the shape of a
2642:
known to antiquity are the only integer solutions for
3264:
Comptes rendus des séances de l'Académie des Sciences
3262:(1858). Note sur la théorie des polyÚdres réguliers, 2573: 1491:
that act like finite polyhedra. Such tilings have an
874:(or faceting). Every stellation of one polyhedron is 602:.) However, the converse does not hold, not even for 2735:-sided faces covering the sphere, each face being a 621:
The regular polyhedra show this duality as follows:
2556:
For a regular polyhedron whose SchlÀfli symbol is {
1419:
Regular polyhedra in non-Euclidean and other spaces
1129:{l,m|n} for these figures, with {l,m} implying the 892:The tetrahedron, cube, and octahedron all occur as 609: 125:; and five regular compounds of regular polyhedra: 16:
Polyhedron with regular congruent polygons as faces
2627: 2564:}, the number of polygonal faces may be found by: 1095:proportions in the mix. Two thousand years later 942:Regular polyhedra appear in biology as well. The 870:. The reciprocal process to stellation is called 3360: 3309:An Introduction to the Geometry of n Dimensions. 58:which are assembled in the same way around each 3218: 951:has a regular dodecahedral structure, about 10 3108: 884: 3185: 3040: 3038: 2693:. All these lunes share two common vertices. 1620: 1552:, and are the projective counterparts of the 1507:. These Euclidean tilings are inscribed in a 1467:. One such facet is shown in as seen in this 1074:studied data on planetary motion compiled by 564:, which are named after the Platonic solids: 560:of all the polyhedra. They lie in just three 2833: 2751: 2628:{\displaystyle N_{2}={\frac {4n}{2m+2n-mn}}} 2320: 1524:Regular tilings of the real projective plane 796:This definition rules out, for example, the 687:Regular polytope § History of discovery 1157:, vertices zig-zagging between two planes. 1110: 251: 3299:Geometrical And Structural Crystallography 3035: 2965:. Cambridge University Press. p. 77. 2704:, 2} (2-hedron) in three-dimensional 1102: 359:Polytope compound § Regular compounds 65:A regular polyhedron is identified by its 3191: 3006: 2685:abutting lunes, with interior angles of 2 2661:, this restriction may be relaxed, since 1908: 1255:Finite regular skew polyhedra in 4-space 1198: 1091:, have invalidated the Pythagorean idea. 810: 3075: 2958: 1450: 1231:, two dual solutions are related to the 629:is self-dual, i.e. it pairs with itself. 478: 100: 81:is the number of sides of each face and 3219:McMullen, Peter; Schulte, Egon (2002), 581: 3361: 3243: 3241: 2394: 1227:Two dual solutions are related to the 701:display in the John Evans room of the 3335: 3154:The Beauty of Geometry: Twelve Essays 1447:Regular polyhedra in hyperbolic space 983:form regular polyhedra. For example, 756:(Coxeter, 1948, Section 1.9) credits 520: 3174:The Regular Polyhedra (of index two) 2747:if the vertices are equally spaced. 1049:typically has a regular icosahedral 1012:has a regular dodecahedral structure 352: 3238: 1707:. Their construction, by arranging 1463:, {6,3}, facets with vertices on a 1235:, and an infinite set of self-dual 1033:has a regular icosahedral structure 955:across. In the early 20th century, 556:The regular polyhedra are the most 13: 3207:Regular Polyhedra of Index Two, II 3119:10.1016/b978-0-12-373741-0.50005-2 3086:10.1016/b978-0-12-384684-6.00002-1 3080:. Elsevier. 2012. pp. 46–62. 