Knowledge

Resonant-tunneling diode

Source 📝

235: 65:. Characteristic to the current–voltage relationship of a tunneling diode is the presence of one or more negative differential resistance regions, which enables many unique applications. Tunneling diodes can be very compact and are also capable of ultra-high-speed operation because the quantum tunneling effect through the very thin layers is a very fast process. One area of active research is directed toward building 251:
coefficient is equal to one, i.e. the double barrier is totally transparent for particle transmission. This phenomenon is called resonant tunneling. It is interesting that while the transmission coefficient of a potential barrier is always lower than one (and decreases with increasing barrier height and width), two barriers in a row can be completely transparent for certain energies of the incident particle.
357: 349: 283:
systems, where heterojunctions made up of various III-V compound semiconductors are used to create the double or multiple potential barriers in the conduction band or valence band. Reasonably high performance III-V resonant tunneling diodes have been realized. Such devices have not entered mainstream
428:
Integration of Si/SiGe RITDs with Si CMOS has been demonstrated. Vertical integration of Si/SiGe RITD and SiGe heterojunction bipolar transistors was also demonstrated, realizing a 3-terminal negative differential resistance circuit element with adjustable peak-to-valley current ratio. These results
287:
Most of semiconductor optoelectronics use III-V semiconductors and so it is possible to combine III-V RTDs to make OptoElectronic Integrated Circuits (OEICS) that use the negative differential resistance of the RTD to provide electrical gain for optoelectronic devices. Recently, the device-to-device
414:
A minimum PVCR of about 3 is needed for typical circuit applications. Low current density Si/SiGe RITDs are suitable for low-power memory applications, and high current density tunnel diodes are needed for high-speed digital/mixed-signal applications. Si/SiGe RITDs have been engineered to have room
246:
through a single barrier, the transmission coefficient, or the tunneling probability, is always less than one (for incoming particle energy less than the potential barrier height). Considering a potential profile which contains two barriers (which are located close to each other), one can calculate
304:
Resonant tunneling diodes can also be realized using the Si/SiGe materials system. Both hole tunneling and electron tunneling have been observed. However, the performance of Si/SiGe resonant tunneling diodes was limited due to the limited conduction band and valence band discontinuities between Si
339:
In the III-V materials system, InAlAs/InGaAs RITDs with peak-to-valley current ratios (PVCRs) higher than 70 and as high as 144 at room temperature and Sb-based RITDs with room temperature PVCR as high as 20 have been obtained. The main drawback of III-V RITDs is the use of III-V materials whose
266:
computed the two terminal current-voltage (I-V) characteristic of a finite superlattice, and predicted that resonances could be observed not only in the transmission coefficient but also in the I-V characteristic. Resonant tunneling also occurs in potential profiles with more than two barriers.
313:
layers grown on Si substrates. Negative differential resistance was only observed at low temperatures but not at room temperature. Resonant tunneling of electrons through Si/SiGe heterojunctions was obtained later, with a limited peak-to-valley current ratio (PVCR) of 1.2 at room temperature.
250:
Tunneling through a double barrier was first solved in the Wentzel-Kramers-Brillouin (WKB) approximation by David Bohm in 1951, who pointed out the resonances in the transmission coefficient occur at certain incident electron energies. It turns out that, for certain energies, the transmission
85:
A working mechanism of a resonant tunneling diode device and negative differential resistance in output characteristic. There is a negative resistance characteristic after the first current peak, due to a reduction of the first energy level below the source Fermi level with gate bias. (Left:
1477:
S. Sudirgo, D.J. Pawlik, S.K. Kurinec, P.E. Thompson, J.W. Daulton, S.Y. Park, R. Yu, P.R. Berger, and S.L. Rommel, NMOS/SiGe Resonant Interband Tunneling Diode Static Random Access Memory, 64th Device Research Conference Conference Digest, page 265, June 26–28, 2006, The Pennsylvania State
419:
system, and PVCRs of up to 6.0 have been obtained. In terms of peak current density, peak current densities ranging from as low as 20 mA/cm and as high as 218 kA/cm, spanning seven orders of magnitude, have been achieved. A resistive cut-off frequency of 20.2 GHz has been realized on
330:
tunneling diodes, in which electronic transitions occur between the energy levels in the quantum wells in the conduction band and that in the valence band. Like resonant tunneling diodes, resonant interband tunneling diodes can be realized in both the III-V and Si/SiGe materials systems.
