Knowledge

Spin–statistics theorem

Source 📝

459:. A pair of distinct state vectors are physically equivalent if they differ only by an overall phase factor, ignoring other interactions. A pair of indistinguishable particles such as this have only one state. This means that if the positions of the particles are exchanged (i.e., they undergo a permutation), this does not identify a new physical state, but rather one matching the original physical state. In fact, one cannot tell which particle is in which position. 42: 1530:
In spite of these successes, Feynman, in his 1963 undergraduate lecture that discussed the spin-statistics connection, says: "We apologize for the fact that we cannot give you an elementary explanation." Neuenschwander echoed this in 1994, asking if there was any progress spurring additional proofs
477:
Additionally, the assumption (known as microcausality) that spacelike-separated fields either commute or anticommute can be made only for relativistic theories with a time direction. Otherwise, the notion of being spacelike is meaningless. However, the proof involves looking at a Euclidean version of
1596:
from their ability to take on "any" spin. He wrote that they were theoretically predicted to arise in low-dimensional systems where motion is restricted to fewer than three spatial dimensions. Wilczek described their spin statistics as "interpolating continuously between the usual boson and fermion
446:
Naively, spin, an angular momentum property intrinsic to a particle, would be unrelated to fundamental properties of a collection of such particles. However, these are indistinguishable particles: any physical prediction relating multiple indistinguishable particles must not change when the
1103:
Numerous notable proofs have been published, with different kinds of limitations and assumptions. They are all "negative proofs", meaning that they establish that integral spin fields cannot result in fermion statistics while half-integral spin fields cannot result in boson statistics.
1410:
which was later critiqued by Pauli. Pauli showed that Feynman's proof explicitly relied on the first two postulates he used and implicitly used the third one by first allowing negative probabilities but then rejecting field theory results with probabilities greater than one.
1285: 1526:
derived the CPT theorem using the spin-statistics theorem and Burgoyne's proof the spin-statistics theorem in 1958 required no constraints on the interactions nor on the form of the field theories. These results are among the most rigorous practical theorems.
462:
While the physical state does not change under the exchange of the particles' positions, it is possible for the state vector to change sign as a result of an exchange. Since this sign change is just an overall phase, this does not affect the physical state.
1563:
of finite dimension. Thus it seems impossible to construct a Hilbert space in which all states have finite, non-zero spin and positive, Lorentz-invariant norm. This problem is overcome in different ways depending on particle spin–statistics.
1110: 1381:, and was rederived in a more systematic way by Pauli the following year. In a later summary, Pauli listed three postulates within relativistic quantum field theory as required for these versions of the theorem: 519:
are particles whose wavefunction is antisymmetric, so under such a swap the wavefunction gets a minus sign, meaning that the amplitude for two identical fermions to occupy the same state must be zero. This is the
614: 1004: 821: 400:
All known particles obey either Fermi-Dirac statistics or Bose-Einstein statistics. A particle's intrinsic spin always predicts the statistics of a collection of such particles and vice versa:
1514:. (The first two postulates of the Pauli era proofs involve the vacuum state and fields at separate locations.) The new result allowed more rigorous proofs of the spin-statistics theorems by 1539:
In 1987 Greenberg and Mohaparra proposed that the spin statistics theorem could have small violations. With the help of very precise calculations for states of the He atom that violate the
1086: 900: 537:. In order for the operators to project out the symmetric or antisymmetric component of the creating wavefunction, they must have the appropriate commutation law. The operator 1476: 1314: 707: 672: 2189: 1096:
An elementary explanation for the spin-statistics theorem cannot be given despite the fact that the theorem is so simple to state. In the Feynman Lectures on Physics,
736: 1512: 1368: 1341: 1027: 927: 844: 637: 438:, which mediate forces between matter particles, are all bosons. A spin-statistics theorem attempts explain the origin of this fundamental dichotomy. 515:
are particles whose wavefunction is symmetric under such an exchange or permutation, so if we swap the particles, the wavefunction does not change.
2050:
Pauli, Wolfgang (1988). "Exclusion Principle, Lorentz Group and Reflection of Space-Time and Charge". In Enz, Charles P.; v. Meyenn, Karl (eds.).
328: 122: 2709: 2247: 1531:
and books. Neuenschwander's 2013 popularization of the spin-statistics connection suggested that simple explanations remain elusive.
1280:{\displaystyle |\psi (\alpha _{1},\alpha _{2},\alpha _{3},...)|^{2}=|{\hat {P}}\psi (\alpha _{1},\alpha _{2},\alpha _{3},...)|^{2}} 1567:
For a state of integer spin the negative norm states (known as "unphysical polarization") are set to zero, which makes the use of
2699: 17: 2344:
Deilamian, K.; et al. (1995). "Search for small violations of the symmetrization postulate in an excited state of Helium".
709:, and depending on the commutation properties of the fields, either only the antisymmetric parts or the symmetric parts matter. 2704: 543: 2133: 2069: 1990: 1805: 1788: 1709: 1107:
Proofs that avoid using any relativistic quantum field theory mechanism have defects. Many such proofs rely on a claim that
411:
A spin-statistics theorem shows that the mathematical logic of quantum mechanics predicts or explains this physical result.