815:Regular star polygons such as the 593: 473: 128: 14: 3380: 3328: 959:described a number of species of 586:The five Platonic solids have an 2879: 2868: 2857: 2846: 2835: 2809: 2795: 2781: 2767: 2753: 2657:When considering polyhedra as a 2525: 2512: 2499: 2486: 2467: 2454: 2441: 2428: 2415: 2363: 2347: 2327: 2313: 2306: 2299: 2292: 2285: 2273: 2266: 2259: 2252: 2245: 2233: 2226: 2219: 2212: 2197: 2021: 2010: 1999: 1988: 1977: 1965: 1956: 1951: 1940: 1931: 1926: 1915: 1901: 1894: 1885: 1880: 1871: 1862: 1857: 1770: 1759: 1748: 1737: 1726: 1641:, culminating in the idea of an 1601: 1588: 1575: 1562: 1316: 1309: 1302: 1295: 1288: 1186: 1177: 1168: 1038: 1017: 996: 724:) in the late 19th century of a 610:Duality of the regular polyhedra 516:of the polyhedron are congruent. 394: 387: 380: 373: 366: 286: 279: 272: 265: 170: 163: 156: 149: 142: 109:regular polyhedra, known as the 3212: 3200: 3179: 2988:The College Mathematics Journal 1661:realisations, others do not. A 1520:), which has two ideal points. 3167: 3143: 3102: 3069: 2994: 2979: 2952: 2059: 1733:Medial rhombic triacontahedron 1481:paracompact regular honeycombs 1: 2945: 2074:of a regular polyhedron is a 1766:Ditrigonal dodecadodecahedron 1125:. Coxeter offered a modified 712:It is also possible that the 691: 574:Icosahedral (or dodecahedral) 3156:, Dover Publications, 1999, 3113:. Elsevier. pp. 35–62. 3030:10.1371/journal.pone.0081749 2519:Great stellated dodecahedron 2493:Small stellated dodecahedron 2484: 2482: 2413: 2411: 2280: 2240: 2210: 2190: 2133: 2113: 2032: 1972: 1848: 1816: 1781: 1721: 1719: 1560: 1166: 1081:the laws of planetary motion 923:(see Curl, 1991). Although C 853:great stellated dodecahedron 849:small stellated dodecahedron 667:great stellated dodecahedron 656:small stellated dodecahedron 323: 310:Great stellated dodecahedron 296:Small stellated dodecahedron 293: 263: 261: 214: 177: 140: 138: 7: 3279:. Available as Haeckel, E. 3050:. Available as Haeckel, E. 2959:Cromwell, Peter R. (1997). 2918: 2907:} is dual to the dihedron { 2715:consisting of two (planar) 1755:Medial triambic icosahedron 1514:heptagonal tiling honeycomb 1435:) and other spaces such as 1153:. Their vertex figures are 1141:-gons around a vertex. The 885:Regular polyhedra in nature 551: 498:of the polyhedron are equal 10: 3385: 3222:Abstract Regular Polytopes 2545: 2398: 2063: 1624: 1621:Abstract regular polyhedra 1457:hexagonal tiling honeycomb 1202: 1114: 910:quasicrystalline materials 684: 680: 547:, tangent to all vertices. 356: 255: 132: 3111:Viruses and Human Disease 3014:Braarudosphaera bigelowii 2991:37(5), 2006, pp. 390–391. 2206: 2203: 2194: 2191: 1627:Abstract regular polytope 1279: 1273: 1266: 1259: 1249:stereographic projections 1162: 1117:Regular skew apeirohedron 1009:Braarudosphaera bigelowii 948:Braarudosphaera bigelowii 735: 3001:The Scottish Solids Hoax 2739:, and vertices around a 1639:Polyhedral combinatorics 1268:Stereographic projection 1111:Regular skew apeirohedra 977:Circorrhegma dodecahedra 845:Kepler–Poinsot polyhedra 785:A regular polygon is a ( 258:Kepler–Poinsot polyhedra 252:Kepler–Poinsot polyhedra 122:Kepler–Poinsot polyhedra 95:Kepler–Poinsot polyhedra 2925:Quasiregular polyhedron 1205:Regular skew polyhedron 1103:Further generalisations 1070:. In the 17th century, 919:molecule, known as the 673:are dual to each other. 662:are dual to each other. 651:are dual to each other. 