Knowledge

Transcription activator-like effector nuclease

Source đź“ť

555:(insertion or deletion), or chromosomal rearrangement; any such errors may render the gene products coded at that location non-functional. Because this activity can vary depending on the species, cell type, target gene, and nuclease used, it should be monitored when designing new systems. A simple heteroduplex cleavage assay can be run which detects any difference between two alleles amplified by PCR. Cleavage products can be visualized on simple agarose gels or slab gel systems. 75: 31: 473:
cleavage activity. The FokI domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the FokI cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity.
506: 531:
and enter the nucleus to access the genome. Alternatively, TALEN constructs can be delivered to the cells as mRNAs, which removes the possibility of genomic integration of the TALEN-expressing protein. Using an mRNA vector can also dramatically increase the level of homology directed repair (HDR) and
653:
The off-target activity of an active nuclease may lead to unwanted double-strand breaks and may consequently yield chromosomal rearrangements and/or cell death. Studies have been carried out to compare the relative nuclease-associated toxicity of available technologies. Based on these studies and
472:
that are active in a yeast assay. These reagents are also active in plant cells and in animal cells. Initial TALEN studies used the wild-type FokI cleavage domain, but some subsequent TALEN studies also used FokI cleavage domain variants with mutations designed to improve cleavage specificity and
455:
recognition. This straightforward relationship between amino acid sequence and DNA recognition has allowed for the engineering of specific DNA-binding domains by selecting a combination of repeat segments containing the appropriate RVDs. Notably, slight changes in the RVD and the incorporation of
644:
relies on ribonucleotide complex formation instead of protein/DNA recognition. gRNAs have occasionally limitations regarding feasibility due to lack of PAM sites in the target sequence and even though they can be cheaply produced, the current development lead to a remarkable decrease of cost for
497:
oligonucleotide assembly followed by whole gene amplification. A number of modular assembly schemes for generating engineered TALE constructs have also been reported. Both methods offer a systematic approach to engineering DNA binding domains that is conceptually similar to the modular assembly
509:
Workflow of genome editing of Your Favorite Gene (YFG) using TALEN. The target sequence is identified, a corresponding TALEN sequence is engineered and inserted into a plasmid. The plasmid is inserted into the target cell where it is translated to produce the functional TALEN, which enters the
633:. The DNA binding region of a TAL effector can be combined with the cleavage domain of a meganuclease to create a hybrid architecture combining the ease of engineering and highly specific DNA binding activity of a TAL effector with the low site frequency and specificity of a meganuclease. 599:. Moreover, the method can be used to generate knockin organisms. Wu et al.obtained a Sp110 knockin cattle using Talen nickases to induce increased resistance of tuberculosis. This approach has also been used to generate knockin rats by TALEN mRNA microinjection in one-cell embryos. 391:
which cuts DNA strands). Transcription activator-like effectors (TALEs) can be engineered to bind to practically any desired DNA sequence, so when combined with a nuclease, DNA can be cut at specific locations. The restriction enzymes can be introduced into cells, for use in
1157:
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (February 2011). "A TALE nuclease architecture for efficient genome editing".
640:, TALEN recognizes single nucleotides. It's far more straightforward to engineer interactions between TALEN DNA binding domains and their target nucleotides than it is to create interactions with ZFNs and their target nucleotide triplets. On the other hand, 2572:
Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, Potrel P, Bas C, Lemaire L, Galetto R, Lebuhotel C, Eyquem J, Cheung GW, Duclert A, Gouble A, Arnould S, Peggs K, Pule M, Scharenberg AM, Smith J (September 2015).
618:. Recently, it was shown that TALEN can be used as tools to harness the immune system to fight cancers; TALEN-mediated targeting can generate T cells that are resistant to chemotherapeutic drugs and show anti-tumor activity. 621:
In theory, the genome-wide specificity of engineered TALEN fusions allows for correction of errors at individual genetic loci via homology-directed repair from a correct exogenous template. In reality, however, the
1405:
Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (January 2011). "Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures".
572:
TALEN has been used to efficiently modify plant genomes, creating economically important food crops with favorable nutritional qualities. They have also been harnessed to develop tools for the production of
510:
nucleus and binds and cleaves the target sequence. Depending on the application, this can be used to introduce an error (to knock out a target gene) or to introduce a new DNA sequence into the target gene.
1206:
Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (July 2011).
2474:
Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, DeFeo AP, Gabriel R, Schmidt M, von Kalle C, Carlson DF, Maeder ML, Joung JK, Wagner JE, Voytas DF, Blazar BR, Tolar J (June 2013).
551:(NHEJ) directly ligates DNA from either side of a double-strand break where there is very little or no sequence overlap for annealing. This repair mechanism induces errors in the genome via 451:
sequence with divergent 12th and 13th amino acids. These two positions, referred to as the Repeat Variable Diresidue (RVD), are highly variable and show a strong correlation with specific
778:
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (December 2009). "Breaking the code of DNA binding specificity of TAL-type III effectors".
654:
the maximal theoretical distance between DNA binding and nuclease activity, TALEN constructs are believed to have the greatest precision of the currently available technologies.
2380:
Ramalingam S, Annaluru N, Kandavelou K, Chandrasegaran S (2014). "TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells".
626:
application of TALEN is currently limited by the lack of an efficient delivery mechanism, unknown immunogenic factors, and uncertainty in the specificity of TALEN binding.
