Knowledge

Rhizosphere

Source đź“ť

1387: 1175: 1185: 945:
competitors of plants, and plant mutualists, interactions within the rhizosphere would be antagonistic toward the plants. Soil fauna provides the rhizosphere's top-down component while allowing for the bottom-up increase in nutrients from rhizodeposition and inorganic nitrogen. The complexity of these interactions has also been shown through experiments with common soil fauna, such as nematodes and protists. Predation by bacterial-feeding nematodes was shown to influence nitrogen availability and plant growth. There was also an increase in the populations of bacteria to which nematodes were added. Predation upon
1200: 841:(PGA), affect the ability of roots to uptake water by maintaining the physical stability of the soil carbon sponge and controlling the flow of water. For example, a tomato field study showed that exopolysaccharides extracted from the rhizosphere were different (total sugar amounts and mean infrared measurements) depending on the tomato varieties grown, and that under water deficit conditions (limited irrigation), the increase in exopolysaccharide production and microbial activity affected water retention in the soil and field performance of tomato. In potato cultivar root exudates, 63: 1395:(A) Rhizotron/Rhizobox set up, (B) Rhizobox with side-compartment, (C) vertical root mat chambers; a modular option is show where the plant can be pre-grown in a separate compartment and transplanted afterward onto the main examination chamber, inset shows a modular set up option, (D) horizontal root mat in rhizobox, (E) Mycorrhizal compartments, (F) split-root systems shown here in a rhizobox set up; (G) Nylon bag to separate root and root-free soil; roots may be restricted in the bag or the soil may be protected from root penetration by the bag. 958:
flux since the amount of detritus available and the rate of root sloughing changes as roots grow and age. This bacterial channel is considered to be a faster channel because of the ability of species to focus on more accessible resources in the rhizosphere and have faster regeneration times compared with the fungal channel. All three of these channels are also interrelated to the roots that form the base of the rhizosphere ecosystem and the predators, such as the nematodes and protists, that prey upon many of the same species of microflora.
1091: 927:(SOC) and adding CO2 to the atmosphere through respiration. But the net impact on greenhouse gas emissions will be reduced by the increased uptake of CO2 from the atmosphere by increased plant growth. However, over the long term, soil reserves of easily decomposed carbon will be depleted by the increase in microbial activity, resulting in increased catabolism of SOC reservoirs, thus increasing atmospheric CO2 concentrations beyond what is taken up by plants. This is predicted to be a particular problem in thawing 905:
microbes use it as food for growth. In return, microbes attach to the plant root, which improves the root's access to nutrients and its resistance to environmental stress and pathogens. In specific plant/root symbiotic relationships, the plant root secretes flavonoids into the soil, which is sensed by microbes, which release nod factors to the plant root, which promotes the infection of the plant root. These unique microbes carry out nitrogen fixation in root nodules, which supplies nutrients to the plant.
1300:
rhizosphere colonization, namely the opening line at the root surface, remains poorly characterized. Increasing data have shown the importance of intraspecies and multispecies communications among rhizospheric biotic components for improving rhizobia–legumes interaction. In addition, it has been shown that rhizobia are part of the rhizosphere of a wide variety of non-legume plants. They can be plant growth-promoting components, recovering a central role in the plant core microbiome.
971:
Mycorrhizae and heterotrophic soil microorganisms compete for both carbon and nitrogen, depending upon which is limiting at the time, which heavily depends on the species, scavenging abilities, and the environmental conditions affecting nitrogen input. Plants are less successful at the uptake of organic nitrogen, such as amino acids than the soil microflora that exists in the rhizosphere. This informs other mutualistic relationships formed by plants around nitrogen uptake.
4517: 763: 1261: 1224:. Recent advances in plant-microbe interactions research have shown that communication, both inter-kingdom and intra-kingdom, is shaped by a broad spectrum of factors. In this context, the rhizosphere (i.e., the soil close to the root surface) provides a specific microhabitat where complex interactions occur. The complex environment that makes up the rhizosphere can select for certain microbial populations adapted to this unique niche. Among them, 212: 901: 25: 1358: 3159: 3091: 2251: 1500: 910: 967:
Geometrical properties are the density of roots, root diameter, and distribution of the roots. Physicochemical properties are exudation rate, decay rate of exudates, and the properties of the environment that affect diffusion. These properties define the rhizosphere of roots and the likelihood that plants can directly compete with neighbors.
1113:—two or more interacting microorganisms—is involved, additive or synergistic results can be expected. This occurs, in part, because multiple species can perform a variety of tasks in an ecosystem like the rhizosphere. Beneficial mechanisms of plant growth stimulation include enhanced nutrient availability, 1248:
and the exchange of information are part of the definition of communication, while the signals themselves are considered as "every structure able to shape the behavior of the organisms". Consequently, the signals can evolve and persist thanks to the interaction between signal producers and receivers.
1066:
because of the proximity of data points, which include roots and organisms in the soil, and the methods for transferring data using exudates and communities. This description has been used to explain the complex interactions that plants, their fungal mutualists, and the bacterial species that live in
1053:
In exchange for the resources and shelter plants and roots provide, fungi and bacteria control pathogenic microbes. The fungi that perform such activities also serve close relationships with species of plants in the form of mycorrhizal fungi, which are diverse in how they relate to plants. Arbuscular
904:
Sunlight and carbon dioxide from the atmosphere are absorbed by the leaves in the plant and converted to fixed carbon. This carbon travels down into the plant's roots, where some travels back up to the leaves. The fixed carbon traveling to the root is radiated outward into the surrounding soil, where
1150:
spp. can establish beneficial interactions with plants, promoting plant growth and development, increasing the plant defense system against pathogens, promoting nutrient uptake, and enhancing tolerance to different environmental stresses. Rhizosphere microorganisms can influence one another, and the
949:
by amoeba shows predators can upregulate toxins produced by prey without direct interaction using supernatant. The ability of predators to control the expression and production of biocontrol agents in prey without direct contact is related to the evolution of prey species to signals of high predator
981:
The weak connection between the various energy channels is essential in regulating predator and prey populations and the availability of resources to the biome. Strong connections between resource-consumer and consumer-consumer create coupled systems of oscillators, which are then determined by the
832:
Root exudates come in the form of chemicals released into the rhizosphere by cells in the roots and cell waste referred to as "rhizodeposition." This rhizodeposition comes in various forms of organic carbon and nitrogen that provide for the communities around plant roots and dramatically affect the
828:
affect the ability of the biological communities to shuttle phosphorus, nitrogen, potassium, and water to the root cap, and the total availability of iron to the plant and to its neighbors. The ability of the plant's root and its associated soil microorganisms to provide specific transport proteins
1287:
It stands to reason that the plants play a fundamental role in the rhizosphere scene. Indeed, because of the chemical signals conveyed by nutrient-rich exudates released by the plant roots, a large variety of microbes can first colonize the rhizosphere and then gradually penetrate the root and the
1274:
Frequently in the rhizosphere, more than two organisms (and species) can participate in the communication, resulting in a complex network of interactions and cross-talks that influence the fitness of all participating partners. Thus, this environment is a hot spot for numerous inter-kingdom signal
1081:
because of evidence that it can reduce plant pathogens in the rhizosphere. Plants themselves also affect which bacterial species in the rhizosphere are selected against because of the introduction of exudates and the relationships that they maintain. The control of which species are in these small
966:
The competition between plants due to released exudates is dependent upon geometrical properties, which determine the capacity of interception of exudates from any point on the plant’s roots, and physicochemical properties, which determine the capacity of each root to take up exudates in the area.
957:
in the rhizosphere can be considered as three different channels with two distinct sources of energy: the detritus-dependent channels are fungi and bacterial species, and the root energy-dependent channel consists of nematodes, symbiotic species, and some arthropods. This food web is constantly in
1295:
The most known plant-microbe dialogue on the rhizosphere scene, determining direct and indirect advantages to the partners, was properly addressed as early as 1904 when Hiltner described the symbiotic interaction among legumes and rhizobia. This symbiosis is a highly specific process in which the
1041:
in these nodules, where they are sustained by nutrients from the plant and convert nitrogen gas to a form that the plant can use. Non-symbiotic (or "free-living") nitrogen-fixing bacteria may reside in the rhizosphere just outside the roots of certain plants (including many grasses) and similarly
970:
Plants and soil microflora indirectly compete against one another by tying up limiting resources, such as carbon and nitrogen, into their biomass. This competition can occur at varying rates due to the ratio of carbon to nitrogen in detritus and the ongoing mineralization of nitrogen in the soil.
944:
Predation is considered to be top-down because these interactions decrease the population. Still, the closeness of species interactions directly affects the availability of resources, causing the population to be affected by bottom-up controls. Without soil fauna, microbes that directly prey upon
1299:
This symbiosis has been extensively studied in recent decades, and many studies on the communication and the signaling between the two partners at different steps of the symbiosis (from root infection to nodule development) have been elucidated. However, the knowledge about the earlier steps of
1252:
In a particular environment, individuals can communicate and interact with multiple partners, and the nature of interaction can determine variable costs and benefits to the partner as a biological market. A large number of signals can be exchanged involving the plant itself, insects, fungi, and
849:
comprise the greatest number of ion influencing compounds regardless of growing location; however, the intensity of different compounds was found to be influenced by soils and environmental conditions, resulting in variation amongst nitrogen compounds, lignins, phenols, carbohydrates, and
1042:"fix" nitrogen gas in the nutrient-rich plant rhizosphere. Even though these organisms are thought to be only loosely associated with the plants they inhabit, they may respond very strongly to the status of the plants. For example, nitrogen-fixing bacteria in the rhizosphere of the 1296:
genetic and chemical communication signals are strictly plant-bacterium-specific. In this mutualistic interaction, rhizobia positively influences the host's growth thanks to the nitrogen fixation process and, at the same time, can benefit from the nutrients provided by the plant.