640:are dual to each other. 540:, tangent to all edges. 533:, tangent to all faces. 3301:. John Wiley and Sons. 3283:, Prestel USA (1998), 3054:, Prestel USA (1998), 2930:Semiregular polyhedron 2629: 1777:Excavated dodecahedron 1548:. They are (globally) 1483:have Euclidean tiling 1472: 1199:Regular skew polyhedra 1123:regular skew polyhedra 1097:Dalton's atomic theory 973:Lithocubus geometricus 811:Regular star polyhedra 505:of the polyhedron are 3305:Sommerville, D. M. Y. 3297:Smith, J. V. (1982). 3276:Kunstformen der Natur 3047:Kunstformen der Natur 3016:(Prymnesiophyceae)". 2874:Pentagonal hosohedron 2650:≄ 3. The restriction 2630: 2107:Petrial dodecahedron 1647:partially ordered set 1625:Further information: 1530:real projective plane 1454: 1155:regular skew polygons 1062:In ancient times the 1030:Circogonia icosahedra 969:Circogonia icosahedra 965:Circoporus octahedrus 571:Octahedral (or cubic) 479:Equivalent properties 101:The regular polyhedra 3340:"Regular Polyhedron" 3273:Haeckel, E. (1904). 3064:Kurt StĂŒber's Biolib 3062:. Online version at 3044:Haeckel, E. (1904). 2911:,2}. Note that when 2885:Hexagonal hosohedron 2708:can be considered a 2681:} is represented as 2571: 2401:Spherical polyhedron 2110:Petrial icosahedron 1683:(1977) and again by 1550:projective polyhedra 1532:. These include the 1219:regular skew polygon 902:regular dodecahedron 802:triangular bipyramid 588:Euler characteristic 582:Euler characteristic 89:), and four regular 3281:Art forms in nature 3052:Art forms in nature 2852:Trigonal hosohedron 2395:Spherical polyhedra 2104:Petrial octahedron 2097:Petrial tetrahedron 2090: 1469:PoincarĂ© disk model 1256: 1213:. They have planar 1211:uniform 4-polytopes 898:regular icosahedron 740:The earliest known 3337:Weisstein, Eric W. 3176:, David A. Richter 2935:Uniform polyhedron 2903:The hosohedron {2, 2841:Digonal hosohedron 2625: 2506:Great dodecahedron 2088: 1744:Dodecadodecahedron 1473: 1254: 861:great dodecahedron 855:, and (Poinsot's) 839:also allowed star 660:great dodecahedron 536:An intersphere or 521:Concentric spheres 303:Great dodecahedron 21:regular polyhedron 3369:Regular polyhedra 3270:, pp. 79–82. 3249:Regular polytopes 2901: 2900: 2863:Square hosohedron 2623: 2539: 2538: 2532:Great icosahedron 2481: 2480: 2392: 2391: 2089:Regular petrials 2055: 2054: 1680:Regular Polytopes 1643:abstract polytope 1615: 1614: 1595:Hemi-dodecahedron 1542:hemi-dodecahedron 1441:complex polyhedra 1416: 1415: 1196: 1195: 1053:(head) about 100 857:great icosahedron 707:Oxford University 671:great icosahedron 600:Viviani's theorem 471: 470: 353:Regular compounds 350: 349: 317:Great icosahedron 249: 248: 45:vertex-transitive 3376: 3350: 3349: 3252: 3245: 3236: 3235: 3216: 3210: 3204: 3198: 3197: 3195: 3183: 3177: 3171: 3165: 3147: 3141: 3140: 3106: 3100: 3099: 3073: 3067: 3042: 3033: 3010: 3004: 2998: 2992: 2983: 2977: 2976: 2956: 2940:Regular polytope 2883: 2872: 2861: 2850: 2839: 2813: 2799: 2785: 2771: 2757: 2750: 2749: 2729:spherical tiling 2727:. However, as a 2688: 2659:spherical tiling 2634: 2632: 2631: 2626: 2624: 2622: 2596: 2588: 2583: 2582: 2529: 2516: 2503: 2490: 2483: 2471: 2458: 2445: 2432: 2419: 2412: 2367: 2351: 2331: 2317: 2310: 2303: 2296: 2289: 2277: 2270: 2263: 2256: 2249: 2237: 2230: 2223: 2216: 2207:6 skew decagons 2204:4 skew hexagons 2201: 2091: 2087: 2025: 2014: 2003: 1992: 1981: 1969: 1960: 