1999:
Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (May 2014).
481:
The simple relationship between amino acid sequence and DNA recognition of the TALE binding domain allows for the efficient engineering of proteins. In this case,
1258:
Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (July 2011).
356: 1958:
Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (September 2014).
489:
of the repetitive sequence found in the TALE binding domain. One solution to this is to use a publicly available software program (DNAWorks) to calculate
1037:"De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks" 2051:
Wienert B, Funnell AP, Norton LJ, Pearson RC, Wilkinson-White LE, Lester K, Vadolas J, Porteus MH, Matthews JM, Quinlan KG, Crossley M (2015).
2614:
Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (February 2014).
1318:
Tesson L, Usal C, MĂ©noret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (August 2011).
2663: 2415:
Dupuy A, Valton J, Leduc S, Armier J, Galetto R, Gouble A, Lebuhotel C, Stary A, Pâques F, Duchateau P, Sarasin A, Daboussi F (2013).
564:
can also introduce foreign DNA at the DSB as the transfected double-stranded sequences are used as templates for the repair enzymes.
349: 663: 407: 305: 880:
Juillerat A, Pessereau C, Dubois G, Guyot V, Maréchal A, Valton J, Daboussi F, Poirot L, Duclert A, Duchateau P (January 2015).
1362:
Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (August 2011). "Heritable gene targeting in zebrafish using customized TALENs".
602:
TALEN has also been utilized experimentally to correct the genetic errors that underlie disease. For example, it has been used
1669: 558:
Alternatively, DNA can be introduced into a genome through NHEJ in the presence of exogenous double-stranded DNA fragments.
342: 545:
TALEN can be used to edit genomes by inducing double-strand breaks (DSB), which cells respond to with repair mechanisms.
1099:
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (July 2011).
2758: 2743: 177: 2682: 636:
In comparison to other genome editing techniques, TALEN falls in the middle in terms of difficulty and cost. Unlike
1744:"Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes" 2053:"Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin" 2723: 2102:"Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes" 187: 2201: 205: 170: 629:
Another emerging application of TALEN is its ability to combine with other genome engineering tools, such as
582: 96: 87: 2733: 2575:"Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies" 147: 56: 2523:
Valton J, Guyot V, Marechal A, Filhol JM, Juillerat A, Duclert A, Duchateau P, Poirot L (September 2015).
743:
Boch J, Bonas U (September 2010). "Xanthomonas AvrBs3 family-type III effectors: discovery and function".
1101:"Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting" 486: 440: 152: 123: 113: 108: 2748: 1501:"Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases" 937:
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (October 2010).
548: 272: 137: 132: 101: 1553:"A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity" 1451:"Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases" 1450: 829:
Moscou MJ, Bogdanove AJ (December 2009). "A simple cipher governs DNA recognition by TAL effectors".
494: 482: 277: 227: 142: 118: 561: 1605:"Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription" 2753: 2738: 1960:"Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family" 310: 237: 182: 988:"TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain" 587: 1791:
Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, Boch J (2011). Shiu SH (ed.).
1652:
Hoover D (2012). "Using DNAWorks in Designing Oligonucleotides for PCR-Based Gene Synthesis".
2210:"TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis" 1909:
Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (January 2013).
645:
TALENs, so that they are in a similar price and time range like CRISPR based genome editing.
615: 611: 411: 17: 1742:
Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (August 2011).
2428: 2280: 2221: 2113: 2064: 2012: 1911:"Transcription activator-like effector nucleases enable efficient plant genome engineering" 1863: 1804: 1271: 1048: 893: 838: 787: 668: 637: 325: 8: 607: 578: 65: 2432: 2284: 2225: 2117: 2068: 2016: 1867: 1808: 1275: 1052: 897: 842: 791: 756: 2640: 2615: 2549: 2524: 2500: 2475: 2451: 2416: 2357: 2332: 2303: 2268: 2244: 2209: 2185: 2160: 2136: 2101: 1935: 1910: 1886: 1851: 1827: 1792: 1768: 1743: 1719: 1694: 1629: 1604: 1577: 1552: 1525: 1500: 1481: 1431: 1387: 1292: 1259: 1232: 1207: 1183: 1125: 1100: 1071: 1036: 1012: 987: 963: 938: 914: 881: 862: 811: 725: 384: 377: 2525:"A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy" 2393: 1551:
Mussolino C, Morbitzer R, LĂĽtge F, Dannemann N, Lahaye T, Cathomen T (November 2011).
320: 34:
Spacefill drawing of dimeric TALE-FokI fusion (blue: TALE; green: FokI) bound to DNA (
2645: 2596: 2554: 2505: 2456: 2397: 2362: 2308: 2249: 2190: 2141: 2082: 2030: 1981: 1940: 1891: 1832: 1773: 1724: 1675: 1665: 1634: 1582: 1530: 1473: 1423: 1379: 1341: 1297: 1237: 1175: 1130: 1076: 1017: 968: 919: 854: 815: 803: 760: 717: 330: 210: 36: 2616:"megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering" 2417:"Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™" 2159:
Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (August 2011).
2001:"Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology" 1850:
Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011). Bendahmane M (ed.).