1308:
The following are some methods commonly used or of interest in rhizosphere research. Many of these methods include both field testing of the root systems and in-lab testing using simulated environments to perform experiments, such as pH determination.
1240:
that can be shaped by plant rhizospheric exudates and microbiome composition. The relationship established by rhizobia with other rhizospheric organisms and the influence of environmental factors results in their beneficial role on host plant health.
3691:
Yeoh, Yun Kit; Paungfoo-Lonhienne, Chanyarat; Dennis, Paul G.; Robinson, Nicole; Ragan, Mark A.; Schmidt, Susanne; Hugenholtz, Philip (2016). "The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application".
2714:
Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume; Séjalon-Delmas, Nathalie (2006-06-27). Chory, Joanne (ed.).
1054:
mycorrhizal fungi and the bacteria that make the rhizosphere their home also form close relationships to be more competitive. which plays into the bigger cycles of nutrients that impact the ecosystem, such as biogeochemical pathways.
71:(A) Root system architecture is concerned with structural features of the root and responds to with environmental stimuli. (B) The rhizosphere produces photosynthetically fixed carbon that exudes into the soil and influences soil 935:
Rhizodeposition allows for the growth of communities of microorganisms directly surrounding and inside plant roots. This leads to complex interactions between species, including mutualism, predation/parasitism, and competition.
1279:
released in the soil by plant roots, which normally facilitate interactions with the biotic and abiotic environment. Often the plant can modulate its diversity based on the benefits in terms of growth and health, such as with
1253:
microbes. This all takes place in a high-density environmental niche. Usually, communication results from chemical responses of cells to signatory molecules from other cells. These signals affect both the metabolism and
162:
refers to the root surface including its associated soil particles which closely interact with each other. The plant-soil feedback loop and other physical factors occurring at the plant-root soil interface are important
1167:+ PGPB may have synergetic effects on plant growth and fitness, providing the plant with enhanced benefits to overcome biotic and abiotic stress. Dashed arrows indicate beneficial interactions between AMF and 3767:
Schlten, Hans-Rolf; Leinweber, Peter (April 1993). "Pyrolysis-field ionization mass spectrometry of agricultural soils and humic substances: Effect of cropping systems and influence of the mineral matrix".
2150:
Stinson, Kristina A; Campbell, Stuart A; Powell, Jeff R; Wolfe, Benjamin E; Callaway, Ragan M; Thelen, Giles C; Hallett, Steven G; Prati, Daniel; Klironomos, John N (2006-04-25). Loreau, Michel (ed.).
187:, meaning "root". Hiltner postulated the rhizosphere was a region surrounding the plant roots and populated with microorganisms under some degree of control by chemicals released from the plant roots. 1353:
allows for spectrometry of agricultural fields to find fulvic and humic acids and the extraction residues (humins) in certain studies and expanded to general organic compounds in other recent work.
1932:
Hinsinger, Philippe; Gobran, George R.; Gregory, Peter J.; Wenzel, Walter W. (November 2005). "Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes".
1292:). Otherwise, they can colonize the host plant establishing a lasting and beneficial symbiotic relationship. To date, numerous investigations on root exudates composition have been performed. 2398:
Ingham, Russell E.; Trofymow, J. A.; Ingham, Elaine R.; Coleman, David C. (1985). "Interactions of Bacteria, Fungi, and their Nematode Grazers: Effects on Nutrient Cycling and Plant Growth".
1284:. Nevertheless, a large number of nutrients issued by the plant can be of interest to pathogenic organisms, which can take advantage of plant products for their survival in the rhizosphere. 2107:
Schlichting, André; Leinweber, Peter (2009). "New evidence for the molecular–chemical diversity of potato plant rhizodeposits obtained by pyrolysis–field Ionisation mass spectrometry".
1209:
Actors and interactions in the rhizosphere: Inter-kingdom and intra-kingdom communication involving plants and microbes in the rhizosphere, including the consistent role of rhizobia.
2209:
Naylor, Dan; Sadler, Natalie; Bhattacharjee, Arunima; Graham, Emily B.; Anderton, Christopher R.; McClure, Ryan; Lipton, Mary; Hofmockel, Kirsten S.; Jansson, Janet K. (2020-10-17).
3539:
Bulgarelli, Davide; Schlaeppi, Klaus; Spaepen, Stijn; Van Themaat, Emiel Ver Loren; Schulze-Lefert, Paul (2013). "Structure and Functions of the Bacterial Microbiota of Plants".
1810:
Canarini A, Kaiser C, Merchant A, Richter A and Wanek W (2019) Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli.
1663:
Grayston, Susan J.; Wang, Shenquiang; Campbell, Colin D.; Edwards, Anthony C. (March 1998). "Selective influence of plant species on microbial diversity in the rhizosphere".
1897:
Lambers, Hans; Mougel, Christophe; Jaillard, Benoît; Hinsinger, Philippe (August 2009). "Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective".
787: 2980:
Bais, Harsh Pal; Park, Sang-Wook; Weir, Tiffany L; Callaway, Ragan M; Vivanco, Jorge M (2004). "How plants communicate using the underground information superhighway".
974:
Competition over other resources, such as oxygen in limited environments, is directly affected by the spatial and temporal locations of species and the rhizosphere. In
2371:
Moore, John C.; McCann, Kevin; Setälä, Heikki; De Ruiter, Peter C. (2003). "Top-Down is Bottom-Up: Does Predation in the Rhizosphere Regulate Aboveground Dynamics?".
37: 2587:
Owen, A.G; Jones, D.L (2001). "Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition".
1753:
Hiltner, L. (1904) "Ueber neuere Erfahrungen und Probleme auf dem Gebiete derBodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache.
3065:
Santoyo, Gustavo; Guzmán-Guzmán, Paulina; Parra-Cota, Fannie Isela; Santos-Villalobos, Sergio de los; Orozco-Mosqueda, Ma. del Carmen; Glick, Bernard R. (2021).
87:
create intimate relationships with the roots and engage in nutrient exchange. (E) Bacterial composition is distinct upon different parts, age, type of the roots.
1244:
Prokaryotes and eukaryotes have interacted for millions of years, evolving and refining their communication systems over time. As proposed by Hauser in 1996,
1405: 1275:
exchanges involving plant-associated microbial communities (rhizobiome). The microbial community's composition is mainly shaped and recruited by hundreds of
1012:, also detects the presence of strigolactones and will germinate when it detects them; they will then move into the root, feeding off the nutrients present. 1776:
Hartmann, Anton; Rothballer, Michael; Schmid, Michael (2008). "Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research".
2945:
Bianciotto, V.; Minerdi, D.; Perotto, S.; Bonfante, P. (1996). "Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria".
1975:
Czarnes, S.; Hallett, P. D.; Bengough, A. G.; Young, I. M. (2000). "Root- and microbial-derived mucilages affect soil structure and water transport".
1859:
Hinsinger, Philippe (December 2001). "Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review".
923:
In the short term, plant growth is stimulated by elevated carbon dioxide, resulting in increased rhizodeposition, priming microbes to mineralize soil
3447:
Hardoim, Pablo R.; Van Overbeek, Leo S.; Elsas, Jan Dirk van (2008). "Properties of bacterial endophytes and their proposed role in plant growth".
1129:
stress tolerance) exerted by different microbial players within the rhizosphere, such as plant-growth-promoting bacteria (PGPB) and fungi such as
1050:
cycles that mimic plant behavior and tend to supply more fixed nitrogen during growth stages when the plant exhibits a high demand for nitrogen.
829:
affects the availability of iron and other minerals for it and its neighbors. This can affect the composition of the community and its fitness.
3613:
Oldroyd, Giles E.D.; Murray, Jeremy D.; Poole, Philip S.; Downie, J. Allan (2011). "The Rules of Engagement in the Legume-Rhizobial Symbiosis".
2065:"Increased exopolysaccharide production and microbial activity affect soil water retention and field performance of tomato under water deficit" 1690:
Estermann, Eva F.; McLaren, A. D. (1961). "Contribution of rhizoplane organisms to the total capacity of plants to utilize organic nutrients".
2012:"Exopolysaccharides in the rhizosphere: A comparative study of extraction methods. Application to their quantification in Mediterranean soils" 978:, proximity to higher-density roots and the surface is important and helps determine where they dominate over heterotrophs in rice paddies. 3484:"Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology" 3259:
Zahavi, Amotz (2008). "The handicap principle and signalling in collaborative systems". In Hughes, David P.; d'Ettorre, Patrizia (eds.).
3017:"Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts" 3848: 3648:
Oldroyd, Giles E. D. (2013). "Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants".
2827:"Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis" 2010:
Bérard, Annette; Clavel, Thierry; Le Bourvellec, Carine; Davoine, Aurélien; Le Gall, Samuel; Doussan, Claude; Bureau, Sylvie (2020).
1631: 3951: 3732:
Gregory, P.J.; Hinsinger, P. (1999). "New approaches to studying chemical and physical changes in the rhizosphere: an overview".
1635: 931:
that contains large reserves of SOC that are becoming increasingly susceptible to microbial degradation as the permafrost thaws.
4228: 1639: 1561: 3828: 3186: 1729: 794: 3889: 1281: 885: 394: 1109:
Although various studies have shown that single microorganisms can benefit plants, it is increasingly evident that when a
4549: 3934: 500: 2884:
Sims, GK; Dunigan, EP (1984). "Diurnal and seasonal variations in nitrogenase activity (C2H2 reduction) of rice roots".
2671:
McCann, Kevin; Hastings, Alan; Huxel, Gary R. (22 October 1998). "Weak trophic interactions and the balance of nature".