2150: 466:
The essential ingredient in proving the spin-statistics relation is relativity, that the physical laws do not change under
935: 321: 755: 156: 2595: 2404: 1677: 1650: 1100:
said that this probably means that we do not have a complete understanding of the fundamental principle involved.
164: 84: 1937: 1598: 1316:
permutes the coordinates. However, the value on the left-hand-side represents the probability of particle 1 at
314: 422:
contains at most one fermion -- controls the formation of matter. The basic building blocks of matter such as
2694: 1032: 2684: 849: 89: 2555: 79: 1592:
published a research paper on the possibilities of possible fractional-spin particles, which he termed
94: 1440: 2689: 2665:
Animation of the Dirac belt trick with a double belt, showing that belts behave as spin 1/2 particles
1540: 1399:
Their analysis neglected particle interactions other than commutation/anti-commutation of the state.
521: 415: 414:
The statistics of indistinguishable particles is among the most fundamental of physical effects. The
2427: 1547:
of He using an atomic beam spectrometer. The search was unsuccessful with an upper limit of 5×10.
381: 148: 1574:
For a state of half-integer spin the argument can be circumvented by having fermionic statistics.
500:, and then boosts become rotations. The new "spacetime" has only spatial directions and is termed 1479: 481: 362: 210: 132: 56: 1290: 677: 642: 1560: 471: 467: 389: 478:
spacetime, in which the time direction is treated as a spatial one, as will be now explained.
715: 493: 227: 33: 2624: 2564: 2442: 2353: 2302: 2016: 1946: 1902: 1855: 1485: 1395:
Physical probabilities are positive (the metric of the Hilbert space is positive definite).
1346: 1319: 1012: 912: 829: 622: 524:: two identical fermions cannot occupy the same state. This rule does not hold for bosons. 270: 8: 1419: 1407: 674:
a numerical function with complex values) creates a two-particle state with wavefunction
354: 265: 255: 67: 2628: 2568: 2446: 2357: 2306: 2051: 2020: 1950: 1906: 1885: 1859: 2640: 2614: 2389: 2326: 2208: 2032: 1615: 1437:
lead to a theorem that stated that the expectation value of the product of two fields,
1370:, and so on, and is thus quantum mechanically invalid for indistinguishable particles. 496:
of the correlation functions of a quantum field theory, the time coordinate may become
489: 140: 2508: 1846:(1939). "Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin". 1699: 1426:
more fully developed by Pauli in 1955. These proofs were notably difficult to follow.
2644: 2591: 2528: 2489: 2469: 2400: 2369: 2318: 2271: 2228: 2170: 2129: 2106: 2065: 2036: 1986: 1825: 1784: 1746: 1705: 1673: 1646: 358: 290: 232: 2670:
Animation of a Dirac belt trick variant showing that spin 1/2 particles are fermions
2330: 2086: 2632: 2572: 2520: 2481: 2450: 2361: 2310: 2263: 2220: 2162: 2098: 2057: 2024: 1954: 1910: 1863: 1817: 1738: 1620: 1415: 497: 350: 285: 260: 109: 2061: 1974: 1893: 1667: 1640: 1434: 1430: 1403: 1097: 738:
and the two operators take place at the same time; more generally, they may have
275: 237: 217: 2365: 2224: 2659: 2524: 2454: 2396: 1881: 1610: 1568: 1515: 1422:
in 1940 based on charge-conjugation invariance, leading to a connection to the
1378: 528: 346: 280: 187: 99: 51: 2636: 2485: 1726: 492:
with a different velocity and is mathematically like a rotation into time. By
2678: 2532: 2493: 2423: 2275: 2232: 2174: 2110: 2102: 1829: 1750: 1589: 1556: 485: 456: 419: 2605:
Jabs, Arthur (2010). "Connecting spin and statistics in quantum mechanics".
2314: 2290: 2373: 2190:"The Spin-Statistics Theorem and Identical Particle Distribution Functions" 2028: 1914: 1843: 1519: 1386: 1374: 532: 385: 373: 300: 2322: 1959: 1932: 1779:
Duck, Ian; Sudarshan, Ennackel Chandy George; Sudarshan, E. C. G. (1998).
1392:
Spatially separated measurements do not disturb each other (they commute),
2209:"Local Quantum Field Theory of Possible Violation of the Pauli Principle" 1982: 1867: 1550: 1423: 295: 197: 192: 182: 357:
of collections of such particles is a consequence of the mathematics of
1742: 474:
according to the spin of the particle that they create, by definition.
1821: 1804:
Curceanu, Catalina; Gillaspy, J. D.; Hilborn, Robert C. (2012-07-01).
1697: 41: 1727:"The fundamental theorem on the relation between spin and statistics" 739: 407:
Half-integral spin particle are fermions with Fermi-Dirac statistics.
2577: 2550: 2267: 2166: 2007:
Julian Schwinger (June 15, 1951). "The Quantum Theory of Fields I".