82: 217:
As the bias increases further, the 1st confined state becomes lower in energy and gradually goes into the energy range of bandgap, so the current it carries decreases. At this time, the 2nd confined state is still too high above in energy to conduct significant current.
267:
Advances in the MBE technique led to observation of negative differential conductance (NDC) at terahertz frequencies, as reported by Sollner et al. in the early 1980s. This triggered a considerable research effort to study tunneling through multi-barrier structures.
305:
and SiGe alloys. Resonant tunneling of holes through Si/SiGe heterojunctions was attempted first because of the typically relatively larger valence band discontinuity in Si/SiGe heterojunctions than the conduction band discontinuity for (compressively) strained Si
558:
Romeira, B.; Figueiredo, J. M. L.; Slight, T. J.; Wang, L.; Wasige, E.; Ironside, C. N.; Quintana, J. M.; Avedillo, M. J. (May 4–9, 2008). "Observation of frequency division and chaos behavior in a laser diode driven by a resonant tunneling diode".
270:
The potential profiles required for resonant tunneling can be realized in semiconductor system using heterojunctions which utilize semiconductors of different types to create potential barriers or wells in the conduction band or the valence band.
138:
structure surrounded by very thin layer barriers. This structure is called a double barrier structure. Carriers such as electrons and holes can only have discrete energy values inside the quantum well. When a voltage is placed across an RTD, a
1387:
Jin, N.; Chung, S.-Y.; Yu, R.; Heyns, R.M.; Berger, P.R.; Thompson, P.E. (2006). "The Effect of Spacer Thicknesses on Si-Based Resonant Interband Tunneling Diode Performance and Their Application to Low-Power Tunneling Diode SRAM Circuits".
143:
is emitted, which is why the energy value inside the quantum well is equal to that of the emitter side. As voltage is increased, the terahertz wave dies out because the energy value in the quantum well is outside the emitter side energy.
420:
photolithography defined SiGe RITD followed by wet etching for further reducing the diode size, which should be able to improve when even smaller RITDs are fabricated using techniques such as electron beam lithography.
1267:
Rommel, Sean L.; Dillon, Thomas E.; Dashiell, M. W.; Feng, H.; Kolodzey, J.; Berger, Paul R.; Thompson, Phillip E.; Hobart, Karl D.; Lake, Roger; Seabaugh, Alan C.; Klimeck, Gerhard; Blanks, Daniel K. (1998).
530:
Romeira, B.; Slight, J.M.L.; Figueiredo, T.J.; Wasige, L.; Wang, E.; Quintana, C.N.; Ironside, J.M.; Avedillo, M.J. (2008). "Synchronisation and chaos in a laser diode driven by a resonant tunnelling diode".
106:
An RTD can be fabricated using many different types of materials (such as III–V, type IV, II–VI semiconductor) and different types of resonant tunneling structures, such as the heavily doped p–n junction in
1529:
N. Jin; S.Y. Chung; R.M. Heyns; and P.R. Berger; R. Yu; P.E. Thompson & S.L. Rommel (2004). "Tri-State Logic Using Vertically Integrated Si Resonant Interband Tunneling Diodes with Double NDR".
197:
The following process is also illustrated from rightside figure. Depending on the number of barriers and number of confined states inside the well, the process described below could be repeated.
1309:
Park, S.-Y.; Chung, S.-Y.; Berger, P.R.; Yu, R.; Thompson, P.E. (2006). "Low sidewall damage plasma etching using ICP-RIE with HBr chemistry of Si/SiGe resonant interband tunnel diodes".
375:
materials system, Si/SiGe resonant interband tunneling diodes have also been developed which have the potential of being integrated into the mainstream Si integrated circuits technology.
1179:
Tsai, H.H.; Su, Y.K.; Lin, H.H.; Wang, R.L.; Lee, T.L. (1994). "P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature".
790:
Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J. (2015-11-10).