1485: 1435: 1391: 1187: 2635: 2627: 2586: 2544: 2536: 2495: 2487: 2446: 2436: 2389: 2352: 2344: 2298: 2288: 2239: 2229: 2180: 2172: 2131: 2121: 2072: 2020: 1971: 1930: 1922: 1881: 1871: 1822: 1812: 1763: 1755: 1714: 1706: 1657: 1624: 1616: 1572: 1564: 1520: 1512: 1465: 1415: 1371: 1331: 1287: 1279: 1227: 1219: 1167: 1120: 1112: 1066: 1056: 1007: 999: 958: 950: 909: 901: 866: 846: 795: 752: 709: 490: 380:
that can be engineered to cut specific sequences of DNA. They are made by fusing a
2591: 2574: 729: 2441: 2293: 2126: 1876: 1817: 1661: 986:
Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (January 2011).
528: 444: 215: 2707: 954: 2214:
Proceedings of the National Academy of Sciences of the United States of America
1449:
Szczepek M, Brondani V, BĂĽchel J, Serrano L, Segal DJ, Cathomen T (July 2007).
1041:
Proceedings of the National Academy of Sciences of the United States of America
419: 393: 315: 244: 2269:"Generation of TALEN-mediated GRdim knock-in rats by homologous recombination" 1516: 2717: 2161:"Targeted gene disruption in somatic zebrafish cells using engineered TALENs" 1793:"Transcriptional activators of human genes with programmable DNA-specificity" 1035:
Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (February 2011).
289: 222: 2234: 2100:
Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S (2013).
1283: 1061: 850: 799: 2728: 2649: 2600: 2558: 2509: 2460: 2401: 2366: 2312: 2253: 2194: 2145: 2086: 2034: 1985: 1944: 1895: 1836: 1777: 1728: 1679: 1638: 1603:
Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (February 2011).
1586: 1534: 1477: 1427: 1383: 1345: 1301: 1241: 1179: 1134: 1080: 1021: 972: 923: 858: 807: 764: 721: 673: 630: 592: 524: 430: 381: 284: 232: 74: 2631: 2379: 1926: 1759: 1710: 1568: 1116: 1003: 499: 435: 30: 2540: 2348: 2491: 2077: 2052: 2025: 2000: 1419: 452: 448: 2571: 1976: 1959: 905: 519:
Once the TALEN constructs have been assembled, they are inserted into
44: 40: 2176: 1695:"Assembly of custom TALE-type DNA binding domains by modular cloning" 1620: 1375: 1336: 1319: 1223: 1208:"Genetic engineering of human pluripotent cells using TALE nucleases" 1171: 713: 596: 2267:
Ponce de LeĂłn V, MĂ©rillat AM, Tesson L, AnegĂłn I, Hummler E (2014).
1469: 585:(IPSCs) clones and human erythroid cell lines, to generate knockout 447:. The DNA binding domain contains a repeated highly conserved 33–34 882:"Optimized tuning of TALEN specificity using non-conventional RVDs" 577:. In addition, it has been used to engineer stably modified human 469: 456:"nonconventional" RVD sequences can improve targeting specificity. 388: 2208:
Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (March 2015).
2266: 574: 520: 402: 1656:. Methods in Molecular Biology. Vol. 852. pp. 215–23. 1550: 939:"Targeting DNA double-strand breaks with TAL effector nucleases" 2710:
An entry in the Protein Database's monthly structural highlight
1692: 678: 641: 415: 397: 254: 1260:"Targeted genome editing across species using ZFNs and TALENs" 1448: 879: 552: 505: 249: 2683:"Boston Consulting Group - Report on Gene Editing Precision" 1320:"Knockout rats generated by embryo microinjection of TALENs" 1034: 777: 606:
to correct the genetic defects that cause disorders such as
2613: 2050: 1998: 1852:"Assembly of designer TAL effectors by Golden Gate cloning" 1790: 1693:
Morbitzer R, Elsaesser J, Hausner J, Lahaye T (July 2011).
936: 465: 2473: 2099: 1849: 2701: 2522: 1957: 464:
The non-specific DNA cleavage domain from the end of the
2330: 1098: 2476:"TALEN-based gene correction for epidermolysis bullosa" 2414: 2331:
Carlson DF, Fahrenkrug SC, Hackett PB (January 2012).
2158: 1404: 1317: 1205: 1602: 700:
Boch J (February 2011). "TALEs of genome targeting".