1523: 527:
In quantum field theory, a state or a wavefunction is described by
431: 369: 222: 2619: 2056:(in German). Wiesbaden: Vieweg+Teubner Verlag. pp. 459–479. 516: 450: 427: 377: 2252:
Dwight E. Neuenschwander, Am. J. Phys. 62 (11), 972 (1994)]"
404:
Integral spin particles are bosons with Bose-Einstein statistics
1698:
Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1965).
435: 423: 1597:
cases". The effect has become the basis for understanding the
1418:
in 1950 based on time-reversal invariance followed a proof by
1385:
Any state with particle occupation has higher energy than the
2669: 2664: 1593: 1583: 512: 104: 2509:"Hamiltonian theories of the fractional quantum Hall effect" 507: 1731:
Proceedings of the Indian Academy of Sciences - Section A
2551:"Toward an understanding of the spin–statistics theorem" 2126:
Inward bound: of matter and forces in the physical world
1543:, Deilamian, Gillaspy and Kelleher looked for the 1s2s S 609:{\displaystyle \iint \psi (x,y)\phi (x)\phi (y)\,dx\,dy} 455:
In a quantum system, a physical state is described by a
2590:(5th ed.). Princeton: Princeton University Press. 1803: 1577: 1806:"Resource Letter SS–1: The Spin-Statistics Connection" 1797: 1778: 1551:
Relation to representation theory of the Lorentz group
1488: 1443: 1349: 1322: 1293: 1113: 1035: 1015: 938: 915: 852: 832: 758: 718: 680: 645: 625: 546: 1997:
A reprint of Feynman's 1949 paper in Physical Review
1783:(1. reprint ed.). Singapore: World Scientific. 434:
are all fermions. Conversely, particles such as the
1774: 1772: 1770: 1768: 1766: 1764: 1762: 1760: 1406:gave a completely different type of proof based on 999:{\displaystyle \phi (x)\phi (y)=-\phi (y)\phi (x),} 2388: 2206: 1506: 1470: 1362: 1335: 1308: 1279: 1080: 1021: 998: 921: 894: 838: 816:{\displaystyle \phi (x)\phi (y)=\phi (y)\phi (x),} 815: 730: 701: 666: 631: 608: 345:proves that the observed relationship between the 2387:Peskin, Michael E.; Schroeder, Daniel V. (1995). 2207:Greenberg, O. W.; Mohapatra, R. N. (1987-11-30). 2676: 2585: 2428:"Quantum Mechanics of Fractional-Spin Particles" 2418: 2416: 2006: 1926: 1924: 1757: 2386: 1973: 1933:"On the Connection Between Spin and Statistics" 902:, and the field will create bosonic particles. 353:not due to the orbital motion) and the quantum 2586:Streater, Ray F.; Wightman, Arthur S. (2000). 2291:"Predicted energy shifts for "paronic" Helium" 2187: 2148: 1930: 1880: 1693: 1691: 1689: 451:Quantum states and indistinguishable particles 2548: 2506: 2413: 2128:(Reprint ed.). Oxford: Clarendon Press 2085:Lüders, Gerhart; Zumino, Bruno (1958-06-15). 1921: 1431:mathematical foundations of quantum mechanics 395: 322: 2507:Murthy, Ganpathy; Shankar, R. (2003-10-03). 2084: 1886:"The Connection Between Spin and Statistics" 1842: 1686: 2151:"Question ♯7. The spin-statistics theorem" 2000: 329: 315: 40: 2618: 2576: 2343: 1958: 1724: 1639:Dirac, Paul Adrien Maurice (1981-01-01). 599: 592: 531:operating on some basic state called the 508:Exchange symmetry or permutation symmetry 2588:PCT, Spin & Statistics, and All That 2470:"Nobel Lecture: Fractional quantization" 2467: 2188:Neuenschwander, Dwight E. (2015-07-28). 2149:Neuenschwander, Dwight E. (1994-11-01). 2087:"Connection between Spin and Statistics" 2549:Duck, Ian; Sudarshan, E. C. G. (1998). 2422: 2391:An Introduction to Quantum Field Theory 2245: 1701:The Feynman Lectures on Physics, Vol. 3 1669:General principles of quantum mechanics 1373:The first proof was formulated in 1939 1088:, and the particles will be fermionic. 742:separation, as is explained hereafter. 