314:
Subsequent developments have realized Si/SiGe RTDs (electron tunneling) with a PVCR of 2.9 with a PCD of 4.3 kA/cm and a PVCR of 2.43 with a PCD of 282 kA/cm at room temperature.
226:
Similar to the first region, as the 2nd confined state becomes closer and closer to the source Fermi level, it carries more current, causing the total current to increase again.
254:
Later, in 1964, L. V. Iogansen discussed the possibility of resonant transmission of an electron through double barriers formed in semiconductor crystals. In the early 1970s,
119:. The structure and fabrication process of Si/SiGe resonant interband tunneling diodes are suitable for integration with modern Si complementary metal–oxide–semiconductor ( 1490:"Three-terminal Si-based negative differential resistance circuit element with adjustable peak-to-valley current ratios using a monolithic vertical integration" 94:; Right: current–voltage characteristics). The negative resistance behavior shown in right figure is caused by relative position of confined state to source 391: 608:
L. V. Iogansen, "The possibility of resonance transmission of electrons in crystals through a system of barriers," Soviet Physics JETP, 1964,
454: 288:
variability in an RTDs current–voltage characteristic has been used as a way to uniquely identify electronic devices, in what is known as a
1488:
Chung, Sung-Yong; Jin, Niu; Berger, Paul R.; Yu, Ronghua; Thompson, Phillip E.; Lake, Roger; Rommel, Sean L.; Kurinec, Santosh K. (2004).
908:
Gennser, Ulf; Kesan, V. P.; Iyer, S. S.; Bucelot, T. J.; Yang, E. S. (1990). "Resonant tunneling of holes through silicon barriers".
17: 857:
Zhang, Weikang; Al-Khalidi, Abdullah; Figueiredo, José; Al-Taai, Qusay Raghib Ali; Wasige, Edward; Hadfield, Robert H. (June 2021).
1270:"Room temperature operation of epitaxially grown Si/Si[sub 0.5]Ge[sub 0.5]/Si resonant interband tunneling diodes" 1144:
Day, D. J.; Chung, Y.; Webb, C.; Eckstein, J. N.; Xu, J. M.; Sweeny, M. (1990). "Double quantum well resonant tunneling diodes".
1431:
S.Y. Chung; R. Yu; N. Jin; S.Y. Park; P.R. Berger & P.E. Thompson (2006). "Si/SiGe Resonant Interband Tunnel Diode with f
700:"Investigation Into the Integration of a Resonant Tunnelling Diode and an Optical Communications Laser: Model and Experiment" 576: 289: 284:
applications yet because the processing of III-V materials is incompatible with Si CMOS technology and the cost is high.
1588:
enables the simulation of resonant tunneling diodes under realistic bias conditions for realistically extended devices.
464: 47: 480:
Slight, Thomas J.; Romeira, Bruno; Wang, Liquan; Figueiredo, JosÉ M. L.; Wasige, Edward; Ironside, Charles N. (2008).
205:
For low bias, as the bias increases, the 1st confined state between the potential barriers gets closer to the source
363:
of a typical Si/SiGe resonant interband tunneling diode calculated by Gregory Snider's 1D Poisson/Schrödinger Solver.
429:
indicate that Si/SiGe RITDs is a promising candidate of being integrated with the Si integrated circuit technology.
280: 982:
P. See; D.J. Paul; B. Hollander; S. Mantl; I. V. Zozoulenko & K.-F. Berggren (2001). "High Performance Si/Si
247:
the transmission coefficient (as a function of the incoming particle energy) using any of the standard methods.
437:
Other applications of SiGe RITD have been demonstrated using breadboard circuits, including multi-state logic.
238:
A double-barrier potential profile with a particle incident from left with energy less than the barrier height.
749: 1601: 482:"A Liénard Oscillator Resonant Tunnelling Diode-Laser Diode Hybrid Integrated Circuit: Model and Experiment" 1045: 992: 415:
temperature PVCRs up to 4.0. The same structure was duplicated by another research group using a different
62: 43: 1352:
Duschl, R; Eberl, K (2000). "Physics and applications of Si/SiGe/Si resonant interband tunneling diodes".