736: 1257: 1156: 1908: 985: 648: 532:the success of introgression during gene editing. 2152: 1741: 1201: 1199: 1197: 2715: 1546: 1544: 1361: 2664:"Pros and Cons Of ZFNS, TALENS, AND CRISPR/CAS" 2207: 2046: 2044: 828: 476: 370:Transcription activator-like effector nucleases 1194: 1686: 1541: 1313: 1311: 1152: 1150: 1148: 1146: 1144: 527:with the plasmids, and the gene products are 468:endonuclease can be used to construct hybrid 350: 2041: 1784: 1598: 1596: 1498: 1442: 1357: 1355: 1094: 1092: 1090: 930: 418:, TALEN is a prominent tool in the field of 2680: 1253: 1251: 2373: 2326: 2324: 2322: 1645: 1308: 1141: 695: 693: 425: 357: 343: 2639: 2590: 2548: 2499: 2450: 2440: 2356: 2302: 2292: 2243: 2233: 2184: 2135: 2125: 2076: 2024: 1975: 1934: 1885: 1875: 1843: 1826: 1816: 1767: 1718: 1628: 1593: 1576: 1524: 1398: 1352: 1335: 1291: 1231: 1124: 1087: 1070: 1060: 1011: 962: 913: 742: 1248: 664:Genome editing with engineered nucleases 504: 408:genome editing with engineered nucleases 29: 27:Enzymes that cleave DNA in specific ways 2333:"Targeting DNA With Fingers and TALENs" 2319: 1492: 690: 306:Genetically modified food controversies 14: 2716: 2467: 1735: 1651: 459: 2704:A comprehensive tool for TALEN design 2408: 1499:Guo J, Gaj T, Barbas CF (July 2010). 699: 493:suitable for assembly in a two step 757:10.1146/annurev-phyto-080508-081936 485:is problematic because of improper 24: 433:are proteins that are secreted by 25: 2770: 2695: 2681:Boglioli, Elsy; Richard, Magali. 2394:10.2174/1566523214666140918101725 535: 2337:Molecular Therapy: Nucleic Acids 73: 2674: 2656: 2607: 2565: 2516: 2260: 2093: 1992: 1951: 1902: 745:Annual Review of Phytopathology 649:TAL effector nuclease precision 567: 514: 188:Cartagena Protocol on Biosafety 1028: 979: 873: 822: 771: 595:, knockout mice, and knockout 88:Genetically modified organisms 13: 1: 2592:10.1158/0008-5472.CAN-14-3321 684: 583:induced pluripotent stem cell 540: 2442:10.1371/journal.pone.0078678 2294:10.1371/journal.pone.0088146 2127:10.1371/journal.pone.0060216 1877:10.1371/journal.pone.0019722 1818:10.1371/journal.pone.0019509 1662:10.1007/978-1-61779-564-0_16 1505:Journal of Molecular Biology 523:; the target cells are then 477:Engineering TALEN constructs 387:to a DNA cleavage domain (a 7: 1964:Plant Biotechnology Journal 955:10.1534/genetics.110.120717 657: 48:​), by David Goodsell 10: 2775: 549:Non-homologous end joining 273:Genetically modified crops 2708:PDB Molecule of the Month 1517:10.1016/j.jmb.2010.04.060 502:DNA recognition domains. 483:artificial gene synthesis 441:type III secretion system 2759:Repetitive DNA sequences 2744:History of biotechnology 562:Homology directed repair 2235:10.1073/pnas.1421587112 1284:10.1126/science.1207773 1062:10.1073/pnas.1019533108 851:10.1126/science.1178817 800:10.1126/science.1178811 426:TALE DNA-binding domain 406:, a technique known as 311:GMO conspiracy theories 183:Substantial equivalence 2724:Biological engineering 2668:The Jackson Laboratory 2620:Nucleic Acids Research 1748:Nucleic Acids Research 1699:Nucleic Acids Research 1557:Nucleic Acids Research 1105:Nucleic Acids Research 992:Nucleic Acids Research 511: 498:method for generating 163:History and regulation 49: 2057:Nature Communications 2005:Nature Communications 1927:10.1104/pp.112.205179 616:epidermolysis bullosa 612:xeroderma pigmentosum 508: 412:zinc finger nucleases 33: 2382:Current Gene Therapy 2165:Nature Biotechnology 1609:Nature Biotechnology 1458:Nature Biotechnology 1364:Nature Biotechnology 1324:Nature Biotechnology 1212:Nature Biotechnology 1160:Nature Biotechnology 702:Nature Biotechnology 669:Zinc finger nuclease 326:StarLink corn recall 2734:Genetic engineering 2632:10.1093/nar/gkt1224 2541:10.1038/mt.2015.104 2433:2013PLoSO...878678D 2349:10.1038/mtna.2011.5 