14: 2677: 1081:{\displaystyle \psi (x,y)=-\psi (y,x)} 470:. The field operators transform under 2288: 2049: 1781:Pauli and the spin-statistics theorem 1665: 1638: 1534: 895:{\displaystyle \psi (x,y)=\psi (y,x)} 2604: 2123: 1578:Quasiparticle anyons in 2 dimensions 1009:then only the antisymmetric part of 749:, meaning that the following holds: 484:include 3-dimensional rotations and 238:Grand potential / Landau free energy 1977:(1961). "The theory of positrons". 1642:The Principles of Quantum Mechanics 24: 2542: 25: 2721: 2652: 2246:Hilborn, Robert C. (1995-04-01). 905:On the other hand, if the fields 2710:Theorems in mathematical physics 1725:Sudarshan, E. C. G. (May 1968). 1645:. Clarendon Press. p. 149. 1471:{\displaystyle \phi (x)\phi (y)} 826:then only the symmetric part of 2500: 2461: 2380: 2337: 2282: 2239: 2200: 2181: 2142: 2117: 2078: 2043: 1967: 1938:Progress of Theoretical Physics 1704:. Addison-Wesley. p. 4.1. 2700:Statistical mechanics theorems 2468:Laughlin, R. B. (1999-07-01). 1874: 1836: 1718: 1666:Pauli, Wolfgang (1980-01-01). 1659: 1632: 1599:fractional quantum hall effect 1501: 1489: 1465: 1459: 1453: 1447: 1300: 1267: 1262: 1211: 1202: 1192: 1178: 1173: 1122: 1115: 1075: 1063: 1051: 1039: 990: 984: 978: 972: 960: 954: 948: 942: 889: 877: 868: 856: 807: 801: 795: 789: 780: 774: 768: 762: 696: 684: 661: 649: 589: 583: 577: 571: 565: 553: 13: 1: 2705:Theorems in quantum mechanics 1626: 441: 2250:The spin-statistics theorem, 2248:"Answer to Question ♯7 [ 2062:10.1007/978-3-322-90270-2_41 27:Theorem in quantum mechanics 7: 2556:American Journal of Physics 2366:10.1103/PhysRevLett.74.4787 2256:American Journal of Physics 2225:10.1103/PhysRevLett.59.2507 2155:American Journal of Physics 1810:American Journal of Physics 1604: 80:Indistinguishable particles 10: 2726: 2525:10.1103/RevModPhys.75.1101 2455:10.1103/PhysRevLett.49.957 1581: 1309:{\displaystyle {\hat {P}}} 702:{\displaystyle \psi (x,y)} 667:{\displaystyle \psi (x,y)} 447:particles are exchanged. 396:Spin-statistics connection 2637:10.1007/s10701-009-9351-4 2513:Reviews of Modern Physics 2486:10.1103/RevModPhys.71.863 2474:Reviews of Modern Physics 1541:Pauli exclusion principle 1522:and by Burgoyne. In 1957 1091: 522:Pauli exclusion principle 488:. A boost transfers to a 416:Pauli exclusion principle 2103:10.1103/PhysRev.110.1450 382:Bose-Einstein statistics 2658:A nice nearly-proof at 2435:Physical Review Letters 2315:10.1103/PhysRevA.39.897 2213:Physical Review Letters 1979:Quantum Electrodynamics 1931:Wolfgang Pauli (1950). 1561:unitary representations 731:{\displaystyle x\neq y} 482:Lorentz transformations 472:Lorentz transformations 468:Lorentz transformations 418:-- that every occupied 363:reduced Planck constant 343:spin–statistics theorem 123:Thermodynamic ensembles 75:Spin–statistics theorem 18:Spin-statistics theorem 2607:Foundations of Physics 2289:Drake, G.W.F. (1989). 2124:Pais, Abraham (2002). 2029:10.1103/PhysRev.82.914 1915:10.1103/PhysRev.58.716 1848:Helvetica Physica Acta 1508: 1480:analytically continued 1472: 1364: 1337: 1310: 1281: 1082: 1023: 1000: 929:has the property that 923: 896: 840: 817: 732: 703: 668: 633: 610: 390:Fermi-Dirac statistics 2660:John Baez's home page 1509: 1507:{\displaystyle (x-y)} 1473: 1365: 1363:{\displaystyle r_{2}} 1338: 1336:{\displaystyle r_{1}} 1311: 1282: 1083: 1029:contributes, so that 1024: 1022:{\displaystyle \psi } 1001: 924: 922:{\displaystyle \phi } 897: 846:contributes, so that 841: 839:{\displaystyle \psi } 818: 733: 704: 669: 634: 632:{\displaystyle \phi } 611: 494:analytic continuation 228:Helmholtz free energy 157:Isoenthalpic–isobaric 34:Statistical mechanics 2695:Quantum field theory 1868:10.5169/seals-110930 1486: 1441: 1347: 1320: 1291: 1111: 1033: 1013: 936: 913: 850: 830: 756: 716: 678: 643: 623: 544: 2685:Particle statistics 2629:2010FoPh...40..776J 2569:1998AmJPh..66..284D 2447:1982PhRvL..49..957W 2358:1995PhRvL..74.4787D 2307:1989PhRvA..39..897D 2021:1951PhRv...82..914S 1960:10.1143/ptp/5.4.526 1951:1950PThPh...5..526P 1907:1940PhRv...58..716P 1884:(15 October 1940). 