Knowledge

Subobject

Source 📝

713:
by a two-sided ideal. To get maps which truly behave like subobject embeddings or quotients, rather than as arbitrary injective functions or maps with dense image, one must restrict to monomorphisms and epimorphisms satisfying additional hypotheses. Therefore, one might define a "subobject" to be an
660:
However, in some contexts these definitions are inadequate as they do not concord with well-established notions of subobject or quotient object. In the category of topological spaces, monomorphisms are precisely the injective continuous functions; but not all injective continuous functions are
722:
This definition corresponds to the ordinary understanding of a subobject outside category theory. When the category's objects are sets (possibly with additional structure, such as a group structure) and the morphisms are set functions (preserving the additional structure), one thinks of a
714:
equivalence class of so-called "regular monomorphisms" (monomorphisms which can be expressed as an equalizer of two morphisms) and a "quotient object" to be any equivalence class of "regular epimorphisms" (morphisms which can be expressed as a coequalizer of two morphisms)
528: 689: 190: 445: 308: 773: 711: 413: 276: 244: 465: 337: 723:
monomorphism in terms of its image. An equivalence class of monomorphisms is determined by the image of each monomorphism in the class; that is, two monomorphisms
614: 586: 556: 380: 357: 217: 125: 103:
An appropriate categorical definition of "subobject" may vary with context, depending on the goal. One common definition is as follows.
976: 473: 664: 1050: 137: 1023: 993: 60:. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a 981: 623:; this means that the discussion given is somewhat loose. If the subobject-collection of every object is a 359: 1015: 796: 88: 418: 281: 742: 29: 694: 386: 249: 875: 636: 223: 68: 64:
that describes how one object sits inside another, rather than relying on the use of elements.
33: 450: 316: 933: 534: 1033: 1003: 8: 833: 53: 921: 856: 599: 571: 541: 365: 342: 202: 110: 1019: 1012:
Categorical foundations. Special topics in order, topology, algebra, and sheaf theory
989: 971: 913:
itself. This is in part because all arrows in such a category will be monomorphisms.
909:
has a greatest element, the subobject partial order of this greatest element will be
624: 560: 735:
are equivalent if and only if their images are the same subset (thus, subobject) of
1029: 999: 806: 985: 917: 845: 17: 92: 84: 1044: 1014:. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: 593: 620: 129: 80: 49: 775:
of their domains under which corresponding elements of the domains map by
938: 647: 21: 825: 41: 639:, namely that there is a set of morphisms between any two objects). 864: 196: 61: 57: 45: 814: 37: 661:
subspace embeddings. In the category of rings, the inclusion
523:{\displaystyle u\equiv v\iff u\leq v\ {\text{and}}\ v\leq u} 619:
The collection of subobjects of an object may in fact be a
654:
is then an equivalence class of epimorphisms with domain
1010:
Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004).
684:{\displaystyle \mathbb {Z} \hookrightarrow \mathbb {Q} } 36:. The notion is a generalization of concepts such as 745: 697: 667: 602: 574: 544: 476: 453: 421: 389: 368: 345: 319: 284: 252: 226: 205: 140: 113: 885:, ≤), we can form a category with the elements of 767: 705: 683: 608: 580: 550: 522: 459: 439: 407: 374: 351: 331: 302: 270: 238: 211: 184: 119: 824:, or rather the collection of all maps from sets 650:" above and reverse arrows. A quotient object of 635:(this clashes with a different usage of the term 1042: 185:{\displaystyle u:S\to A\ {\text{and}}\ v:T\to A} 1009: 787:; this explains the definition of equivalence. 