2285:2014PLoSO...988146P 2226:2015PNAS..112E1530W 2118:2013PLoSO...860216D 2069:2015NatCo...6.7085W 2017:2014NatCo...5.3831D 1868:2011PLoSO...619722W 1809:2011PLoSO...619509G 1276:2011Sci...333..307W 1053:2011PNAS..108.2623M 898:2015NatSR...5E8150J 843:2009Sci...326.1501M 792:2009Sci...326.1509B 608:sickle cell disease 579:embryonic stem cell 460:DNA cleavage domain 439:bacteria via their 378:restriction enzymes 66:Genetic engineering 2492:10.1038/mt.2013.56 2078:10.1038/ncomms8085 2026:10.1038/ncomms4831 1760:10.1093/nar/gkr188 1711:10.1093/nar/gkr151 1569:10.1093/nar/gkr597 1420:10.1038/nmeth.1539 1117:10.1093/nar/gkr218 1004:10.1093/nar/gkq704 886:Scientific Reports 512: 385:DNA-binding domain 50: 2749:Molecular biology 2529:Molecular Therapy 2480:Molecular Therapy 1977:10.1111/pbi.12201 1671:978-1-61779-563-3 906:10.1038/srep08150 786:(5959): 1509–12. 367: 366: 331:He Jiankui affair 211:Molecular cloning 16:(Redirected from 2766: 2690: 2689: 2687: 2678: 2672: 2671: 2660: 2654: 2653: 2643: 2611: 2605: 2604: 2594: 2569: 2563: 2562: 2552: 2520: 2514: 2513: 2503: 2471: 2465: 2464: 2454: 2444: 2412: 2406: 2405: 2377: 2371: 2370: 2360: 2328: 2317: 2316: 2306: 2296: 2264: 2258: 2257: 2247: 2237: 2205: 2199: 2198: 2188: 2177:10.1038/nbt.1934 2156: 2150: 2149: 2139: 2129: 2097: 2091: 2090: 2080: 2048: 2039: 2038: 2028: 1996: 1990: 1989: 1979: 1955: 1949: 1948: 1938: 1915:Plant Physiology 1906: 1900: 1899: 1889: 1879: 1847: 1841: 1840: 1830: 1820: 1788: 1782: 1781: 1771: 1739: 1733: 1732: 1722: 1690: 1684: 1683: 1649: 1643: 1642: 1632: 1621:10.1038/nbt.1775 1600: 1591: 1590: 1580: 1548: 1539: 1538: 1528: 1496: 1490: 1489: 1455: 1446: 1440: 1439: 1402: 1396: 1395: 1376:10.1038/nbt.1939 1359: 1350: 1349: 1339: 1337:10.1038/nbt.1940 1315: 1306: 1305: 1295: 1255: 1246: 1245: 1235: 1224:10.1038/nbt.1927 1203: 1192: 1191: 1172:10.1038/nbt.1755 1154: 1139: 1138: 1128: 1096: 1085: 1084: 1074: 1064: 1032: 1026: 1025: 1015: 983: 977: 976: 966: 934: 928: 927: 917: 877: 871: 870: 826: 820: 819: 775: 769: 768: 740: 734: 733: 714:10.1038/nbt.1767 697: 491:oligonucleotides 359: 352: 345: 77: 52: 51: 47: 21: 2774: 2773: 2769: 2768: 2767: 2765: 2764: 2763: 2714: 2713: 2698: 2693: 2685: 2679: 2675: 2662: 2661: 2657: 2626:(4): 2591–601. 2612: 2608: 2585:(18): 3853–64. 2579:Cancer Research 2570: 2566: 2521: 2517: 2472: 2468: 2413: 2409: 2378: 2374: 2329: 2320: 2265: 2261: 2220:(13): E1530-9. 2206: 2202: 2157: 2153: 2098: 2094: 2049: 2042: 1997: 1993: 1956: 1952: 1907: 1903: 1848: 1844: 1789: 1785: 1754:(14): 6315–25. 1740: 1736: 1691: 1687: 1672: 1650: 1646: 1601: 1594: 1563:(21): 9283–93. 1549: 1542: 1497: 1493: 1470:10.1038/nbt1317 1453: 1447: 1443: 1403: 1399: 1360: 1353: 1316: 1309: 1256: 1249: 1204: 1195: 1155: 1142: 1097: 1088: 1033: 1029: 984: 980: 935: 931: 878: 874: 827: 823: 776: 772: 741: 737: 698: 691: 687: 660: 651: 570: 543: 538: 517: 479: 462: 428: 363: 321:SĂ©ralini affair 216:Recombinant DNA 35: 28: 23: 22: 15: 12: 11: 5: 2772: 2762: 2761: 2756: 2754:Non-coding RNA 2751: 2746: 2741: 2739:Genome editing 2736: 2731: 2726: 2712: 2711: 2705: 2697: 2696:External links 2694: 2692: 2691: 2673: 2655: 2606: 2564: 2535:(9): 1507–18. 2515: 2466: 2427:(11): e78678. 2407: 2372: 2318: 2259: 2200: 2151: 2092: 2040: 1991: 1950: 1901: 1842: 1783: 1734: 1705:(13): 5790–9. 1685: 1670: 1654:Gene Synthesis 1644: 1592: 1540: 1491: 1441: 1408:Nature Methods 1397: 1370:(8): 699–700. 1351: 1307: 1247: 1193: 1140: 1086: 1027: 978: 929: 872: 837:(5959): 1501. 