1860:1939AcHPh..12....3F 1672:. Springer-Verlag. 1588:In 1982, physicist 1559:has no non-trivial 1482:to all separations 1420:Frederik Belinfante 1408:vacuum polarization 1287:where the operator 712:Let us assume that 355:particle statistics 165:Isothermal–isobaric 68:Particle statistics 2426:(4 October 1982). 1743:10.1007/BF03049366 1616:Anyonic statistics 1535:Experimental tests 1504: 1468: 1360: 1333: 1306: 1277: 1078: 1019: 996: 919: 892: 836: 813: 728: 699: 664: 629: 606: 490:frame of reference 361:. In units of the 105:Anyonic statistics 2352:(24): 4787–4790. 2219:(22): 2507–2510. 2135:978-0-19-851997-3 2071:978-3-322-90271-9 1992:978-0-201-36075-2 1822:10.1119/1.4704899 1790:978-981-02-3114-9 1711:978-0-201-02118-9 1303: 1205: 359:quantum mechanics 339: 338: 233:Gibbs free energy 85:Maxwell–Boltzmann 16:(Redirected from 2717: 2690:Physics theorems 2648: 2622: 2601: 2582: 2580: 2537: 2536: 2519:(4): 1101–1158. 2504: 2498: 2497: 2465: 2459: 2458: 2432: 2420: 2411: 2410: 2394: 2384: 2378: 2377: 2341: 2335: 2334: 2286: 2280: 2279: 2243: 2237: 2236: 2204: 2198: 2197: 2185: 2179: 2178: 2146: 2140: 2139: 2121: 2115: 2114: 2097:(6): 1450–1453. 2082: 2076: 2075: 2047: 2041: 2040: 2004: 1998: 1996: 1971: 1965: 1964: 1962: 1928: 1919: 1918: 1890: 1878: 1872: 1871: 1840: 1834: 1833: 1801: 1795: 1794: 1776: 1755: 1754: 1722: 1716: 1715: 1695: 1684: 1683: 1663: 1657: 1656: 1636: 1621:Braid statistics 1513: 1511: 1510: 1505: 1477: 1475: 1474: 1469: 1416:Julian Schwinger 1369: 1367: 1366: 1361: 1359: 1358: 1343:, particle 2 at 1342: 1340: 1339: 1334: 1332: 1331: 1315: 1313: 1312: 1307: 1305: 1304: 1296: 1286: 1284: 1283: 1278: 1276: 1275: 1270: 1249: 1248: 1236: 1235: 1223: 1222: 1207: 1206: 1198: 1195: 1187: 1186: 1181: 1160: 1159: 1147: 1146: 1134: 1133: 1118: 1087: 1085: 1084: 1079: 1028: 1026: 1025: 1020: 1005: 1003: 1002: 997: 928: 926: 925: 920: 901: 899: 898: 893: 845: 843: 842: 837: 822: 820: 819: 814: 737: 735: 734: 729: 708: 706: 705: 700: 673: 671: 670: 665: 639:an operator and 638: 636: 635: 630: 615: 613: 612: 607: 351:angular momentum 331: 324: 317: 110:Braid statistics 44: 30: 29: 21: 2725: 2724: 2720: 2719: 2718: 2716: 2715: 2714: 2675: 2674: 2655: 2598: 2578:10.1119/1.18860 2545: 2543:Further reading 2540: 2505: 2501: 2466: 2462: 2441:(14): 957–959. 2430: 2421: 2414: 2407: 2385: 2381: 2346:Phys. Rev. Lett 2342: 2338: 2287: 2283: 2268:10.1119/1.17953 2244: 2240: 2205: 2201: 2186: 2182: 2167:10.1119/1.17652 2161:(11): 972–972. 2147: 2143: 2136: 2122: 2118: 2091:Physical Review 2083: 2079: 2072: 2048: 2044: 2009:Physical Review 2005: 2001: 1993: 1975:Richard Feynman 1972: 1968: 1929: 1922: 1894:Physical Review 1888: 1879: 1875: 1841: 1837: 1802: 1798: 1791: 1777: 1758: 1723: 1719: 1712: 1696: 1687: 1680: 1664: 1660: 1653: 1637: 1633: 1629: 1607: 1586: 1580: 1553: 1546: 1537: 1487: 1484: 1483: 1442: 1439: 1438: 1435:Arthur Wightman 1404:Richard Feynman 1377:, a student of 1354: 1350: 1348: 1345: 1344: 1327: 1323: 1321: 1318: 1317: 1295: 1294: 1292: 1289: 1288: 1271: 1266: 1265: 1244: 1240: 1231: 1227: 1218: 1214: 1197: 1196: 1191: 1182: 1177: 1176: 1155: 1151: 1142: 1138: 1129: 1125: 1114: 1112: 1109: 1108: 1098:Richard Feynman 1094: 1034: 1031: 1030: 1014: 1011: 1010: 937: 934: 933: 914: 911: 910: 909:, meaning that 851: 848: 847: 831: 828: 827: 757: 754: 753: 717: 714: 713: 679: 676: 675: 644: 641: 640: 624: 621: 620: 545: 542: 541: 529:field operators 510: 453: 444: 398: 349:of a particle ( 335: 306: 305: 251: 243: 242: 218:Internal energy 213: 203: 202: 178: 170: 169: 149:Grand canonical 125: 115: 114: 70: 28: 23: 22: 15: 12: 11: 5: 2723: 2713: 2712: 2707: 2702: 2697: 2692: 2687: 2673: 2672: 2667: 2662: 2654: 2653:External links 2651: 2650: 2649: 2613:(7): 776–792. 