691:is an epimorphism but is not the quotient of 984:, vol. 5 (2nd ed.), New York, NY: 32:that sits inside another object in the same 840:. The subobject partial order of a set in 739:. In that case there is the isomorphism 490: 486: 128:be an object of some category. Given two 699: 677: 669: 977:Categories for the Working Mathematician 970: 951: 783:, respectively, to the same element of 220:, we define an equivalence relation by 1043: 889:as objects, and a single arrow from 79:. This generalizes concepts such as 596:on the collection of subobjects of 537:on the monomorphisms with codomain 13: 14: 1062: 717: 563:of these monomorphisms are the 246:if there exists an isomorphism 673: 487: 440:{\displaystyle u=v\circ \phi } 399: 303:{\displaystyle u=v\circ \phi } 262: 176: 150: 98: 1: 982:Graduate Texts in Mathematics 964: 768:{\displaystyle g^{-1}\circ f} 646:, replace "monomorphism" by " 706:{\displaystyle \mathbb {Z} } 408:{\displaystyle \phi :S\to T} 271:{\displaystyle \phi :S\to T} 71:concept to a subobject is a 7: 927: 790: 642:To get the dual concept of 10: 1067: 1016:Cambridge University Press 794: 383:—that is, if there exists 1051:Objects (category theory) 797:Category:Quotient objects 627:, the category is called 592:The relation ≤ induces a 239:{\displaystyle u\equiv v} 28:is, roughly speaking, an 944: 559:, and the corresponding 876:partially ordered class 460:{\displaystyle \equiv } 447:. The binary relation 332:{\displaystyle u\leq v} 313:Equivalently, we write 769: 707: 685: 610: 582: 552: 524: 461: 441: 409: 376: 353: 333: 304: 272: 240: 213: 186: 121: 770: 708: 686: 611: 583: 553: 525: 462: 442: 410: 377: 354: 334: 305: 273: 241: 214: 187: 122: 934:Subobject classifier 859:, the subobjects of 743: 695: 665: 600: 572: 542: 535:equivalence relation 474: 451: 419: 387: 366: 343: 317: 282: 250: 224: 203: 138: 111: 844:is just its subset 561:equivalence classes 972:Mac Lane, Saunders 922:subterminal object 863:correspond to the 857:category of groups 765: 703: 681: 606: 578: 548: 520: 457: 437: 405: 372: 349: 329: 300: 268: 236: 209: 182: 117: 916:A subobject of a 813:corresponds to a 809:, a subobject of 609:{\displaystyle A} 581:{\displaystyle A} 551:{\displaystyle A} 510: 506: 502: 375:{\displaystyle v} 352:{\displaystyle u} 212:{\displaystyle A} 166: 162: 158: 120:{\displaystyle A} 1058: 1037: 1006: 958: 957:Mac Lane, p. 126 955: 807:category of sets 774: 772: 771: 766: 758: 757: 712: 710: 709: 704: 702: 690: 688: 687: 682: 680: 672: 615: 613: 612: 607: 587: 585: 584: 579: 557: 555: 554: 549: 529: 527: 526: 521: 508: 507: 504: 500: 466: 464: 463: 458: 446: 444: 443: 438: 414: 412: 411: 406: 381: 379: 378: 373: 358: 356: 355: 350: 338: 336: 335: 330: 309: 307: 306: 301: 277: 275: 274: 269: 245: 243: 242: 237: 218: 216: 215: 210: 191: 189: 188: 183: 164: 163: 160: 156: 126: 124: 123: 118: 77: 76: 1066: 1065: 1061: 1060: 1059: 1057: 1056: 1055: 1041: 1040: 1026: 996: 986:Springer-Verlag 967: 962: 961: 956: 952: 947: 930: 918:terminal object 799: 793: 750: 746: 744: 741: 740: 731:into an object 720: 698: 696: 693: 692: 676: 668: 666: 663: 662: 644:quotient object 601: 598: 597: 573: 570: 569: 543: 540: 539: 503: 475: 472: 471: 452: 449: 448: 420: 417: 416: 388: 385: 384: 367: 364: 363: 360:factors through 344: 341: 340: 318: 315: 314: 283: 280: 279: 251: 248: 247: 225: 222: 221: 204: 201: 200: 159: 139: 136: 135: 112: 109: 108: 106:In detail, let 101: 93:quotient graphs 89:quotient spaces 85:quotient groups 75:quotient object 74: 73: 18:category theory 12: 11: 5: 1064: 1054: 1053: 1039: 1038: 1024: 1007: 994: 966: 963: 960: 959: 949: 948: 946: 943: 942: 