1955: 1944: 1935: 1930: 1919: 1905: 1898: 1889: 1884: 1875: 1866: 1861: 1774: 1763: 1752: 1741: 1730: 1720: 1713:hyperbolic plane 1675:H. S. M. Coxeter 1608:Hemi-icosahedron 1605: 1592: 1579: 1566: 1559: 1558: 1546:hemi-icosahedron 1501:asymptotic limit 1477:hyperbolic space 1461:hexagonal tiling 1411: 1404: 1396: 1320: 1313: 1306: 1299: 1292: 1257: 1253: 1243:and look like a 1190: 1181: 1172: 1160: 1159: 1042: 1021: 1000: 823:was used by the 766:Timaeus of Locri 703:Ashmolean Museum 507:regular polygons 398: 391: 384: 377: 370: 363: 362: 290: 283: 276: 269: 262: 174: 167: 160: 153: 146: 139: 56:regular polygons 3384: 3383: 3379: 3378: 3377: 3375: 3374: 3373: 3359: 3358: 3331: 3315:Coxeter, H.S.M. 3291:, or online at 3256: 3255: 3246: 3239: 3233: 3217: 3213: 3205: 3201: 3184: 3180: 3172: 3168: 3148: 3144: 3129: 3107: 3103: 3096: 3074: 3070: 3043: 3036: 3011: 3007: 2999: 2995: 2984: 2980: 2973: 2957: 2953: 2948: 2921: 2886: 2884: 2875: 2873: 2864: 2862: 2853: 2851: 2842: 2840: 2819: 2814: 2805: 2800: 2791: 2786: 2777: 2772: 2763: 2758: 2706:Euclidean space 2686: 2640:Platonic solids 2597: 2589: 2587: 2578: 2574: 2572: 2569: 2568: 2554: 2544: 2534: 2530: 2521: 2517: 2508: 2504: 2495: 2491: 2476: 2472: 2463: 2459: 2450: 2446: 2437: 2433: 2424: 2420: 2403: 2397: 2388: 2382: 2376: 2372: 2368: 2360: 2356: 2352: 2344: 2336: 2332: 2323: 2196: 2098: 2083:Petrie polygons 2068: 2062: 2026: 2015: 2004: 1993: 1982: 1964: 1950: 1948: 1939: 1925: 1923: 1914: 1893: 1879: 1870: 1856: 1813: 1807: 1801: 1795: 1789: 1775: 1764: 1753: 1742: 1731: 1702: 1698: 1694: 1690: 1629: 1623: 1610: 1606: 1597: 1593: 1584: 1582:Hemi-octahedron 1580: 1571: 1567: 1554:Platonic solids 1538:hemi-octahedron 1526: 1459:, {6,3,3}, has 1449: 1421: 1407: 1406: 1399: 1398: 1392: 1388: 1386: 1377: 1375: 1370: 1368: 1359: 1357: 1346:{4, 4 | n} 1341:{8, 4 | 3} 1336:{4, 8 | 3} 1331:{6, 4 | 3} 1326:{4, 6 | 3} 1283: 1277: 1215:regular polygon 1207: 1201: 1191: 1182: 1173: 1127:SchlĂ€fli symbol 1119: 1113: 1105: 1072:Johannes Kepler 1058: 1043: 1034: 1022: 1013: 1005:coccolithophore 1001: 944:coccolithophore 938: 934: 930: 926: 887: 829:Johannes Kepler 813: 776:Platonic solids 738: 694: 689: 683: 612: 596: 594:Interior points 584: 562:symmetry groups 554: 523: 496:dihedral angles 481: 476: 474:Characteristics 434: 427: 421:10 {3, 3} 420: 413: 411:Five tetrahedra 406: 361: 355: 319: 312: 305: 298: 260: 254: 210: 203: 196: 189: 182: 137: 131: 129:Platonic solids 115:; four regular 112:Platonic solids 105:There are five 103: 87:Platonic solids 67:SchlĂ€fli symbol 49:face-transitive 41:edge-transitive 17: 12: 11: 5: 3382: 3372: 3371: 3357: 3356: 3351: 3330: 3329:External links 3327: 3326: 3325: 3312: 3302: 3295: 3271: 3254: 3253: 3237: 3231: 3211: 3199: 3178: 3166: 3142: 3127: 3101: 3094: 3078:Virus Taxonomy 3076:"Myoviridae". 3068: 3034: 3024:(12): e81749. 3005: 2993: 2978: 2971: 2950: 2949: 2947: 2944: 2943: 2942: 2937: 2932: 2927: 2920: 2917: 2899: 2898: 2891: 2888: 2877: 2866: 2855: 2844: 2832: 2831: 2824: 2821: 2807: 2793: 2779: 2765: 2636: 2635: 2621: 2618: 2615: 2612: 2609: 2606: 2603: 2600: 2595: 2592: 2586: 2581: 2577: 2543: 2540: 2537: 2536: 2523: 2510: 2497: 2479: 2478: 2465: 2452: 2439: 2426: 2399:Main article: 2396: 2393: 2390: 2389: 2386: 2383: 2380: 2377: 2374: 2370: 2361: 2358: 2354: 2345: 2342: 2334: 2325: 2319: 2318: 2311: 2304: 2297: 2290: 2283: 2279: 2278: 2271: 2264: 2257: 