2602: 2596: 2583: 2563:(4): 284–303. 2544: 2541: 2539: 2538: 2499: 2480:(4): 863–874. 2460: 2424:Wilczek, Frank 2412: 2405: 2397:Addison-Wesley 2379: 2336: 2301:(2): 897–899. 2281: 2262:(4): 298–299. 2238: 2199: 2180: 2141: 2134: 2116: 2077: 2070: 2053:Wolfgang Pauli 2042: 2015:(6): 914–917. 1999: 1991: 1966: 1945:(4): 526–543. 1920: 1901:(8): 716–722. 1882:Wolfgang Pauli 1873: 1835: 1816:(7): 561–577. 1796: 1789: 1756: 1737:(5): 284–293. 1717: 1710: 1685: 1678: 1658: 1651: 1630: 1628: 1625: 1624: 1623: 1618: 1613: 1611:Parastatistics 1606: 1603: 1582:Main article: 1579: 1576: 1569:gauge symmetry 1552: 1549: 1544: 1536: 1533: 1516:Gerhart Luders 1503: 1500: 1497: 1494: 1491: 1467: 1464: 1461: 1458: 1455: 1452: 1449: 1446: 1397: 1396: 1393: 1390: 1379:Wolfgang Pauli 1357: 1353: 1330: 1326: 1302: 1299: 1274: 1269: 1264: 1261: 1258: 1255: 1252: 1247: 1243: 1239: 1234: 1230: 1226: 1221: 1217: 1213: 1210: 1204: 1201: 1194: 1190: 1185: 1180: 1175: 1172: 1169: 1166: 1163: 1158: 1154: 1150: 1145: 1141: 1137: 1132: 1128: 1124: 1121: 1117: 1093: 1090: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1018: 1007: 1006: 995: 992: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 941: 918: 891: 888: 885: 882: 879: 876: 873: 870: 867: 864: 861: 858: 855: 835: 824: 823: 812: 809: 806: 803: 800: 797: 794: 791: 788: 785: 782: 779: 776: 773: 770: 767: 764: 761: 745:If the fields 727: 724: 721: 698: 695: 692: 689: 686: 683: 663: 660: 657: 654: 651: 648: 628: 617: 616: 605: 602: 598: 595: 591: 588: 585: 582: 579: 576: 573: 570: 567: 564: 561: 558: 555: 552: 549: 509: 506: 452: 449: 443: 440: 409: 408: 405: 397: 394: 388:spin and obey 380:spin and obey 347:intrinsic spin 337: 336: 334: 333: 326: 319: 311: 308: 307: 304: 303: 298: 293: 288: 283: 278: 273: 268: 263: 258: 252: 249: 248: 245: 244: 241: 240: 235: 230: 225: 220: 214: 209: 208: 205: 204: 201: 200: 195: 190: 185: 179: 176: 175: 172: 171: 168: 167: 159: 151: 143: 135: 133:Microcanonical 126: 121: 120: 117: 116: 113: 112: 107: 102: 100:Parastatistics 97: 92: 87: 82: 77: 71: 66: 65: 62: 61: 60: 59: 57:Kinetic theory 54: 52:Thermodynamics 46: 45: 37: 36: 26: 9: 6: 4: 3: 2: 2722: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2682: 2680: 2671: 2668: 2666: 2663: 2661: 2657: 2656: 2646: 2642: 2638: 2634: 2630: 2626: 2621: 2616: 2612: 2608: 2603: 2599: 2597:0-691-07062-8 2593: 2589: 2584: 2579: 2574: 2570: 2566: 2562: 2558: 2557: 2552: 2547: 2546: 2534: 2530: 2526: 2522: 2518: 2514: 2510: 2503: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2464: 2456: 2452: 2448: 2444: 2440: 2436: 2429: 2425: 2419: 2417: 2408: 2406:0-201-50397-2 2402: 2398: 2393: 2392: 2383: 2375: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2340: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2285: 2277: 2273: 2269: 2265: 2261: 2257: 2253: 2251: 2242: 2234: 2230: 2226: 2222: 2218: 2214: 2210: 2203: 2196:. p. 27. 