4212: 4217: 3431: 3338:
Hartmann, Anton; Schmid, Michael; Tuinen, Diederik van; Berg, Gabriele (2009). "Plant-driven selection of microbes".
495: 1517: 1228:
has emerged as an important component of the rhizospheric microbiome. Rhizospheric crosstalk is found in rhizobium-
1082:
diversity hotspots can drastically affect the capacity of these spaces and future conditions for future ecologies.
399: 1142:
The diagram on the right illustrates that rhizosphere microorganisms like plant-growth-promoting bacteria (PGPB),
4222: 2384: 4233: 2319:
Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; TaĹź, Neslihan (2016-06-29).
1386: 580: 982:
nature of the available resources. These systems can then be considered cyclical, quasi-periodic, or chaotic.
2552:
Kaye, Jason P.; Hart, Stephen C. (1997). "Competition for nitrogen between plants and soil microorganisms".
1220:. Frequently, more than two organisms can take part in the communication, resulting in a complex network of 1143: 679: 42: 1448:
Yee, Mon Oo; Kim, Peter; Li, Yifan; Singh, Anup K.; Northen, Trent R.; Chakraborty, Romy (26 March 2021).
1006:
of spores and initiate changes in the mycorrhiza that allow it to colonize the root. The parasitic plant,
4253: 820:, change the chemical structure and the biological communities of the rhizosphere in comparison with the 333: 2496:"Plants May Alter Competition by Modifying Nutrient Bioavailability in Rhizosphere: A Modeling Approach" 2435:"Predator-Prey Chemical Warfare Determines the Expression of Biocontrol Genes by Rhizosphere-Associated 1374:; BU = non-energy limited bacteria; RC = root derived carbon; SR = sloughed root hair cells; F = fungal 135:
leads to more complex interactions, influencing plant growth and competition for resources. Much of the
4238: 2433:
Jousset, Alexandre; Rochat, Laurène; Scheu, Stefan; Bonkowski, Michael; Keel, Christoph (August 2010).
1811: 306: 3482:
Chi, Feng; Shen, Shi-Hua; Cheng, Hai-Ping; Jing, Yu-Xiang; Yanni, Youssef G.; Dazzo, Frank B. (2005).
1313: 1174: 2152:"Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms" 2063:
Le Gall, Samuel; BĂ©rard, Annette; Page, David; Lanoe, Lucas; Bertin, Nadia; Doussan, Claude (2021).
4248: 2495: 1211:
VOCs = volatile organic compounds; PGP = plant growth promoting; AMF = arbuscular mycorrhizal fungi
1078: 746: 741: 449: 3811:
Giri, B.; Giang, P. H.; Kumari, R.; Prasad, R.; Varma, A. (2005). "Microbial Diversity in Soils".
3276:
Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.; Kiers, E. Toby (2015).
1184: 4243: 4206: 3927: 2614:
Bodegom, Peter van; Stams, Fons; Mollema, Liesbeth; Boeke, Sara; Leffelaar, Peter (August 2001).
1254: 1159: 909: 4520: 674: 2049: 812:
Plant roots may exude 20–40% of the sugars and organic acids—photosynthetically fixed carbon.
4539: 2037: 1199: 684: 485: 328: 164: 3260: 3176: 4554: 4544: 4374: 3870:"Digging in the Dirt: Is the Study of the Rhizosphere Ripe for a Systems Biology Approach?" 3852: 3495: 3289: 2838: 2825:
Tian, C. F.; Garnerone, A.-M.; Mathieu-Demaziere, C.; Masson-Boivin, C.; Batut, J. (2012).
2680: 2627: 2450: 1110: 1104: 780: 767: 645: 505: 490: 347: 3552: 2227: 2210: 8: 3943: 1221: 1217: 871: 813: 701: 564: 352: 297: 287: 100: 62: 3626: 3575: 3499: 3293: 2931: 2842: 2684: 2631: 2454: 2337: 2320: 4494: 4127: 3920: 3793: 3749: 3673: 3516: 3483: 3423: 3355: 3312: 3277: 3241: 2962: 2861: 2826: 2802: 2775: 2751: 2716: 2696: 2534: 2471: 2434: 2415: 2350: 2301: 2240: 2186: 2151: 1992: 1914: 1876: 1841: 1824:
Jones, David L. (August 1998). "Organic acids in the rhizosphere – a critical review".
1793: 1707: 1607: 1580: 1484: 1449: 1126: 694: 554: 358: 342: 116: 76: 2600: 2565: 2268:
Jansson, Janet K.; TaĹź, Neslihan (2014-05-12). "The microbial ecology of permafrost".
1676: 4409: 3824: 3785: 3709: 3665: 3630: 3595: 3556: 3521: 3507: 3464: 3427: 3396: 3317: 3233: 3228: 3211: 3192: 3182: 3038: 2997: 2897: 2866: 2807: 2756: 2738: 2653: 2648: 2615: 2569: 2526: 2518: 2476: 2354: 2342: 2293: 2285: 2244: 2232: 2191: 2173: 2132: 2124: 2086: 1988: 1957: 1949: 1945: 1612: 1544: 1489: 1471: 1350: 1327: 1249:
Then, cooperation and fitness improvement are the basis of biological communication.
1245: 1237: 1122: 1016: 862:
Although it goes beyond the rhizosphere area, it is notable that some plants secrete
464: 279: 258: 84: 3797: 3753: 3359: 2966: 2639: 2538: 2305: 1996: 1845: 1711: 1450:"Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions" 1073:
are interesting because of their ability to select for species in this complex web.
994:
many compounds through their roots to serve symbiotic functions in the rhizosphere.
4414: 3816: 3777: 3741: 3701: 3677: 3657: 3622: 3587: 3548: 3511: 3503: 3456: 3419: 3386: 3347: 3307: 3297: 3245: 3223: 3146: 3136: 3078: 3028: 2989: 2954: 2927: 2893: 2856: 2846: 2797: 2787: 2746: 2728: 2700: 2688: 2643: 2635: 2596: 2561: 2510: 2466: 2458: 2407: 2380: 2332: 2277: 2222: 2181: 2163: 2116: 2076: 2023: 1984: 1941: 1918: 1906: 1880: 1868: 1833: 1797: 1785: 1699: 1672: 1602: 1592: 1556: 1479: 1461: 1415: 1090: 1067:
the rhizosphere have entered into throughout their evolution. Certain species like
889: 614: 559: 533: 424: 320: 292: 221: 3591: 2993: 2916:"Biological Control of Soilborne Plant Pathogens in the Rhizosphere with Bacteria" 2717:"Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria" 2028: 2011: 4479: 4464: 4324: 2792: 2733: 2168: 2081: 2064: 1033:
that signal to the plant that they are present and will lead to the formation of
834: 544: 528: 459: 253: 148: 143:
required by plants occurs immediately adjacent to roots due to root exudates and
112: 72: 3278:"Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism" 1579:
Walker, Travis S.; Bais, Harsh Pal; Grotewold, Erich; Vivanco, Jorge M. (2003).
1318:
High-Throughput Sequencing: 16S rRNA Amplicon, Metagenomics, Metatranscriptomics
4454: 4399: 3095: 3064: 2255: 1504: 1410: 1343: 1008: 924: 867: 669: 549: 454: 176: 175:
The term "rhizosphere" was used first in 1904 by the German plant physiologist
136: 80: 3745: 3460: 3391: 3374: 3351: 3163: 3141: 3124: 1910: 1872: 1837: 1789: 1466: 1151:
resulting consortia of PGPB + PGPB (e.g., a nitrogen-fixing bacterium such as
151:
communities of microorganisms. The rhizosphere also provides space to produce
4533: 4499: 4384: 3789: 3083: 3066: 3033: 3016: 2742: 2522: 2346: 2289: 2236: 2177: 2128: 2090: 1953: 1475: 1425: 1420: 995: 882: 879: 866:
from their roots, which inhibits the growth of other organisms. For example,
838: 721: 716: 474: 439: 184: 128: 108: 3820: 3705: 3302: 3196: 2851: 179:
to describe how plant roots interface with the surrounding soil. The prefix
4484: 4429: 3713: 3669: 3634: 3599: 3560: 3525: 3468: 3400: 3321: 3237: 3042: 3001: 2870: 2824: 2811: 2760: 2657: 2573: 2530: 2480: 2297: 2211:"Soil Microbiomes Under Climate Change and Implications for Carbon Cycling" 2195: 2136: 1961: 1616: 1493: 1266: 1114: 975: 825: 817: 706: 689: 609: 575: 263: 234: 2616:"Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere" 2254:
Modified material was copied from this source, which is available under a
1597: 1545:"Plant rhizodeposition – an important source for carbon turnover in soils" 4489: 4469: 4389: 4369: 4349: 4334: 2462: 1521: 1342:
Various methods used to determine water movement in the rhizosphere e.g.
1131: 1069: 1034: 1003: 916: 863: 659: 388: 248: 152: 3661: 3151: 2281: 4474: 4424: 4379: 4364: 4329: 4299: 4165: 4072: 4037: 4012: 3781: 3375:"Root signals that mediate mutualistic interactions in the rhizosphere" 2958: 2419: 1703: 1276: 1260: 1136: 1118: 1047: 1043: 1038: 1030: 1026: 999: 928: 711: 664: 625: 604: 469: 416: 363: 229: 203: 144: 140: 123:
and other microorganisms that feed on sloughed-off plant cells, termed
3912: 1562:
10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C
4459: 4404: 4344: 4107: 4102: 4092: 4027: 3997: 3977: 3538: 2713: 2120: 1346:
and agar techniques for pH and microsampling of rhizosphere materials
1336: 1289: 1233: 1153: 1021: 991: 821: 650: 520: 429: 383: 132: 3690: 2915: 2411: 4444: 4359: 4314: 4190: 4170: 4160: 4145: 4117: 4112: 4097: 4067: 4062: 4042: 4032: 4017: 4002: 3992: 3987: 3982: 2514: 1379: 1371: 1225: 954: 434: 211: 120: 2773: 2692: 900: 4394: 4354: 4319: 4309: 4304: 4294: 4289: 4185: 4155: 4150: 4140: 4135: 4087: 4082: 4057: 4052: 4047: 4022: 4007: 3972: 3967: 3962: 3162:
Material was copied from this source, which is available under a
3094:
Material was copied from this source, which is available under a
2318: 1503:
Material was copied from this source, which is available under a
620: 3414:
Bending, G.D. (2017). "The Rhizopshere and Its Microorganisms".
