Knowledge

Riemann–Hilbert correspondence

Source 📝

1151: 527:(as an algebraic vector bundle with flat connection), because its solutions do not have moderate growth at ∞. This shows the need to restrict to flat connections with regular singularities in the Riemann–Hilbert correspondence. On the other hand, if we work with holomorphic (rather than algebraic) vector bundles with flat connection on a noncompact complex manifold such as 64:, the Riemann-Hilbert correspondence provides a complex analytic isomorphism between two of the three natural algebraic structures on the moduli spaces, and so is naturally viewed as a nonabelian analogue of the comparison isomorphism between De Rham cohomology and singular/Betti cohomology. 214:
has dimension one (a complex algebraic curve) then there is a more general Riemann–Hilbert correspondence for algebraic connections with no regularity assumption (or for holonomic D-modules with no regularity assumption) described in Malgrange (1991), the
596:-sheaves and left (resp. right) modules with a Frobenius (resp. Cartier) action. This can be regarded as the positive characteristic analogue of the classical theory, where one can find a similar interplay of constructive vs. perverse t-structures. 535:, then the notion of regular singularities is not defined. A much more elementary theorem than the Riemann–Hilbert correspondence states that flat connections on holomorphic vector bundles are determined up to isomorphism by their monodromy. 20:
refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in
207:, and a local system on a subvariety is something like a description of possible monodromies, so this correspondence can be thought of as describing certain systems of differential equations in terms of the monodromies of their solutions. 499: 281: 395: 329:− {0}. That means that the equation has nontrivial monodromy. Explicitly, the monodromy of this equation is the 1-dimensional representation of the fundamental group 113:
The condition of regular singularities means that locally constant sections of the bundle (with respect to the flat connection) have moderate growth at points of
523:, the monodromy of this flat connection is trivial. But this flat connection is not isomorphic to the obvious flat connection on the trivial line bundle over 1111: 110:. Thus such connections give a purely algebraic way to access the finite dimensional representations of the topological fundamental group. 424:, the equation does not have regular singularities at ∞. (This can also be seen by rewriting the equation in terms of the variable 931: 764:(1980), "Faisceaux constructibles et systèmes holonômes d'équations aux dérivées partielles linéaires à points singuliers réguliers", 966: 784: 971: 86:
called the local solutions functor, that is an equivalence from the category of flat connections on algebraic vector bundles on
703: 438: 168:
By considering the irreducible elements of each category, this gives a 1:1 correspondence between isomorphism classes of
52:(1970, generalizing existing work in the case of Riemann surfaces) and more generally for regular holonomic D-modules by 1076: 1061: 981: 683:(Gives explicit representation of Riemann–Hilbert correspondence for Milnor fiber of isolated hypersurface singularity) 233: 1121: 866: 833: 22: 1136: 1177: 420:. Since these solutions do not have polynomial growth on some sectors around the point ∞ in the projective line 1182: 1131: 1126: 1101: 956: 924: 736: 102:
connected, the category of local systems is also equivalent to the category of complex representations of the
45:(linear and having very special properties for their solutions) and possible monodromies of their solutions. 42: 26: 1066: 951: 1091: 605: 357: 1116: 1096: 504:
The pole of order 2 in the coefficients means that the equation does not have regular singularities at
1187: 1155: 917: 547: 631:
Bhatt, Bhargav; Lurie, Jacob (2019), "A Riemann-Hilbert correspondence in positive characteristic",
1106: 996: 961: 588:
More generally, there are equivalences of categories between constructible (resp. perverse) étale
1016: 184: 61: 618:
Emerton, Matthew; Kisin, Mark (2004), "The Riemann-Hilbert correspondence for unit F-crystals",
351:
To see the need for the hypothesis of regular singularities, consider the differential equation
1031: 887: 578: 509: 302: 1056: 154: 91: 408:). This equation corresponds to a flat connection on the trivial algebraic line bundle over 903: 876: 843: 810: 773: 746: 713: 662: 8: 1081: 991: 976: 855:
Complex analysis, microlocal calculus and relativistic quantum theory (Les Houches, 1979)
582: 562: 1001: 666: 640: 143: 1071: 1011: 862: 829: 817: 750: 732: 699: 670: 103: 1006: 986: 940: 883: 850: 796: 780: 761: 650: 158: 57: 53: 38: 25:
was for the Riemann sphere, where it was about the existence of systems of linear
1051: 1026: 899: 872: 858: 839: 806: 769: 742: 728: 709: 658: 48:
Such a result was proved for algebraic connections with regular singularities by
34: 94:
to the category of local systems of finite-dimensional complex vector spaces on
1041: 1036: 801: 720: 695: 291: 49: 654: 566: 1171: 561:) establish a Riemann-Hilbert correspondence that asserts in particular that 825: 344:
in which the generator (a loop around the origin) acts by multiplication by
1021: 687: 192: 41:
of dimension > 1. There is a correspondence between certain systems of
33:
representations. First the Riemann sphere may be replaced by an arbitrary
754: 1046: 142:
called the de Rham functor, that is an equivalence from the category of
30: 909: 645: 200: 146: 227:
An example where the theorem applies is the differential equation
37:
and then, in higher dimensions, Riemann surfaces are replaced by
789:
Publications of the Research Institute for Mathematical Sciences
557:(later developed further under less restrictive assumptions in 129:
is compact, the condition of regular singularities is vacuous.