293: 91: 384: 416: 399: 186: 66: 1575: 748:
Figueiredo, J.M.L.; Romeira, B.; Slight, T.J.; Wang, L.; Wasige, E.; Ironside, C.N. (2008).
657:
Sollner, T. C. L. G.; Goodhue, W. D.; Tannenwald, P. E.; Parker, C. D.; Peck, D. D. (1983).
155:. The forming of negative resistance will be examined in detail in operation section below. 1538: 1501: 1444: 1397: 1361: 1318: 1281: 1238: 1223: 1188: 1153: 1101: 1054: 1001: 956: 917: 813: 764: 714: 670: 631: 496: 403: 8: 944: 322:
Resonant interband tunneling diodes (RITDs) combine the structures and behaviors of both
148: 51: 1542: 1505: 1448: 1401: 1365: 1322: 1285: 1242: 1192: 1157: 1105: 1058: 1005: 960: 921: 817: 768: 718: 674: 635: 500: 1554: 1460: 1413: 1334: 1204: 1070: 1017: 885: 858: 834: 803: 791: 750:"Self-oscillation and period adding from resonant tunnelling diode–laser diode circuit" 730: 582: 512: 423: 1373: 947:; Wang, P. J. (1991). "Electron resonant tunneling in Si/SiGe double barrier diodes". 890: 839: 572: 460: 387: 243: 1464: 1417: 1338: 1208: 1074: 734: 586: 516: 182: 1546: 1509: 1452: 1435:
20.2 GHz and Peak Current Density 218 kA/cm for K-band Mixed-Signal Applications".
1405: 1369: 1326: 1289: 1246: 1224:"New negative differential resistance device based on resonant interband tunneling" 1196: 1161: 1109: 1062: 1009: 964: 925: 880: 870: 829: 821: 772: 722: 699: 678: 639: 564: 540: 504: 70: 1021: 234: 1606: 1558: 58: 356: 544: 395: 140: 42:
with a resonant-tunneling structure in which electrons can tunnel through some
568: 348: 1595: 508: 159: 1550: 1489: 1456: 1409: 726: 894: 843: 481: 406:(RTA) for activation of dopants and reduction of density of point defects. 360: 181:
The operation of electronic circuits containing RTDs can be described by a
135: 116: 112: 87: 1330: 776: 1528: 875: 263: 255: 206: 108: 95: 456:
Handbook of Terahertz Technology for Imaging, Sensing and Communications
292:(QC-PUF). Spiking behaviour in RTDs is under investigation for optical 659:"Resonant tunneling through quantum wells at frequencies up to 2.5 THz" 1514: 1200: 1066: 1013: 825: 643: 1294: 1269: 1250: 1165: 1114: 1089: 968: 929: 859:"Analysis of Excitability in Resonant Tunneling Diode-Photodetectors" 259: 683: 658: 424:
Integration with Si/SiGe CMOS and heterojunction bipolar transistors
1581: 981: 808: 151:
on application of bias as can be seen in the image generated from
1585: 622:
Tsu, R.; Esaki, L. (1973). "Tunneling in a finite superlattice".
368: 352:
Typical structure of a Si/SiGe resonant interband tunneling diode
152: 124: 99: 856: 340:
processing is incompatible with Si processing and is expensive.
1035:
P. See & D.J. Paul (2001). "The scaled performance of Si/Si
175: 171: 1430: 656: 529: 81: 39: 394:
injectors, (iii) offset of the delta-doping planes from the
1574:
For information on Optoelectronic applications of RTDs see
747: 557: 479: 372: 167: 163: 128: 120: 599:
David Bohm, Quantum Theory, Prentice-Hall, New York, 1951.
1576:
http://userweb.elec.gla.ac.uk/i/ironside/RTD/RTDOpto.html
1266: 792:"Using Quantum Confinement to Uniquely Identify Devices" 789: 907: 1222:
Söderström, J. R.; Chow, D. H.; McGill, T. C. (1989).