2944: 2009: 4504: 4439: 4180: 4175: 4077: 3869: 2208: 1543:
HĂĽtsch, Birgit W.; Augustin, JĂĽrgen; Merbach, Wolfgang (2002).
1375: 1367: 1229: 846: 842: 596: 3275: 1896: 1357: 4419: 3158: 3090: 2250: 1499: 851: 167:
in communities and growth in the rhizosphere and rhizoplane.
2494:
Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W. (2008).
1931: 1392:
Growth chamber designs for studying rhizosphere interactions
1029:
secreted by the roots of leguminous plants and then produce
4449: 4284: 4279: 4274: 4269: 2432: 2397: 2385:
10.1890/0012-9658(2003)084[0846:TIBDPI]2.0.CO;2
1974: 1662: 875: 104: 96: 2370: 2149: 1578: 16:
Region of soil or substrate comprising the root microbiome
4434: 3890:"The Rhizosphere – Roots, Soil and Everything In Between" 1730:"The Rhizosphere - roots, soil and everything in between" 3612: 3446: 3337: 2613: 1775: 127:, and the proteins and sugars released by roots, termed 3813:
Microorganisms in Soils: Roles in Genesis and Functions
2276:(6). Springer Science and Business Media LLC: 414–425. 3175:
Maynard-Smith, John; Harper, David (6 November 2003).
3096:
Creative Commons Attribution 4.0 International License
2493: 2256:
Creative Commons Attribution 4.0 International License
2062: 1505:
Creative Commons Attribution 4.0 International License
3810: 1542: 1406:
Plant to plant communication via mycorrhizal networks
2979: 2106: 1257:
of genes, activating several regulatory mechanisms.
824:
or parent soil. Concentrations of organic acids and
3174: 2670: 3125:"The Rhizosphere Talk Show: The Rhizobia on Stage" 3122: 2102: 2100: 3887: 3851:. University of Western Australia. Archived from 3067:"Plant Growth Stimulation by Microbial Consortia" 1179:Formation of N-fixing nodules induced by rhizobia 4531: 3766: 3731: 3481: 3118: 3116: 3114: 3112: 3110: 3108: 3106: 3104: 1689: 915:Predicted effects of elevated carbon dioxide on 870:produces a chemical that is believed to prevent 3372: 3333: 3331: 3282:Proceedings of the National Academy of Sciences 2831:Proceedings of the National Academy of Sciences 2097: 1771: 1769: 1767: 3727: 3725: 3723: 3209: 3060: 3058: 3056: 3054: 3052: 1892: 1890: 1658: 1656: 1189:Plant responses to bacteria in the rhizosphere 3928: 3815:. Soil Biology. Vol. 3. pp. 19–55. 3101: 2909: 2907: 2727:(7). Public Library of Science (PLoS): e226. 2325:Annual Review of Earth and Planetary Sciences 2162:(5). Public Library of Science (PLoS): e140. 1852: 1749: 1747: 1447: 895: 788: 3867: 3328: 2366: 2364: 1764: 1723: 1721: 1574: 1572: 3720: 3574:Venturi, Vittorio; Keel, Christoph (2016). 3573: 3123:Checcucci, Alice; Marchetti, Marta (2020). 3049: 2883: 2774:Andreas Brachmann, Martin Parniske (2006). 1887: 1653: 1549:Journal of Plant Nutrition and Soil Science 1062:The rhizosphere has been referred to as an 3935: 3921: 3373:Rasmann, Sergio; Turlings, Ted CJ (2016). 3252: 2904: 2321:"Permafrost Meta-Omics and Climate Change" 2267: 2215:Annual Review of Environment and Resources 1744: 1727: 1264:Root nodules, each containing billions of 795: 781: 3515: 3390: 3311: 3301: 3265:. Oxford University Press. pp. 1–10. 3227: 3150: 3140: 3082: 3032: 2860: 2850: 2801: 2791: 2750: 2732: 2647: 2586: 2470: 2361: 2336: 2226: 2185: 2167: 2080: 2027: 1858: 1817: 1718: 1606: 1596: 1569: 1560: 1483: 1465: 1443: 1441: 2973: 2776:"The Most Widespread Symbiosis on Earth" 2551: 1581:"Root exudation and rhizosphere biology" 1385: 1370:consuming bacteria; BL = energy limited 1356: 1259: 1198: 1183: 1173: 1089: 908: 899: 807: 190: 61: 34:needs attention from an expert in Plants 3942: 3647: 3413: 1085: 4532: 4229:Canadian system of soil classification 3488:Applied and Environmental Microbiology 3416:Encyclopedia of Applied Plant Sciences 3258: 3014: 2913: 2620:Applied and Environmental Microbiology 2443:Applied and Environmental Microbiology 1438: 1057: 68:Some rhizosphere processes in the soil 45:may be able to help recruit an expert. 3916: 3553:10.1146/annurev-arplant-050312-120106 3181:. New York: Oxford University Press. 2228:10.1146/annurev-environ-012320-082720 1823: 1518:"Microbial Health of the Rhizosphere" 155:to control neighbours and relatives. 1814:10:157. doi: 10.3389/fpls.2019.00157 1282:plant growth-promoting rhizobacteria 1216:Communication is often the basis of 833:chemistry surrounding the roots. Exo 119:in the rhizosphere can contain many 18: 3627:10.1146/annurev-genet-110410-132549 3212:"Defining biological communication" 2932:10.1146/annurev.py.26.090188.002115 2338:10.1146/annurev-earth-060614-105126 1236:is a complex process that involves 950:density and nutrient availability. 13: 4213:Unified Soil Classification System 3841: 3424:10.1016/B978-0-12-394807-6.00165-9 1629: 857: 79:interact with the rhizosphere via 14: 4566: 4218:AASHTO Soil Classification System 2554:Trends in Ecology & Evolution 4516: 4515: 3508:10.1128/AEM.71.11.7271-7278.2005 3379:Current Opinion in Plant Biology 3229:10.1111/j.1420-9101.2007.01497.x 3157: 3089: 2249: 1989:10.1046/j.1365-2389.2000.00327.x 1977:European Journal of Soil Science 1946:10.1111/j.1469-8137.2005.01512.x 1498: 1205:Communication in the rhizosphere 1194: 1146:(AMF), and fungi from the genus 874:forming between the surrounding 762: 761: 210: 23: 3804: 3760: 3684: 3641: 3606: 3567: 3532: 3475: 3440: 3407: 3366: 3269: 3216:Journal of Evolutionary Biology 3203: 3168: 3008: 2938: 2920:Annual Review of Phytopathology 2877: 2818: 2767: 2707: 2664: 2640:10.1128/AEM.67.8.3586-3597.2001 2607: 2580: 2545: 2487: 2426: 2391: 2312: 2261: 2202: 2143: 2056: 2003: 1968: 1925: 1804: 1363:Illustration of the rhizosphere 1096:Rhizosphere microbial consortia 1025:species, detect compounds like 107:secretions and associated soil 103:that is directly influenced by 4234:Australian Soil Classification 4225:(French classification system) 3576:"Signaling in the Rhizosphere" 3541:Annual Review of Plant Biology 3210:Scott-Phillips, T. C. (2008). 2331:(1). Annual Reviews: 439–462. 1683: 1623: 1536: 1510: 1460:. Frontiers Media SA: 625752. 961: 75:gradients. (C) Free-living or 1: 3592:10.1016/j.tplants.2016.01.005 3262:Sociobiology of Communication 2994:10.1016/j.tplants.2003.11.008 2886:Soil Biology and Biochemistry 2601:10.1016/s0038-0717(00)00209-1 2589:Soil Biology and Biochemistry 2566:10.1016/S0169-5347(97)01001-X 2029:10.1016/j.soilbio.2020.107961 2016:Soil Biology and Biochemistry 1728:McNear Jr., David H. (2013). 1677:10.1016/S0038-0717(97)00124-7 1665:Soil Biology and Biochemistry 1431: 170: 2898:10.1016/0038-0717(84)90118-4 2793:10.1371/journal.pbio.0040239 2734:10.1371/journal.pbio.0040226 2221:(1). Annual Reviews: 29–59. 2169:10.1371/journal.pbio.0040140 2082:10.1016/j.rhisph.2021.100408 1144:arbuscular mycorrhizal fungi 985: 939: 680:Microbial population biology 7: 4254:List of vineyard soil types 3650:Nature Reviews Microbiology 2270:Nature Reviews Microbiology 1399: 1349:Pyrolysis–field ionization 998:, secreted and detected by 139:and disease suppression by 10: 4571: 4550:Environmental soil science 4239:Polish Soil Classification 3894:Nature Education Knowledge 3888:McNear Jr., D. H. (2013). 