577:-coefficients can be computed in terms of the action of the 694:, Perspectives in Mathematics, vol. 2, Boston, MA: 203:
is something like a system of differential equations on
82:(for regular singular connections): there is a functor 725:Équations différentielles à points singuliers réguliers 494:{\displaystyle {\frac {df}{dw}}=-{\frac {1}{w^{2}}}f.} 309:. The local solutions of the equation are of the form 138:(for regular holonomic D-modules): there is a functor 441: 360: 236: 822:Équations différentielles à coefficients polynomiaux 785:"The Riemann-Hilbert problem for holonomic systems" 493: 389: 275: 1169: 766:Séminaire Goulaouic-Schwartz, 1979–80, Exposé 19 412:. The solutions of the equation are of the form 276:{\displaystyle {\frac {df}{dz}}={\frac {a}{z}}f} 187:complexes of irreducible closed subvarieties of 727:, Lecture Notes in Mathematics, vol. 163, 853:(1980), "Sur le problėme de Hilbert-Riemann", 60:(1980, 1984) independently. In the setting of 925: 301:is a fixed complex number. This equation has 967:Grothendieck–Hirzebruch–Riemann–Roch theorem 617: 554: 857:, Lecture Notes in Physics, vol. 126, 932: 918: 630: 558: 290: − {0} (that is, on the nonzero 1112:Riemann–Roch theorem for smooth manifolds 824:, Progress in Mathematics, vol. 96, 816: 800: 779: 760: 644: 882: 849: 719: 217:Riemann–Hilbert–Birkhoff correspondence 76:is a smooth complex algebraic variety. 1170: 538: 325:cannot be made well-defined on all of 913: 888:"Une autre équivalence de catégories" 686: 519:are defined on the whole affine line 321:is not an integer, then the function 939: 121:is an algebraic compactification of 172:irreducible holonomic D-modules on 13: 1077:Riemannian connection on a surface 982:Measurable Riemann mapping theorem 768:, Palaiseau: École Polytechnique, 390:{\displaystyle {\frac {df}{dz}}=f} 305:at 0 and ∞ in the projective line 14: 1199: 676: 404:(that is, on the complex numbers 191:with coefficients in irreducible 1150: 1149: 633:Cambridge Journal of Mathematics 1062:Riemann's differential equation 972:Hirzebruch–Riemann–Roch theorem 1087:Riemann–Hilbert correspondence 957:Generalized Riemann hypothesis 136:Riemann–Hilbert correspondence 80:Riemann–Hilbert correspondence 43:partial differential equations 27:regular differential equations 23:Hilbert's twenty-first problem 18:Riemann–Hilbert correspondence 1: 1122:Riemann–Siegel theta function 611: 286:on the punctured affine line 1137:Riemann–von Mangoldt formula 132:More generally there is the 67: 7: 599: 222: 176:with regular singularities, 10: 1204: 1132:Riemann–Stieltjes integral 1127:Riemann–Silberstein vector 1102:Riemann–Liouville integral 555:Emerton & Kisin (2004) 1145: 1067:Riemann's minimal surface 947: 655:10.4310/CJM.2019.v7.n1.a3 340: − {0}) =  16:In mathematics, the term 1092:Riemann–Hilbert problems 997:Riemann curvature tensor 962:Grand Riemann hypothesis 952:Cauchy–Riemann equations 802:10.2977/prims/1195181610 559:Bhatt & Lurie (2019) 1017:Riemann mapping theorem 606:Riemann–Hilbert problem 185:intersection cohomology 62:nonabelian Hodge theory 1178:Differential equations 1117:Riemann–Siegel formula 1097:Riemann–Lebesgue lemma 1032:Riemann series theorem 892:Compositio Mathematica 579:Frobenius endomorphism 495: 391: 