2195: 2191: 2184: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2145: 2137: 2131: 2127: 2120: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2073: 2067: 2063: 2059: 2055: 2054: 2046: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2003: 1994: 1988: 1984: 1980: 1976: 1970: 1961: 1956: 1952: 1948: 1944: 1940: 1939: 1934: 1927: 1925: 1916: 1912: 1908: 1904: 1900: 1896: 1895: 1887: 1883: 1877: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1839: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1800: 1792: 1786: 1782: 1775: 1773: 1771: 1769: 1767: 1765: 1763: 1761: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1713: 1707: 1703: 1702: 1694: 1692: 1690: 1681: 1679:9783540098423 1675: 1671: 1670: 1662: 1654: 1652:9780198520115 1648: 1644: 1643: 1635: 1631: 1622: 1619: 1617: 1614: 1612: 1609: 1608: 1602: 1600: 1595: 1591: 1590:Frank Wilczek 1585: 1575: 1572: 1570: 1565: 1562: 1558: 1557:Lorentz group 1548: 1542: 1532: 1528: 1525: 1521: 1517: 1498: 1495: 1492: 1481: 1462: 1456: 1450: 1444: 1436: 1432: 1427: 1425: 1421: 1417: 1412: 1409: 1405: 1400: 1394: 1391: 1388: 1384: 1383: 1382: 1380: 1376: 1371: 1355: 1351: 1328: 1324: 1297: 1272: 1259: 1256: 1253: 1250: 1245: 1241: 1237: 1232: 1228: 1224: 1219: 1215: 1208: 1199: 1188: 1183: 1170: 1167: 1164: 1161: 1156: 1152: 1148: 1143: 1139: 1135: 1130: 1126: 1119: 1105: 1101: 1099: 1089: 1072: 1069: 1066: 1060: 1057: 1054: 1048: 1045: 1042: 1036: 1016: 993: 987: 981: 975: 969: 966: 963: 957: 951: 945: 939: 932: 931: 930: 916: 908: 903: 886: 883: 880: 874: 871: 865: 862: 859: 853: 833: 810: 804: 798: 792: 786: 783: 777: 771: 765: 759: 752: 751: 750: 748: 743: 741: 725: 722: 719: 710: 693: 690: 687: 681: 658: 655: 652: 646: 626: 603: 600: 596: 593: 586: 580: 574: 568: 562: 559: 556: 550: 547: 540: 539: 538: 536: 535: 530: 525: 523: 518: 514: 505: 503: 499: 495: 491: 487: 483: 479: 475: 473: 469: 464: 460: 458: 448: 439: 437: 433: 429: 425: 421: 420:quantum state 417: 412: 406: 403: 402: 401: 393: 391: 387: 383: 379: 375: 372:that move in 371: 367: 364: 360: 356: 352: 348: 344: 332: 327: 325: 320: 318: 313: 312: 310: 309: 302: 299: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 253: 247: 246: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 212: 207: 206: 199: 196: 194: 191: 189: 186: 184: 181: 180: 174: 173: 166: 163: 160: 158: 155: 152: 150: 147: 144: 142: 139: 136: 134: 131: 128: 127: 124: 119: 118: 111: 108: 106: 103: 101: 98: 96: 93: 91: 90:Bose–Einstein 88: 86: 83: 81: 78: 76: 73: 72: 69: 64: 63: 58: 55: 53: 50: 49: 48: 47: 43: 39: 38: 35: 32: 31: 19: 2610: 2606: 2587: 2560: 2554: 2516: 2512: 2502: 2477: 2473: 2463: 2438: 2434: 2390: 2382: 2349: 2345: 2339: 2298: 2295:Phys. Rev. A 2294: 2284: 2259: 2255: 2249: 2241: 2216: 2212: 2202: 2193: 2183: 2158: 2154: 2144: 2125: 2119: 2094: 2090: 2080: 2052: 2045: 2012: 2008: 2002: 1978: 1969: 1942: 1936: 1898: 1892: 1876: 1851: 1847: 1844:Markus Fierz 1838: 1813: 1809: 1799: 1780: 1734: 1730: 1720: 1700: 1668: 1661: 1641: 1634: 1587: 1573: 1566: 1554: 1538: 1529: 1520:Bruno Zumino 1429:Work on the 1428: 1413: 1401: 1398: 1387:vacuum state 1375:Markus Fierz 1372: 1106: 1102: 1095: 1008: 907:anti-commute 906: 904: 825: 746: 744: 711: 618: 533: 526: 511: 501: 480: 476: 465: 461: 457:state vector 454: 445: 413: 410: 399: 386:half-integer 376:have either 374:3 dimensions 365: 342: 340: 161: 153: 145: 137: 129: 74: 1983:Basic Books 1854:(1): 3–37. 1571:necessary. 1478:, could be 1424:CPT theorem 1414:A proof by 286:von Neumann 95:Fermi–Dirac 2679:Categories 2194:Radiations 1627:References 442:Background 250:Scientists 211:Potentials 2645:122488238 2620:0810.2399 2533:0034-6861 2494:0034-6861 2276:0002-9505 2233:0031-9007 2175:0002-9505 2111:0031-899X 2037:121971249 1830:0002-9505 1751:0370-0089 1496:− 1457:ϕ 1445:ϕ 1301:^ 1242:α 1229:α 1216:α 1209:ψ 1203:^ 1153:α 1140:α 1127:α 1120:ψ 1061:ψ 1058:− 1037:ψ 1017:ψ 982:ϕ 970:ϕ 967:− 952:ϕ 940:ϕ 917:ϕ 875:ψ 854:ψ 834:ψ 799:ϕ 787:ϕ 772:ϕ 760:ϕ 740:spacelike 723:≠ 682:ψ 647:ψ 