317: 1221: 1143: 299: 279:
Resonant tunneling diodes are typically realized in
170:
in particular are used to form this structure. AlAs/
942: 326:resonant tunneling diodes (RTDs) and conventional 274: 1308: 221: 1593: 1487: 290:quantum confinement physical unclonable function 185:of equations, which are a generalization of the 1386: 1034: 229: 697: 383:The five key points to the design are: (i) an 158:This structure can be grown by molecular beam 147:Another feature seen in RTD structures is the 1178: 212: 200: 561:2008 Conference on Lasers and Electro-Optics 1351: 1128: 910:Journal of Vacuum Science and Technology B 69:and switching devices that can operate at 1513: 1293: 1262: 1260: 1113: 884: 874: 833: 807: 682: 1582:Resonant Tunneling Diode Simulation Tool 1087: 621: 452: 355: 347: 233: 80: 1131:Complete Guide to Semiconductor Devices 446: 209:, so the current it carries increases. 134:One type of RTDs is formed as a single 14: 1594: 1257: 1390:IEEE Transactions on Electron Devices 698:Slight, T.J.; Ironside, C.N. (2007). 432: 46:states at certain energy levels. The 1088:Sweeny, Mark; Xu, Jingming (1989). 707:IEEE Journal of Quantum Electronics 489:IEEE Journal of Quantum Electronics 402:growth (LTMBE), and (v) postgrowth 318:Interband resonant tunneling diodes 131:heterojunction bipolar technology. 24: 1090:"Resonant interband tunnel diodes" 111:, double barrier, triple barrier, 25: 1618: 1568: 1133:(2 ed.). Wiley-Interscience. 398:interfaces, (iv) low temperature 300:Si/SiGe resonant tunneling diodes 1478:University, University Park, PA. 343: 52:negative differential resistance 1522: 1481: 1471: 1424: 1380: 1345: 1302: 1215: 1172: 1137: 1122: 1081: 1028: 975: 936: 901: 850: 783: 741: 275:III-V resonant tunneling diodes 76: 691: 650: 615: 602: 593: 551: 523: 473: 409: 334: 222:2nd positive resistance region 48:current–voltage characteristic 13: 1: 1374:10.1016/S0040-6090(00)01491-7 440: 1531:IEEE Electron Device Letters 1437:IEEE Electron Device Letters 1181:IEEE Electron Device Letters 1046:IEEE Electron Device Letters 1043:resonant tunneling diodes". 993:IEEE Electron Device Letters 990:Resonant Tunneling Diodes". 378: 230:Intraband resonant tunneling 192: 63:quantum mechanical tunneling 7: 10: 1623: 213:Negative resistance region 201:Positive resistance region 569:10.1109/CLEO.2008.4551318 459:. Elsevier. p. 429. 18:Resonant tunnelling diode 545:10.1049/iet-opt:20080024 509:10.1109/JQE.2008.2000924 400:molecular beam epitaxial 92:transmission coefficient 32:resonant-tunneling diode 1551:10.1109/LED.2004.833845 1494:Applied Physics Letters 1457:10.1109/LED.2006.873379 1410:10.1109/TED.2006.879678 1274:Applied Physics Letters 1231:Applied Physics Letters 1146:Applied Physics Letters 1094:Applied Physics Letters 949:Applied Physics Letters 727:10.1109/JQE.2007.898847 663:Applied Physics Letters 624:Applied Physics Letters 404:rapid thermal annealing 281:III-V compound material 364: 353: 239: 187:Van der Pol oscillator 103: 453:Saeedkia, D. (2013). 