2250: 2243: 2239: 2238: 2231: 2224: 2217: 2209: 2208: 2205: 2202: 2195:3 skew squares 2193: 2189: 2188: 2181: 2174: 2167: 2160: 2153: 2132: 2131: 2128: 2125: 2122: 2119: 2116: 2112: 2111: 2108: 2105: 2102: 2099: 2095: 2064:Main article: 2061: 2058: 2057: 2056: 2053: 2052: 2049: 2046: 2043: 2040: 2037: 2031: 2030: 2019: 2008: 1997: 1986: 1975: 1971: 1970: 1961: 1945: 1936: 1920: 1911: 1907: 1906: 1899: 1890: 1876: 1867: 1853: 1847: 1846: 1843: 1840: 1837: 1834: 1831: 1815: 1814: 1811: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1780: 1779: 1768: 1757: 1746: 1735: 1724: 1700: 1696: 1692: 1688: 1622: 1619: 1613: 1612: 1599: 1586: 1573: 1525: 1522: 1489:vertex figures 1448: 1445: 1437:complex spaces 1420: 1417: 1414: 1413: 1390: 1379: 1372: 1361: 1349: 1348: 1343: 1338: 1333: 1328: 1322: 1321: 1314: 1307: 1300: 1293: 1285: 1284: 1281: 1278: 1275: 1271: 1270: 1265: 1251:into 3-space. 1222:vertex figures 1203:Main article: 1200: 1197: 1194: 1193: 1184: 1175: 1165: 1164: 1115:Main article: 1112: 1109: 1104: 1101: 1060: 1059: 1044: 1037: 1035: 1023: 1016: 1014: 1002: 995: 936: 932: 928: 924: 886: 883: 841:vertex figures 833:star polyhedra 812: 809: 798:square pyramid 794: 793: 790: 754:H.S.M. Coxeter 737: 734: 693: 690: 682: 679: 675: 674: 663: 652: 641: 630: 611: 608: 595: 592: 583: 580: 576: 575: 572: 569: 553: 550: 549: 548: 541: 534: 522: 519: 518: 517: 510: 503:vertex figures 499: 492: 480: 477: 475: 472: 469: 468: 462: 456: 450: 444: 437: 436: 435:5 {3, 4} 432:Five octahedra 429: 428:5 {4, 3} 422: 418:Ten tetrahedra 415: 414:5 {3, 3} 408: 407:2 {3, 3} 404:Two tetrahedra 400: 399: 392: 385: 378: 371: 357:Main article: 354: 351: 348: 347: 341: 335: 329: 322: 321: 320:{3, 5/2} 314: 313:{5/2, 3} 307: 306:{5, 5/2} 300: 299:{5/2, 5} 292: 291: 284: 277: 270: 256:Main article: 253: 250: 247: 246: 240: 234: 228: 222: 213: 212: 205: 198: 191: 184: 176: 175: 168: 161: 154: 147: 135:Platonic solid 133:Main article: 130: 127: 117:star polyhedra 102: 99: 91:star polyhedra 29:symmetry group 15: 9: 6: 4: 3: 2: 3381: 3370: 3367: 3366: 3364: 3355: 3352: 3347: 3346: 3341: 3338: 3333: 3332: 3324: 3323:0-486-61480-8 3320: 3316: 3313: 3310: 3306: 3303: 3300: 3296: 3294: 3290: 3289:3-7913-1990-6 3286: 3282: 3278: 3277: 3272: 3269: 3265: 3261: 3258: 3257: 3250: 3244: 3242: 3234: 3232:9780521814966 3228: 3224: 3223: 3215: 3208: 3203: 3194: 3189: 3182: 3175: 3170: 3163: 3162:0-486-40919-8 3159: 3155: 3151: 3146: 3138: 3134: 3130: 3128:9780123737410 3124: 3120: 3116: 3112: 3105: 3097: 3095:9780123846846 3091: 3087: 3083: 3079: 3072: 3065: 3061: 3060:3-7913-1990-6 3057: 3053: 3049: 3048: 3041: 3039: 3031: 3027: 3023: 3019: 3015: 3009: 3002: 2997: 2990: 2989: 2982: 2974: 2972:0-521-66405-5 2968: 2964: 2963: 2955: 2951: 2941: 2938: 2936: 2933: 2931: 2928: 2926: 2923: 2922: 2916: 2914: 2910: 2906: 2896: 2892: 2889: 2882: 2878: 2871: 2867: 2860: 2856: 2849: 2845: 2838: 2834: 2829: 2825: 2822: 2817: 2812: 2808: 2803: 2798: 2794: 2789: 2784: 2780: 2775: 2770: 2766: 2761: 2756: 2752: 2748: 2746: 2742: 2738: 2734: 2730: 2726: 2725:line segments 2722: 2718: 2714: 2711: 2707: 2703: 2699: 2694: 2692: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2655: 2653: 2649: 2645: 2641: 2619: 2616: 2613: 2610: 2607: 2604: 2601: 2598: 2593: 2590: 2584: 2579: 2575: 2567: 2566: 2565: 2563: 2559: 2553: 2549: 2533: 2528: 2524: 2520: 2515: 2511: 2507: 2502: 2498: 2494: 2489: 