3874:Science Creative Quarterly 3694:Environmental Microbiology 1812:Frontiers in Plant Science 1565:– via Research Gate. 1303: 1102: 896:Ecology of the rhizosphere 307:Marine microbial symbiosis 147:products of symbiotic and 4513: 4263:Non-systematic soil types 4262: 4199: 4126: 3950: 3615:Annual Review of Genetics 3461:10.1016/j.tim.2008.07.008 3392:10.1016/j.pbi.2016.06.017 3352:10.1007/s11104-008-9814-y 3142:10.3389/fagro.2020.591494 1911:10.1007/s11104-009-0042-x 1790:10.1007/s11104-007-9514-z 1467:10.3389/fmicb.2021.625752 1454:Frontiers in Microbiology 1321:Culture Depend Approaches 1314:High-throughput screening 1037:. Bacteria are housed in 4249:List of U.S. state soils 3084:10.3390/agronomy11020219 3034:10.1094/PDIS.2003.87.1.4 1079:biological control agent 1064:information superhighway 747:Earth Microbiome Project 742:Human Microbiome Project 501:Accessible carbohydrates 95:is the narrow region of 4244:1938 USDA soil taxonomy 4223:RĂ©fĂ©rentiel pĂ©dologique 4207:FAO soil classification 3821:10.1007/3-540-26609-7_2 3746:10.1023/A:1004547401951 3706:10.1111/1462-2920.12925 3580:Trends in Plant Science 3303:10.1073/pnas.1424030112 2982:Trends in Plant Science 2852:10.1073/pnas.1120260109 2503:The American Naturalist 2437:Pseudomonas fluorescens 1873:10.1023/A:1013351617532 1838:10.1023/A:1004356007312 1160:Pseudomonas fluorescens 3449:Trends in Microbiology 3015:Howell, C. R. (2003). 2914:Weller, D. M. (1988). 2109:Phytochemical Analysis 1396: 1383: 1288:overall plant tissue ( 1271: 1213: 1191: 1181: 1100: 932: 906: 675:Biological dark matter 88: 3868:Andrew Wylie (2006). 3129:Frontiers in Agronomy 2400:Ecological Monographs 1755:Arb Deut Landw Gesell 1598:10.1104/pp.102.019661 1389: 1360: 1263: 1202: 1187: 1177: 1093: 1002:fungi, stimulate the 912: 903: 808:Chemical availability 685:Microbial cooperation 191:Chemical interactions 65: 4375:Calcareous grassland 3952:World Reference Base 3418:. pp. 347–351. 2463:10.1128/AEM.02941-09 1111:microbial consortium 1105:Microbial consortium 1086:Microbial consortium 646:Biomass partitioning 581:hologenome evolution 506:Flora (microbiology) 3944:Soil classification 3662:10.1038/nrmicro2990 3500:2005ApEnM..71.7271C 3294:2015PNAS..11210262W 3288:(33): 10262–10269. 2843:2012PNAS..109.6751T 2685:1998Natur.395..794M 2632:2001ApEnM..67.3586V 2455:2010ApEnM..76.5263J 2282:10.1038/nrmicro3262 1632:"The Soil Food Web" 1232:interactions. This 1218:biotic interactions 1163:), AMF + PGPB, and 1058:Community structure 814:Plant root exudates 702:Metatranscriptomics 496:Initial acquisition 491:Microbial community 198:Part of a series on 165:selective pressures 77:parasitic nematodes 4128:USDA soil taxonomy 3954:for Soil Resources 3849:"The Soil Habitat" 3782:10.1007/BF00010788 2959:10.1007/BF01276640 2048:has generic name ( 1704:10.1007/BF01400458 1630:Ingham, Elaine R. 1397: 1384: 1272: 1246:biological signals 1214: 1192: 1182: 1101: 1019:bacteria, such as 933: 907: 878:and mycorrhiza in 280:Marine microbiomes 89: 83:interactions. (D) 43:WikiProject Plants 4527: 4526: 3855:on 20 August 2006 3830:978-3-540-22220-0 3494:(11): 7271–7278. 3188:978-0-19-852685-8 2837:(17): 6751–6756. 2679:(6704): 794–798. 2449:(15): 5263–5268. 1524:on March 12, 2007 1351:mass spectrometry 1328:Isotopic labeling 886:temperate forests 805: 804: 395:Built environment 377:Other microbiomes 321:Human microbiomes 222:Plant microbiomes 85:Mycorrhizal fungi 60: 59: 4562: 4519: 4518: 4415:Hydrophobic soil 3937: 3930: 3923: 3914: 3913: 3909: 3907: 3905: 3884: 3882: 3880: 3864: 3862: 3860: 3835: 3834: 3808: 3802: 3801: 3764: 3758: 3757: 3729: 3718: 3717: 3700:(5): 1338–1351. 3688: 3682: 3681: 3645: 3639: 3638: 3610: 3604: 3603: 3571: 3565: 3564: 3536: 3530: 3529: 3519: 3479: 3473: 3472: 3444: 3438: 3437: 3411: 3405: 3404: 3394: 3370: 3364: 3363: 3346:(1–2): 235–257. 3335: 3326: 3325: 3315: 3305: 3273: 3267: 3266: 3256: 3250: 3249: 3231: 3207: 3201: 3200: 3172: 3166: 3161: 3156: 3154: 3144: 3120: 3099: 3093: 3088: 3086: 3062: 3047: 3046: 3036: 3012: 3006: 3005: 2977: 2971: 2970: 2953:(1–4): 123–131. 2942: 2936: 2935: 2911: 2902: 2901: 2881: 2875: 2874: 2864: 2854: 2822: 2816: 2815: 2805: 2795: 2771: 2765: 2764: 2754: 2736: 2711: 2705: 2704: 2668: 2662: 2661: 2651: 2626:(8): 3586–3597. 2611: 2605: 2604: 2595:(4–5): 651–657. 2584: 2578: 2577: 2549: 2543: 2542: 2500: 2491: 2485: 2484: 2474: 2430: 2424: 2423: 2395: 2389: 2388: 2368: 2359: 2358: 2340: 2316: 2310: 2309: 2265: 2259: 2253: 2248: 2230: 2206: 2200: 2199: 2189: 2171: 2147: 2141: 2140: 2121:10.1002/pca.1080 2104: 2095: 2094: 2084: 2060: 2054: 2053: 2047: 2043: 2041: 2033: 2031: 2007: 2001: 2000: 1972: 1966: 1965: 1929: 1923: 1922: 1894: 1885: 1884: 1856: 1850: 1849: 1821: 1815: 1808: 1802: 1801: 1773: 1762: 1751: 1742: 1741: 1734:Nature Education 1725: 1716: 1715: 1687: 1681: 1680: 1660: 1651: 1650: 1648: 1646: 1627: 1621: 1620: 1610: 1600: 1585:Plant Physiology 1576: 1567: 1566: 1564: 1540: 1534: 1533: 1531: 1529: 1520:. Archived from 1514: 1508: 1502: 1497: 1487: 1469: 1445: 1416:Soil respiration 890:invasive species 797: 790: 783: 770: 765: 764: 534:Marine holobiont 334:Fecal transplant 214: 195: 194: 137:nutrient cycling 55: 52: 46: 27: 26: 19: 4570: 4569: 4565: 4564: 4563: 4561: 4560: 4559: 4530: 4529: 4528: 4523: 4509: 4480:Subaqueous soil 4465:Serpentine soil 4325:Parent material 4258: 4195: 4122: 3953: 3946: 3941: 3903: 3901: 3878: 3876: 3858: 3856: 3847: 3844: 3842:Further reading 3839: 3838: 3831: 3809: 3805: 3765: 3761: 3730: 3721: 3689: 3685: 3646: 3642: 3611: 3607: 3572: 3568: 3537: 3533: 3480: 3476: 3455:(10): 463–471. 3445: 3441: 3434: 3412: 3408: 3371: 3367: 3336: 3329: 3274: 3270: 3257: 3253: 3208: 3204: 3189: 3173: 3169: 3121: 3102: 3063: 3050: 3013: 3009: 2978: 2974: 2943: 2939: 2912: 2905: 2882: 2878: 2823: 2819: 2772: 2768: 2712: 2708: 2669: 2665: 2612: 2608: 2585: 2581: 2550: 2546: 2498: 2492: 2488: 2431: 2427: 2412:10.2307/1942528 2396: 2392: 2369: 2362: 2317: 2313: 2266: 2262: 2207: 2203: 2148: 2144: 2105: 2098: 2061: 2057: 2045: 2044: 2035: 2034: 2008: 2004: 1973: 1969: 1934:New Phytologist 1930: 1926: 1905:(1–2): 83–115. 