359: 351: 294:neuromorphic computin 237: 178:/InGaAs can be used. 84: 1602:Terahertz technology 876:10.3390/nano11061590 1543:2004IEDL...25..646J 1506:2004ApPhL..84.2688C 1449:2006IEDL...27..364C 1402:2006ITED...53.2243J 1366:2000TSF...380..151D 1331:10.1049/el:20060323 1323:2006ElL....42..719P 1311:Electronics Letters 1286:1998ApPhL..73.2191R 1243:1989ApPhL..55.1094S 1193:1994IEDL...15..357T 1158:1990ApPhL..57.1260D 1129:Kwok K. Ng (2002). 1106:1989ApPhL..54..546S 1059:2001IEDL...22..582S 1006:2001IEDL...22..182S 961:1991ApPhL..59..973I 922:1990JVSTB...8..210G 818:2015NatSR...516456R 777:10.1049/el:20080350 769:2008ElL....44..876F 757:Electronics Letters 719:2007IJQE...43..580S 675:1983ApPhL..43..588S 636:1973ApPhL..22..562T 533:IET Optoelectronics 501:2008IJQE...44.1158S 149:negative resistance 796:Scientific Reports 433:Other Applications 365: 354: 240: 104: 1515:10.1063/1.1690109 1201:10.1109/55.311133 1067:10.1109/55.974584 1014:10.1109/55.915607 826:10.1038/srep16456 644:10.1063/1.1654509 578:978-1-55752-859-9 244:quantum tunneling 16:(Redirected from 1614: 1563: 1562: 1526: 1520: 1519: 1517: 1485: 1479: 1475: 1469: 1468: 1428: 1422: 1421: 1384: 1378: 1377: 1360:(1–2): 151–153. 1354:Thin Solid Films 1349: 1343: 1342: 1306: 1300: 1299: 1297: 1295:10.1063/1.122419 1264: 1255: 1254: 1251:10.1063/1.101715 1228: 1219: 1213: 1212: 1176: 1170: 1169: 1166:10.1063/1.103503 1141: 1135: 1134: 1126: 1120: 1119: 1117: 1115:10.1063/1.100926 1085: 1079: 1078: 1032: 1026: 1025: 979: 973: 972: 969:10.1063/1.106319 940: 934: 933: 930:10.1116/1.584811 905: 899: 898: 888: 878: 854: 848: 847: 837: 811: 787: 781: 780: 754: 745: 739: 738: 704: 695: 689: 688: 686: 654: 648: 647: 619: 613: 606: 600: 597: 591: 590: 563:. pp. 1–2. 555: 549: 548: 527: 521: 520: 486: 477: 471: 470: 450: 59:tunneling diodes 21: 1622: 1621: 1617: 1616: 1615: 1613: 1612: 1611: 1592: 1591: 1571: 1566: 1527: 1523: 1486: 1482: 1476: 1472: 1434: 1429: 1425: 1385: 1381: 1350: 1346: 1307: 1303: 1265: 1258: 1226: 1220: 1216: 1177: 1173: 1142: 1138: 1127: 1123: 1086: 1082: 1042: 1038: 1033: 1029: 989: 985: 980: 976: 945:Meyerson, B. S. 941: 937: 906: 902: 855: 851: 788: 784: 752: 746: 742: 702: 696: 692: 684:10.1063/1.94434 655: 651: 620: 616: 612:, pp. 146. 607: 603: 598: 594: 579: 556: 552: 528: 524: 484: 478: 474: 467: 451: 447: 443: 435: 426: 412: 381: 346: 337: 320: 312: 308: 302: 277: 232: 224: 215: 203: 195: 79: 50:often exhibits 28: 27:Tunneling diode 23: 22: 15: 12: 11: 5: 1620: 1610: 1609: 1604: 1590: 1589: 1579: 1570: 1569:External links 1567: 1565: 1564: 1521: 1480: 1470: 1432: 1423: 1379: 1344: 1301: 1256: 1214: 1171: 1136: 1121: 1080: 1040: 1036: 1027: 987: 983: 974: 935: 900: 849: 782: 740: 690: 649: 614: 601: 592: 577: 550: 522: 472: 466:978-0857096494 465: 444: 442: 439: 434: 431: 425: 422: 411: 408: 396:heterojunction 390:barrier, (ii) 380: 377: 345: 342: 336: 333: 319: 316: 310: 306: 301: 298: 276: 273: 231: 228: 223: 220: 214: 211: 202: 199: 194: 191: 183:Liénard system 141:terahertz wave 78: 75: 