627:ϕ 581:ϕ 569:ϕ 551:ψ 548:∬ 502:Euclidean 498:imaginary 432:electrons 370:particles 281:Ehrenfest 261:Boltzmann 141:Canonical 2374:10058599 2331:35775478 1605:See also 1524:Res Jost 1402:In 1949 517:Fermions 428:neutrons 276:Einstein 223:Enthalpy 188:Einstein 2625:Bibcode 2565:Bibcode 2443:Bibcode 2354:Bibcode 2323:9901315 2303:Bibcode 2017:Bibcode 1947:Bibcode 1903:Bibcode 1856:Bibcode 747:commute 424:protons 378:integer 256:Maxwell 2643:  2594:  2531:  2492:  2403:  2372:  2329:  2321:  2274:  2231:  2173:  2132:  2109:  2068:  2035:  1989:  1828:  1787:  1749:  1708:  1676:  1649:  1594:anyons 1092:Proofs 619:(with 534:vacuum 513:Bosons 486:boosts 436:photon 430:, and 368:, all 291:Tolman 177:Models 2641:S2CID 2615:arXiv 2431:(PDF) 2327:S2CID 2033:S2CID 1889:(PDF) 1584:Anyon 301:Fermi 296:Debye 271:Gibbs 198:Potts 193:Ising 183:Debye 2592:ISBN 2529:ISSN 2490:ISSN 2401:ISBN 2370:PMID 2319:PMID 2272:ISSN 2229:ISSN 2171:ISSN 2130:ISBN 2107:ISSN 2066:ISBN 1987:ISBN 1826:ISSN 1785:ISBN 1747:ISSN 1706:ISBN 1674:ISBN 1647:ISBN 1555:The 1518:and 341:The 266:Bose 2633:doi 2573:doi 2521:doi 2482:doi 2451:doi 2362:doi 2311:doi 2264:doi 2221:doi 2163:doi 2099:doi 2095:110 2058:doi 2025:doi 1955:doi 1911:doi 1864:doi 1818:doi 1739:doi 1433:by 384:or 162:NPT 154:NPH 146:µVT 138:NVT 130:NVE 2681:: 2639:. 2631:. 2623:. 2611:40 2609:. 2571:. 2561:66 2559:. 2553:. 2527:. 2517:75 2515:. 2511:. 2488:. 2478:71 2476:. 2472:. 2449:. 2439:49 2437:. 2433:. 2415:^ 2399:. 2395:. 2368:. 2360:. 2350:74 2348:. 2325:. 2317:. 2309:. 2299:39 2297:. 2293:. 2270:. 2260:63 2258:. 2254:. 2227:. 2217:59 2215:. 2211:. 2192:. 2169:. 2159:62 2157:. 2153:. 2105:. 2093:. 2089:. 2064:. 2031:. 2023:. 2013:82 2011:. 1985:. 1981:. 1953:. 1941:. 1935:. 1923:^ 1909:. 1899:58 1897:. 1891:. 1862:. 1852:12 1850:. 1824:. 1814:80 1812:. 1808:. 1759:^ 1745:. 1735:67 1733:. 1729:. 1688:^ 1601:. 504:. 426:, 392:. 2647:. 2635:: 2627:: 2617:: 2600:. 2581:. 2575:: 2567:: 2535:. 2523:: 2496:. 2484:: 2457:. 2453:: 2445:: 2409:. 2376:. 2364:: 2356:: 2333:. 2313:: 2305:: 2278:. 2266:: 2235:. 2223:: 2177:. 2165:: 2138:. 2113:. 2101:: 2074:. 2060:: 2039:. 2027:: 2019:: 1995:. 1963:. 1957:: 1949:: 1943:5 1917:. 1913:: 1905:: 1870:. 1866:: 1858:: 1832:. 1820:: 1793:. 1753:. 1741:: 1714:. 1682:. 1655:. 1545:0 1502:) 1499:y 1493:x 1490:( 1466:) 1463:y 1460:( 1454:) 1451:x 1448:( 1389:, 1356:2 1352:r 1329:1 1325:r 1298:P 1273:2 1268:| 1263:) 1260:. 1257:. 1254:. 1251:, 1246:3 1238:, 1233:2 1225:, 1220:1 1212:( 1200:P 1193:| 1189:= 1184:2 1179:| 1174:) 1171:. 1168:. 1165:. 1162:, 1157:3 1149:, 1144:2 1136:, 1131:1 1123:( 1116:| 1076:) 1073:x 1070:, 1067:y 1064:( 1055:= 1052:) 1049:y 1046:, 1043:x 1040:( 994:, 991:) 988:x 985:( 979:) 976:y 973:( 964:= 961:) 958:y 955:( 949:) 946:x 943:( 890:) 887:x 884:, 881:y 878:( 872:= 869:) 866:y 863:, 860:x 857:( 811:, 808:) 805:x 802:( 796:) 793:y 790:( 784:= 781:) 778:y 775:( 769:) 766:x 763:( 726:y 720:x 697:) 694:y 691:, 688:x 685:( 662:) 659:y 656:, 653:x 650:( 604:y 601:d 597:x 594:d 590:) 587:y 584:( 578:) 575:x 572:( 566:) 563:y 560:, 557:x 554:( 366:ħ 330:e 323:t 316:v 20:)

Index

Spin-statistics theorem
Statistical mechanics

Thermodynamics
Kinetic theory
Particle statistics
Spin–statistics theorem
Indistinguishable particles
Maxwell–Boltzmann
Bose–Einstein
Fermi–Dirac
Parastatistics
Anyonic statistics
Braid statistics
Thermodynamic ensembles
Microcanonical
Canonical
Grand canonical
Isoenthalpic–isobaric
Isothermal–isobaric
Debye
Einstein
Ising
Potts
Potentials
Internal energy
Enthalpy
Helmholtz free energy
Gibbs free energy
Grand potential / Landau free energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.