1895: 1888: 1857: 1853: 1822: 1818: 1809: 1805: 1774: 1765: 1752: 1745: 1726: 1719: 1688: 1684: 1661: 1654: 1644: 1642: 1628: 1624: 1577: 1570: 1541: 1537: 1527: 1525: 1516: 1515: 1511: 1446: 1439: 1434: 1402: 1394: 1365: 1344:microelectrodes 1306: 1212: 1208: 1197: 1190: 1180: 1107: 1099: 1088: 1060: 1017:nitrogen-fixing 988: 964: 942: 922: 898: 888:where it is an 864:allelochemicals 860: 858:Allelochemicals 835:polysaccharides 810: 801: 760: 753: 752: 751: 736: 728: 727: 726: 655: 640: 632: 631: 630: 617: 599: 589: 588: 587: 571: 538: 529:Plant holobiont 523: 513: 512: 511: 510: 481: 419: 409: 408: 407: 391: 378: 370: 369: 368: 355: 338: 323: 313: 312: 311: 302: 282: 272: 271: 270: 259:soil microbiome 254:root microbiome 239: 224: 193: 183:comes from the 173: 153:allelochemicals 125:rhizodeposition 113:root microbiome 73:physicochemical 70: 56: 50: 47: 41: 28: 24: 17: 12: 11: 5: 4568: 4558: 4557: 4552: 4547: 4542: 4525: 4524: 4514: 4511: 4510: 4508: 4507: 4502: 4497: 4492: 4487: 4482: 4477: 4472: 4467: 4462: 4457: 4455:Prime farmland 4452: 4447: 4442: 4437: 4432: 4427: 4422: 4417: 4412: 4410:Fuller's earth 4407: 4402: 4400:Expansive clay 4397: 4392: 4387: 4382: 4377: 4372: 4367: 4362: 4357: 4352: 4347: 4342: 4337: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4277: 4272: 4266: 4264: 4260: 4259: 4257: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4220: 4215: 4210: 4203: 4201: 4197: 4196: 4194: 4193: 4188: 4183: 4178: 4173: 4168: 4163: 4158: 4153: 4148: 4143: 4138: 4132: 4130: 4124: 4123: 4121: 4120: 4115: 4110: 4105: 4100: 4095: 4090: 4085: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4005: 4000: 3995: 3990: 3985: 3980: 3975: 3970: 3965: 3959: 3957: 3948: 3947: 3940: 3939: 3932: 3925: 3917: 3911: 3910: 3885: 3865: 3843: 3840: 3837: 3836: 3829: 3803: 3770:Plant and Soil 3759: 3734:Plant and Soil 3719: 3683: 3656:(4): 252–263. 3640: 3605: 3586:(3): 187–198. 3566: 3531: 3474: 3439: 3432: 3406: 3365: 3340:Plant and Soil 3327: 3268: 3251: 3222:(2): 387–395. 3202: 3187: 3178:Animal Signals 3167: 3100: 3048: 3007: 2972: 2937: 2926:(1): 379–407. 2903: 2876: 2817: 2766: 2706: 2663: 2606: 2579: 2544: 2515:10.1086/523951 2486: 2425: 2406:(1): 119–140. 2390: 2360: 2311: 2260: 2201: 2142: 2096: 2055: 2002: 1967: 1940:(2): 293–303. 1924: 1886: 1867:(2): 173–195. 1861:Plant and Soil 1851: 1826:Plant and Soil 1816: 1803: 1778:Plant and Soil 1763: 1743: 1717: 1698:(3): 243–260. 1692:Plant and Soil 1682: 1671:(3): 369–378. 1652: 1622: 1568: 1555:(4): 397–407. 1535: 1509: 1436: 1435: 1433: 1430: 1429: 1428: 1423: 1418: 1413: 1411:Soil biomantle 1408: 1401: 1398: 1390: 1361: 1355: 1354: 1347: 1340: 1333: 1330: 1325: 1322: 1319: 1316: 1305: 1302: 1210: 1203: 1196: 1193: 1188: 1178: 1103:Main article: 1094: 1087: 1084: 1059: 1056: 996:Strigolactones 987: 984: 963: 960: 941: 938: 925:organic carbon 913: 897: 894: 883:North American 868:garlic mustard 859: 856: 809: 806: 803: 802: 800: 799: 792: 785: 777: 774: 773: 772: 771: 755: 754: 750: 749: 744: 738: 737: 734: 733: 730: 729: 725: 724: 719: 714: 709: 704: 699: 698: 697: 687: 682: 677: 672: 670:Quorum sensing 667: 662: 656: 654: 653: 648: 642: 641: 638: 637: 634: 633: 629: 628: 623: 618: 612: 607: 601: 600: 595: 594: 591: 590: 586: 585: 584: 583: 572: 570: 569: 568: 567: 562: 557: 552: 547: 539: 537: 536: 531: 525: 524: 519: 518: 515: 514: 509: 508: 503: 498: 493: 488: 482: 480: 479: 478: 477: 472: 467: 462: 457: 446: 445: 444: 443: 442: 437: 432: 421: 420: 415: 414: 411: 410: 406: 405: 397: 392: 386: 380: 379: 376: 375: 372: 371: 367: 366: 361: 356: 350: 345: 343:Gut–brain axis 339: 337: 336: 331: 325: 324: 319: 318: 315: 314: 310: 309: 303: 301: 300: 295: 290: 284: 283: 278: 277: 274: 273: 269: 268: 267: 266: 261: 256: 251: 240: 238: 237: 232: 226: 225: 220: 219: 216: 215: 207: 206: 200: 199: 192: 189: 177:Lorenz Hiltner 172: 169: 109:microorganisms 66: 58: 57: 51:September 2020 31: 29: 22: 15: 9: 6: 4: 3: 2: 4567: 4556: 4553: 4551: 4548: 4546: 4543: 4541: 4538: 4537: 4535: 4522: 4521:Types of soil 4512: 4506: 4503: 4501: 4500:Tropical peat 4498: 4496: 4493: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4436: 4433: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4385:Dry quicksand 4383: 4381: 4378: 4376: 4373: 4371: 4368: 4366: 4363: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4268: 4267: 4265: 4261: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4224: 4221: 4219: 4216: 4214: 4211: 4208: 4205: 4204: 4202: 4200:Other systems 4198: 4192: 4189: 4187: 4184: 4182: 4179: 4177: 4174: 4172: 4169: 4167: 4164: 4162: 4159: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4137: 4134: 4133: 4131: 4129: 4125: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3960: 3958: 3955: 3949: 3945: 3938: 3933: 3931: 3926: 3924: 3919: 3918: 3915: 3899: 3895: 3891: 3886: 3875: 3871: 3866: 3854: 3850: 3846: 3845: 3832: 3826: 3822: 3818: 3814: 3807: 3799: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3763: 3755: 3751: 3747: 3743: 3739: 3735: 3728: 3726: 3724: 3715: 3711: 3707: 3703: 3699: 3695: 3687: 3679: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3644: 3636: 3632: 3628: 3624: 3620: 3616: 3609: 3601: 3597: 3593: 3589: 3585: 3581: 3577: 3570: 3562: 3558: 3554: 3550: 3546: 3542: 3535: 3527: 3523: 3518: 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3485: 3478: 3470: 3466: 3462: 3458: 3454: 3450: 3443: 3435: 3433:9780123948083 3429: 3425: 3421: 3417: 3410: 3402: 3398: 3393: 3388: 3384: 3380: 3376: 3369: 3361: 3357: 3353: 3349: 3345: 3341: 3334: 3332: 3323: 3319: 3314: 3309: 3304: 3299: 3295: 3291: 3287: 3283: 3279: 3272: 3264: 3263: 3255: 3247: 3243: 3239: 3235: 3230: 3225: 3221: 3217: 3213: 3206: 3198: 3194: 3190: 3184: 3180: 3179: 3171: 3164: 3160: 3153: 3148: 3143: 3138: 3134: 3130: 3126: 3119: 3117: 3115: 3113: 3111: 3109: 3107: 3105: 3097: 3092: 3085: 3080: 3076: 3072: 3068: 3061: 3059: 3057: 3055: 3053: 3044: 3040: 3035: 3030: 3026: 3022: 3021:Plant Disease 3018: 3011: 3003: 2999: 2995: 2991: 2987: 2983: 2976: 2968: 2964: 2960: 2956: 2952: 2948: 2941: 2933: 2929: 2925: 2921: 2917: 2910: 2908: 2899: 2895: 2891: 2887: 2880: 2872: 2868: 2863: 2858: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2821: 2813: 2809: 2804: 2799: 2794: 2789: 2785: 2781: 2777: 2770: 2762: 2758: 2753: 2748: 2744: 2740: 2735: 2730: 2726: 2722: 2718: 2710: 2702: 2698: 2694: 2693:10.1038/27427 2690: 2686: 2682: 2678: 2674: 2667: 2659: 2655: 2650: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2610: 2602: 2598: 2594: 2590: 2583: 2575: 2571: 2567: 2563: 2560:(4): 139–43. 2559: 2555: 2548: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2497: 2490: 2482: 2478: 2473: 2468: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2438: 2429: 2421: 2417: 2413: 2409: 2405: 2401: 2394: 2386: 2382: 2378: 2374: 2367: 2365: 2356: 2352: 2348: 2344: 2339: 2334: 2330: 2326: 2322: 2315: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2264: 2257: 2252: 2246: 2242: 2238: 2234: 2229: 2224: 2220: 2216: 2212: 2205: 2197: 2193: 2188: 2183: 2179: 2175: 2170: 2165: 2161: 2157: 2153: 2146: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2103: 2101: 2092: 2088: 2083: 2078: 2074: 2070: 2066: 2059: 2051: 2039: 2030: 2025: 2021: 2017: 2013: 2006: 1998: 1994: 1990: 1986: 1982: 1978: 1971: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1928: 1920: 1916: 1912: 1908: 1904: 1900: 1893: 1891: 1882: 1878: 1874: 1870: 1866: 1862: 1855: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1813: 1807: 1799: 1795: 1791: 1787: 1784:(1–2): 7–14. 