26: 9: 6: 4: 3: 2: 1619: 1608: 1605: 1603: 1600: 1599: 1597: 1587: 1583: 1580: 1577: 1573: 1572: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1525: 1516: 1511: 1507: 1503: 1499: 1495: 1491: 1484: 1474: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1427: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1383: 1375: 1371: 1367: 1363: 1359: 1355: 1348: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1296: 1291: 1287: 1283: 1279: 1275: 1271: 1263: 1261: 1252: 1248: 1244: 1240: 1236: 1232: 1225: 1218: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1175: 1167: 1163: 1159: 1155: 1151: 1147: 1140: 1132: 1125: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1047: 1031: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 994: 978: 970: 966: 962: 958: 954: 950: 946: 939: 931: 927: 923: 919: 915: 911: 904: 896: 892: 887: 882: 877: 872: 868: 864: 863:Nanomaterials 860: 853: 845: 841: 836: 831: 827: 823: 819: 815: 810: 805: 801: 797: 793: 786: 778: 774: 770: 766: 762: 758: 751: 744: 736: 732: 728: 724: 720: 716: 712: 708: 701: 694: 685: 680: 676: 672: 668: 664: 660: 653: 645: 641: 637: 633: 629: 625: 618: 611: 605: 596: 588: 584: 580: 574: 570: 566: 562: 554: 546: 542: 538: 534: 526: 518: 514: 510: 506: 502: 498: 494: 490: 483: 476: 468: 462: 458: 457: 449: 445: 438: 430: 421: 418: 407: 405: 401: 397: 393: 389: 386: 376: 374: 370: 362: 358: 350: 344:Si/SiGe RITDs 341: 332: 329: 325: 315: 297: 295: 291: 285: 282: 272: 268: 265: 261: 257: 252: 248: 245: 236: 227: 219: 210: 208: 198: 190: 188: 184: 179: 177: 173: 169: 165: 161: 160:heteroepitaxy 156: 154: 150: 145: 142: 137: 132: 130: 126: 122: 118: 114: 110: 101: 97: 93: 89: 83: 74: 73:frequencies. 72: 68: 64: 60: 57:All types of 55: 53: 49: 45: 41: 37: 33: 19: 1534: 1530: 1524: 1500:(14): 2688. 1497: 1493: 1483: 1473: 1440: 1436: 1426: 1393: 1389: 1382: 1357: 1353: 1347: 1314: 1310: 1304: 1280:(15): 2191. 1277: 1273: 1237:(11): 1094. 1234: 1230: 1217: 1184: 1180: 1174: 1152:(12): 1260. 1149: 1145: 1139: 1130: 1124: 1097: 1093: 1083: 1050: 1044: 1030: 997: 991: 977: 952: 948: 943:Ismail, K.; 938: 913: 909: 903: 866: 862: 852: 799: 795: 785: 760: 756: 743: 710: 706: 693: 666: 662: 652: 627: 623: 617: 609: 604: 595: 560: 553: 536: 532: 525: 495:(12): 1158. 492: 488: 475: 455: 448: 436: 427: 413: 382: 366: 361:Band diagram 338: 327: 323: 321: 303: 286: 278: 269: 253: 249: 241: 225: 216: 204: 196: 180: 157: 146: 136:quantum well 133: 117:quantum wire 113:quantum well 109:Esaki diodes 105: 88:band diagram 77:Introduction 61:make use of 56: 35: 31: 29: 1396:(9): 2243. 1317:(12): 719. 1053:(12): 582. 869:(6): 1590. 763:(14): 876. 630:(11): 562. 410:Performance 392:delta-doped 335:III-V RITDs 207:Fermi level 96:Fermi level 67:oscillators 1596:Categories 1537:(9): 646. 1443:(5): 364. 1187:(9): 357. 1100:(6): 546. 1000:(4): 182. 955:(8): 973. 916:(2): 210. 809:1502.06523 713:(7): 580. 669:(6): 588. 539:(6): 211. 441:References 189:equation. 90:; Center: 802:: 16456. 