821: 770: 735: 688: 686: 683: 682: 681: 676: 671: 666: 659: 656: 650: 647: 569: 566: 542: 539: 537: 536:Genome editing 534: 516: 513: 478: 475: 461: 458: 427: 424: 420:genome editing 365: 364: 362: 361: 354: 347: 339: 336: 335: 334: 333: 328: 323: 318: 316:Pusztai affair 313: 308: 300: 299: 295: 294: 293: 292: 287: 282: 281: 280: 267: 266: 262: 261: 260: 259: 258: 257: 252: 245:Genome editing 242: 241: 240: 235: 230: 228:Transformation 220: 219: 218: 208: 200: 199: 195: 194: 193: 192: 191: 190: 185: 174: 173: 165: 164: 160: 159: 158: 157: 156: 155: 150: 145: 140: 129: 128: 127: 126: 121: 116: 105: 104: 99: 91: 90: 84: 83: 79: 78: 70: 69: 61: 60: 26: 9: 6: 4: 3: 2: 2771: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2721: 2719: 2709: 2706: 2703: 2700: 2699: 2684: 2677: 2670:. March 2014. 2669: 2665: 2659: 2651: 2647: 2642: 2637: 2633: 2629: 2625: 2621: 2617: 2610: 2602: 2598: 2593: 2588: 2584: 2580: 2576: 2568: 2560: 2556: 2551: 2546: 2542: 2538: 2534: 2530: 2526: 2519: 2511: 2507: 2502: 2497: 2493: 2489: 2486:(6): 1151–9. 2485: 2481: 2477: 2470: 2462: 2458: 2453: 2448: 2443: 2438: 2434: 2430: 2426: 2422: 2418: 2411: 2403: 2399: 2395: 2391: 2388:(6): 461–72. 2387: 2383: 2376: 2368: 2364: 2359: 2354: 2350: 2346: 2342: 2338: 2334: 2327: 2325: 2323: 2314: 2310: 2305: 2300: 2295: 2290: 2286: 2282: 2279:(2): e88146. 2278: 2274: 2270: 2263: 2255: 2251: 2246: 2241: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2204: 2196: 2192: 2187: 2182: 2178: 2174: 2170: 2166: 2162: 2155: 2147: 2143: 2138: 2133: 2128: 2123: 2119: 2115: 2112:(3): e60216. 2111: 2107: 2103: 2096: 2088: 2084: 2079: 2074: 2070: 2066: 2062: 2058: 2054: 2047: 2045: 2036: 2032: 2027: 2022: 2018: 2014: 2010: 2006: 2002: 1995: 1987: 1983: 1978: 1973: 1970:(7): 934–40. 1969: 1965: 1961: 1954: 1946: 1942: 1937: 1932: 1928: 1924: 1920: 1916: 1912: 1905: 1897: 1893: 1888: 1883: 1878: 1873: 1869: 1865: 1862:(5): e19722. 1861: 1857: 1853: 1846: 1838: 1834: 1829: 1824: 1819: 1814: 1810: 1806: 1803:(5): e19509. 1802: 1798: 1794: 1787: 1779: 1775: 1770: 1765: 1761: 1757: 1753: 1749: 1745: 1738: 1730: 1726: 1721: 1716: 1712: 1708: 1704: 1700: 1696: 1689: 1681: 1677: 1673: 1667: 1663: 1659: 1655: 1648: 1640: 1636: 1631: 1626: 1622: 1618: 1615:(2): 149–53. 1614: 1610: 1606: 1599: 1597: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1545: 1536: 1532: 1527: 1522: 1518: 1514: 1511:(1): 96–107. 1510: 1506: 1502: 1495: 1487: 1483: 1479: 1475: 1471: 1467: 1464:(7): 786–93. 1463: 1459: 1452: 1445: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1401: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1356: 1347: 1343: 1338: 1333: 1329: 1325: 1321: 1314: 1312: 1303: 1299: 1294: 1289: 1285: 1281: 1277: 1273: 1270:(6040): 307. 1269: 1265: 1261: 1254: 1252: 1243: 1239: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1202: 1200: 1198: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1153: 1151: 1149: 1147: 1145: 1136: 1132: 1127: 1122: 1118: 1114: 1110: 1106: 1102: 1095: 1093: 1091: 1082: 1078: 1073: 1068: 1063: 1058: 1054: 1050: 1047:(6): 2623–8. 1046: 1042: 1038: 1031: 1023: 1019: 1014: 1009: 1005: 1001: 998:(1): 359–72. 997: 993: 989: 982: 974: 970: 965: 960: 956: 952: 949:(2): 757–61. 948: 944: 940: 933: 925: 921: 916: 911: 907: 903: 899: 895: 891: 887: 883: 876: 868: 864: 860: 856: 852: 848: 844: 840: 836: 832: 825: 817: 813: 809: 805: 801: 797: 793: 789: 785: 781: 774: 766: 762: 758: 754: 750: 746: 739: 731: 727: 723: 719: 715: 711: 707: 703: 696: 694: 689: 680: 677: 675: 672: 670: 667: 665: 662: 661: 655: 646: 643: 639: 634: 632: 631:meganucleases 627: 625: 619: 617: 613: 609: 605: 600: 598: 594: 593:knockout rats 590: 589: 584: 580: 576: 565: 563: 559: 556: 554: 550: 546: 533: 530: 526: 522: 507: 503: 501: 496: 492: 488: 484: 474: 471: 467: 457: 454: 450: 446: 445:infect plants 442: 438: 437: 432: 431:TAL effectors 423: 421: 417: 413: 409: 405: 404: 399: 395: 390: 386: 383: 379: 375: 371: 360: 355: 353: 348: 346: 341: 340: 338: 337: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 303: 302: 301: 298:Controversies 297: 296: 291: 290:Designer baby 288: 286: 283: 279: 276: 275: 274: 271: 