1783: 1779: 1772: 1770: 1768: 1760: 1756: 1750: 1748: 1739: 1735: 1731: 1724: 1722: 1713: 1709: 1705: 1701: 1697: 1693: 1686: 1678: 1674: 1670: 1666: 1659: 1657: 1641: 1637: 1633: 1626: 1618: 1614: 1609: 1604: 1599: 1594: 1590: 1586: 1582: 1575: 1573: 1563: 1558: 1554: 1550: 1546: 1539: 1523: 1519: 1513: 1506: 1501: 1495: 1491: 1486: 1481: 1477: 1473: 1468: 1463: 1459: 1455: 1451: 1444: 1442: 1437: 1427: 1426:Root mucilage 1424: 1422: 1421:Rhizobacteria 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1403: 1393: 1388: 1381: 1377: 1373: 1369: 1364: 1359: 1352: 1348: 1345: 1341: 1338: 1334: 1332:Enzyme Assays 1331: 1329: 1326: 1323: 1320: 1317: 1315: 1312: 1311: 1310: 1301: 1297: 1293: 1291: 1285: 1283: 1278: 1269: 1268: 1262: 1258: 1256: 1255:transcription 1250: 1247: 1242: 1239: 1235: 1231: 1227: 1223: 1219: 1206: 1201: 1195:Communication 1186: 1176: 1172: 1170: 1166: 1162: 1161: 1156: 1155: 1149: 1145: 1140: 1138: 1134: 1133: 1128: 1124: 1120: 1116: 1112: 1106: 1097: 1092: 1083: 1080: 1076: 1072: 1071: 1065: 1055: 1051: 1049: 1045: 1040: 1036: 1032: 1028: 1024: 1023: 1018: 1013: 1011: 1010: 1005: 1001: 997: 993: 983: 979: 977: 976:methanotrophs 972: 968: 959: 956: 951: 948: 937: 930: 926: 920: 918: 911: 902: 893: 891: 887: 884: 881: 877: 873: 869: 865: 855: 853: 848: 844: 840: 839:polyglycolide 836: 830: 827: 823: 819: 818:organic acids 815: 798: 793: 791: 786: 784: 779: 778: 776: 775: 769: 759: 758: 757: 756: 748: 745: 743: 740: 739: 732: 731: 723: 722:Symbiogenesis 720: 718: 717:Superorganism 715: 713: 710: 708: 705: 703: 700: 696: 693: 692: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 657: 652: 649: 647: 644: 643: 636: 635: 627: 624: 622: 619: 616: 613: 611: 608: 606: 603: 602: 598: 593: 592: 582: 579: 578: 577: 574: 573: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 542: 541: 540: 535: 532: 530: 527: 526: 522: 517: 516: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 483: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 452: 451: 448: 447: 441: 440:rhizobacteria 438: 436: 433: 431: 428: 427: 426: 423: 422: 418: 413: 412: 404: 402: 398: 396: 393: 390: 387: 385: 382: 381: 374: 373: 365: 362: 360: 357: 354: 351: 349: 346: 344: 341: 340: 335: 332: 330: 327: 326: 322: 317: 316: 308: 305: 304: 299: 296: 294: 291: 289: 286: 285: 281: 276: 275: 265: 262: 260: 257: 255: 252: 250: 247: 246: 245: 242: 241: 236: 233: 231: 228: 227: 223: 218: 217: 213: 209: 208: 205: 202: 201: 197: 196: 188: 186: 182: 178: 168: 166: 161: 156: 154: 150: 146: 142: 138: 134: 130: 129:root exudates 126: 122: 118: 114: 111:known as the 110: 106: 102: 98: 94: 86: 82: 78: 74: 69: 64: 54: 44: 39: 35: 32:This article 30: 21: 20: 4540:Soil biology 4430:Martian soil 4339: 3902:. Retrieved 3897: 3893: 3877:. Retrieved 3873: 3857:. Retrieved 3853:the original 3812: 3806: 3776:(1): 77–90. 3773: 3769: 3762: 3737: 3733: 3697: 3693: 3686: 3653: 3649: 3643: 3618: 3614: 3608: 3583: 3579: 3569: 3544: 3540: 3534: 3491: 3487: 3477: 3452: 3448: 3442: 3415: 3409: 3382: 3378: 3368: 3343: 3339: 3285: 3281: 3271: 3261: 3254: 3219: 3215: 3205: 3177: 3170: 3152:11585/787803 3132: 3128: 3074: 3070: 3024: 3020: 3010: 2988:(1): 26–32. 2985: 2981: 2975: 2950: 2946: 2940: 2923: 2919: 2892:(1): 15–18. 2889: 2885: 2879: 2834: 2830: 2820: 2783: 2780:PLOS Biology 2779: 2769: 2724: 2721:PLOS Biology 2720: 2709: 2676: 2672: 2666: 2623: 2619: 2609: 2592: 2588: 2582: 2557: 2553: 2547: 2509:(1): 44–58. 2506: 2502: 2489: 2446: 2442: 2436: 2428: 2403: 2399: 2393: 2376: 2372: 2328: 2324: 2314: 2273: 2269: 2263: 2218: 2214: 2204: 2159: 2156:PLOS Biology 2155: 2145: 2112: 2108: 2072: 2068: 2058: 2046:|last7= 2038:cite journal 2019: 2015: 2005: 1980: 1976: 1970: 1937: 1933: 1927: 1902: 1898: 1864: 1860: 1854: 1832:(1): 25–44. 1829: 1825: 1819: 1806: 1781: 1777: 1758: 1754: 1737: 1733: 1695: 1691: 1685: 1668: 1664: 1643:. Retrieved 1625: 1591:(1): 44–51. 1588: 1584: 1552: 1548: 1538: 1526:. Retrieved 1522:the original 1512: 1457: 1453: 1391: 1362: 1324:Root Imaging 1307: 1298: 1294: 1286: 1273: 1267:Rhizobiaceae 1265: 1251: 1243: 1222:crosstalking 1215: 1204: 1168: 1164: 1158: 1152: 1147: 1141: 1130: 1117:modulation, 1115:phytohormone 1108: 1095: 1074: 1068: 1063: 1061: 1052: 1035:root nodules 1020: 1014: 1007: 989: 980: 973: 969: 965: 952: 946: 943: 934: 914: 861: 831: 811: 707:Metabolomics 690:Metagenomics 576:Hologenomics 400: 264:spermosphere 243: 235:Phyllosphere 180: 174: 159: 157: 124: 92: 90: 67: 48: 40:for details. 33: 4555:Microbiomes 4545:Plant roots 4495:Terra rossa 4490:Terra preta 4470:Spodic soil 4390:Duplex soil 4370:Brown earth 4350:Alkali soil 4340:Rhizosphere 4335:Laimosphere 4209:(1974–1998) 4166:Inceptisols 4073:Plinthosols 4038:Kastanozems 3621:: 119–144. 3547:: 807–838. 3027:(1): 4–10. 2947:Protoplasma 2786:(7): e239. 2115:(1): 1–13. 2069:Rhizosphere 1277:metabolites 1169:Trichoderma 1165:Trichoderma 1148:Trichoderma 1137:mycorrhizae 1132:Trichoderma 1075:Trichoderma 1070:Trichoderma 1039:symbiosomes 1031:nod factors 1004:germination 1000:mycorrhizal 962:Competition 947:Pseudomonas 917:soil carbon 826:saccharides 660:Gnotobiosis 389:Phycosphere 249:laimosphere 244:Rhizosphere 204:Microbiomes 141:antibiotics 93:rhizosphere 36:. See the 4534:Categories 4475:Stagnogley 4425:Lunar soil 4380:Dark earth 4365:Brickearth 4330:Pedosphere 4300:Soil crust 4108:Technosols 4093:Solonchaks 4013:Ferralsols 3978:Anthrosols 3077:(2): 219. 2379:(4): 846. 2075:: 100408. 2022:: 107961. 1983:(3): 435. 1899:Plant Soil 1432:References 1290:endophytes 1119:biocontrol 1044:rice plant 1027:flavonoids 1015:Symbiotic 929:permafrost 872:mutualisms 837:, such as 816:, such as 712:Pan-genome 665:Phytobiome 626:Virosphere 521:Holobionts 417:Microbiota 401:Drosophila 364:Necrobiome 329:Human milk 230:Endosphere 171:Background 160:rhizoplane 149:pathogenic 117:Soil pores 4460:Quicksand 4405:Fill dirt 4345:Bulk soil 4191:Vertisols 4181:Spodosols 4171:Mollisols 4161:Histosols 4146:Aridisols 4118:Vertisols 4113:Umbrisols 4103:Stagnosol 4068:Planosols 4063:Phaeozems 4043:Leptosols 4028:Gypsisols 4018:Fluvisols 3998:Chernozem 3993:Cambisols 3988:Calcisols 3983:Arenosols 3790:0032-079X 3385:: 62–68. 