2485: 2475: 2470: 2466: 2462: 2457: 2453: 2449: 2444: 2440: 2436: 2431: 2427: 2423: 2418: 2414: 2410: 2408: 2402: 2384: 2378: 2366: 2362: 2350: 2346: 2340: 2330: 2326: 2321: 2316: 2312: 2309: 2305: 2302: 2298: 2295: 2291: 2288: 2284: 2281: 2276: 2272: 2269: 2265: 2262: 2258: 2255: 2251: 2248: 2244: 2241: 2236: 2232: 2229: 2225: 2222: 2218: 2215: 2211: 2200: 2186: 2182: 2179: 2175: 2172: 2168: 2165: 2161: 2158: 2154: 2152: 2151: 2146: 2142: 2138: 2134: 2129: 2126: 2123: 2120: 2117: 2114: 2109: 2106: 2103: 2101:Petrial cube 2100: 2096: 2093: 2092: 2086: 2084: 2081: 2077: 2073: 2067: 2050: 2047: 2044: 2041: 2038: 2036: 2033: 2029: 2024: 2020: 2018: 2013: 2009: 2007: 2002: 1998: 1996: 1991: 1987: 1985: 1980: 1976: 1973: 1968: 1962: 1959: 1954: 1949:12 pentagrams 1946: 1943: 1937: 1934: 1929: 1924:12 pentagrams 1921: 1918: 1912: 1909: 1904: 1900: 1897: 1891: 1888: 1883: 1877: 1874: 1868: 1865: 1860: 1854: 1852: 1851:Vertex figure 1849: 1844: 1841: 1838: 1835: 1832: 1829: 1825: 1821: 1817: 1809: 1803: 1798:Dual of {5,6} 1797: 1791: 1785: 1782: 1778: 1773: 1769: 1767: 1762: 1758: 1756: 1751: 1747: 1745: 1740: 1736: 1734: 1729: 1725: 1722: 1718: 1717: 1716: 1714: 1710: 1706: 1686: 1682: 1681: 1676: 1671: 1668: 1664: 1660: 1656: 1652: 1651:null polytope 1648: 1644: 1640: 1636: 1635: 1628: 1618: 1609: 1604: 1600: 1596: 1591: 1587: 1583: 1578: 1574: 1570: 1565: 1561: 1557: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1521: 1519: 1515: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1470: 1466: 1462: 1458: 1453: 1444: 1442: 1438: 1434: 1430: 1426: 1425:non-Euclidean 1410: 1403: 1395: 1391: 1389:288 vertices 1384: 1380: 1378:144 vertices 1374:288 {4} faces 1373: 1366: 1362: 1355: 1351: 1350: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1323: 1319: 1315: 1312: 1308: 1305: 1301: 1298: 1294: 1291: 1287: 1286: 1272: 1269: 1263: 1262:Coxeter plane 1258: 1252: 1250: 1246: 1242: 1238: 1234: 1230: 1225: 1223: 1220: 1216: 1212: 1206: 1189: 1185: 1180: 1176: 1171: 1167: 1161: 1158: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1131:vertex figure 1128: 1124: 1118: 1108: 1100: 1098: 1092: 1090: 1086: 1082: 1077: 1073: 1069: 1065: 1056: 1052: 1048: 1041: 1036: 1032: 1031: 1027: 1020: 1015: 1011: 1010: 1006: 999: 994: 993: 992: 990: 986: 982: 978: 974: 970: 966: 962: 958: 957:Ernst Haeckel 954: 950: 949: 945: 940: 922: 918: 913: 911: 907: 903: 899: 895: 890: 882: 879: 877: 873: 869: 864: 862: 858: 854: 850: 846: 842: 838: 837:Louis Poinsot 834: 830: 826: 822: 818: 808: 805: 803: 799: 791: 788: 784: 783: 782: 779: 777: 773: 772: 767: 763: 759: 755: 751: 747: 743: 733: 731: 727: 723: 720:(in Northern 719: 715: 710: 708: 704: 699: 688: 678: 672: 668: 664: 661: 657: 653: 650: 646: 642: 639: 635: 631: 628: 624: 623: 622: 619: 617: 607: 605: 601: 591: 589: 579: 573: 570: 567: 566: 565: 563: 559: 546: 542: 539: 535: 532: 528: 527: 526: 515: 511: 508: 504: 500: 497: 493: 490: 486: 485: 484: 466: 463: 460: 457: 454: 451: 448: 445: 442: 439: 438: 433: 430: 426: 423: 419: 416: 412: 409: 405: 402: 401: 397: 393: 390: 386: 383: 379: 376: 372: 369: 365: 364: 360: 345: 342: 339: 336: 333: 330: 327: 324: 318: 315: 311: 308: 304: 301: 297: 294: 289: 285: 282: 278: 275: 271: 268: 264: 259: 244: 241: 238: 235: 232: 229: 226: 223: 220: 219: 215: 209: 206: 202: 199: 195: 192: 188: 185: 181: 178: 173: 169: 166: 162: 159: 155: 152: 148: 145: 141: 136: 126: 124: 123: 