270: 269: 268: 264: 263: 256: 253: 251: 248: 247: 246: 243: 239: 236: 234: 231: 229: 226: 225: 224: 223:Gene delivery 221: 217: 214: 213: 212: 209: 207: 204: 203: 202: 201: 197: 196: 189: 186: 184: 181: 180: 179: 176: 175: 172: 169: 168: 167: 166: 162: 161: 154: 151: 149: 146: 144: 141: 139: 136: 135: 134: 131: 130: 125: 122: 120: 117: 115: 112: 111: 110: 107: 106: 103: 100: 98: 95: 94: 93: 92: 89: 86: 85: 81: 80: 76: 72: 71: 68: 67: 63: 62: 58: 54: 53: 46: 42: 38: 32: 19: 2676: 2667: 2658: 2623: 2619: 2609: 2582: 2578: 2567: 2532: 2528: 2518: 2483: 2479: 2469: 2424: 2420: 2410: 2385: 2381: 2375: 2340: 2336: 2276: 2272: 2262: 2217: 2213: 2203: 2171:(8): 697–8. 2168: 2164: 2154: 2109: 2105: 2095: 2060: 2056: 2008: 2004: 1994: 1967: 1963: 1953: 1918: 1914: 1904: 1859: 1855: 1845: 1800: 1796: 1786: 1751: 1747: 1737: 1702: 1698: 1688: 1653: 1647: 1612: 1608: 1560: 1556: 1508: 1504: 1494: 1461: 1457: 1444: 1411: 1407: 1400: 1367: 1363: 1330:(8): 695–6. 1327: 1323: 1267: 1263: 1218:(8): 731–4. 1215: 1211: 1166:(2): 143–8. 1163: 1159: 1108: 1104: 1044: 1040: 1030: 995: 991: 981: 946: 942: 932: 889: 885: 875: 834: 830: 824: 783: 779: 773: 748: 744: 738: 708:(2): 135–6. 705: 701: 674:Meganuclease 652: 635: 628: 623: 620: 603: 601: 586: 571: 568:Applications 560: 557: 547: 544: 518: 515:Transfection 480: 463: 434: 429: 410:. Alongside 401: 394:gene editing 382:TAL effector 373: 369: 368: 285:Gene therapy 265:Applications 238:Transduction 233:Transfection 64: 2702:E-TALEN.org 1921:(1): 20–7. 1414:(1): 74–9. 1111:(12): e82. 525:transfected 500:zinc finger 436:Xanthomonas 416:CRISPR/Cas9 2718:Categories 751:: 419–36. 685:References 588:C. elegans 541:Mechanisms 453:nucleotide 449:amino acid 443:when they 206:Techniques 178:Regulation 138:Maize/corn 2343:(3): e3. 816:206522347 597:zebrafish 529:expressed 487:annealing 470:nucleases 2650:24285304 2601:26183927 2559:26061646 2510:23546300 2461:24236034 2421:PLOS ONE 2402:25245091 2367:23344620 2313:24523878 2273:PLOS ONE 2254:25733846 2195:21822241 2146:23555929 2106:PLOS ONE 2087:25971621 2063:: 7085. 2035:24871200 2011:: 3831. 1986:24851712 1945:23124327 1896:21625552 1856:PLOS ONE 1837:21625585 1797:PLOS ONE 1778:21459844 1729:21421566 1680:22328436 1639:21248753 1587:21813459 1535:20447404 1486:22079561 1478:17603476 1436:14334237 1428:21131970 1392:28802632 1384:21822242 1346:21822240 1302:21700836 1242:21738127 1188:53549397 1180:21179091 1135:21493687 1081:21262818 1022:20699274 973:20660643 943:Genetics 924:25632877 892:: 8150. 859:19933106 808:19933107 765:19400638 722:21301438 658:See also 604:in vitro 575:biofuels 521:plasmids 400:editing 389:nuclease 97:Bacteria 57:a series 55:Part of 2641:3936731 2550:4817890 2501:3677309 2452:3827243 2429:Bibcode 2358:3381595 2304:3921256 2281:Bibcode 2245:4386332 2222:Bibcode 2186:3154023 2137:3610929 2114:Bibcode 2065:Bibcode 2013:Bibcode 1936:3532252 1887:3098256 1864:Bibcode 1828:3098229 1805:Bibcode 1769:3152341 1720:3141260 1630:3084533 1578:3241638 1526:2885538 1293:3489282 1272:Bibcode 1264:Science 1233:3152587 1126:3130291 1072:3038751 1049:Bibcode 1013:3017587 964:2942870 915:4311247 894:Bibcode 867:6648530 839:Bibcode 831:Science 788:Bibcode 780:Science 624:in situ 403:in situ 396:or for 198:Process 171:History 148:Soybean 124:Insects 114:Mammals 109:Animals 102:Viruses 2648:  2638:  2599:  2557:  2547:  2508:  2498:  2459:  2449:  2400:  2365:  2355:  2311:  2301:  2252:  2242:  2193:  2183:  2144:  2134:  2085:  2033:  1984:  1943:  1933:  1894:  1884:  1835:  1825:  1776:  1766:  1727:  1717:  1678:  1668:  1637:  1627:  1585:  1575:  1533:  1523:  1484:  1476:  1434:  1426:  1390:  1382:  1344:  1300:  1290:  1240:  1230:  1186:  1178:  1133:  1123:  1079:  1069:  1020:  1010:  971:  961:  922:  912:  865:  857:  814:  806:  763:  730:304571 