2743:1545-7885 2523:0003-0147 2355:131260721 2347:0084-6597 2290:1740-1526 2245:219905513 2237:1543-5938 2178:1545-7885 2129:1099-1565 2091:2452-2198 1954:1469-8137 1476:1664-302X 1337:rhizotron 1238:signaling 1234:symbiosis 1157:spp. and 1154:Rhizobium 1022:Rhizobium 986:Mutualism 940:Predation 822:bulk soil 651:Dysbiosis 565:rhodolith 430:endophyte 384:Mycobiome 348:Placental 145:metabolic 133:symbiosis 101:substrate 81:signaling 38:talk page 4445:Paleosol 4360:Blue goo 4315:Gypcrust 4186:Ultisols 4156:Gelisols 4151:Entisols 4141:Andisols 4136:Alfisols 4098:Solonetz 4088:Retisols 4083:Regosols 4058:Nitisols 4053:Luvisols 4048:Lixisols 4033:Histosol 4023:Gleysols 4008:Durisols 4003:Cryosols 3973:Andosols 3963:Acrisols 3904:24 April 3879:24 April 3798:23547420 3754:24345065 3714:26032777 3670:23493145 3635:21838550 3600:26832945 3561:23373698 3526:16269768 3469:18789693 3401:27393937 3360:17890501 3322:26041807 3238:18205776 3197:54460090 3071:Agronomy 3043:30812698 3002:14729216 2967:39961232 2871:22493242 2812:16822096 2761:16787107 2658:11472935 2574:21238010 2539:23413577 2531:18171150 2481:20525866 2306:42795586 2298:24814065 2196:16623597 2137:18618895 1997:96925936 1962:16219069 1846:26813067 1761:: 57-78. 1712:35099987 1617:12746510 1494:33841353 1400:See also 1380:nematode 1372:bacteria 1270:bacteria 1226:rhizobia 1046:exhibit 955:food web 919:reserves 768:Category 735:Projects 615:Mangrove 555:seagrass 435:epiphyte 353:Salivary 298:Cetacean 288:Seagrass 121:bacteria 4395:Eluvium 4355:Bay mud 4320:Caliche 4310:Hardpan 4305:Claypan 4295:Subsoil 4290:Topsoil 4176:Oxisols 4078:Podzols 3968:Alisols 3956:(1998–) 3740:: 1–9. 3678:7849557 3517:1287620 3496:Bibcode 3313:4547229 3290:Bibcode 3246:5014169 2862:3340038 2839:Bibcode 2803:1489982 2752:1481526 2701:4420271 2681:Bibcode 2628:Bibcode 2472:2916451 2451:Bibcode 2420:1942528 2373:Ecology 2187:1440938 1919:6840457 1881:8562338 1798:4419735 1740:(3): 1. 1608:1540314 1485:8032546 1304:Methods 1207:  1127:abiotic 1098:  1048:diurnal 992:secrete 990:Plants 921:  847:lignins 843:phenols 639:Related 621:Viriome 597:Viromes 475:vaginal 359:Uterine 131:. This 4505:Yedoma 4440:Muskeg 3900:(3): 1 3859:3 July 3827:  3796:  3788:  3752:  3712:  3676:  3668:  3633:  3598:  3559:  3524:  3514:  3467:  3430:  3399:  3358:  3320:  3310:  3244:  3236:  3195:  3185:  3041:  3000:  2965:  2869:  2859:  2810:  2800:  2759:  2749:  2741:  2699:  2673:Nature 2656:  2646:  2572:  2537:  2529:  2521:  2479:  2469:  2418:  2353:  2345:  2304:  2296:  2288:  2243:  2235:  2194:  2184:  2176:  2135:  2127:  2089:  1995:  1960:  1952:  1917:  1879:  1844:  1796:  1710:  1645:3 July 1615:  1605:  1492:  1482:  1474:  1378:; N = 1376:hyphae 1368:amoeba 1339:camera 1230:legume 1123:biotic 1121:, and 1009:Striga 852:amines 766:  560:sponge 486:Marine 181:rhiza- 4485:Takir 4420:Loess 3794:S2CID 3750:S2CID 3674:S2CID 3356:S2CID 3242:S2CID 2963:S2CID 2697:S2CID 2649:93059 2535:S2CID 2499:(PDF) 2416:JSTOR 2351:S2CID 2302:S2CID 2241:S2CID 1993:S2CID 1915:S2CID 1877:S2CID 1842:S2CID 1794:S2CID 1708:S2CID 1528:5 May 1382:worm. 1335:Mini 1077:is a 880:mesic 876:trees 695:viral 610:Human 545:coral 450:Human 425:Plant 293:Coral 185:Greek 4450:Peat 4285:Loam 4280:Clay 4275:Silt 4270:Sand 3906:2017 3881:2017 3861:2006 3825:ISBN 3786:ISSN 3710:PMID 3666:PMID 3631:PMID 3596:PMID 3557:PMID 3522:PMID 3465:PMID 3428:ISBN 3397:PMID 3318:PMID 3234:PMID 3193:OCLC 3183:ISBN 3039:PMID 2998:PMID 2867:PMID 2808:PMID 2757:PMID 2739:ISSN 2654:PMID 2570:PMID 2527:PMID 2519:ISSN 2477:PMID 2343:ISSN 2294:PMID 2286:ISSN 2233:ISSN 2192:PMID 2174:ISSN 2133:PMID 2125:ISSN 2087:ISSN 2050:help 1958:PMID 1950:ISSN 1647:2006 1640:NRCS 1636:USDA 1613:PMID 1530:2006 1490:PMID 1472:ISSN 1366:A = 1135:and 1125:and 953:The 845:and 550:crab 470:skin 465:oral 460:lung 158:The 105:root 97:soil 91:The 4435:Mud 3817:doi 3778:doi 3774:151 3742:doi 3738:211 3702:doi 3658:doi 3623:doi 3588:doi 3549:doi 3512:PMC 3504:doi 3457:doi 3420:doi 3387:doi 3348:doi 3344:321 3308:PMC 3298:doi 3286:112 3224:doi 3147:hdl 3137:doi 3079:doi 3029:doi 2990:doi 2955:doi 2951:193 2928:doi 2894:doi 2857:PMC 2847:doi 2835:109 2798:PMC 2788:doi 2747:PMC 2729:doi 2689:doi 2677:395 2644:PMC 2636:doi 2597:doi 2562:doi 2511:doi 2507:171 2467:PMC 2459:doi 2408:doi 2381:doi 2333:doi 2278:doi 2223:doi 2182:PMC 2164:doi 2117:doi 2077:doi 2024:doi 2020:149 1985:doi 1942:doi 1938:168 1907:doi 1903:321 1869:doi 1865:237 1834:doi 1830:205 1786:doi 1782:312 1700:doi 1673:doi 1603:PMC 1593:doi 1589:132 1557:doi 1553:165 1480:PMC 1462:doi 605:Bat 455:gut 403:gut 99:or 4536:: 3896:. 3892:. 3872:. 3823:. 3792:. 3784:. 3772:. 3748:. 3736:. 3722:^ 3708:. 3698:18 3696:. 3672:. 3664:. 3654:11 3652:. 3629:. 3619:45 3617:. 3594:. 3584:21 3582:. 3578:. 3555:. 3545:64 3543:. 3520:. 3510:. 3502:. 3492:71 3490:. 3486:. 3463:. 3453:16 3451:. 3426:. 3395:. 3383:32 3381:. 3377:. 3354:. 3342:. 3330:^ 3316:. 3306:. 3296:. 3284:. 3280:. 3240:. 3232:. 3220:21 3218:. 3214:. 3191:. 3145:. 3135:. 3131:. 3127:. 3103:^ 3075:11 3073:. 3069:. 3051:^ 3037:. 3025:87 3023:. 3019:. 2996:. 2984:. 2961:. 2949:. 2924:26 2922:. 2918:. 2906:^ 2890:16 2888:. 2865:. 2855:. 2845:. 2833:. 2829:. 2806:. 2796:. 2782:. 2778:. 2755:. 2745:. 2737:. 2723:. 2719:. 2695:. 2687:. 2675:. 2652:. 2642:. 2634:. 2624:67 2622:. 2618:. 2593:33 2591:. 2568:. 2558:12 2556:. 2533:. 2525:. 2517:. 2505:. 2501:. 2475:. 2465:. 2457:. 2447:76 2445:. 2441:. 2414:. 2404:55 2402:. 2377:84 2375:. 2363:^ 2349:. 2341:. 2329:44 2327:. 2323:. 2300:. 2292:. 2284:. 2274:12 2272:. 2239:. 2231:. 2219:45 2217:. 2213:. 2190:. 2180:. 2172:. 2158:. 2154:. 2131:. 2123:. 2113:20 2111:. 2099:^ 2085:. 2073:19 2071:. 2067:. 2042:: 2040:}} 2036:{{ 2018:. 2014:. 1991:. 1981:51 1979:. 1956:. 1948:. 1936:. 1913:. 1901:. 1889:^ 1875:. 1863:. 1840:. 1828:. 1792:. 1780:. 1766:^ 1759:98 1757:, 1746:^ 1736:. 1732:. 1720:^ 1706:. 1696:15 1694:. 1669:30 1667:. 1655:^ 1634:. 1611:. 1601:. 1587:. 1583:. 1571:^ 1551:. 1547:. 1488:. 1478:. 1470:. 1458:12 1456:. 1452:. 1440:^ 1171:. 1139:. 892:. 854:. 115:. 3936:e 3929:t 3922:v 3908:. 3898:4 3883:. 3863:. 3833:. 3819:: 3800:. 3780:: 3756:. 3744:: 3716:. 3704:: 3680:. 3660:: 3637:. 3625:: 3602:. 3590:: 3563:. 3551:: 3528:. 3506:: 3498:: 3471:. 3459:: 3436:. 3422:: 3403:. 3389:: 3362:. 3350:: 3324:. 3300:: 3292:: 3248:. 3226:: 3199:. 3165:. 3155:. 3149:: 3139:: 3133:2 3098:. 3087:. 3081:: 3045:. 3031:: 3004:. 2992:: 2986:9 2969:. 2957:: 2934:. 2930:: 2900:. 2896:: 2873:. 2849:: 2841:: 2814:. 2790:: 2784:4 2763:. 2731:: 2725:4 2703:. 2691:: 2683:: 2660:. 2638:: 2630:: 2603:. 2599:: 2576:. 2564:: 2541:. 2513:: 2483:. 2461:: 2453:: 2439:" 2422:. 2410:: 2387:. 2383:: 2357:. 2335:: 2308:. 2280:: 2258:. 2247:. 2225:: 2198:. 2166:: 2160:4 2139:. 2119:: 2093:. 2079:: 2052:) 2032:. 2026:: 1999:. 1987:: 1964:. 1944:: 1921:. 1909:: 1883:. 1871:: 1848:. 1836:: 1800:. 1788:: 1738:4 1714:. 1702:: 1679:. 1675:: 1649:. 1638:- 1619:. 1595:: 1559:: 1532:. 1507:. 1496:. 1464:: 796:e 789:t 782:v 53:) 49:(

Index

talk page
WikiProject Plants

physicochemical
parasitic nematodes
signaling
Mycorrhizal fungi
soil
substrate
root
microorganisms
root microbiome
Soil pores
bacteria
root exudates
symbiosis
nutrient cycling
antibiotics
metabolic
pathogenic
allelochemicals
selective pressures
Lorenz Hiltner
Greek
Microbiomes

Plant microbiomes
Endosphere
Phyllosphere
Rhizosphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