388:tunneling 385:intrinsic 379:Structure 328:interband 324:intraband 193:Operation 71:terahertz 54:regions. 1465:17627892 1418:13895250 1339:98806257 1209:34825166 1075:10345069 895:34204375 844:26553435 735:35679446 587:45107735 517:28195545 44:resonant 1586:Nanohub 1539:Bibcode 1502:Bibcode 1445:Bibcode 1398:Bibcode 1362:Bibcode 1319:Bibcode 1282:Bibcode 1239:Bibcode 1189:Bibcode 1154:Bibcode 1102:Bibcode 1055:Bibcode 1002:Bibcode 957:Bibcode 918:Bibcode 886:8234959 835:4639737 814:Bibcode 765:Bibcode 715:Bibcode 671:Bibcode 632:Bibcode 497:Bibcode 153:Nanohub 100:bandgap 38:) is a 1607:Diodes 1557:  1463:  1416:  1337:  1207:  1073:  1022:466339 1020:  893:  883:  842:  832:  733:  585:  575:  515:  463:  262:, and 176:InAlAs 172:InGaAs 123:) and 1559:30227 1555:S2CID 1461:S2CID 1414:S2CID 1335:S2CID 1227:(PDF) 1205:S2CID 1071:S2CID 1018:S2CID 804:arXiv 753:(PDF) 731:S2CID 703:(PDF) 583:S2CID 513:S2CID 485:(PDF) 264:Chang 260:Esaki 115:, or 40:diode 891:PMID 840:PMID 573:ISBN 461:ISBN 373:SiGe 168:AlAs 166:and 164:GaAs 129:SiGe 121:CMOS 98:and 1584:on 1547:doi 1510:doi 1453:doi 1406:doi 1370:doi 1358:380 1327:doi 1290:doi 1247:doi 1197:doi 1162:doi 1110:doi 1063:doi 1037:1−x 1010:doi 984:1−x 965:doi 926:doi 881:PMC 871:doi 830:PMC 822:doi 773:doi 723:doi 679:doi 640:doi 565:doi 541:doi 505:doi 417:MBE 367:In 307:1−x 296:g. 256:Tsu 242:In 174:or 36:RTD 1598:: 1553:. 1545:. 1535:25 1533:. 1508:. 1498:84 1496:. 1492:. 1459:. 1451:. 1441:27 1439:. 1433:r0 1412:. 1404:. 1394:53 1392:. 1368:. 1356:. 1333:. 1325:. 1315:42 1313:. 1288:. 1278:73 1276:. 1272:. 1259:^ 1245:. 1235:55 1233:. 1229:. 1203:. 1195:. 1185:15 1183:. 1160:. 1150:57 1148:. 1108:. 1098:54 1096:. 1092:. 1069:. 1061:. 1051:22 1049:. 1039:Ge 1016:. 1008:. 998:22 996:. 986:Ge 963:. 953:59 951:. 924:. 912:. 889:. 879:. 867:11 865:. 861:. 838:. 828:. 820:. 812:. 798:. 794:. 771:. 761:44 759:. 755:. 729:. 721:. 711:43 709:. 705:. 677:. 667:43 665:. 661:. 638:. 628:22 626:. 610:18 581:. 571:. 535:. 511:. 503:. 493:44 491:. 487:. 369:Si 309:Ge 258:, 162:. 125:Si 30:A 1578:. 1561:. 1549:: 1541:: 1518:. 1512:: 1504:: 1467:. 1455:: 1447:: 1420:. 1408:: 1400:: 1376:. 1372:: 1364:: 1341:. 1329:: 1321:: 1298:. 1292:: 1284:: 1253:. 1249:: 1241:: 1211:. 1199:: 1191:: 1168:. 1164:: 1156:: 1118:. 1112:: 1104:: 1077:. 1065:: 1057:: 1041:x 1024:. 1012:: 1004:: 988:x 971:. 967:: 959:: 932:. 928:: 920:: 914:8 897:. 873:: 846:. 824:: 816:: 806:: 800:5 779:. 775:: 767:: 737:. 725:: 717:: 687:. 681:: 673:: 646:. 642:: 634:: 589:. 567:: 547:. 543:: 537:2 519:. 507:: 499:: 469:. 371:/ 311:x 127:/ 102:. 34:( 20:)

Index

Resonant tunnelling diode
diode
resonant
current–voltage characteristic
negative differential resistance
tunneling diodes
quantum mechanical tunneling
oscillators
terahertz

band diagram
transmission coefficient
Fermi level
bandgap
Esaki diodes
quantum well
quantum wire
CMOS
Si
SiGe
quantum well
terahertz wave
negative resistance
Nanohub
heteroepitaxy
GaAs
AlAs
InGaAs
InAlAs
Liénard system

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.