118: 114: 113: 108: 98: 96: 92: 88: 84: 80: 76: 72: 69:of the form { 68: 63: 61: 57: 54: 50: 46: 42: 38: 34: 30: 26: 22: 3343: 3308: 3298: 3280: 3274: 3267: 3263: 3260:Bertrand, J. 3248: 3221: 3214: 3202: 3181: 3169: 3153: 3145: 3110: 3104: 3077: 3071: 3051: 3045: 3021: 3017: 3013: 3008: 2996: 2986: 2981: 2961: 2954: 2912: 2908: 2904: 2902: 2894: 2827: 2744: 2741:great circle 2732: 2716: 2701: 2695: 2690: 2682: 2678: 2670: 2656: 2651: 2647: 2643: 2637: 2561: 2557: 2555: 2461:Dodecahedron 2404: 2184: 2177: 2170: 2163: 2156: 2149: 2144: 2140: 2136: 2069: 1963:20 hexagrams 1947:12 pentagons 1922:12 pentagons 1827: 1823: 1819: 1708: 1678: 1677:in his book 1672: 1666: 1662: 1658: 1654: 1650: 1632: 1630: 1616: 1527: 1503:at a single 1496: 1493:angle defect 1474: 1422: 1408: 1401: 1393: 1371:30 vertices 1360:20 vertices 1264:projections 1226: 1208: 1150: 1146: 1142: 1138: 1134: 1120: 1106: 1093: 1064:Pythagoreans 1061: 1028: 1007: 976: 972: 968: 964: 961:radiolarians 946: 941: 914: 906:pyritohedron 891: 888: 880: 865: 825:Pythagoreans 814: 806: 795: 780: 775: 770: 762:Pythagoreans 741: 739: 726:dodecahedron 711: 695: 676: 649:dodecahedron 620: 613: 597: 585: 577: 555: 545:circumsphere 524: 514:solid angles 482: 464: 458: 452: 446: 440: 343: 337: 331: 325: 242: 236: 230: 224: 217: 211:{3, 5} 201:Dodecahedron 120: 110: 104: 82: 78: 74: 70: 64: 33:transitively 20: 18: 3066:(in german) 2669:. Allowing 2474:Icosahedron 2422:Tetrahedron 2183:(12,30,6), 2176:(20,30,6), 2076:regular map 2072:Petrie dual 2066:Petrie dual 2060:Petrie dual 1938:20 hexagons 1845:(20,60,20) 1723:Polyhedron 1685:J. M. Wills 1505:ideal point 1423:Studies of 1260:Orthogonal 1241:duocylinder 1217:faces, but 1076:Tycho Brahe 1026:radiolarian 953:micrometres 645:icosahedron 627:tetrahedron 568:Tetrahedral 558:symmetrical 208:Icosahedron 204:{5, 3} 197:{3, 4} 190:{4, 3} 183:{3, 3} 180:Tetrahedron 2946:References 2802:Pentagonal 2737:hemisphere 2710:degenerate 2696:A regular 2548:Hosohedron 2546:See also: 2448:Octahedron 2282:Animation 2169:(6,12,4), 2162:(8,12,4), 1878:{5}, {5/2} 1855:{5}, {5/2} 1842:(20,60,24) 1839:(24,60,20) 1836:(30,60,24) 1833:(24,60,30) 1786:Dual {5,4} 1518:hypercycle 1509:horosphere 1465:horosphere 1429:hyperbolic 1055:nanometers 921:fullerenes 868:stellation 746:Theaetetus 692:Prehistory 685:See also: 638:octahedron 604:tetrahedra 425:Five cubes 194:Octahedron 25:polyhedron 3345:MathWorld 3247:Coxeter, 3193:1005.4911 2962:Polyhedra 2816:Hexagonal 2675:hosohedra 2614:− 2155:(4,6,3), 1913:30 rhombi 1634:polytopes 1569:Hemi-cube 1534:hemi-cube 1412:vertices 1397:{4} faces 1387:576 edges 1376:576 edges 1247:in their 1237:duoprisms 872:facetting 821:pentagram 817:pentagram 730:soapstone 714:Etruscans 538:midsphere 77:}, where 53:congruent 3363:Category 3307:(1930). 3137:80803624 3018:PLoS One 2919:See also 2818:dihedron 2804:dihedron 2790:dihedron 2776:dihedron 2774:Trigonal 2762:dihedron 2743:. It is 2721:polygons 2698:dihedron 2646:≄ 3 and 2552:Dihedron 2535:{3,5/2} 2522:{5/2,3} 2509:{5,5/2} 2496:{5/2,5} 2324:figures 1659:faithful 1655:realised 1433:elliptic 1369:60 edges 1358:60 edges 1192:{6,6|3} 1183:{6,4|4} 1174:{4,6|4} 1145:defines 1137:regular 1047:myovirus 989:myovirus 900:nor the 894:crystals 750:Athenian 728:made of 698:Scotland 552:Symmetry 531:insphere 512:All the 501:All the 494:All the 3251:, p. 12 3150:Coxeter 2760:Digonal 2745:regular 2719:-sided 2560:,  2373:= {6,4} 2357:= {6,3} 2341:= {4,3} 2339:{4,3}/2 2322:Related 2115:Symbol 1974:Tiling 1892:(5.5/3) 1869:(5.5/2) 1705:toroids 1667:regular 1233:24-cell 1149:-gonal 1133:, with 1089:Neptune 1068:planets 1057:across. 