277: 125:. In particular, when 1183:Representation theory 1057:Riemann zeta function 496: 392: 303:regular singularities 278: 155:regular singularities 92:regular singularities 1107:Riemann–Roch theorem 515:Since the functions 439: 358: 234: 1082:Riemannian geometry 992:Riemann Xi function 977:Local zeta function 861:, pp. 90–110, 692:Algebraic D-Modules 679:Sheaves in Topology 583:coherent cohomology 432:, where it becomes 400:on the affine line 157:to the category of 1002:Riemann hypothesis 818:Malgrange, Bernard 681:, pp. 206–207 677:Dimca, Alexandru, 539:In characteristic 508:= 0, according to 491: 387: 273: 1165: 1164: 1072:Riemannian circle 1012:Riemann invariant 884:Mebkhout, Zoghman 851:Mebkhout, Zoghman 781:Kashiwara, Masaki 762:Kashiwara, Masaki 705:978-0-12-117740-9 483: 460: 379: 268: 255: 104:fundamental group 56:(1980, 1984) and 39:complex manifolds 1195: 1188:Bernhard Riemann 1153: 1152: 1007:Riemann integral 987:Riemann (crater) 941:Bernhard Riemann 934: 927: 920: 911: 910: 906: 879: 846: 813: 804: 776: 757: 716: 682: 673: 648: 627: 563:étale cohomology 500: 498: 497: 492: 484: 482: 481: 469: 461: 459: 451: 443: 428: := 1/ 396: 394: 393: 388: 380: 378: 370: 362: 332: 282: 280: 279: 274: 269: 261: 256: 254: 246: 238: 159:perverse sheaves 58:Zoghman Mebkhout 54:Masaki Kashiwara 29:with prescribed 1203: 1202: 1198: 1197: 1196: 1194: 1193: 1192: 1168: 1167: 1166: 1161: 1141: 1052:Riemann surface 1027:Riemann problem 943: 938: 869: 859:Springer-Verlag 836: 739: 729:Springer-Verlag 721:Deligne, Pierre 706: 639:(1–2): 71–217, 614: 602: 546:For schemes in 544: 510:Fuchs's theorem 477: 473: 468: 452: 444: 442: 440: 437: 436: 371: 363: 361: 359: 356: 355: 335: 330: 292:complex numbers 260: 247: 239: 237: 235: 232: 231: 225: 70: 35:Riemann surface 12: 11: 5: 1201: 1191: 1190: 1185: 1180: 1163: 1162: 1160: 1159: 1146: 1143: 1142: 1140: 1139: 1134: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1079: 1074: 1069: 1064: 1059: 1054: 1049: 1044: 1042:Riemann sphere 1039: 1037:Riemann solver 1034: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 989: 984: 979: 974: 969: 964: 959: 954: 948: 945: 944: 937: 936: 929: 922: 914: 908: 907: 880: 867: 847: 834: 814: 795:(2): 319–365, 777: 758: 737: 717: 704: 696:Academic Press 684: 674: 628: 613: 610: 609: 608: 601: 598: 548:characteristic 543: 537: 502: 501: 490: 487: 480: 476: 472: 467: 464: 458: 455: 450: 447: 416:for constants 398: 397: 386: 383: 377: 374: 369: 366: 333: 313:for constants 284: 283: 272: 267: 264: 259: 253: 250: 245: 242: 224: 221: 197: 196: 178: 177: 69: 66: 50:Pierre Deligne 9: 6: 4: 3: 2: 1200: 1189: 1186: 1184: 1181: 1179: 1176: 1175: 1173: 1158: 1157: 1148: 1147: 1144: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 949: 946: 942: 935: 930: 928: 923: 921: 916: 915: 912: 905: 901: 897: 893: 889: 885: 881: 878: 874: 870: 868:3-540-09996-4 864: 860: 856: 852: 848: 845: 841: 837: 835:0-8176-3556-4 831: 827: 823: 819: 815: 812: 808: 803: 798: 794: 790: 786: 782: 778: 775: 771: 767: 763: 759: 756: 752: 748: 744: 740: 734: 730: 726: 722: 718: 715: 711: 707: 701: 697: 693: 689: 688:Borel, Armand 685: 680: 675: 672: 668: 664: 660: 656: 652: 647: 642: 638: 634: 629: 625: 621: 616: 615: 607: 604: 603: 597: 595: 591: 586: 584: 