941: 936: 929: 926: 792: 789: 764: 761: 756: 753: 749: 719: 718:Interpretation 716: 701: 679: 675: 671: 605: 577: 547: 531: 530: 519: 516: 513: 499: 496: 493: 489: 485: 482: 479: 456: 436: 433: 430: 427: 424: 404: 401: 398: 395: 392: 371: 348: 328: 325: 322: 299: 296: 293: 290: 287: 267: 264: 261: 258: 255: 235: 232: 229: 208: 193: 192: 181: 178: 175: 172: 169: 155: 152: 149: 146: 143: 116: 100: 97: 20:, a branch of 9: 6: 4: 3: 2: 1063: 1052: 1049: 1048: 1046: 1035: 1031: 1027: 1025:0-521-83414-7 1021: 1017: 1013: 1008: 1005: 1001: 997: 995:0-387-98403-8 991: 987: 983: 979: 978: 973: 969: 968: 954: 950: 940: 937: 935: 932: 931: 925: 923: 919: 914: 912: 908: 904: 900: 896: 892: 888: 884: 880: 877: 872: 870: 866: 862: 858: 854: 849: 847: 843: 839: 835: 831: 827: 823: 819: 816: 812: 808: 804: 798: 788: 786: 782: 778: 762: 759: 754: 751: 747: 738: 734: 730: 726: 715: 658: 657: 653: 649: 645: 640: 638: 637:locally small 634: 633:locally small 630: 626: 622: 617: 603: 595: 594:partial order 590: 588: 575: 566: 562: 558: 545: 536: 517: 514: 511: 497: 494: 491: 483: 480: 477: 470: 469: 468: 454: 434: 431: 428: 425: 422: 402: 396: 393: 390: 382: 369: 361: 346: 326: 323: 320: 311: 297: 294: 291: 288: 285: 265: 259: 256: 253: 233: 230: 227: 219: 206: 198: 179: 173: 170: 167: 153: 147: 144: 141: 134: 133: 132: 131: 130:monomorphisms 127: 114: 104: 96: 94: 90: 86: 82: 81:quotient sets 78: 70: 65: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1011: 975: 953: 920:is called a 915: 910: 906: 902: 898: 894: 890: 886: 882: 878: 873: 868: 860: 852: 850: 841: 837: 829: 821: 817: 810: 802: 800: 784: 780: 776: 736: 732: 728: 724: 721: 659: 655: 651: 643: 641: 632: 631:or, rarely, 629:well-powered 628: 621:proper class 618: 591: 568: 564: 538: 532: 362: 312: 199: 194: 107: 105: 102: 72: 66: 50:group theory 25: 15: 939:Subquotient 648:epimorphism 467:defined by 99:Definitions 22:mathematics 1034:1034.18001 1004:0906.18001 965:References 826:equipotent 795:See also: 565:subobjects 415:such that 42:set theory 865:subgroups 760:∘ 752:− 674:↪ 515:≤ 495:≤ 488:⟺ 481:≡ 455:≡ 435:ϕ 432:∘ 400:→ 391:ϕ 324:≤ 298:ϕ 295:∘ 263:→ 254:ϕ 231:≡ 177:→ 151:→ 54:subspaces 46:subgroups 26:subobject 1045:Category 974:(1998), 928:See also 874:Given a 836:exactly 791:Examples 197:codomain 62:morphism 58:topology 34:category 846:lattice 95:, etc. 38:subsets 1032:  1022:  1002:  992:  855:, the 815:subset 805:, the 533:is an 509:  501:  165:  157:  52:, and 30:object 945:Notes 905:. If 834:image 832:with 278:with 195:with 56:from 48:from 40:from 1020:ISBN 990:ISBN 897:iff 779:and 727:and 69:dual 67:The 24:, a 1030:Zbl 1000:Zbl 893:to 881:= ( 867:of 853:Grp 851:In 842:Set 828:to 820:of 803:Set 801:In 625:set 567:of 505:and 339:if 161:and 16:In 1047:: 1028:. 1018:. 998:, 988:, 980:, 924:. 901:≤ 871:. 848:. 656:A. 616:. 589:. 310:. 91:, 87:, 83:, 44:, 1036:. 911:P 907:P 903:q 899:p 895:q 891:p 887:P 883:P 879:P 869:A 861:A 838:B 830:B 822:A 818:B 811:A 785:T 781:g 777:f 763:f 755:1 748:g 737:T 733:T 729:g 725:f 700:Z 678:Q 670:Z 652:A 604:A 576:A 546:A 518:u 512:v 498:v 492:u 484:v 478:u 429:v 426:= 423:u 403:T 397:S 394:: 370:v 347:u 327:v 321:u 292:v 289:= 286:u 266:T 260:S 257:: 234:v 228:u 207:A 180:A 174:T 171:: 168:v 154:A 148:S 145:: 142:u 115:A

Index

category theory
mathematics
object
category
subsets
set theory
subgroups
group theory
subspaces
topology
morphism
dual
quotient sets
quotient groups
quotient spaces
quotient graphs
monomorphisms
codomain
factors through
equivalence relation
equivalence classes
partial order
proper class
set
locally small
epimorphism
Category:Quotient objects
category of sets
subset
equipotent

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.