728:  720:  679:CRISPR 642:CRISPR 614:, and 553:indels 398:genome 376:) are 255:CRISPR 153:Potato 133:Plants 82:  2686:(PDF) 1482:S2CID 1454:(PDF) 1432:S2CID 1388:S2CID 1184:S2CID 863:S2CID 812:S2CID 726:S2CID 374:TALEN 250:TALEN 18:TALEN 2646:PMID 2597:PMID 2555:PMID 2506:PMID 2457:PMID 2398:PMID 2363:PMID 2309:PMID 2250:PMID 2191:PMID 2142:PMID 2083:PMID 2031:PMID 1982:PMID 1941:PMID 1892:PMID 1833:PMID 1774:PMID 1725:PMID 1676:PMID 1666:ISBN 1635:PMID 1583:PMID 1531:PMID 1474:PMID 1424:PMID 1380:PMID 1342:PMID 1298:PMID 1238:PMID 1176:PMID 1131:PMID 1077:PMID 1018:PMID 969:PMID 920:PMID 855:PMID 804:PMID 761:PMID 718:PMID 638:ZFNs 581:and 466:FokI 414:and 278:food 143:Rice 119:Fish 45:3UGM 41:1FOK 2729:DNA 2636:PMC 2628:doi 2587:doi 2545:PMC 2537:doi 2496:PMC 2488:doi 2447:PMC 2437:doi 2390:doi 2353:PMC 2345:doi 2299:PMC 2289:doi 2240:PMC 2230:doi 2218:112 2181:PMC 2173:doi 2132:PMC 2122:doi 2073:doi 2021:doi 1972:doi 1931:PMC 1923:doi 1919:161 1882:PMC 1872:doi 1823:PMC 1813:doi 1764:PMC 1756:doi 1715:PMC 1707:doi 1658:doi 1625:PMC 1617:doi 1573:PMC 1565:doi 1521:PMC 1513:doi 1509:400 1466:doi 1416:doi 1372:doi 1332:doi 1288:PMC 1280:doi 1268:333 1228:PMC 1220:doi 1168:doi 1121:PMC 1113:doi 1067:PMC 1057:doi 1045:108 1008:PMC 1000:doi 959:PMC 951:doi 947:186 910:PMC 902:doi 847:doi 835:326 796:doi 784:326 753:doi 710:doi 495:PCR 37:PDB 2720:: 2666:. 2644:. 2634:. 2624:42 2622:. 2618:. 2595:. 2583:75 2581:. 2577:. 2553:. 2543:. 2533:23 2531:. 2527:. 2504:. 2494:. 2484:21 2482:. 2478:. 2455:. 2445:. 2435:. 2423:. 2419:. 2396:. 2386:14 2384:. 2361:. 2351:. 2339:. 2335:. 2321:^ 2307:. 2297:. 2287:. 2275:. 2271:. 2248:. 2238:. 2228:. 2216:. 2212:. 2189:. 2179:. 2169:29 2167:. 2163:. 2140:. 2130:. 2120:. 2108:. 2104:. 2081:. 2071:. 2059:. 2055:. 2043:^ 2029:. 2019:. 2007:. 2003:. 1980:. 1968:12 1966:. 1962:. 1939:. 1929:. 1917:. 1913:. 1890:. 1880:. 1870:. 1858:. 1854:. 1831:. 1821:. 1811:. 1799:. 1795:. 1772:. 1762:. 1752:39 1750:. 1746:. 1723:. 1713:. 1703:39 1701:. 1697:. 1674:. 1664:. 1633:. 1623:. 1613:29 1611:. 1607:. 1595:^ 1581:. 1571:. 1561:39 1559:. 1555:. 1543:^ 1529:. 1519:. 1507:. 1503:. 1480:. 1472:. 1462:25 1460:. 1456:. 1430:. 1422:. 1410:. 1386:. 1378:. 1368:29 1366:. 1354:^ 1340:. 1328:29 1326:. 1322:. 1310:^ 1296:. 1286:. 1278:. 1266:. 1262:. 1250:^ 1236:. 1226:. 1216:29 1214:. 1210:. 1196:^ 1182:. 1174:. 1164:29 1162:. 1143:^ 1129:. 1119:. 1109:39 1107:. 1103:. 1089:^ 1075:. 1065:. 1055:. 1043:. 1039:. 1016:. 1006:. 996:39 994:. 990:. 967:. 957:. 945:. 941:. 918:. 908:. 900:. 888:. 884:. 861:. 853:. 845:. 833:. 810:. 802:. 794:. 782:. 759:. 749:48 747:. 724:. 716:. 706:29 704:. 692:^ 610:, 591:, 422:. 59:on 43:, 39:: 2688:. 2652:. 2630:: 2603:. 2589:: 2561:. 2539:: 2512:. 2490:: 2463:. 2439:: 2431:: 2425:8 2404:. 2392:: 2369:. 2347:: 2341:1 2315:. 2291:: 2283:: 2277:9 2256:. 2232:: 2224:: 2197:. 2175:: 2148:. 2124:: 2116:: 2110:8 2089:. 2075:: 2067:: 2061:6 2037:. 2023:: 2015:: 2009:5 1988:. 1974:: 1947:. 1925:: 1898:. 1874:: 1866:: 1860:6 1839:. 1815:: 1807:: 1801:6 1780:. 1758:: 1731:. 1709:: 1682:. 1660:: 1641:. 1619:: 1589:. 1567:: 1537:. 1515:: 1488:. 1468:: 1438:. 1418:: 1412:8 1394:. 1374:: 1348:. 1334:: 1304:. 1282:: 1274:: 1244:. 1222:: 1190:. 1170:: 1137:. 1115:: 1083:. 1059:: 1051:: 1024:. 1002:: 975:. 953:: 926:. 904:: 896:: 890:5 869:. 849:: 841:: 818:. 798:: 790:: 767:. 755:: 732:. 712:: 372:( 358:e 351:t 344:v 20:)

Index

TALEN

PDB
1FOK
3UGM
a series
Genetic engineering

Genetically modified organisms
Bacteria
Viruses
Animals
Mammals
Fish
Insects
Plants
Maize/corn
Rice
Soybean
Potato
History
Regulation
Substantial equivalence
Cartagena Protocol on Biosafety
Techniques
Molecular cloning
Recombinant DNA
Gene delivery
Transformation
Transfection

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