580: 576: 572: 568: 567:étale sheaves 564: 560: 556: 552: 549: 542: 536: 534: 530: 526: 522: 518: 513: 511: 507: 488: 485: 478: 474: 470: 465: 462: 456: 453: 448: 445: 435: 434: 433: 431: 427: 423: 419: 415: 411: 407: 403: 384: 381: 375: 372: 367: 364: 354: 353: 352: 349: 347: 343: 339: 328: 324: 320: 316: 312: 308: 304: 300: 297:− {0}). Here 296: 293: 289: 270: 265: 262: 257: 251: 248: 243: 240: 230: 229: 228: 220: 218: 213: 208: 206: 202: 194: 193:local systems 190: 186: 183: 182: 181: 175: 171: 170: 169: 166: 164: 160: 156: 152: 148: 145: 141: 137: 133: 130: 128: 124: 120: 116: 111: 109: 105: 101: 97: 93: 89: 85: 81: 77: 75: 72:Suppose that 65: 63: 59: 55: 51: 46: 44: 40: 36: 32: 28: 24: 19: 1154: 1086: 1022:Riemann form 898:(1): 63–88, 895: 891: 854: 821: 792: 788: 765: 724: 691: 678: 636: 632: 623: 619: 593: 589: 587: 574: 570: 550: 545: 540: 532: 528: 524: 520: 516: 514: 505: 503: 429: 425: 421: 417: 413: 409: 405: 401: 399: 350: 345: 341: 337: 326: 322: 318: 314: 310: 306: 298: 294: 287: 285: 226: 216: 211: 210:In the case 209: 204: 198: 188: 179: 173: 167: 162: 150: 139: 135: 134: 131: 126: 122: 118: 114: 112: 107: 99: 95: 87: 83: 79: 78: 73: 71: 47: 17: 15: 1047:Riemann sum 1172:Categories 826:Birkhäuser 738:3540051902 646:1711.04148 620:Astérisque 612:References 671:119147066 466:− 147:D-modules 144:holonomic 68:Statement 31:monodromy 1156:Category 886:(1984), 820:(1991), 783:(1984), 723:(1970), 690:(1987), 600:See also 223:Examples 201:D-module 117:, where 904:0734785 877:0579742 844:1117227 811:0743382 774:0600704 747:0417174 714:0882000 663:3922360 626:: 1–268 553:>0, 902:  875:  865:  842:  832:  809:  772:  755:169357 753:  745:  735:  712:  702:  669:  661:  98:. For 667:S2CID 641:arXiv 569:with 317:. If 153:with 115:Y − X 90:with 863:ISBN 830:ISBN 751:OCLC 733:ISBN 700:ISBN 180:and 797:doi 651:doi 624:293 581:on 565:of 512:.) 161:on 149:on 106:of 84:Sol 1174:: 900:MR 896:51 894:, 890:, 873:MR 871:, 840:MR 838:, 828:, 807:MR 805:, 793:20 791:, 787:, 770:MR 749:, 743:MR 741:, 731:, 710:MR 708:, 698:, 665:, 659:MR 657:, 649:, 635:, 622:, 585:. 531:= 517:ce 414:ce 348:. 311:cz 219:. 199:A 165:. 140:DR 933:e 926:t 919:v 799:: 653:: 643:: 637:7 594:p 592:/ 590:Z 575:p 573:/ 571:Z 551:p 541:p 533:C 529:A 525:A 521:A 506:w 489:. 486:f 479:2 475:w 471:1 463:= 457:w 454:d 449:f 446:d 430:z 426:w 422:P 418:c 410:A 406:C 402:A 385:f 382:= 376:z 373:d 368:f 365:d 346:e 342:Z 338:A 336:( 334:1 331:π 327:C 323:z 319:a 315:c 307:P 299:a 295:C 288:A 271:f 266:z 263:a 258:= 252:z 249:d 244:f 241:d 212:X 205:X 195:. 189:X 174:X 163:X 151:X 127:X 123:X 119:Y 108:X 100:X 96:X 88:X 74:X

Index

Hilbert's twenty-first problem
regular differential equations
monodromy
Riemann surface
complex manifolds
partial differential equations
Pierre Deligne
Masaki Kashiwara
Zoghman Mebkhout
nonabelian Hodge theory
regular singularities
fundamental group
holonomic
D-modules
regular singularities
perverse sheaves
intersection cohomology
local systems
D-module
complex numbers
regular singularities
Fuchs's theorem
characteristic
Emerton & Kisin (2004)
Bhatt & Lurie (2019)
étale cohomology
étale sheaves
Frobenius endomorphism
coherent cohomology
Riemann–Hilbert problem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.