981:viruses 771:Timaeus 742:written 681:History 35:on its 3321:  3287:  3229:  3160:  3135:  3125:  3092:  3058:  2969:  2887:{2,6} 2876:{2,5} 2865:{2,4} 2854:{2,3} 2843:{2,2} 2820:{6,2} 2806:{5,2} 2792:{4,2} 2788:Square 2778:{3,2} 2764:{2,2} 2663:digons 2477:{3,5} 2464:{5,3} 2451:{3,4} 2438:{4,3} 2425:{3,3} 2407:sphere 2385:{10,5} 2379:{10,3} 2242:Image 2192:Faces 2187:= −12 2185:χ 2178:χ 2171:χ 2164:χ 2157:χ 2150:χ 2130:{3,5} 2127:{5,3} 2124:{3,4} 2121:{4,3} 2118:{3,3} 2028:{6, 6} 2017:{5, 6} 2006:{6, 5} 1995:{5, 4} 1984:{4, 5} 1910:Faces 1611:{5,3} 1598:{3,5} 1585:{3,4} 1572:{4,3} 1544:, and 1499:as an 1485:facets 1229:5-cell 1085:Uranus 1051:capsid 917:carbon 787:convex 736:Greeks 489:sphere 119:, the 107:convex 60:vertex 27:whose 3188:arXiv 3133:S2CID 2713:prism 2375:(4,0) 2369:{6,4} 2359:(2,0) 2353:{6,3} 2343:(2,0) 2333:{4,3} 2094:Name 1810:{6,6} 1804:{5,6} 1792:{5,4} 1783:Type 1645:as a 1497:close 1475:In H 1405:edges 1385:faces 1367:faces 1356:faces 1245:torus 1151:holes 935:and C 758:Plato 722:Italy 718:Padua 614:In a 467:= 10 461:= −10 93:(the 37:flags 31:acts 23:is a 3319:ISBN 3285:ISBN 3227:ISBN 3158:ISBN 3123:ISBN 3090:ISBN 3056:ISBN 2967:ISBN 2890:... 2830:,2} 2823:... 2667:area 2638:The 2550:and 2435:Cube 2180:= −4 2173:= −2 2080:skew 2070:The 2051:−20 2048:−16 2045:−16 1663:flag 1487:and 1455:The 1431:and 1381:144 1087:and 1024:The 1003:The 975:and 876:dual 859:and 851:and 748:(an 669:and 665:The 658:and 654:The 647:and 643:The 636:and 634:cube 632:The 625:The 616:dual 449:= 10 346:= 2 334:= −6 328:= −6 245:= 2 187:Cube 47:and 3115:doi 3082:doi 3026:doi 2893:{2, 2700:, { 2409:): 2166:= 0 2159:= 1 2147:), 2042:−6 2039:−6 1383:{8} 1365:{6} 1363:20 1354:{4} 1352:30 985:HIV 937:960 933:480 931:, C 929:240 705:at 529:An 455:= 0 443:= 4 340:= 2 239:= 2 233:= 2 227:= 2 221:= 2 3365:: 3342:. 3268:46 3266:, 3240:^ 3152:, 3131:. 3121:. 3088:. 3037:^ 3020:, 2897:} 2337:= 2085:. 1830:) 1699:×A 1691:×S 1540:, 1536:, 1479:, 1224:. 1045:A 991:. 971:, 967:, 925:60 863:. 778:. 764:, 606:. 543:A 73:, 62:. 43:, 19:A 3348:. 3196:. 3190:: 3139:. 3117:: 3098:. 3084:: 3032:. 3028:: 3022:8 3003:. 2975:. 2913:n 2909:n 2905:n 2895:n 2828:n 2826:{ 2733:n 2717:n 2702:n 2691:n 2689:/ 2687:π 2683:n 2679:n 2671:m 2652:m 2648:n 2644:m 2620:n 2617:m 2611:n 2608:2 2605:+ 2602:m 2599:2 2594:n 2591:4 2585:= 2580:2 2576:N 2562:n 2558:m 2387:3 2381:5 2371:3 2355:3 2335:3 2145:f 2143:, 2141:e 2139:, 2137:v 2135:( 2035:χ 1828:f 1826:, 1824:e 1822:, 1820:v 1818:( 1812:6 1806:4 1800:4 1794:6 1788:6 1709:n 1701:5 1697:2 1693:5 1689:2 1471:. 1427:( 1409:n 1402:n 1400:2 1394:n 1282:4 1280:F 1276:4 1274:A 1147:n 1143:n 1139:l 1135:m 509:. 491:. 465:χ 459:χ 453:χ 447:χ 441:χ 344:χ 338:χ 332:χ 326:χ 243:χ 237:χ 231:χ 225:χ 218:χ 83:m 79:n 75:m 71:n

Index

polyhedron
symmetry group
transitively
flags
edge-transitive
vertex-transitive
face-transitive
congruent
regular polygons
vertex
SchlÀfli symbol
Platonic solids
star polyhedra
Kepler–Poinsot polyhedra
convex
Platonic solids
star polyhedra
Kepler–Poinsot polyhedra
Platonic solid





Tetrahedron
Cube
Octahedron
Dodecahedron
Icosahedron
χ

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